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Abstract

Land cover governs the biogeophysical and biogeochemical feedbacks between the land surface and
atmosphere. Holocene vegetation-atmosphere interactions are of particular interest, both to understand the
climate effects of intensifying human land use and as a possible explanation for the Holocene temperature
conundrum, a widely studied mismatch between simulated and reconstructed temperatures. Progress has
been limited by a lack of data-constrained, quantified, and consistently produced reconstructions of
Holocene land cover change. As a contribution to the Past Global Changes (PAGES) LandCover6k
Working Group, we present a new suite of land cover reconstructions with uncertainty for North America,
based on a network of 1445 sedimentary pollen records and the REVEALS pollen-vegetation model
coupled with a Bayesian spatial model. These spatially comprehensive land cover maps are then used to
determine the pattern and magnitude of North American land cover changes at continental to regional
scales. Early Holocene afforestation in North America was driven by rising temperatures and
deglaciation, and this afforestation likely amplified early Holocene warming via the albedo effect. A
continental-scale mid-Holocene peak in summergreen trees and shrubs (8.5 to 4 ka) is hypothesized to
represent a positive and understudied feedback loop among insolation, temperature, and phenology. A
last-millennium decrease in summergreen trees and shrubs with corresponding increases in open land
likely was driven by a spatially varying combination of intensifying land use and neoglacial cooling. Land
cover trends vary within and across regions, due to individualistic taxon-level responses to environmental
change. Major species-level events, such as the mid-Holocene decline of Tsuga canadensis (eastern
hemlock), may have altered regional climates. The substantial land-cover changes reconstructed here
support the importance of biogeophysical and biogeochemical vegetation feedbacks to Holocene climate-
carbon dynamics. However, recent model experiments that invoke vegetation feedbacks to explain the
Holocene temperature conundrum may have overestimated land cover forcing by replacing Northern
Hemisphere grasslands >30°N with forests; an ecosystem state that is not supported by these land cover
reconstructions. These Holocene reconstructions for North America, along with similar LandCover6k
products now available for other continents, serve the Earth system modeling community by providing
better-constrained land cover scenarios and benchmarks for model evaluation, ultimately making it
possible to better understand the regional- to global-scale processes driving Holocene land-cover, carbon-

cycle, and climate dynamics.
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1. Introduction

Vegetation is the great mediator of biogeophysical and biogeochemical interactions between the land
surface and the atmosphere (Bonan and Doney, 2018; Gaillard et al., 2010; Harrison et al., 2020; Pongratz
et al., 2010). Enhanced carbon uptake and sequestration by terrestrial ecosystems is an essential
component to contemporary net-negative CO, emission scenarios needed to stabilize the climate system
and mitigate the dangerous impacts already emerging (Rogelj et al., 2018; van Vuuren et al., 2017).
During the Holocene, as cryosphere-ocean-atmosphere feedbacks waned and anthropogenic land use
intensified (Ruddiman, 2013; Stephens et al., 2019), vegetation-atmosphere feedbacks and forcings
increased in importance, particularly in regions where climate variability interacted with major changes in
vegetation structure. Examples include soil and vegetation feedbacks that amplified precessional-driven
variations in monsoonal rainfall intensity in North Africa and Asia (Chen et al., 2021; Chandan and
Peltier, 2020), and increases in high-latitude tree cover, which decreased wintertime albedo and increased
temperatures . Carbon sequestration due to Northern Hemisphere postglacial afforestation is estimated at
13.9 GtC between 9 and 6 ka and a 3.5 GtC loss after 3 ka. Intensified human land use and resulting
greenhouse gas emissions may have delayed Northern Hemisphere late-Holocene cooling and glaciation
(Ruddiman, 2003). However, initial models of global anthropogenic land cover change (ALCC) (Kaplan
et al., 2009; Klein Goldewijk et al., 2011, 2010) over the Holocene were largely unconstrained by
paleoecological and archaeological observations and so differed widely in their estimated size and scope
of the anthropogenic footprint. More recently, Holocene increases in vegetation cover have been invoked
to explain the Holocene temperature conundrum, a discrepancy between proxy and model-estimated
temperature during the early- to mid-Holocene (Thompson et al., 2022; Kaufman and Broadman, 2023).
At subcontinental scales, data-constrained studies of Holocene climate-vegetation feedbacks in Europe
indicate that mid-Holocene vegetation changes relative to pre-Industrial baselines could have warmed
winters in some areas by 4-6°C in northeastern Europe (Strandberg et al., 2022, 2014). Global
simulations of vegetation-climate feedbacks during the Holocene, however, remain unconstrained by
observational data.

Hence, comprehensive and accurate proxy-based reconstructions of past land cover at regional to
global extents are needed (Gaillard and LandCover6k Steering Group, 2015; Gaillard et al., 2018, 2010).
These reconstructions can be used with Earth system models (ESMs) to test hypotheses about the
physical, biological, and anthropogenic processes that drove Holocene climate variability (Harrison et al.,
2020). Fossil pollen records offer the primary observational constraint on past vegetation composition and
structure, with thousands of records now available globally. Efforts to systematically map late-Quaternary

land cover using fossil pollen data and well-defined rulesets began in the late 1990s with the Biome6000
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project (Prentice et al., 2000, 2011). Since then, the continental-scale pollen databases launched in the
1980s and 1990s (Grimm et al., 2013) have coalesced along with other paleoecological data into the
Neotoma Paleoecology Database (Neotoma), an international, multi-proxy, curated data resource that
helps tame issues of data heterogeneity through community curation by experts (Williams et al., 2018).
Neotoma thus enables global-scale analyses of past vegetation and climate change (Mottl et al., 2021;
Herzschuh et al., 2023).

Multiple pollen-vegetation models (PVMs) have been developed to make quantitative inferences
about past vegetation. Some PVMs involve relatively simple but effective transfer functions, such as the
modern analogue technique (Williams et al., 2011b) or rule-based systems for classifying land cover
(Prentice et al., 2000; Cruz-Silva et al., 2022; Fyfe et al., 2010). Others are process-based proxy system
models (Evans et al., 2013) that attempt to represent the processes governing the atmospheric transport
and deposition of pollen, such as the REVEALS and LOVE (Sugita, 2007a, b) or STEPPS (Dawson et al.,
2019). Efforts continue to test and refine the parameterizations of these models through paired analyses of
pollen assemblages and forest composition at local to landscape scales (Liu et al., 2022).

In response to these scientific needs and opportunities, the Past Global Changes (PAGES)
LandCover6k working group was launched as an international effort (Gaillard and LandCover6k Steering
Group, 2015) to reconstruct vegetation globally for the Holocene. LandCover6k, led by experts typically
working at continental scales, has had the explicit aim of creating vegetation reconstructions that can
better constrain past land-use histories in ESMs and is mostly based on networks of fossil pollen records.
To facilitate the use of these vegetation reconstructions in ESMs, the REVEALS PVM has been used for
all LandCover6k reconstructions, with standard model parameterizations and standard protocols for
pollen data handling. LandCover6k gridded REVEALS reconstructions at the continental scale have been
published so far for Europe (Githumbi et al., 20223, b; Serge et al., 2023; Trondman et al., 2015) and
China (Li et al., 2023). However, no comparable REVEALS-based land cover reconstructions are
available for North America, despite a comparable density of fossil pollen records to these other regions
(Stegner and Spanbauer, 2023) and prior regional-scale applications of REVEALS in North America
(Sugita et al., 2010; Chaput and Gajewski, 2018).

REVEALS uses pollen counts, pollen productivity estimates, pollen fall speeds, atmospheric
conditions, and sedimentary basin type and size to estimate vegetation composition for a given time
period. REVEALS accounts for the processes of differential pollen production (determined by pollen
productivity estimates) and dispersal-deposition (determined by the pollen fall speeds, atmospheric
conditions, and sedimentary basin type and size).

