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Abstract. Uncertainty in paleoclimate time series is inherent to the  7 

The complex biological and physical processes involved in formingthat shape and archiving them in the environment 8 

forpreserve paleoclimate information over centuries or longer.  introduce variations in proxy records that are unrelated to the 9 

climate signals being reconstructed. These variations often depend on the timescale-dependency of this uncertainty is often  10 

and are referred to as “noise” of a particularspecific color, based on similarities between thea time series’ power spectrum of 11 

a timeseries and the electromagnetic spectrum of light. For example, “white noise” equally affects all timescales, where “red 12 

noise” dominates only on long timescales, similar to longwave red light. In The noise spectra of proxy records has far-reaching 13 

implications in paleoclimate research, the frequency but noise characteristics of proxy noise are often assumed based on first 14 

principles rather than estimated directly, which risksrisking either inflating or underestimating error at particular frequencies. 15 

Here, we provide concrete definitions of types of timescales-dependent errors and review methods for estimating these errors 16 

in different types of proxy data. We then synthesize the results of several studies that use a common method to 17 

estimateempirical approach for estimating the noise spectrum of error in ice core, coral, and tree-ring data. We conceptualize 18 

how time-scale dependent noise in proxy time series is created through the archive formation and data processing. Our results 19 

suggestWe posit that the colors of proxy noise are archive- specific, with white noise dominating in depositional archives such 20 

as ice-cores and marine sediment cores, while red noise is likely more common in biological archives such as tree rings and 21 

corals. Our aim is to clarify these concepts and provide tools forfindings can support assigning colored noise terms in proxy 22 

system models, data assimilations, and other experiments. 23 

1 Introduction 24 

Paleoclimate proxy records archive past climate information via biophysical or depositional pathways and preserve it in rings, 25 

layers or strata. The processes that create these records integrate non-climatic variability alongside the climate signal either 26 

during the archiving process, or afterwards as the physical record is modified over time (Cook 1987; Evans et al., 2013; Jones 27 

2009; Cook 1987). Recovering paleoclimate information from these archives requires sophisticated data processing and 28 

modeling techniques intended to extract climate-related variance from noisy time series (von Storch et al., 2004; Cook & 29 

Kairiukstis 1990; Hughes & Ammann 2009; Dee et al., 2016). Recognizing that these methods may be imperfect, the challenge 30 
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lies in minimizing and rigorously quantifying and minimizing the impact of non-climatic variancevariations on the signal of 31 

past climate variabilitychanges. 32 

Modification of proxiesproxy records can either addresult in the addition of variance by incorporating spuriousfrom random 33 

or stochastic variations, or removeunrelated fluctuations, loss of variance through smoothing across observations, shifts in 34 

timing due to irregularities in the deposition or uncertainties in dating, or a 35 

combination of these effects (Fig. 1). Technically, We regard a process that 36 

adds variance on top of an existing climate signal as a “noise process”, 37 

whereas the removalloss of variance through smoothing also constitutes 38 

error, but not ‘noise’ per se. Processes that remove variance technically 39 

noise. Smoothing processes are typically deterministic to some extent. For 40 

example, two ice-core records with similar physical properties are likely to 41 

have been similarlyboth affected by same isotopic diffusion and their 42 

correlation at a certain time-scale will not be affected if there is no additional 43 

noise (Whilans & Grootes 1985). It is further possible to correct individual 44 

records for deterministic errors if the process is well-understood 45 

(Shiffelbein 1985; Meko 1981; Dolman et al., 2021a; Shaw et al., 2023). By 46 

contrast, additive noise is oftentypically independent between sites, 47 

generating differences between individual records as well as to the true 48 

climate signal. Observation and measurement errors are best represented by 49 

stochastic, uncorrelated noise, unless they represent systematic bias, for 50 

example due to a change in the measurement apparatus. Because these types 51 

of noise are typically independent, averaging, or “stacking” individual 52 

records reduces noise while retaining the climate signal.  53 

 54 

Processes that modify climate signals in proxies result in specificBoth noise 55 

and smoothing processes incorporate unique timescale-dependent 56 

uncertainties. alongside climate signals. For example, tree rings contain 57 

correlated trees incorporate multi-decadal age-growth trends as a result of 58 

age-growth effects (Fritts 1976, Speer 2010). Age-growth trends create 59 

long-term mismatches betweenalongside climate and tree-ring data, 60 

variations, such that tree-ring timeseriestime series are typically ‘detrended’ 61 

before they are used in reconstructions (Fritts 1976; Cook & Kairiukstis 62 

1990; Speer 2010). Incomplete removal of age-growth trends results in 63 
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Figure 1: Conceptual diagram showing integration 
of different types of timescale-dependent proxy 
errors alongside climate signals via stochastic 
noise and subtractive smoothing. 
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long-term biases in tree-ring data, even if interannual correlations with climate data remain reasonably strong (Melvin & Briffa 64 

2008; Melvin & Briffa 2014 a,b). Ice cores or sediment records may be modified by Physical smoothing processes such as 65 

isotopic diffusion or bioturbation in sediments acts within the deposited layers on to remove climate information on fast 66 

timescales (Johnson et al., 2000; Whillans & Grootes 1985; Hutson 1980; Peng & Broeker 1984). Smoothing dampens the 67 

climate signal on fast timescales, becoming less influential on longer timescales such that millennial-scale shifts in climate are 68 

retained (Schiffelbein & Hills 1984; Laepple & Huybers 2013; Münch & Laepple 2018; Bothe et al., 2019).  69 

