## **Supplementary Figures and Tables to:**

Oligocene-early Miocene paradox of  $pCO_2$  inferred from alkenone carbon isotopic fractionation and sea surface temperature trends

José Guitián<sup>1\*</sup>, Samuel Phelps<sup>2, 3</sup>, Reto S. Wijker<sup>1</sup>, Pratigya J Polissar<sup>2, 4</sup>, Laura Arnold<sup>1</sup>, and Heather M. Stoll<sup>1</sup>

<sup>1</sup>Geological Institute, ETH Zurich, Switzerland

<sup>2</sup>Lamont-Doherty Earth Observatory, Columbia University, USA

<sup>3</sup>Harvard University, USA

<sup>4</sup>Ocean Sciences Department, University of California Santa Cruz, USA

\* present address: Centro de Investigación Mariña, Universidade de Vigo, GEOMA, Vigo, 36310, Spain

Correspondence to: Jose Guitian (jose.guitian@uvigo.gal; heather.stoll@eaps.ethz.ch)

Figure S1. High resolution IODP 1406 subset of measured  $\delta^{13}$ C benthic foraminifera, bulk carbonate, C<sub>37.2</sub> alkenone, calculated  $\epsilon p$ , and SST.



Figure S2. Measured biogenic silica vs SST from the same samples of IODP 1406 and ODP 1168. Colour code shows time intervals as main Figure 6. Dashed black line overall relation.



Figure S3. Entire studied period correlation regression lines, for the measured ep (solid), ep without the theoretical temp effect (transparent), and ep without the temp and size effect (dashed). R2-values: a (-0.43\*\*, -0.16, -0.09); b (0.58\*\*, 0.78\*\*, 0.73\*\*); c (0.25, 0.13, 0.15); d (0.29, 0.25, 0.48).\*\* *p* value <0.05.



Figure S4. Relation between published *ep* estimates recalculated as described in text, and existing GDGTs-derived temperature reconstructions for same or nearby samples.



| Table S1.                                         |
|---------------------------------------------------|
| Differences between SST proxy between ZB-1 column |
| and RTX-200 column measurement                    |

|           | Proxy                         | av. diff. (°C) | Stdv. |
|-----------|-------------------------------|----------------|-------|
| IODP 1406 | $U^{k'}_{37} \ U^{k'}_{38ME}$ | -0.6           | 0.4   |
| (subset)  |                               | -0.8           | 1.9   |
| ODP 1168  | $U^{k'}_{37} \ U^{k'}_{38ME}$ | -0.5           | 1.2   |
| <22.4 Ma  |                               | -1             | 0.7   |
| ODP 1168  | $U^{k'}_{37} \ U^{k'}_{38ME}$ | -1.8           | 1.7   |
| >22.4 Ma  |                               | -2.8           | 1.8   |

| Differences between $\delta^{I3}C$ alkenone between ZB-1 column | n |
|-----------------------------------------------------------------|---|
| and RTX-200 column measurement                                  |   |

|                       |                       | av. diff. (‰) | Stdv. |
|-----------------------|-----------------------|---------------|-------|
| IODP 1406<br>(subset) | $\delta^{I3}C$ alk    | -0.2          | 0.9   |
| ODP 1168<br><22.4 Ma  | $\delta^{^{13}}C$ alk | -1.1          | 1     |
| ODP 1168<br>>22.4 Ma  | $\delta^{^{13}}C$ alk | -3.7          | 1.6   |

