Preprints
https://doi.org/10.5194/cp-2024-60
https://doi.org/10.5194/cp-2024-60
18 Sep 2024
 | 18 Sep 2024
Status: a revised version of this preprint was accepted for the journal CP.

Environmental controls of rapid terrestrial organic matter mobilization to the western Laptev Sea since the last deglaciation

Tsai-Wen Lin, Tommaso Tesi, Jens Hefter, Hendrik Grotheer, Jutta Wollenburg, Florian Adolphi, Henning Bauch, Alessio Nogarotto, Juliane Müller, and Gesine Mollenhauer

Abstract. Arctic permafrost stores vast amounts of terrestrial organic matter (terrOM). Under warming climate conditions, Arctic permafrost thaws, releasing aged carbon and potentially impacting the modern carbon cycle. We investigated the characteristics of terrestrial biomarkers, including n-alkanes, fatty acids, and lignin phenols, in marine sediment cores to understand how the sources of terrOM transported to the ocean change in response to varying environmental conditions such as sea-level rise, sea ice coverage, inland climate warming, and freshwater input. We examined two sediment records from the western Laptev Sea (PS51/154 and PS51/159) covering the past 17.8 kyr. Our analyses reveal three periods with high mass accumulation rates (MARs) of terrestrial biomarkers, from 14.1 to 13.2, 11.6 to 10.9, and 10.9 to 9.5 kyr BP. These MAR peaks revealed distinct terrOM sources, likely in response to changes in shelf topography, rates of sea-level rise, and inland warming. By comparing periods of high terrOM MAR in the Laptev Sea with published records from other Arctic marginal seas, we suggest that enhanced coastal erosion driven by rapid sea-level rise during meltwater pulse 1A (mwp-1A) triggered elevated terrOM MAR across the Arctic. Additional terrOM MAR peaks coincided with periods of enhanced inland warming, prolonged ice-free conditions, and freshwater flooding, which varied between regions. Our results highlight regional environmental controls on terrOM sources, which can either facilitate or preclude regional terrOM fluxes in addition to global controls.

Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this preprint. The responsibility to include appropriate place names lies with the authors.
Tsai-Wen Lin, Tommaso Tesi, Jens Hefter, Hendrik Grotheer, Jutta Wollenburg, Florian Adolphi, Henning Bauch, Alessio Nogarotto, Juliane Müller, and Gesine Mollenhauer

Status: final response (author comments only)

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse
  • RC1: 'Comment on cp-2024-60', Anonymous Referee #1, 05 Nov 2024
  • RC2: 'Comment on cp-2024-60', Anonymous Referee #2, 18 Nov 2024
Tsai-Wen Lin, Tommaso Tesi, Jens Hefter, Hendrik Grotheer, Jutta Wollenburg, Florian Adolphi, Henning Bauch, Alessio Nogarotto, Juliane Müller, and Gesine Mollenhauer
Tsai-Wen Lin, Tommaso Tesi, Jens Hefter, Hendrik Grotheer, Jutta Wollenburg, Florian Adolphi, Henning Bauch, Alessio Nogarotto, Juliane Müller, and Gesine Mollenhauer

Viewed

Total article views: 385 (including HTML, PDF, and XML)
HTML PDF XML Total Supplement BibTeX EndNote
225 86 74 385 25 8 9
  • HTML: 225
  • PDF: 86
  • XML: 74
  • Total: 385
  • Supplement: 25
  • BibTeX: 8
  • EndNote: 9
Views and downloads (calculated since 18 Sep 2024)
Cumulative views and downloads (calculated since 18 Sep 2024)

Viewed (geographical distribution)

Total article views: 375 (including HTML, PDF, and XML) Thereof 375 with geography defined and 0 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 
Latest update: 20 Jan 2025
Download
Short summary
In order to understand the mechanisms governing permafrost organic matter re-mobilization, we investigated organic matter composition during past intervals of rapid sea-level rise, of inland warming, and of dense sea-ice cover in the Laptev Sea. We find that sea-level rise resulted in wide-spread erosion and transport of permafrost materials to the ocean, but erosion is mitigated by regional dense sea ice cover. Factors like inland warming or floods increase permafrost mobilization locally.