 70 

Proxy error 71 

The timescale-dependent variations of a time series can be characterizedanalyzed in the spectral domain and is often referred 72 

to using colors by loose analogy to the frequency spectrum of light (Fig 2). The relationship between Time series with 73 

relatively more low- than high-frequency variability are considered to be ‘red’, by analogy to long-wave red light, whereas a 74 

‘white’ time series implies that power spectral density andis distributed evenly across the frequency space.  75 

Figure 1: Conceptual diagram showing 
integration of different types of timescale-
dependent proxy errors alongside climate 
signals via stochastic noise and subtractive 
smoothing. 
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 76 
Figure 2: Spectral noise models with correlation structures referred to by analogy to colored light. Left panels show a simulated 77 
time series with the noise spectra shown in the right panels. Top: white noise with no correlation with timescale (𝞫 = 0). Middle: red 78 
noise (sometimes referred to as pink noise) with a positive relationship to timescale (𝞫 = 1). Bottom: blue noise with a negative 79 
relationship to timescale (𝞫 = -1). Note that 𝞫 values for noise spectra are calculated as the slope of a linear model on a log-log plot, 80 
and expressed as 𝞫 = slope*-1, following the convention where 𝞫 describes the relationship between power and timescale. 81 

Low-frequency temperature variability is generally understood to exhibit increasing power with timescale, meaning that noise-82 

free temperature proxy spectra would theoretically display a red spectrum (Pelletier 1998; Huybers & Curry, 2006; Zhu et al., 83 

2019). Noise, because it originates from a variety of sources may display different correlation structures. The integration of 84 

noise and climate signals may either further ‘redden’ or ‘whiten’ the spectrum by modifying the correlation structure of the 85 

raw time series. The relationship between power spectral density S(ƒ) and frequency ƒ is often summarized using a power-law 86 

scaling exponent β such that S(𝑓)~f-β (Box 1) (Vautard & Ghil 1989, Fraedrich & Blender 2003; Hébert et al., 2021). The 87 

exponent β represents the relationship between frequency (or time period) and power spectral density, which appears as a 88 

linear relationship plotted on a log–log scale. By convention, the exponent is defined as the negative of the relationship with 89 

frequency such that a positive exponent actually represents increasing variance with timescale. Red noise processes are 90 

represented with a positive slope value (β>0); the term ‘pink noise’ is sometimes used specifically for β=1 (Zhu et al. 2023). 91 
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Red noise is a common noise model that implies autocorrelated errors that affect low-frequencies at a greater magnitude. 92 

(Mann et al., 2007; von Stoch et al., 2009; Smerdon 2012). By contrast, a ‘white’ noise process implies errors uncorrelated in 93 

time such that the power spectral densityvariance is distributed 94 

evenly across the frequency space (β=0), similar to the spectrum 95 

of white light. White noise is uncorrelated in time, and is the 96 

simplest and most commonly-applied noise model in 97 

paleoclimate research (Fisher et al., 1985, Amman & Whal 2007; 98 

von Storch et al., 2004; Mann et al., 2005, Lee et al., 2008; 99 

Smerdon et al., 2010). By contrast, processes with relatively 100 

more low-frequency variability are termed ‘red’ noise, by 101 

analogy to long-wave red light, represented with a positive slope 102 

value (β>0), or occasionally ‘pink noise’ in the specific case 103 

when β=1. Red or pink noise implies ; 2012). Finally, blue 104 

autocorrelated errors that affect low-frequencies at a greater 105 

magnitude. (Mann et al., 2007; von Stoch et al., 2009; Smerdon 2012; Zhu et al., 2023). Finally, blue noise refers to processes 106 

with relatively higher variability at high frequencies (β<0). Blue noise is characterized by an anti-correlated structure, implying 107 

rapidly vanishing effects with increasing timescale (Mann & Rutherford 2002; Mann et al., 2007).  108 

 109 

Our understanding of proxy noise characteristics has evolved out of the need to reconcile diverging results in records that 110 

should contain the same climate signal. For certain processes, such as the effects of measurement error, aliasing due to under-111 

sampling, or depositional noise from roughness at the snow surface, the noise power spectrum can be derived from first 112 

principles and expressed in closed-form solutions (Fisher et al., 1985; Schiffelbein, 1985; Kunz et al., 2020; Dolman et al., 113 

2021b). In cases where the physical and biological processes affecting proxies are well understood, a more flexible approach 114 

is to use proxy system models (PSMs) (Jones et al., 2009; Vaganov et al. 2011; Evans et al. 2013; Tolwinski-Ward et al. 2011; 115 

Dee et al., 2016; Dee et al., 2017; Dolman and Laepple, 2018). In this case, climate data sets of temperature and precipitation 116 

from instrumental data, climate models or stochastic simulations are used as input to the PSM, and synthetic proxy time series 117 

are simulated. The spectrum of the noise can then be estimated through comparison to the climate time series (Dee et al., 2017).  118 