While REVEALS reconstructions usually combine information from multiple pollen records, the model is

not explicitly spatial, and so does not support the interpolation of inferences to places with no pollen
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records. To address this issue, researchers have developed a statistical approach to spatially interpolate
REVEALS-based land cover estimates from individual grid cells to all cells within the grid, including
estimates of uncertainty (Pirzamanbein et al., 2014, 2018). The approach uses a Bayesian hierarchical
model with spatial dependence specified according to a Gaussian Markov Random Field (GMRF;
Lindgren et al. (2011)); we refer to the two-step process of REVEALS-based estimation followed by this
spatial interpolation as the REVEALS-GMRF approach. REVEALS-GMRF has been used to develop
spatially continuous gridded vegetation reconstructions in Europe to assess vegetation-climate feedbacks
resulting from natural and anthropogenic land cover change (Strandberg et al., 2022) and to evaluate
ALCC models (Kaplan et al., 2017) and dynamic vegetation models (Pirzamanbein et al., 2020;
Dallmeyer et al., 2023; Zapolska et al., 2023).

Here we adopt the REVEALS-GMRF approach to reconstruct land cover changes in North
America during the Holocene. This work relies on 1445 Holocene pollen records drawn from Neotoma
and its constituent database, the North American Pollen Database (NAPD), with a targeted data-
mobilization campaign employed to add more records to the NAPD for western North America. Using
these data, we reconstruct the fractional cover of 32 plant taxa and three land cover types (LCTs):
evergreen trees and shrubs (ETS), summergreen trees and shrubs (STS), and open vegetation/land (OVL,
including grasses, herbs, and low shrubs) from 12,000 years ago (12 ka) to present. We present the
Holocene vegetation reconstructions by working across scales, first describing continental-scale trends in
land cover, then shifting to several regional-scale case studies to show how the continental-scale trends
emerge from taxon-level dynamics that vary within and among regions, with respect to key taxa, drivers,
and resultant land-cover changes. We then zoom out to discuss the continental-scale drivers of Holocene
land cover change in North America and possible biophysical implications of these changes for Holocene
vegetation-atmosphere interactions and the Holocene temperature conundrum. Lastly, we discuss the
potential limitations of the REVEALS-GMRF approach and the opportunities now available for well-

constrained hemispheric- to global-scale studies of vegetation-atmosphere interactions.

2. Data and methods
2.1 Pollen data and data mobilization for western North America

Western North America has traditionally been underrepresented in the NAPD and Neotoma, but the
density of fossil pollen records in western North America has steadily increased in recent decades, as
multiple teams have worked to collect new records, often focusing on interactions among past vegetation,
fire, climate, and human dynamics (Anderson et al., 2008; Gavin and Brubaker, 2014; Marlon et al.,
2012; Iglesias et al., 2018; Alt et al., 2018). Many of these datasets were contributed to Neotoma
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(Williams et al., 2018) when originally published, while others were contributed to Neotoma for an open-
data mobilization campaign conducted for this paper and PAGES LandCover6k (Gaillard et al., 2018).
After this effort, 1582 North American Holocene pollen records were downloaded from Neotoma
(Supp. Table 1). Each record included pollen count data at a series of depths. For methodological
consistency (Flantua et al., 2023), we used the Bayesian age-depth model Bchron to refit all age-depth

models using a custom-built workflow (https://github.com/andydawson/bulk-bchron). This workflow

assessed chronological constraints and used them and IntCal20NH (Reimer et al., 2020) to fit the Bchron
age-depth model (Parnell et al., 2008). This resulted in 1445 records with age-depth models. Ages of the
youngest and oldest chronological constraints were used to determine the reliable age range for each
record; we limited extrapolation of pollen sample ages beyond the youngest or oldest constraints to 1000
years. For discussion, evaluation, and comparison of widely used age-depth models, we refer readers to
Lacourse and Gajewski (2020), McKay et al. (2021), and Trachsel and Telford (2017).

Finally, pollen types were aggregated to taxa using the taxa list in the North American Modern Pollen
Database (Whitmore et al., 2005). This resulted in a list of 47 taxa. We identified the taxa that were most
abundant and also indicators of land cover type, of which there were 33 (Supp. Table 2). There were
corresponding pollen productivity and fallspeed values for all of these taxa. Among the set of excluded
taxa (Nyssa, Platanus, Apiaceae, Liquidambar, Ephedra, Cornus, Chrysolep, Eriogonum, Cactaceae,
Taxus, Larrea), the fraction of taxon pollen grains with respect to total pollen grain count was at most
0.16% (Nyssa), while the total fraction of excluded pollen taxa was about 0.5% (for the North American
Holocene).

2.2 REVEALS (regional reconstructions)

Pollen-based land cover reconstructions were performed using the REVEALS pollen-vegetation model
(Sugita, 2007a), and based on the standard protocol for PAGES LandCover6k (Trondman et al., 2015;
Githumbi et al., 2022a). This model estimates the relative abundance of plant taxa, along with the
standard error of these estimates, given pollen counts and input parameters that represent sedimentary
basin size and type, pollen productivity estimates (PPEs), pollen fall speeds, and atmospheric conditions.
REVEALS was developed to operate at the regional scale (Hellman et al., 2008a, b; Sugita, 2007a);
inferences of plant relative abundance represent the background vegetation over large areas (suggested as
100 km x 100 km by Hellman et al. (2008b), but this scale is variable). REVEALS traditionally has been
used to infer plant relative abundance from records from large lakes (>50 ha), but has been tested and
applied to regions with records from a number of smaller lakes. The REVEALS model accounts for both
differential productivity and dispersal among taxa. Differential productivity is determined by taxon-
specific PPEs, while dispersal is modeled according to a Gaussian plume (Sutton, 1953) or Lagrangian

dispersal-deposition model (Kuparinen et al., 2007), both of which require the specification of
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atmospheric conditions including wind speed. REVEALS accounts for differential dispersibility among
taxa using pollen fall speeds. See Githumbi et al. (2022a), and Sugita (2007a) for a more detailed and
theoretical description of REVEALS. We implement REVEALS using the REVEALSINR R package
(Theuerkauf et al., 2016). REVEALS estimates for other regions included in the LandCover6k effort
(Githumbi et al., 2022a; Li et al., 2023) were developed using more traditional implementations of this
model (LRA.REVEALS.v6.2.4.exe (Sugita, unpublished) and LRA R package (Abraham et al., 2014)),
which differ slightly in their calculation of the standard errors of relative abundances.

Pollen source areas and the relative representation of plant taxa in the REVEALS dispersal-
deposition model are affected by sedimentary basin type (e.g. lake, mire) and area (Sugita, 2007a;
Trondman et al., 2016). Basin type is typically included in Neotoma metadata for pollen datasets, but not
all datasets include metadata on basin area. To determine basin area for these datasets, we developed a
standard workflow (Goring, 2024). First, we used hydrological databases (National Hydrography Dataset
(United States Geological Survey, 2022), National Hydro Network (Natural Resources Canada, 2022)) to
assign basin areas to datasets whose coordinates fell within a water-body polygon. Second, for dataset
coordinates that landed outside a water-body polygon, we used Google Earth Engine to identify the basin.
These basins were traced using the polygon tool in Google Earth Engine, and basin area was calculated
from polygon area. Not all basins could be identified, however, particularly for pre-GPS sites in Neotoma
with imprecise coordinates. In total we determined basin area for 545 of the 1445 records. For the
remaining sites still without basin area, we assigned a size of 50 ha (900 of 1445 records) . In the context
of the REVEALS model, this represents a medium-sized lake. This decision avoids the potential biases
from assigning large or small lake areas, although site-level reconstructions may over- or under-represent
taxa if basin area (and hence pollen source area) is inaccurate (Jackson, 1990; Davis, 2000, p.200; Liu et
al., 2022). All basin areas recovered in the first and second steps were added as site-level metadata to
Neotoma, along with dataset notes.