Table S2

| Site      | Source age model                  | Source SST                                                                   | Source $\delta^{13}C_alk$                   | Source $\delta^{13}C_DIC$                                           |
|-----------|-----------------------------------|------------------------------------------------------------------------------|---------------------------------------------|---------------------------------------------------------------------|
| ODP 1168  | Stoll et al., (2024)              | Miocene = $U_{37}^{k'}$ This study<br>Oligocene = $U_{38ME}^{k'}$ This study | This study                                  | Bulk sed0.5 ‰                                                       |
| IODP 1406 | Stoll et al., (2024)              | $U_{37}^{k'}$ This study                                                     | This study                                  | Bulk sed0.5 ‰                                                       |
| DSDP 516  | Guitian <i>et al.</i> ,<br>(2020) | TEX <sub>86</sub> Auderset <i>et al.</i> , (2022)                            | Pagani <i>et al.</i> , (2005)               | Miocene = Planktic<br>foram.<br>Oligocene = Benthic<br>foram. + 2 ‰ |
| ODP 608   | CenCO2PIP<br>Consortium, (2023)   | TEX <sub>86</sub> Super <i>et al.</i> , (2018)                               | Super et al., (2018)                        | Planktic foram.                                                     |
| ODP 925   | Guitian <i>et al.</i> , (2020)    | TEX <sub>86</sub> Zhang <i>et al.</i> , (2013) and this study                | Zhang <i>et al.</i> , (2013) and this study | Bulk sed0.5 ‰                                                       |

| Table S3      |                       |                   |                      |                  |                       |                   |                   |                  |
|---------------|-----------------------|-------------------|----------------------|------------------|-----------------------|-------------------|-------------------|------------------|
| Slopes        | IODP 1406             |                   |                      |                  |                       |                   |                   |                  |
|               | SST                   |                   |                      | SST Benthic      |                       |                   |                   |                  |
| Interval (Ma) | $\epsilon_p$ measured | $\epsilon_p$ temp | $\varepsilon_p$ size | $\epsilon_p$ sum | $\epsilon_p$ measured | $\epsilon_p$ temp | $\epsilon_p$ size | $\epsilon_p$ sum |
| 30 to 27      | 0.5                   | 1                 | 0.2                  | 0.7              | -0.5                  | -1                | 2                 | 1.49             |
| 27 to 25.4    | 0.7                   | 1.1               | 1                    | 1.5              | -2.8                  | -3.1              | -3.7              | -4.03            |
| 25.4 to 24    | -0.2                  | 0.3               | -0.1                 | 0.4              | 0.1                   | -0.9              | 1.8               | 0.70             |
| 24 to 22.5    | -0.3                  | 0.2               | -0.7                 | -0.2             | 0.5                   | -1.2              | 1.9               | 0.14             |
| 22.5 to 19    | 0                     | 0.5               | -0.2                 | 0.3              | 0.4                   | 0.1               | 2.7               | 1.82             |
| 19 to 16      | 0.2                   | 0.7               | 0.9                  | 1.4              | 0.8                   | 1.6               | 6.3               | 7.21             |
|               |                       |                   |                      |                  |                       |                   |                   |                  |
| All           | -0.75                 | -0.25             | -0.71                | -0.21            | 2.16                  | 0.98              | 2.53              | 1.24             |

| Slopes        | ODP 1168              |                   |                   |                  |                          |                   |                   |                  |
|---------------|-----------------------|-------------------|-------------------|------------------|--------------------------|-------------------|-------------------|------------------|
|               | SST                   |                   |                   | SST Benthic      |                          |                   |                   |                  |
| Interval (Ma) | $\epsilon_p$ measured | $\epsilon_p$ temp | $\epsilon_p$ size | $\epsilon_p$ sum | $\varepsilon_p$ measured | $\epsilon_p$ temp | $\epsilon_p$ size | $\epsilon_p$ sum |
| 30 to 27      | 0.5                   | 1                 | 0.5               | 1                |                          |                   |                   |                  |
| 27 to 25.4    |                       |                   |                   |                  |                          |                   |                   |                  |
| 25.4 to 24    | 0.6                   | 1.1               | 1.5               | 2                |                          |                   |                   |                  |
| 24 to 22.5    | -0.3                  | 0.3               | -1                | -0.5             |                          |                   |                   |                  |
| 22.5 to 19    | -0.4                  | 0.1               | -0.9              | -0.4             |                          |                   |                   |                  |
| 19 to 16      | -0.3                  | 0.2               | -0.3              | 0.2              | -0.7                     | -0.2              | -0.9              | -0.4             |
|               |                       |                   |                   |                  |                          |                   |                   |                  |
| All           | 0.6                   | 1.1               | 0.7               | 1.2              |                          |                   |                   |                  |