By omitting processes that are not well-understood, PSMs risk underestimating the noise level. For example, stratigraphic 119 

noise in ice-core-based proxies can account for more than half of the isotope signal (Hirsch et al., 2023) but stratigraphic 120 

processes are not represented in current isotope PSMs (Dee et al., 2015). To account for “known unknowns” recent studies 121 

have added estimates of noise with specific spectral properties to mimic these extraneous sources of variability in PSM output, 122 

using models or reanalysis data as external validation. (Dee et al., 2018; Evans et al. 2014; Zhu et al. 2023; Bothe et al. 123 

2019).The spectra of proxy noise can be either modeled based on mechanistic understanding, or empirically estimated from 124 

Power-law scaling in frequency space
The spectral exponent β summarizes the  
      relative contribution of high- and low-  
      frequencies to the total variance.
The power spectral density S(𝑓) is assumed 
     to approximately follow a power-law with 
     frequency 𝑓 such that S(𝑓) ~𝑓-β  
β is typically expressed as the negative slope 
     of a linear regression on a log-log plot of 
     the power spectrum. 

Box 1: Summarizing the timescale-dependency of proxy noise 
using spectral power-laws. 

Power-law scaling in frequency space
The spectral exponent β summarizes the  
      relative contribution of high- and low-  
      frequencies to the total variance.
The power spectral density S(ω) is assumed 
     to approximately follow a power-law with 
     frequency ω such that S(ω) ∝ ω-β  
β is typically expressed as the negative slope 
     of a linear regression on a log-log plot of 
     the power spectrum. 
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data. In cases where the physical processes affecting proxies are well-constrained, the power spectrum of the noise can be 125 

estimated using parametric models based on biophysical mechanisms (Dee et al.,  126 

 127 

Alternatively, empirical proxy noise spectra can be derived by relying solely on proxies by exploiting the spatial correlation 128 

of climate signals in nearby records, building on the assumption that non-climatic noise is independent between records. This 129 

approach has the advantage of being able to exploit the full length of paleoclimate time series without relying on climate 130 

models or short instrumental time series, and without the assumption that physical processes themselves are well-understood. 131 

One limitation is that this method relies on the availability of replicated or nearby records that have low time-uncertainty, such 132 

as corals, tree rings, and banded ice cores or laminated sediments. If empirical noise estimates are consistent with those derived 133 

from mechanistic models this both validates the processes represented in PSMs creates a strong basis for using the resulting 134 

noise spectra in a variety of research applications.  135 

In this study, we synthesize noise estimates derived directly from multiple proxy types and interpret their spectral 136 

characteristics in the context of known biological and physical processes. This contribution provides a basis for evaluating 137 

signal fidelity and for refining assumptions commonly made in proxy system models and other experiments. We present noise 138 

estimates published in three studies where noise terms were2016; Dee et al., 2017). The effects of additive noise from 139 

measurement error and under-sampling can also be incorporated into mechanistic models of uncertainty (Schiffelbein 1985; 140 

Kunz et al., 2020, Dolman et al., 2021b). Proxy errors can also be estimated empirically by comparing time series to 141 

instrumental records or climate models (Ault et al., 2013; Franke et al., 2013; Reschke et al., 2019). However, in the former 142 

case, noise estimates are restricted to decadal and sub-decadal time scales for which we have instrumental data. The latter case 143 

assumes that the medium- and low-frequency behavior of the climate system is correct in the models, and thus that 144 

discrepancies reflect proxy noise rather than uncertainty in climate models (Deser et al., 2012; Maher et al., 2020; Laepple et 145 

al., 2023).  146 

 147 

Alternatively, estimation of noise spectra can be done with relying solely on proxies by exploiting the spatial correlation of 148 

climate signals in co-located records. Below, we present noise estimates derived using a simple empirical approach that 149 

partitions shared signal from independent variance on all time scalestimescales (Münch & Laepple 2018)), and described the 150 

extended data section (Appendix A). We show results for published ice cores from three studies that have applied this approach  151 

to ice core (Münch & Laepple 2018),, tree ringrings (McPartland et al., 2024), and coral datacorals (Dolman et al., in prep). 152 

revision). By presenting these findings alongside evidence from first principles and existing literature we aim to deepen a 153 

collective understanding of the behaviour of proxy noise. 154 

The tree-ring and coral data were sourced from global databases compiled by the Past Global Changes (PAGES) initiative 155 

(PAGES Consortium 2017; Walter et al.,,., 2023), and the ice core data represent two large clusters of cores from Antarctica 156 
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and Greenland (Graf et al., 2002; Weißbach et al.,, 2016; Hörhold et al., 2023) (Appendix B). By synthesizing conventional 157 

knowledge, evidence from existing literature, and original analysis we aim to deepen a collective understanding of the 158 

behaviour of proxy noise and its implications for recovering climate signals from paleo data.Full details on each result are 159 

provided in the aforementioned studies. We focus our discussion on the noise spectra and resulting signal-to-noise ratio. 160 

Evaluating the climate signal curves would ideally involve comparison with data and models, which are beyond the scope of 161 

this paper. In the extended data section, we reproduce the signal spectra and sample density at each frequency to provide all 162 

information involved in the noise spectra calculations and their uncertainty estimates (Appendix C).  163 

2 The colors of proxy noise 164 

We findOur synthesis demonstrates that tree rings and corals both exhibit clear red noise spectra with positive scaling exponent 165 

β values of 0.8 and 0.5 respectively (Fig 3; a, b),) such that the power of the noise increases with time scaletimescale. As the 166 

noise increases more than the climate signal, this leads to a decline of the signal-to-noise ratio (SNR) with time scaletimescale 167 