We used PPE and fall speed datasets from Wieczorek and Herzschuh (2020) for the Northern
Hemisphere extra-tropics. Specifically, we used the North America continental-scale datasets, which
include PPE (with grass as the reference taxon) and fall speed values for 30 of the 32 taxa we consider in
this work. For Ambrosia (ragweed) and Tsuga (hemlock), which were not included in Wieczorek and
Herzschuh (2020), we use PPE and fall speed values from a previously compiled North America dataset
(Dawson et al., 2016; Trachsel et al., 2020). Additionally, for the Larix (larch) fall speed, we used the
value for Larix laricina from Niklas (1984), which is the dominant species in eastern and northern North
America. This estimate is an order of magnitude smaller than the Larix taxon-level fall-speed estimate
included in Wieczorek and Herzschuh (2020), which originates from Bodmer (1922). We experimented

with fall-speed datasets that included these larger Larix fall-speed estimates; these vegetation
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reconstructions appeared to overrepresent Larix. These challenges associated with dealing with the heavy
Larix pollen are described in Sjogren et al. (2008).

We used the Gaussian plume dispersal model with a wind speed of 3 m/s and neutral atmospheric
conditions (vertical diffusion coefficient cz=0.12; turbulence parameter n=0.25; wind speed u=3 m/s; see
Jackson and Lyford (1999)), to be consistent with the dispersal model specified in the LandCover6k
protocol for Northern Hemisphere reconstructions (Dawson et al., 2018; Githumbi et al., 2022a). We set
the region cutoff to the REVEALSINR function default of 100 km; this specifies the maximum distance
that most pollen will originate from (Sugita, 2007a; Theuerkauf et al., 2016).

We reconstructed land cover for 25 time intervals that cover the Holocene. These time intervals
were defined according to the LandCover6k working group protocol (Trondman et al., 2015) (SI Table
4). Time intervals are specified in kiloyears before present (ka), where present is defined as 1950 CE, but
for time intervals <1ka we also note the Common Era (CE) timescale. Intervals in the period from 11.7 to
0.7 ka have a 500-year temporal grain (11.7 to 11.2 ka; 11.2 to 10.7 ka; etc.), while the three most recent
intervals have a finer temporal grain (0.7-0.35 ka [1250-1600 CE]: 350 years; 0.35-0.1 ka [1600-1850
CE]: 250 years; 0.1-(-0.074) ka: 174 years [1850-2024 CE]) in order to better capture the changes
associated with intensifying anthropogenic land use over the last five centuries. Pollen samples were
assigned to a time interval based on their mean calibrated radiocarbon age. If multiple samples for a
record fell within the same interval, pollen counts were summed by taxon, so that each record would have
at most one set of pollen counts per time interval. We used a grid resolution of 1°x1° (ca. 100 km x 100
km), also as specified by the LandCover6k protocol in order to facilitate use for Earth System Modelling.
Within a grid cell, REVEALS reconstructions for multiple sites were averaged, as is standard practice
(Sugita, 2007a). Taxon-level reconstructions were aggregated to three land cover categories (Supp. Table
2): summergreen trees and shrubs (STS), evergreen trees and shrubs (ETS), and open vegetation/land
(OVL), which includes grasses, herbs, and low-stature shrubs. Note that bare ground cannot be detected
by pollen-based land cover mapping and so it is not included as a potential land cover type; presumably
this missing land cover type is usually misclassified as OVL. All trees and shrubs (ATS) is calculated as
the sum of STS and ETS.

2.3 REVEALS-GMREF (spatial modeling and interpolation with uncertainty)

We use the REVEALS-GMRF Bayesian hierarchical model (Pirzamanbein et al., 2018) to spatially
interpolate the REVEALS-based land cover reconstructions. REVEALS-GMRF exploits the spatial
dependence in land cover using a Gaussian Markov Random Field, and permits the characterization of
uncertainty given the empirical land cover product. As in Pirzamanbein et al. (2018), we use elevation as

a covariate. Although including simulations of land cover as an additional covariate can further improve
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the reliability of resulting land cover maps (Pirzamanbein et al., 2020), the intent of our work is to
develop a spatial land cover product suitable for validation of and assimilation with models of dynamic
vegetation, land use, and the Earth system. Hence, to maintain independence, we refrain from using
simulated land cover as a covariate. To quantify overall uncertainty of a grid cell for a specified time
period, we computed the area of confidence regions (CR; Pirzamanbein et al. (2018)). Smaller CR values
indicate higher confidence, while larger CR values indicate more uncertainty. As in Pirzamanbein et al.
(2018), a CR threshold is determined using the complete set of CR values. Accordingly, any grid cells
with a CR greater than a threshold of 9 were omitted from spatial reconstructions (Githumbi et al.,
2022a). The result of this spatial interpolation is a set of empirically-based land cover maps for North
America and the LandCover6k time intervals, with uncertainty.

2.4 Calculation of proportional changes and mapped anomalies

To summarize continental-scale land-cover dynamics through time, we built time series of 1) land cover
relative to ice-free area for the time interval being mapped (here called relative-to-time-t mean land
cover) and 2) land cover relative to ice-free land area at 0.25 ka (here called relative-to-modern mean land
cover). First we set a fixed domain size by including only grid cells for which there were reconstructions
for all time periods; this removes confounding effects that may arise from a changing number of included
grid cells. Then we used recently updated ice sheet maps (Dalton et al., 2020) to identify glaciated and
unglaciated grid cells for each time period, then calculated the fraction of unglaciated land cover for each
time period. We did the same for pro-glacial and other lakes (Dyke and Prest, 1987; Peltier, 1994). We
recognize that shorelines have changed over the Holocene, but ultimately determined that the effect of
this at the considered spatial resolution would be minimal (PALSEA Group, 2010). We then calculated
the relative-to-time-t mean land cover of each land cover type for each time period as the mean across all
unglaciated grid cells at that time period. This metric usefully summarizes the relative proportions of land
cover types within ice-free regions for any given time period, but, because both the numerator and
denominator change over time, this metric does not track the overall increases in vegetated land area in
North America during the last deglaciation. To calculate relative-to-modern mean land cover, for each
time period, we multiplied the relative cover of each grid cell by the cell area, and then summed the
relative cover of each land cover type across space for unglaciated land grid cells. We then divide this
summed relative cover by the sum of total unglaciated land area at 0.05 ka. Because this second metric
uses a constant denominator that represents late-Holocene deglaciated land area, the relative-to-modern
metric of relative cover captures both the deglacial increase in available land in North America and

changes in land cover proportion within that available land.
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For each pair of time intervals, we calculated land cover change as grid-cell scale differences for
each of the three land cover classes. After visually identifying areas of large land cover changes (Supp.
Fig. S3), we hand-selected several regions for further investigation, choosing areas with large changes
and/or few prior regional reviews: the northeastern US and southeastern Canada (NEUS/SEC), eastern
Canada (ECAN), western Canada and Alaska (WCAN/AK), and the Pacific Coast, Cascades, and Sierra
Nevada (PCCS). We then assessed vegetation change for each region at both the taxon and land cover
scales, using the REVEALS grid-cell estimates of taxon mean abundances and the REVEALS-GMRF
interpolated estimates of mean cover for the land cover types.

3. Results

3.1 Data coverage

The assembled dataset of 1445 fossil pollen records has good coverage across the continental US and
Canada (Fig. 1a, Supp. Fig. S1). Areas of relatively high site density include the Great Lakes region of
the US and Canada, the northeastern US, the Rocky Mountains, the Pacific Coast, and central Alaska.
Given good data-mobilization efforts for the US and Canada, this distribution reasonably approximates
the true distribution of fossil pollen records, so spatial gaps usually represent lack of available sites (e.g.
few lakes or wetlands in arid regions) or inaccessibility (e.g. high Arctic). Conversely, a lower site
density in Mexico and Central America is partially due to less extensive open-data mobilization efforts in
these regions. Temporally, the distribution of oldest samples (an indicator of record length) is smooth
(Fig. 1b), with rapid accumulation of sites between 11.7 and 11 ka (33% of sites have an oldest sample in

this interval) and between 0.5 and -0.074 ka (74% of sites have a youngest sample in this interval).
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Figure 1: Spatiotemporal distribution of fossil pollen data used here. A) Map indicating the distribution
of sites recovered from the Neotoma Paleoecology Database, as well as the case study regions
(WCAN/AK: Western Canada and Alaska; PCCS: Pacific Coast, Cascades, and Sierra Nevada; ECAN:
Eastern Canada; and NEUS/SEC: North-Eastern US and South-Eastern Canada). B) Temporal extent of
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Holocene samples. Sites are ordered by age of the oldest sample, reported as ka. Samples older than 11.7

ka are not shown.
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Figure 2: Interpolated REVEALS-based estimates of fractional cover for evergreen trees and shrubs

(ETS), summergreen trees and shrubs (STS), and open land (OVL). Laurentide and Cordilleran Ice Sheet

extents (Dalton et al., 2020) are indicated by gray polygons Estimates are presented on a 1°x1° grid, for

selected time periods, with ages reported as ka. Map ordering follows the geological convention of oldest

maps at bottom. The spatial domain for interpolation includes all unglaciated locations in North America

between 17 and 79°N.
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Figure 3: (a) Holocene trends in relative-to-modern mean land cover for all trees and shrubs (ATS) in

North America (pink curve with 95% uncertainty envelope), expressed relative to present unglaciated

land area (see Methods), and the fraction of unglaciated land relative to continental land area (black).