(Fig 3; d, e). Tree-ring and coral records result from the growth or accretion of layers by an individual organism over time 168 

such that life history or changes in the biological archiving system may affect proxy formation. We posit that proxy records 169 

composed of repeated measurements made on single long-lived organisms through time are susceptible to ontogenetic effects, 170 

the legacies of past disturbances, or slow changes in the behaviour of the sensor.  171 
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 172 
Figure 3:  Estimates of proxy noise spectra (a, b, c) and timescale-dependent signal-to-noise ratios (d, e, f). Top: (a) Mean noise 173 
spectra for tree-ring width and density records from northern hemisphere tree-ring records, (b) Mean noise spectra for tropical 174 
coral 𝛅18O and strontium/calcium (Sr/Ca) ratios, (c) Noise spectra for ice core 𝛅18O from Dronning Maud Land (light blue) in 175 
Antarctica and the North Greenland Traverse (dark blue). Dashed lines represent an idealized spectral power-law with a slope β = 176 
1 for proxies containing predominantly red noise (i.e. tree rings and corals), and with β = 0 for proxies (i.e. ice cores) containing 177 
predominantly white noise.  Bottom: Timescale-dependent signal-to-noise ratios (SNR) for (d) tree rings, (e) corals, and (f) ice cores. 178 
Dashed lines represent an SNR of 1. Confidence intervals on all spectra represent the 10th and 90th percentiles from a parametric 179 
bootstrapping estimation method. Detailed methods for estimating proxy noise and SNR values can be found in McPartland et al., 180 
(2024) (tree rings), Münch et al., (2018) (ice cores) and Dolman et al., (under revision) (corals). 181 

In trees, cambial age impacts both tree-ring width and density, such that detrending to remove juvenile age trends is a near 182 

universal practice in dendrochronology (Cook & Kairiukstis 1990). Even after detrending, residual age effects could partially 183 

explain the persistent low-frequency bias observed in tree-ring records (Franke et al., 2013, Ault et al., 2013). Detrending itself 184 

can also introduce biases at medium-frequencies, particularly when fitting raw time series with negative exponential curves, 185 
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regional curves or rigid spline functions (Melvin &Briffa 2008; Melvin & Briffa 2014 a;b, Esper 2003, Briffa & Melvin 2011). 186 

Techniques such as “signal-free” detrending have aimed at boosting low-frequency variability while minimizing bias (Melvin 187 

& Briffa 2008), but despite retaining more low-frequency variance, tests of this method indicated only minor improvements 188 

in signal strength and signal-free chronologies retained their red-noise spectra (McPartland et al. 2020; McPartland et al. 2024). 189 

By extension, red noise is likely a feature of bivalve and sclerosponge chronologies, which contain similar age-growth trends 190 

to those found in trees and are detrended using the methods originally developed in dendrochronology (Jones 1983; Rypel et. 191 

al 2008; Hollyman et al., 2018; McCulloch et al., 2024). explain the persistent low-frequency bias in tree-ring records seen 192 

here, and observed in other studies (Franke et al., 2013, Ault et al., 2013). Similarly, Tree rings are also smoothed on fast 193 

timescales as a result of the carryover, or ‘memory’, of prior years’ growth. Biological memory adds temporal autocorrelation 194 

to tree ring time series which has the effect of steepening the slope of the noise spectra by reducing high frequency power 195 

spectral density (Zhang et al. 2015; Lucke et al. 2019; McPartland et al. 2024). ‘Pre-whitening’ chronologies by adjusting their 196 

temporal autocorrelation structure to match the climate target improves the interannual correlation between data and proxy 197 

(Meko 1981), but by virtue of removing additional variability at high-frequencies, decreases the ratio of high to low power 198 

spectral density that defines the noise slope term β.   199 

 200 

Coral aragonite records might be affected by changes in the biology of individual or descendent polyps over time which may 201 

result resulting in a slow drift in the temperature response of the proxy andwhich would appear as low-frequency variability, 202 

possibly. Such changes could be growth-rate related due to reaction-kinetic effects (Goodkin et al., 2005; Hayashi et al., 2013; 203 

Maier et al., 2004; Saenger et al., 2008; Suzuki et al., 2005), result from changes in the calcification process (Lough 2004), or 204 

persistent baseline shifts in trace element ratios following thermal stress events (D’Olivo & McCulloch 2017; D’Olivo et al., 205 

2019) perhaps mediated by changes in the composition of photosynthetic symbionts (Berkelmans and van Oppen, 2006; Cohen, 206 

2002; Little et al., 2004).2019). By extension, red noise might also be a feature of bivalve and sclerosponge chronologies, 207 

which contain similar age-growth trends to those found in trees (Jones 1983; Rypel et. In general, records composed of repeated 208 

measurements made on single long-lived organisms through time are susceptible to ontogenetic effects, the legacies of past 209 

disturbances, or slow changes in the behaviour of the sensor.  210 

 211 

The stacks of ice cores from both Greenland and Antarctica that we analyzed show a high white noise level where β is 212 

approximately equal to zero (Fig 3 e, f). As the climate variations become more pronounced on longer time scalestimescales, 213 

this leads to an increasing signal-to-noise ratio with time. We positargue that proxies that are primarily the result of deposition, 214 

rather than growth or accretion primarily contain white noise. stemming from stratigraphic processes. Precipitation 215 

intermittency and post-depositional redistribution in ice cores result in adjacent measurements potentially representingthat 216 

represent water from different precipitation events (Laepple et al., 2018; Casado et al., 2020; Zuhr et al., 2023). SimilarlyBy 217 

extension, in marine sediments where foraminifera or diatoms are deposited from the water column, each sample represents a 218 

new set of individuals such that biological effects are uncorrelated between measurements. Therefore,From process-based 219 
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experiments, it has been demonstrated that noise in sediment records is also predominantly white with a noisethe signal level 220 

decreasingincreasing as more individuals are measured (Kunz et al., 2020, Dolman et al., 2021). In both ice core and sediment 221 

core records of near-surface temperature, seasonal depositional cycles are much stronger than any interannual or even 222 

millennial climate change and the sparse subsampling of the seasonal signal leads to aliasing of independent noise within the 223 

signal of annual variation (Kunz et al., 2020). Precipitation intermittency and depositional redistribution break up the signal 224 

of the large seasonal cycle that would appear as a large spike in the spectrum at annual timescales if the signal were recorded 225 

without disruption. Instead, the spike is redistributed as white noise across all frequencies (Casado et al., 2020; Münch et al. 226 

2021). 227 

 228 

We identified fewer examples of blue noise processes in the paleoclimate literature. Because its effects diminish quickly with 229 

time, blue noise does not introduce error past fast time scalestimescales. An example of a true blue noise process is the infilling 230 

of troughs on ice sheets as wind redistributes snow causing blue noise in noise in annual layer thickness records from ice-cores 231 

(Fisher et al., 1985). Blue noise models have occasionally been used in proxy system modelstested alongside red and white 232 

noise to account for a variety of potential types of error affecting high-frequencies, and to improve the fit between synthetic 233 

proxy records and climate model data (Mann et al., 2007; Mann & Rutherford 2002). 234 

 235 

Like blue noise, smoothing processes predominantly affect high frequencies and becomebecomes less significant with 236 

timescale. Biological memory in trees, diffusion in ice cores, and bioturbation in sediments are all examples of smoothing 237 

processes that lead to correlated errors between the climate and the proxy signal which, in theory, can be accounted for using 238 

deterministic modeling (Matalas et al., 1962; Berger et al., 1977; Meko 1981; Ruddiman et al., 1980; Whillans and Grootes, 239 

1985). Given such a model, the smoothing effect can be reversed, as applied in our example to ice core data to reverse the 240 

effects of diffusion (Shaw et al. 2024) (see Appendix A). If the smoothing process affects the climate signal and the proxy 241 

noise equally during deposition or accretion, the signal-to-noise ratio (SNR) is unbiased at all timescales, regardless of whether 242 

or not a correction for the smoothing effect is applicable, as is the case for diffusion in ice cores. However, when noise is 243 

introduced after smoothing (e.g. measurement noise), the attenuated climate signal on the high-frequency side will be masked 244 

by a relatively stronger noise level, biasing the SNR spectrum downwards toward high frequencies. In any case, knowledge 245 

about and accounting for smoothing processes in paleoclimate time series is critical for evaluating the short-term effects of 246 

climate forcing events such as volcanic eruptions (Esper et al., 2015; Zhang et al., 2015; Lücke et al., 2015), but is potentially 247 

less critical for reconstructing low-frequency variations in climate. 248 
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 249 
 250 

Dating for all three proxy types discussed here is primarily achieved by some kind of band counting, or by counting annual 251 

cycles in geochemical tracers. If bands or cycles are missed, or double counted, this introduces time-uncertainty and an 252 

additional source of error in the reconstructed climate time series (Comboul et al. 2014). Time uncertainty has little effect on 253 

the shape of individual power spectra when the spectra are broadband, as is typical for climate time series (Rhines & Huybers, 254 

2011). However, it reduces coherence between records, diminishing high-frequency power in stacked spectra and biasing SNR 255 

estimates downward at shorter timescales (Münch & Laepple, 2018; Fig. D1). The effect of time-uncertainty acts as a linear 256 

transfer function on the stacked spectra and can be estimated and corrected for if the time uncertainty is known, although this 257 

was not applied here (Appendix D). For the ice-core records analysed here, the time-uncertainty is due to potential variations 258 

in the accumulation rate between volcanic tie-points and is negligible for frequencies below 1/10 years (Münch & Laepple 259 

2018, their Fig. B1). For the sub-annual resolution coral records used here, age models mostly come from counting annual 260 

cycles in the geochemical tracers. However, for most coral records there are no independently dated tie-points and so it is not 261 

possible to directly estimate counting error rates and correct for time-uncertainty. Simulations with potential error rates derived 262 

from corals show that the slope of the SNR is biased in the opposite direction to the one we estimate (Fig. D1) and that even 263 

for very large error rates of 1 in 10 years’ time-uncertainty cannot account for the low SNR at decadal timescales. Time 264 
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uncertainty is arguably less of an issue for tree-ring records as they are considered to be precisely dated and 265 

dendrochronologists routinely employ statistical cross-dating techniques to identify and eliminate dating errors (Holmes et al 266 