ATS is the sum of evergreen and summergreen trees and shrubs. (b) Trends in the relative-to-modern
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mean land cover of evergreen (ETS), summergreen (STS) and open vegetation/land (OVL) for North
America. For both plots, land cover estimates are based on interpolated data for the spatial domain shown
in Fig. 2.

3.2 Continental-scale trends in Holocene land cover

At a continental scale, the spatial configuration of land cover in North America has been broadly stable
during the Holocene (Fig. 2). Persistent features include belts of high evergreen tree cover in the
mountainous West and Canada, high summergreen tree cover in the eastern US, moderate to high cover of
summergreen trees and shrubs in Alaska and northern Canada, and high proportions of open vegetation in
the Great Plains, western Alaska, and Arctic Canada (Fig. 2).

However, despite this broadly stable spatial configuration, there were large continental-scale
changes in the relative-to-modern fractional land cover types in North America during the Holocene,
particularly during the early Holocene (Fig. 3a, Supp. Fig. S5). From 11.7 to 7 ka, the relative-to-modern
fraction of forested land cover increased from about 42 to 61%. This increase closely tracked the
increase in available land surface area, as the Laurentide Ice Sheet retreated (Fig. 3a) (Dalton et al., 2020).
During the early Holocene, the largest gains in forest cover were across deglaciated western Canada and
ice-marginal areas in eastern Canada (Fig. 2, Supp. Fig. S5). Forest cover continued to expand between
7.5 and 4.5 ka (Fig. 3a), even though the Laurentide Ice Sheet had disappeared by ~6 ka, with the largest
afforestation in the northern Great Plains of central Canada and in recently deglaciated regions of eastern
Canada (Fig. 2, Supp. Fig.

S5). Continental-scale forest cover remained stable from 4.5 to 1.5 ka, then declined after 1.5 ka (Fig.
3a). The late-Holocene decline in forest cover was most pronounced in the eastern US and in Arctic and
boreal Canada, where open vegetation began increasing after 4 ka (Fig. 2, Supp. Fig. S5, S6).

Within these Holocene trends, the three land cover types followed differing trajectories (Fig. 3b). All
three show a strong increase between 11.7 and 7.5 ka in their relative-to-modern land cover, again
tracking ice retreat. After 7.5 ka, however, the three trajectories diverged. Evergreen trees and shrubs
continued to rise slowly but steadily from 7.5 to 2 ka, then declined slightly (Fig. 3b). Summergreen trees
and shrubs reached peak extent at 4.5 ka, then declined, with an accelerated decline after 1.5 ka. The
proportion of open lands remained largely stable from 7.5 to 4.5 ka, then increased, with an accelerating
increase after 2 ka. A close examination of the continental-scale anomaly maps (Supp. Figs. S5, S6)
indicates a fairly complex spatial mosaic for each land cover type, with the continental-scale trends
emerging from a welter of regional-scale phenomena. For example, widespread gains in evergreen trees
and shrubs across much of Canada and Alaska between 6 and 4 ka were partially offset by large losses in

the eastern US and southeastern Canada over the same period (Supp Fig. S5). Because different plant
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species predominate in different regions of North America, these continental-scale trends in land cover
were the emergent outcomes of individualistic species-level responses to changing climates and, in some

places, intensifying land use (Williams et al., 2004).

3.3 Regional case studies
3.3.1 Northeastern US & Southeastern Canada (NEUS/SEC)
For the mostly forested NEUS/SEC, after initial afforestation and loss of open lands during the early

Holocene (10 to 8 ka), the principal dynamic has been shifts in the relative cover of evergreen and
summergreen trees and shrubs (Fig. 4a, Supp. Fig. S7). The relative-to-time-t fractional cover of
evergreen trees and shrubs declined throughout the early to middle Holocene (10 to 4 ka) in the southern
part of the domain, which intensified to widespread loss across the NEUS/SEC (6 to 4 ka), but then
reversed after 4 ka, with recovery and regrowth of evergreen trees and shrubs (Fig. 4a). The western
increase in open lands between 8 and 4 ka is caused by the eastward expansion of prairie due to drier
conditions (Williams et al., 2009b), while the decrease in open lands from 4 to 0.5 ka is due to increased
moisture availability that resulted in a westward shift of the prairie-forest border and increase in
summergreen forest taxa in the eastern Midwest (Umbanhowar et al., 2006). Overall, the low proportions
of open vegetation in the NEUS/SEC from 9 ka until European settlement (Fig. 4B) likely represents
these western prairies and local wetlands, which expanded in the late Holocene in parts of the NEUS/SEC
(Brugam and Swain, 2000; Ireland and Booth, 2010), rather than grasslands or other open lands in eastern
deciduous forests (Faison et al., 2006).

At a taxon level, most changes in evergreen cover can be attributed to regional declines of cold-
tolerant conifers such as Picea glauca, P. mariana, and P. rubens (white, black, and red spruce); Pinus
banksiana, P. resinosa, and P. strobus (jack, red, and white pine), and Abies balsamea (balsam fir)
between 10 and 6 ka (Fig. 4c, Supp. Fig. S8) (Spear et al., 1994; Jackson and Whitehead, 1991; Jackson
etal., 1997). These changes, combined with the zonal pattern of evergreen expansion in the northern
NEUS/SEC and declines in the southern part, suggest that much of the evergreen tree and shrub cover
changes during the early to middle Holocene can be attributed to postglacial northward shifts in tree
distributions in response to rising temperatures and deglaciation.

A second major feature is the well-known and dramatic expansion, collapse, and re-expansion of
Tsuga canadensis (eastern hemlock), a cool-temperate conifer that typically occupies warmer climates
than Abies balsamea (Thompson et al., 1999). Investigations continue into understanding the abrupt and
widespread collapse in Tsuga canadensis, which differed from the overall evergreen trend. The collapse
occurred in less than 10 years at some sites (Allison et al., 1986) and is linked to regional shifts in water

availability and temperature gradients (Booth et al., 2012; Foster et al., 2006; Haas and McAndrews,
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1999; Shuman et al., 2023). Initial hypotheses that a pest or pathogen such as Lambdina fiscellaria
(hemlock looper) (Bhiry and Filion, 1996; Davis, 1981; Anderson et al., 1986) caused the Tsuga decline
have not been supported by recent investigations (Oswald et al., 2017), although insect remains are scarce
in lacustrine archives. Understanding the causes of the hemlock collapse is outside the scope of this
paper; however, this paper shows its importance, in that a single-species collapse fundamentally altered
the functional composition, ecosystem phenology, and land cover of the NEUS/SEC for thousands of
years.