1986). Through this process locally absent rings are identified during cross-dating and assigned a no-data value to avoid 267 

affecting the final chronology. The strength of the tree-ring SNR on sub-decadal timescales is indicative of this dating 268 

precision.  269 

 270 

For proxy archives that are not annually resolved such as reconstructions from non-varved terrestrial and marine sediment 271 

cores, the irregular spacing of samples in time and larger dating uncertainties makes stacking unsuitable for this type of noise 272 

estimation, representing a limitation of this approach. Alternative methods, such as estimating the SNR as a function of time 273 

uncertainty (Reschke et al., 2018), or applying tuning methods that align proxy records by maximizing covariance and assess 274 

significance against surrogate data (Haam & Huybers, 2010), may still allow for empirical SNR estimation in these cases. 275 
consideration) (corals).   276 

3 Implications  277 

The spectrum of temperature on local to global scales is generally accepted to be red (Huybers & Curry 2006; Cheung et al., 278 

2017; Hasselmann et al.,,., 1976). For proxies with predominantly white-noise spectra such as ice cores and sediments, this 279 

implies that the power spectral density of the climate signal relative to the noise, the signal-to-noise ratio (SNR), increases 280 

with timescale. This explains why ice cores are faithful recorders of millennial climate variability (e.g. EPICA, 2006), while 281 

they fail in many regions to reconstruct interannual to decadal changes (Stenni et al., 2017). By contrast, in proxies that contain 282 

red noise, the SNR will rise more slowly or even decline with timescale if the power of the noise rises more steeply than the 283 

signal, as we demonstrate in tree rings and corals. These proxies are better recorders of fast time-scale variability where the 284 

ratio of signal to noise is highest. For example, corals are faithful recorders of interannual variability and can deliver unique 285 

information on tropical climate dynamics such as the El Niño Southern Oscillation (ENSO) (Fig. 3), but have challenges 286 

reconstructing multidecadal trends (Scott et al., 2010).  287 

 288 

The color of the noise thus determines at which influences the timescales at which a robust climate signal can be reconstructed, 289 

because it introduces a frequency-dependence to the SNR. Information about proxy noise can be used to guide future study 290 

design (i.e. what proxies can be used to answer a climatic hypothesis) and to optimize the sampling and measuring design (i.e. 291 

how many cores are needed; what is the optimal sampling resolution to minimize noise). It can also be used to estimate time 292 

scale-dependent uncertainty in climate reconstructions. Error from proxies with white noise spectra is reduced by averaging in 293 

time so in reconstructions that draw on records with white noise spectra, error should be reduced with the addition of more 294 

records. In the case of red noise that mimics the spectrum of the climate, uncertainty depends on the slope of the noise relative 295 

to that of the climate. If the slope of the noise is steeper than that of the climate, even with averaging in time the error will still 296 
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overwhelm the signal on the longest timescales. The shape of proxy noise therefore influences the time scales at which 297 

estimates of past climate are more or less certain. If unaccounted for, colored noise can be misinterpreted as past climate 298 

variabilityFor individual proxy time series where the signal increases more strongly with timescale than the noise, when the 299 

signal spectrum is “redder” than the noise, binning to a coarser timestep or by applying stronger smoothing reduces the noise. 300 

This improves the SNR, albeit at the cost of losing information at shorter timescales. The extent to which uncertainty is reduced 301 

by binning or smoothing depends on the relative spectral slopes of both the signal and noise.  302 

Colored noise models such as those described here are appropriate for use in research activities where the behavior of proxy 303 

noise is often assumed rather than estimated. For example, the use of empirical, proxy-specific noise models in pseudoproxy 304 

experiments will improve their use in evaluating climate model performance, particularly on long time scales (Jones et al., 305 

2006, Dee et al., 2016; Smerdon et al., 2020). Climate field reconstructions and data assimilation methods often assume white 306 

noise, which risks misconstruing noise as signal, potentially leading to biased results. In climate field reconstructions and data 307 

assimilation frameworks proxy-specific noise models could be used to improve the representation of spatio-temporal modes 308 

of past climate variability.  309 

 310 

Knowing the color and level of proxy noise is valuable for a variety of research contexts in paleoclimatology. For example, 311 

accurate noise models are important for pseudo-proxy experiments (PPEs) in which climate model output is degraded into 312 

pseudo-proxy time series to test the skill of reconstruction methods and evaluate models (Jones et al. 2009; Smerdon et al. 313 

2012). Often PPEs reley on sensitivity tests using different noise levels or spectral colors (Riedywl et al. 2009; Smerdon et al., 314 

2010; Mann and Rutherford, 2002; Gomez-Navaro et al. 2017). Red noise may be tested alongside white or sometimes blue 315 

noise, but typically using a first-order autoregressive (AR(1)) process with a fixed spectral slope (β = 2) (Mann et al. 2007; 316 

Riedywl et al. 2009). However, this can lead to underestimation of the actual noise, especially at low frequencies where the 317 

spectrum of an AR(1) process levels out. More recent PPEs have integrated full PSM complexity with realistic noise estimates 318 