Among summergreen taxa, these REVEALS reconstructions indicate a strong growth in Acer
(maple) cover in the NEUS/SEC until 4 ka and declines thereafter. Acer saccharum (sugar maple) is
probably the dominant taxon driving this curve, with A. rubrum (red maple) increasing in the late
Holocene (Finkelstein et al., 2006). Quercus (oak) abundances were high between 9 and 4.5 ka, then
steadily declined, while Betula (birch) abundances remained relatively stable. Fagus grandifolia
(American beech) abundances continued to steadily increase throughout this period until 3 ka, then began
declining after 1.5 ka, along with Tsuga canadensis, while Abies balsamea abundances increased.
Disturbance-related taxa and indicators of open vegetation such as Ambrosia and Rumex (sorrel, not
shown) begin increasing at ca. 0.35 ka (1600 CE). These late-Holocene changes in forest composition
can plausibly be attributed to regional cooling (explaining the increase in Abies balsamea) and perhaps
also intensified human land use and disturbance, with the relative importance of these drivers varying at
subregional scales and among taxa (Oswald et al., 2020; Mottl et al., 2021).

An intriguing feature of these REVEALS reconstructions is the inference of Abies balsamea and
Acer as the most common evergreen and summergreen tree taxa in the NEUS/SEC, given that Picea,
Pinus, and Quercus are more abundant in pollen and macrofossil records and prior site-level and regional
syntheses of Holocene pollen records have emphasized their dynamics (Jackson et al., 1997; Jackson and
Whitehead, 1991; Payette et al., 2022; Spear et al., 1994). Witness-tree data in the NEUS also indicate
that Fagus and Quercus were the most abundant broadleaved taxa at time of European settlement
(Thompson et al., 2013). One possible reason for the higher levels of Abies and Acer reported here is that
our NEUS/SEC domain extends a bit farther north than prior reconstructions that have focused more on
central and southern New England. A second possibility is that the parameterizations for Abies and Acer

are incorrect, causing the coverages of these taxa to be overestimated (see Discussion).
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445  Figure 4: (a) Land cover anomaly maps for the northeastern US and southeastern Canada (NEUS/SEC)
446  case-study region. Maps show the anomalies in fractional cover for each land cover class for pairs of
447  indicated time intervals. Spatial resolution is 1°x1° and time units are ka. (b) Holocene trends in the
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relative-to-time-t mean fractional cover of the three land cover types (ETS, STS, OVL) and the ATS sum
for the uninterpolated REVEALS grid cell estimates across the NEUS/SEC region. (c) Holocene trends
for the REVEALS relative-to-time-t abundance estimates for the six most commonly occurring taxa in the
region. Line color indicates assignment of individual taxa to land cover types. For taxon-level maps, see
Supp. Fig. S8.

3.3.2 Eastern Canada (ECAN)
In Eastern Canada (ECAN), immediately north of the NEUS/SEC, the relative-to-time-t fraction of

evergreen trees and shrubs increased across the entire region until 4 ka, with slower and more spatially
heterogeneous expansion of evergreen cover between 4 and 2 ka (Fig. 5a, Supp. Fig. S9). After 4 ka,
open vegetation expanded (Fig. 5a, 5b). This expansion of evergreen trees and shrubs can be traced to
separate phases of expansion for Abies balsamea and Picea, with A. balsamea expansion mostly between
11.5 and 7.5 ka (in the southern portion) and Picea expansion mostly between 7.5 and 3 ka, across the
area and especially in the central portion (Fig. 5¢, Supp. Fig. S10). Increasing Cyperaceae abundance
after 3.5 ka signals the expansion of forest-tundra. Major hardwood summergreen taxa include Betula
and Alnus. Alnus abundances expanded until 6 ka, then slowly declined, while birch abundances
expanded between 8.5 and 6 ka, then also declined. These declines in Alnus and Betula after 6 ka co-
occurred with expansions of Picea and Cyperaceae, suggesting that the regional vegetation shifted from
more of a mixed forest or woodland in the early Holocene, to evergreen coniferous forest, forest-tundra,
or tundra in the middle to late Holocene. Note that Populus is not included in these REVEALS
reconstructions, but it is an important taxon in ECAN (Peros et al., 2008), and its omission may cause an
underestimate of summergreen cover.

These vegetation changes in ECAN can be attributed to a combination of deglaciation, changing
temperatures, and fire history. The Laurentide Ice Sheet collapsed at 8.4 ka and the last remnants of the
Labrador Dome disappeared from northern Quebec by 5.7 ka (Dalton et al., 2020). The replacement of
open land by forest cover during the early Holocene was driven primarily by increases in evergreen trees
and shrubs. The open forests at this time lack modern analogues and varied spatially in taxonomic
composition, with more Abies and Betula to the east and Picea toward the west (Richard et al., 2020). By
7.5 ka, closed forests developed in response to warmer temperatures. This was followed by a decrease in
summergreen taxa in the southern portion of the boreal forest as well as a decline in Abies in the lichen
woodland and feathermoss forest toward the west (Fréchette et al., 2021; Richard et al., 2020). In the
lichen woodlands of the north, shrub Betula and Betula papyrifera (paper birch) decreased after 6 ka,
although remaining high in the southwest (Fréchette et al., 2018). Near treeline, Picea forests were more

open between 7 and 4 ka, with Alnus and shrub Betula more abundant (Fréchette et al., 2018; Gajewski,
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2019). In ECAN, Picea abundances reached a maximum between 4 and 2 ka (Fréchette et al., 2018), with

the southern portion of the forest tundra becoming lichen woodland at this time. After 2 ka, Picea

abundances at northern sites declined and open lands increased in response to cooling, but the timing and

rate of Picea losses varied among sites and is governed in part by fire history (Gajewski et al., 2021;
Gajewski, 2019).
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Figure 5: (a) Land cover difference maps for ETS, STS, and OVL for the eastern Canada (ECAN) case
study. (b) Holocene trends in the relative-to-time-t mean land cover of the three land cover types (ETS,
STS, OVL) and the ATS sum for the uninterpolated REVEALS grid cell estimates across the ECAN
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region. (c) Holocene trends for the REVEALS abundance estimates for the six most commonly occurring
taxa in the region. For both panels, figure conventions follow Figure 4. For taxon-level maps, see Supp.
Fig. S10.

3.3.3 Western Canada and Alaska (WCAN/AK)
In western Canada and Alaska (WCAN/AK), the relative-to-time-t mean land cover for evergreen trees

and shrubs rapidly expanded between 11 and 8 ka, while the coverage of summergreen trees and shrubs
and open lands decreased (Fig. 6a, 6b, Supp. Fig. S11). Most of Alaska was not glaciated during the Last
Glacial Maximum; however, much of western Canada, the Brooks Range in Alaska, and south-coastal
Alaska were covered by ice (Dalton et al., 2020). Evergreen tree species such as Picea glauca (white
spruce) persisted in this region in local microrefugia (Anderson et al., 2006), then expanded their ranges
during end-Pleistocene warming and deglaciation. Other evergreen taxa such as Pinus contorta
(lodgepole pine) expanded northward with deglaciation (MacDonald and Cwynar, 1991). Trends in taxon
abundances differ substantially between the western and eastern subregions (Fig. 6¢, Supp. Fig. S12). In
the eastern subregion, changes in taxon abundances were muted, with a modest expansion in Picea and
Tsuga between 11.5 and 7.5 ka, and a slow decline in Betula between 10 and 6 ka. Tsuga (mostly Tsuga
heterophylla; western hemlock) occurs primarily along the coast, was abundant along the south coastal
areas by 11 ka (Lacourse et al., 2012; Lacourse and Adeleye, 2022), arrived by 9.5 ka into southeast
Alaska (Hansen and Engstrom, 1996; George et al., 2023), increased in abundance along the south-coastal
areas by 8 ka, and then expanded during the mid- to late Holocene into south-central Alaska (Anderson et
al., 2017) and the inland mesic forests of British Columbia (Rosenberg et al., 2003; Gavin et al., 2021).