(Boothe et al. 2019; Zhu et al. 2023). Finally, accurate noise estimation is important in data assimilations and field 319 

reconstructions to bring reconstructed time series into better alignment with calibration datasets, and propagate uncertainty in 320 

estimates of past climate variability (Goose et al. 2010; King et al. 2021). 321 

Conclusion 322 

HereBuilding on prior insights from proxy system modeling, and with reference to a first-principles based understanding of 323 

proxy formation, we present here an overview of how colored noise is created and can be represented in different types of 324 

paleopaleoclimate archives. By synthesizingIncorporating empirical, proxy-specific noise models as presented here into a 325 

range of paleoclimate research activities. This will help to move away from the assumption that noise is white or follows a 326 

first-order autoregressive process, which can lead to misinterpreting noise as signal and propagating biases into results of 327 

multiple recent studies, we show the distinct nature of noise and signals across archives and discuss how colored noise 328 
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should be conceptualized in paleoclimate data.. These noise models, or models derived using similar stacking and variance-329 

partitioning methods, can be implemented within paleoclimate research as a way toused account for the range of unique 330 

biological and physical processes affecting proxies.  in pseudo proxy experiments, data assimilation frameworks, and 331 

reconstructions efforts to improve the representation of patterns of past climate variability. 332 

Appendix  333 

Appendix A:  Estimating the spectrum of noise 334 

We apply the method of Münch et al., (2018) of combining clustered proxy records into regional stacks and analyzing their 335 

variance in the frequency domain. It builds on the assumption that the proxy signal is a function of four main components: the 336 

climate signal, additive noise that arises during the proxy creation and archiving stages, measurement noise, and any smoothing 337 

processes that act during archiving but not on the measurement noise; i.e. 338 

 339 

 340 

 341 

where P, C, N, and 𝚺 stand for the power spectral densities of the proxy signal, the climate signal, the proxy noise, and the 342 

measurement noise, respectively, and where G is a transfer function that describes a specific smoothing process such as 343 

biological memory, diffusion, or bioturbation. 344 

 345 

Given a regional cluster of n proxy records with a similar climate between sites, the mean power spectrum, M, averaged across 346 

all individual records’ spectra, will yield a precise estimate of the proxy spectrum P. By contrast, the power spectrum, S, of 347 

the stacked record from averaging all records in the time domain, will also contain the full climate signal, but with the noise 348 

proportions reduced by a factor of n. By combining both quantities one can derive expressions for the climate and noise spectra 349 

(Münch and Laepple, 2018), 350 

 351 

 352 

 353 

 354 

with the ratio of C:N yielding the frequency-resolved signal-to-noise ratio (SNR). A common smoothing process equally biases 355 

the signal and the noise spectrum, if not corrected for by means of the inverse transfer function G-1, and hence its effect cancels 356 

out in the SNR spectrum. We note that time uncertainty between individual proxy records can be another source of smoothing 357 
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in the stacked record, but it is less straightforward to include into our methodology (Münch and Laepple, 2018) and is neglected 358 

here. 359 

Appendix B: Data 360 

B.1 Tree Rings  361 

For the tree-ring data we analyzed the tree-ring records contained within the Past Global Changes 2k (PAGES2k) database, a 362 

large database compiled to reconstruct global temperature variations during the last two millennia. This network of 647 unique 363 

paleoclimate records from around the globe includes 450 tree-ring timeseriestime series, of which we used 421 records of tree-364 

ring width and density located across the Northern hemisphere (PAGES 2013, 2017; Neukom et al.,,., 2019). Spatial clusters 365 

were defined using 250-kilometer radii, such that no two sites were more than 500 kilometers apart. Tree-ring width and 366 

density records were clustered separately. This resulted in 186 clusters of sites. More information om the analysis of the 367 

PAGES tree-ring database is available in McPartland et al ( so that the proxies weren’t mixed within clusters. This resulted in 368 

253 clusters containing a minimum of 3, and a maximum of 30 sites per cluster. The average number of sites per cluster was 369 

8. There were 18 density sites and 235 ring width clusters. The average length of the overlapping period was around 450 years. 370 

The results of all clusters of both proxy types were averaged at the end to derive the signal, noise and SNR.  Uncertainty was 371 

calculated using a parametric bootstrapping approach. (McPartland et al., 2024). 372 

B.2 Corals 373 

We used the coral records contained within the PAGES Coral Hydro 2k database to obtain coral SNR estimates (Walter et al., 374 

2023). The Coral Hydro2k database contains 54 oxygen (δ18O) and strontium calcium (Sr/Ca) records from the global tropics. 375 

The database was compiled to reconstruct sea surface temperature and ocean hydroclimate variability for the past two centuries. 376 

Due to fewer records, 1000 km spatial clusters were used, resulting in 64 clusters. δ18O and Sr/Ca records were clustered 377 

separately and the results arewere averaged. More information on the coral data curation is contained in Dolman et al., under 378 

considerationrevision. 379 

B.3 Ice Cores 380 

As an example for ice-core derived temperature proxies, we use stable isotope records from the Dronning Maud Land region 381 

in Antarctica (“DML data” in the following; Graf et al., 2002) and from central-north Greenland (“NGT data” in the following; 382 

Weißbach et al.,,., 2016, Hörhold et al.,,., 2023). 383 

 384 

The DML data consist of 15 records, 12 of which cover the time period from 1800 to 1998 CE and 3 records cover 1000–1998 385 

CE. We combine both datasets by using the individual spectral results (Münch and Laepple, 2018) of the shorter records on 386 
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time scalestimescales below decadal and of the longer records on the supra-decadal time scalestimescales. We apply the 387 

diffusion correction as in Münch and Laepple (2018) but do not use their time-uncertainty correction. 388 

 389 

The NGT data comprise 14 cores covering the time span from 1505 to 1979 CE, including original records from the North 390 