In the western part of this domain (mainly Alaska), changes in summergreen hardwood (mostly shrub)
taxa predominate, with a major expansion of Alnus between 11.5 and 6.5 ka (Anderson and Brubaker,
1994; Cwynar and Spear, 1995), and a modest expansion of Betula between 11.5 and 9 ka. These
expansions were accompanied by declines in Poaceae and Cyperaceae, with continued decline in
Cyperaceae until 6 ka. Picea abundances steadily increased until 4 ka. The net effect was a decline in
open vegetation and expansion of evergreen and summergreen trees and shrubs during the early to middle

Holocene, with apparent region-wide stability after 4 ka (Anderson et al., 2019).
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531  Figure 6: (a) Land cover difference maps for the western Canada / Alaska (WCAN/AK) case study

532  region. (b) Holocene trends in the relative-to-time-t mean fractional cover of the three land cover types
533 (ETS, STS, OVL) and the ATS sum for the uninterpolated REVEALS grid cell estimates across the
534  WCAN/AK region, with grid cells averaged separately for eastern and western subregions (dividing line
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shown in (a) as dashed line). (c) Holocene trends for the REVEALS abundance estimates for the six most
commonly occurring taxa in the region, with grid cells averaged separately for eastern and western
subregions. For both panels, figure conventions follow Figure 4. For taxon-level maps, see Supp. Fig.
S12.

3.3.4 Pacific Coast, Cascade, and Sierra Nevada Ranges (PCCS)

In contrast to the other regions, evergreen trees have dominated much of the land cover in the PCCS
region since 12 ka (Fig. 7a, 7b, Supp. Fig. S13). In the northern subregion (often referred to as the Pacific
Northwest), the relative-to-time-t proportions of cover types were fairly constant until 9 ka, after which
summergreen and open land declined until 6 ka (Fig 7a, 7b). However, taxon-level changes were very
dynamic. From 11.7 to 10.5 ka, the REVEALS-estimated abundance of Pseudotsuga menziesii (Douglas
fir) more than doubled, reflecting its arrival, expansion, and northward migration (Gugger and Sugita,
2010), and replacing true firs (Abies) and Picea (Fig 7c, Supp. Fig. S14). In the coastal ranges, frequent
forest fires in the early Holocene contributed to a Pseudotsuga-Alnus rubra (red alder) association in the
mountains (Gavin et al., 2013; Long et al., 1998, 2007) and a Quercus savanna (not shown) that was
common in the lowlands (Walsh et al., 2008, 2010; Giuliano and Lacourse, 2023). Summergreen taxa
(mostly Alnus rubra) and open-land pollen indicators declined from 8 to 6 ka (Fig 7b), replaced by shade-
tolerant Abies, Tsuga, and Cupressaceae, which is mostly western redcedar in this region (Fig. 7b)
(Lacourse, 2009; Gavin et al., 2013; Worona and Whitlock, 1995). After 6 ka, the overall abundance of
conifer taxa remained constant (Fig 7a, 7b), although the proportion of Tsuga and Cupressaceae increased
steadily through the late Holocene while Pseudotsuga declined, consistent with less fire and the
persistence of old-growth forest (Whitlock, 1992; Lacourse and Adeleye, 2022). Logging of the last
century is associated with an increase in summergreen trees and shrubs and open land in the coastal
regions (Fig. 7a) (Davis, 1973; Whitlock et al., 2018).

The most common taxon in these REVEALS reconstructions, Abies, varied little over the last 9
ka, but this genus represents several shade-tolerant species (A. lasiocarpa [subalpine fir], A. grandis
[grand fir], A. amabilis [Pacific silver fir], A. procera [noble fir]) that collectively are common throughout
the region. As noted for the NEUS/SEC, the reconstructed values of Abies are likely too high, because the
REVEALS estimate of fall speed may be overestimated. Pinus also represents several species and was
most abundant in the dry eastern areas where it was consistently abundant during the Holocene (Minckley
et al., 2007). Pseudotsuga and Larix have indistinguishable pollen morphologies and are therefore
grouped in the reconstructions; however, Larix is limited to the eastern edge of this region.

The southern subregion (the Sierra Nevada, Klamath Mountains and California Coast ranges and

interior Great Basin) supported roughly equal amounts of conifer forest and open land that overall had

27


https://www.zotero.org/google-docs/?8iDZSO
https://www.zotero.org/google-docs/?8iDZSO
https://www.zotero.org/google-docs/?fcinLA
https://www.zotero.org/google-docs/?haJSG2
https://www.zotero.org/google-docs/?LNUygc
https://www.zotero.org/google-docs/?kOq4Jj
https://www.zotero.org/google-docs/?cjhclE
https://www.zotero.org/google-docs/?0b2C6D
https://www.zotero.org/google-docs/?0b2C6D

569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585

minor relative changes over the Holocene (Fig. 7a). Summergreen trees and shrubs have been infrequent
contributors to land cover in this subregion. At the taxon-level, Abies is again the most common
component of reconstructed evergreen land cover across the region, although its abundance may be
overrepresented in this parameterization of REVEALS (Fig. 7b). Pinus and Quercus were most abundant
in the early Holocene, forming open forests and woodlands, especially in the Klamath Mountains and
Sierra Nevada (Anderson, 1996; Briles et al., 2008) fire-prone forests east of the Cascade Range (Walsh
et al. 2015). Most of the eastern portion of this subregion is the Great Basin shrub steppe, where the few
pollen records that exist are from high-elevation sites and low-elevation wetlands that are sensitive to
fluctuating water tables, recorded as large fluctuations in Cyperaceae pollen. Increases in open-land cover
taxa (Cyperaceae, Poaceae, Asteraceae) between 10-7.5 ka and after 3 ka in this region may reflect either
local expansion of alpine meadows and wetlands or expansion of steppe more broadly (Mensing et al.,
2008; Brugger and Rhode, 2020; Minckley et al., 2007; Thompson, 1992). However desert, steppe, and
other open-land arid ecosystems are likely to be underrepresented in these reconstructions, due to a
scarcity of dryland sites. Furthermore, bare soil and rock cannot be detected using pollen-based land-

cover mapping, and so this land cover type is missing in these reconstructions.
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Figure 7: (a) Holocene trends in the mean relative cover of the three land cover types (ETS, STS, OVL)

and the ATS sum for the uninterpolated REVEALS grid cell estimates across the Pacific Coast, Cascade

and Sierra Nevada (PCCS) case study region, with grid cells averaged separately for northern and
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southern subregions (dividing line shown in (c) as vertical dashed line). (b) Holocene trends for the
REVEALS abundance estimates for the nine most commonly occurring taxa in the region, with grid cells
averaged separately for northern and southern subregions. For both panels, figure conventions follow

Figure 4. For taxon-level maps, see Supp. Fig. S14. (c) Land cover difference maps for the PCCS region.

4. Discussion

4.1 Drivers of Holocene land cover change in North America: scaling from taxon-level regional
dynamics to continental-scale trends

These continental-scale Holocene changes in land cover (Figs. 2-3) are an emergent outcome of the
individualistic plant responses to deglaciation and multiple environmental changes, including seasonal
temperatures, effective moisture, atmospheric carbon dioxide, sea level rise, soil development, fire and
other disturbance regimes, and, at some locations during the late Holocene, human land use. As shown
here (Figs. 4-7), this interplay differed spatially across North America, often with opposing trends (e.g.
simultaneous increases in evergreen cover in some regions and decreases elsewhere) that partially offset
at the continental scale.

The first-order continental-scale drivers of Holocene land cover change in North America were
changing climates and the retreat and disappearance of the Laurentide Ice Sheet, particularly during the
early Holocene (11.7 to 7.5 ka) and lasting until 5.7 ka, with the disappearance of remnant ice in the
Labrador Dome in northern Quebec (Dalton et al., 2020). Deglaciation and an overall increase in land
availability explains why all land cover types show an increase in relative-to-modern cover during the
early Holocene, with evergreen taxa showing the greatest gain (Fig. 3). Continental temperatures also
closely tracked the decline in ice area (Marsicek et al., 2018), and vegetation responded to both factors.
Superimposed upon the early-Holocene increase in relative-to-modern cover for all PFTs are gains and
losses for each PFT at subregional scales (Figs. 4-7), which can be linked to climate-driven changes in
plant abundances at local to landscape scales that scaled upwards to continental-scale shifts in plant
distributions, with both within-range shifts in dominance and leading-edge and trailing-edge range
dynamics for individual plant taxa (Payette et al., 2022; Williams et al., 2004; George et al., 2023;
Dallmeyer et al., 2022; Anderson et al., 2017).

Leading-edge dynamics and range expansion of tree taxa appear to have been primarily
controlled by the increasing availability of deglaciated land area, end-Pleistocene warming, the declining
influence of ice sheet on regional climates and moisture availability (Alder and Hostetler, 2015; Bartlein
et al., 2014), and on-going expansion of plant taxa into areas of increased climate suitability (Payette et
al., 2022; Williams et al., 2004; George et al., 2023; Dallmeyer et al., 2022). Declining ice extent favored
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moisture advection into eastern areas where most of the increase in summergreen tree taxa took place and
reduced it in midcontinental North America, where most of the open vegetation increase developed
(Shuman and Marsicek, 2016; Shuman et al., 2002; Liefert and Shuman, 2020). These changes in the
patterns of moisture availability simultaneously favored the large increase from 10 to 6 ka in
summergreen trees and shrubs in eastern North America south of the former Laurentide Ice Sheet and the
increase in open land in the mid-continent (Supp. Fig. 5-6).

Declines in abundance and trailing-edge dynamics of tree taxa were likely governed by a
combination of declining climate suitability and, in some places, fire regimes, in which many local
populations failed to re-establish after one or more fire events. For example, in the high northern latitudes
of Quebec and Labrador, the expansion of open lands over the last three thousand years (Fig. 5) can be
attributed first to declining summer insolation and temperatures, caused by precessional changes in the
Earth’s orbit (Payette, 2021), but at local to landscape and centennial scales, loss of forest cover was
asynchronous and caused by individual fire events (Payette et al., 2008; Gajewski et al., 2021).

Similarly, in the southern Great Lakes region and NEUS, the late-Pleistocene to early Holocene transition
from conifer-dominated forests and parklands to summergreen forests (Fig. 4) was driven by rising
temperatures and changes in effective moisture (Shuman et al., 2002, 2019), but accelerated locally by
intensified fire regimes, with the timing and rate of conversion varying among sites (Jensen et al., 2021;
Clark et al., 1996). The expansion and then retreat of the Great Plains prairies (Fig. 4) was driven by early
Holocene aridification and middle- to late-Holocene increases in moisture availability, while fire may
have facilitated prairie expansion, but delayed its retreat (Williams et al., 2009b; Nelson et al., 2006;
Umbanhowar et al., 2006). Throughout North America, forests and fire dynamically co-existed and
interacted during the Holocene (Iglesias and Whitlock, 2020; Kelly et al., 2013), so whether fire causes
transformative shifts in ecosystem type depends on its synergistic interactions with directional changes in
climate and other factors (Napier and Chipman, 2021). Regardless of the role of fire or other
disturbances, regional shifts in temperature and moisture availability are usually the first-order predictors
of Holocene changes in vegetation composition (Dean et al., 1984; MacDonald, 1989; Calder and
Shuman, 2017; Shuman et al., 2004; Nelson et al., 2006).

The relative proportion of evergreen and summergreen cover types may have been affected by
changes in the length and intensity of the growing season during the Holocene, which is regulated by
precessional variations in insolation. In particular, the broad peak in summergreen tree cover between 8.5
and 3.5 ka (Fig. 3) is consistent with the hypothesis that summergreen tree and shrub abundances in North
America are partially regulated by summer insolation and temperatures (Delcourt and Delcourt, 1994;
Williams et al., 2001). Summer insolation reached higher peak intensity but has a shorter seasonal

duration in the early Holocene than during the late Holocene (Huybers, 2006; Jackson et al., 2009), which
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may have favored plants with summer deciduous phenology that could more effectively exploit available
energy during a briefer but more intense growing season (Delcourt and Delcourt, 1994; Williams and
Jackson, 2007; Edwards et al., 2005). Indeed, pollen-reconstructed and CCSM3-simulated changes in
growing-degree days also peaked during the mid-Holocene when forest cover was greatest, and several
millennia after peak summer temperatures, likely because of differential responses of maximum summer
temperatures and total growing season warmth to orbital and other forcings (Marsicek et al., 2018). This
may in turn suggest a seasonal-scale feedback loop between summer insolation, deciduous phenology,
and total summer warmth (see Section 4.2).

During the late Holocene, the growth of Indigenous populations and intensification of human land
use in the Americas had increasing effects upon land cover. Understanding the interactions among past
climate change, fire regime, and land use is a highly active area of research. Rates of vegetation change
worldwide began to increase between 4.6 and 2.9 ka (Mottl et al., 2021), consistent with growing
intensification and extent of land use (Stephens et al., 2019). The 7 to 10 ppm decrease in global CO,
between 1570 and 1620 CE has been attributed to land abandonment and reforestation due to mass
mortality of Indigenous populations in the Americas, caused by the spread of multiple pathogens (Lewis
and Maslin, 2015). The best evidence for dense human populations and extensive land clearance in the
Americas comes from Central and tropical South America (Islebe et al., 1996; McMichael, 2020).

In the land cover reconstructions presented here, the increase in prevalence of open lands after 0.5
ka in North America and some subregions (Figs. 3, 4, 7) is attributable to land use, but the role of land use
for earlier time periods remains unclear. Land use prior to EuroAmerican settlement clearly altered land
cover at some sites in North America, but land use effects are not easily detected at the regional to
continental scales addressed here. In North America, the distribution of radiocarbon dates from
archaeological contexts suggest that population levels remained relatively low until ~7 ka, with increases
between 7 and 2 ka, and then rapid increases after 2 ka (Peros et al., 2010). Indigenous cultures in North
America clearly engaged in activities that, in some areas, modified the composition and structure of
forested and unforested landscapes for millennia (Ellis, 2021; Delcourt et al., 1986; Leopold and Boyd,
1999; Munoz et al., 2014). In densely populated regions, such as lands of the Iroquois Confederacy,
southern Ontario, or the Cherokee Nation, Cahokia and the American Riverbottom, land use altered
vegetation structure and composition at local to landscape scales, through management of fire regimes
(Roos et al., 2018; Anderson and Carpenter, 1991), land clearance for agricultural crops (McAndrews and
Turton, 2007), and silviculture, e.g. favoring the spread of nut-bearing trees (Munoz et al., 2014; Black et
al., 2006). In western North America, the effects of anthropogenic activity on vegetation and fire is an
active area of research, with several paleoecological studies indicating changes consistent with human

influences on forest composition (Walsh et al., 2015; Knight et al., 2022; Lacourse et al., 2007). Because
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the scale of human action was strongest at local to landscape scales and varied in intensity within and
among regions, its detection often requires highly-focused, local- to regional-scale studies (Oswald et al.,
2020; Roos, 2020; Lacourse et al., 2007; Knight et al., 2022; Munoz and Gajewski, 2010). These studies
clearly indicate a high intersite variance in the level and detectability of human impact. At the continental
scale, (Gajewski et al., 2019) did not find clear correlations between human population abundance and
pollen abundance, including taxa of economic use or disturbance taxa, and concluded impacts occurred at
local to regional scales. Thus, at the regional to continental scales considered here, it is an open question
whether the rich relationships and diverse activities engaged by communities within their homelands led
to detectable changes in land cover types. We expect that pollen-based land cover reconstructions will
continue to contribute to interdisciplinary approaches to address anthropogenic fire and land cover change
during the Holocene (Snitker et al., 2022).

In contrast, after EuroAmerican arrival and expansion from 1492 onwards, North American
ecosystems were massively transformed (Stegner and Spanbauer, 2023) by multiple anthropogenic
processes. These include widespread forest conversion to agricultural and pastoral lands, intensive forest
harvesting, massive hydrological change through dam construction and wetland drainage, introduction of
exotic species and pests, and both greatly increased fire activity and fire suppression (Klein Goldewijk et
al., 2011; Foster and Aber, 2004). These land cover changes can be detected as an increase in open land
from 0.5 ka onwards (Figs. 3, 4, 7).