Greenland Traverse published in Weißbach et al (2016) as well as the extended NGT records from exploiting new drillings as 391 

presented in Hörhold et al., (2023). The corresponding NGT spectra shown in Hörhold et al., (2023) were not diffusion-392 

corrected; here, to be able to compare the NGT spectra to those from the DML data, we apply a diffusion correction to the 393 

NGT spectra following the method given in Münch and Laepple (2018) with diffusion length estimates calculated as described 394 

in Hörhold et al., (2023). Note that the SNR spectrum shown in Hörhold et al., (2023) used the ratio of the integrated signal 395 

and noise spectra, which is related to the correlation with the climate signal (Münch and Laepple, 2018), whereas here we 396 

show the direct ratio of the spectra. 397 

Appendix C: Signal, noise and signal-to-noise ratio estimation 398 

Full results for the uncorrected signal, noise and SNR estimates for tree rings, corals and ice core data (Fig. A1 a,b,c,d). 399 

Spectra in Fig. 3 represent truncated versions which have been cut off where sample density in corals and tree rings drop off 400 

(shaded regions), as seen in the spectral density plots (Fig A1 bottom panels). In both corals and tree rings, the SNR rises 401 

again due to the reduction in replication and dominance by single or a small number of records with higher SNR than 402 

average (Fig A1, a,b) (see McPartland et al. 2024; Fig 2, ef). Confidence intervals on all spectra represent the 10th and 90th 403 

percentiles from a parametric bootstrapping estimation method. In addition to the truncation due to low sample size, the 404 

lowest two spectral estimates on all spectra are removed during SNR calculation and confidence interval estimation a the 405 
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multitaper approach introduces a small bias at the lowest frequencies (Percival & Walden, 1993).406 

 407 

Figure C1: Timescale-dependent signal, noise and SNR estimates with sample density plots for tree-rings (a,e), corals 408 
(b,f), and ice core 𝛅18O  data from Dronning Maud Land in Antarctica (c,g) and the North Greenland Traverse (d,h).  409 
Top graphs show signal (blue), noise (green) and SNR (purple) curves, with the uncorrected “proxy” spectra (yellow). 410 
Confidence intervals on all spectra represent the 10th and 90th percentiles from a parametric bootstrapping estimation 411 
method. The light grey shading indicates the cut-off point for spectral estimates presented in Fig. 3 when sample density 412 
decreases and the results become more uncertain. Detailed methods for estimating proxy noise and SNR values can be 413 
found in McPartland et al., (2024) (tree rings), Münch et al., (2018) (ice cores) and Dolman et al., (under revision) 414 
(corals).  	415 
	416 

(a) Tree rings (b) Corals (c) Ice (Antarctica) (d) Ice (Greenland)
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Appendix D: Simulated effects of time uncertainty on timescale-dependent signal-to-noise ratios 417 

To illustrate the potential effects of time uncertainty on estimates of signal-to-noise ratio we used the approach of Comboul et 418 

al. (2014) as implemented by Münch and Laepple (2018). Münch and Laepple (2018) show that relative time-uncertainty 419 

between records in a stack acts as a linear transfer function, reducing power in the stack at high frequencies. The precise shape 420 

of the transfer function depends on the counting error rate, and on the lengths of the time series, as longer time series allow 421 

larger relative errors to accumulate. It does not depend on the power spectrum 422 

of the initial “true” signal. Here we show the effect on SNR for 100-year time 423 

series with band counting error rates of 1 in 10, 50 and 100 years, with equal 424 

probability of missing or double counting a band. The effect on estimated 425 

SNR is shown relative to a hypothetical true SNR of 1.  426 

 427 

 428 
	429 
 430 
 431 
 432 
 433 
 434 
 435 
 436 
 437 
 438 
 439 

 440 
 441 
 442 

Data Availability 443 

This work represents a synthesis of multiple independent research projects. The data needed to reproduce the tree-ring and 444 

coral data are publicly available through the NOAA National Centers for Environmental Information (Emile-Geay et al.,,., 445 

2017; Walter et al., 2023). The original Antarctic ice core isotope data are archived at the PANGAEA database (Graf et al.,,., 446 

2002) as well as the Greenland data except for core NGRIP whose data is available from the Centre for Ice and Climate of 447 

Copenhagen University (Weißbach et al.,,., 2016; Hörhold et al.,, 2023). PANGAEA is hosted by the Alfred Wegener Institute 448 

Helmholtz Centre for Polar and Marine Research (AWI), Bremerhaven and the Center for Marine Environmental Sciences 449 

(MARUM), Bremen, Germany. 450 

Figure D1: The influence of time-
uncertainty on SNR estimated by the 
stacking method. Here time uncertainty is 
simulated for a set of 100-year records with 
band counting error rates of 1 in 10, 50 and 
100, and a true SNR of 10 at all frequencies. 
The simulation was carried out following 
Münch and Laepple (2018) which 
implements the counting error model of 
Comboul et al. (2014). 
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Code Availability 451 

The general software to conduct the separation of signal and noise in the spectral domain and to perform the signal-to-noise 452 

ratio analysis is available as the R package proxysnr from the open research data repository Zenodo (Münch, 2018). 453 

Additionally, specific code to reproduce the tree-ring, coral, and ice-core analyses, respectively, are also available via Zenodo 454 

(McPartland 2024, Dolman 2024; Münch 2024). 455 
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