4.2 Biophysical and biogeochemical vegetation-atmosphere feedbacks to Holocene climates

4.2.1 Holocene vegetation-atmosphere feedbacks: prior work and need for data constraints

This paper and the other REVEALS-based reconstructions for the Northern Hemisphere (Githumbi et al.,
2022a; Li et al., 2023) are now laying the foundation for a next generation of Holocene vegetation-
atmosphere research with well-constrained land surface data. Many studies have explored the potential
impacts of vegetation-atmosphere feedbacks on Holocene climate dynamics at hemispheric to global
scales, but these studies have generally not employed well-constrained land cover reconstructions.
Treeline shifts have been identified as an important regulator of Holocene vegetation-atmosphere
feedbacks in the high northern latitudes (Kutzbach et al., 1996). In mid-Holocene atmosphere-vegetation
model simulations, strong snow masking resulted in warming three times higher than those with weak
snow masking (Otto et al., 2011). More recent work has highlighted the importance of the type and
density of forest cover in determining the albedo feedback and magnitude of snow masking (Loranty et
al., 2014; Alessandri et al., 2021). Hence, because snow masking and surface albedo is an important
regulator of surface-atmosphere feedbacks in climate models, it is also an important source of uncertainty

in Holocene climate simulations, because of the limited availability of well-constrained reconstructions of
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past changes in vegetation type, structure, and density. Vegetation structure and topographic complexity
also jointly govern surface roughness, which affects lower atmosphere temperature, humidity, wind
speed, and soil moisture (Bonan, 2015) and is the dominant land-cover influence on micrometeorological
processes (Chen and Dirmeyer, 2016). The effects of changing surface roughness on past climate
variability remains largely unexplored. This new generation of land cover reconstructions provided by
LandCover6k is intended to support future Earth system model experiments into past vegetation-
atmosphere feedbacks, with first results now available for Europe (Strandberg et al., 2022).

The role of vegetation feedbacks on terrestrial carbon sequestration and Holocene climate
variations also remains largely unexplored, despite ice-core evidence that Holocene CO; increased from
260 to 285 ppm over the period from 8 to 1 ka (ca. 53 GtC) and no clear understanding of the source(s) of
that carbon. Initial work, using carbon isotopic evidence and carbon cycle models, indicated that changes
in terrestrial biomass were responsible for about two-thirds of this increase (Indermihle et al., 1999).
More recent Earth-system model simulations indicate an ocean source through a process of elimination,
given simulations that both the atmosphere and terrestrial biosphere were gaining carbon between 8 and 2
ka (Brovkin et al., 2019). Prior data-based reconstructions of terrestrial carbon sequestration, mostly
restricted to the northern middle and upper latitudes, indicate net carbon sequestration in these regions for
most of the Holocene. Peatlands in the upper latitudes of the Northern Hemisphere appear to have been
continuously sequestering carbon throughout the Holocene, with a total sequestration across the Holocene
of 500£100 GtC (Loisel et al., 2017; Yu, 2012). Prior reconstructions from pollen data and the LPJ
dynamic vegetation model suggest a terrestrial sequestration of 13.9 GtC between 9 and 6 ka and a 3.5
GtC release after 6 ka, for aboveground biomass in the Northern Hemisphere >45°N (Williams et al.,
2011a). Regional reconstructions for eastern Canada indicate a peak in terrestrial biomass at 7 ka, with a
ca. 8.5 GtC sequestration due to afforestation between 11 and 7 ka and a ca. 2 GtC release after 7 ka
(Blarquez and Aleman, 2015), suggesting that postglacial boreal forest dynamics in this region were a
primary contribution to Northern Hemisphere aboveground carbon sequestration. In the upper Midwest,
aboveground biomass doubled between 8 and 0 ka, sequestering 1.8 GtC (Raiho et al., 2022). Given
these various well-constrained Holocene sinks in the atmosphere and terrestrial biosphere, the key
unknown is the corresponding sources, with potential options including changes in ocean alkalinity
(Brovkin et al., 2019), subtropical wetland reductions with waning Northern Hemisphere monsoons (Guo
et al., 2012), and intensifying land use (Ruddiman, 2003). Balancing the Holocene carbon cycle in the
atmosphere-biosphere-ocean system is a major problem in Earth system science. This new generation of
LandCover6k vegetation reconstructions, combined with Earth system models, are the best avenue
forward to sharpen our understanding of the role played by surface-atmosphere feedbacks in Holocene

climate dynamics, both biogeophysical and biogeochemical.
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4.2.2 Assessing recent modeling studies of the Holocene temperature conundrum

The Holocene temperature conundrum has been a major focus of paleoclimatic research over the
last decade (Kaufman and Broadman, 2023; Liu et al., 2014), and research has invoked vegetation-
atmosphere feedbacks to resolve this conundrum (Thompson et al., 2022). The Holocene temperature
conundrum involves a discrepancy between proxy-based reconstructions of global temperature changes,
mostly based on marine records, which indicate a mid-Holocene maximum and mid- to late-Holocene
cooling (Marcott et al., 2013), while transient model simulations show small but steady warming
throughout the Holocene (Liu et al., 2014). Many explanations for this discrepancy have since been
proposed (Kaufman and Broadman, 2023). Recent prescribed-vegetation experiments in climate models
produce an early Holocene warming to a Holocene Thermal Maximum, followed by cooling towards the
pre-industrial Holocene (Thompson et al., 2022), consistent with paleoclimatic proxies. Conversely,
experiments that include drivers such as dust, ice cover, orbital forcing, and greenhouse gasses without
accounting for Northern Hemisphere vegetation changes do not result in a mid-Holocene thermal
maximum (Thompson et al., 2022).

Our reconstructions suggest, however, that for North America, the prescribed vegetation maps
used by Thompson et al. (2022) overstate the magnitude of Holocene vegetation change. These
prescribed-vegetation experiments for 9 and 6 ka fully replace all C; grasses with boreal forest for all
locations north of 50°N (Thompson et al. (2022), Supp. Fig. S9). This pattern is qualitatively consistent
with the early Holocene afforestation reported here (Fig. 2) but is inconsistent with the demonstrated
persistence of tundra throughout the early and middle Holocene, particularly in WCAN/AK (Figs. 2, 6)
and Canadian High Arctic (Fig. 2). Similarly, the prescribed full replacement of C3 grasslands with
temperate deciduous forest for the 9 and 6 ka experiments (Thompson et al. (2022), Supp. Fig. S9) is
inconsistent with clear palynological evidence for the establishment of the Great Plains grassland by the
early Holocene and prairie expansion during the early to middle Holocene (Fig. 2, Supp. Fig. S5)
(Williams et al., 2009a). Hence, the Thompson et al. (2022) simulations should be viewed as useful
experiments that show the potential sensitivity of Holocene climates to large vegetation changes, but
these experiments likely overestimate the contribution of vegetation feedbacks to resolving the Holocene

temperature conundrum.

4.2.3 Understudied Holocene vegetation-atmosphere feedbacks in North America

Our reconstructions also highlight several major features of North American vegetation dynamics
that may have underappreciated effects on Holocene vegetation-atmosphere feedbacks and climate

dynamics at regional to continental scales. First, the mid-Holocene decline and recovery of Tsuga
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canadensis in the northeastern United States is an example of how single-species dynamics can drive
fundamental changes in vegetational structure. Although the patterns and drivers of the T. canadensis
decline have been extensively studied (Oswald and Foster, 2012; Oswald et al., 2017; Booth et al., 2012;
Foster et al., 2006), the effects of the T. canadensis decline on Holocene climates are unknown. As the
dominant evergreen conifer of cool-temperate eastern North America, the decline of T. canadensis at ca. 5
ka is the primary driver of the loss of ETS between 6 and 4 ka, while the gradual recovery of T.
canadensis after 5 ka drives the corresponding increase of ETS (Fig. 4). This shift in dominance between
summergreen and evergreen trees and shrubs, in turn, regulates the overall albedo of the land surface and
particularly its seasonal range. During times of foliage, summergreen forests can have more than twice
the albedo of evergreen forests (Hollinger et al., 2010), and summergreen forests exhibit much greater
seasonal variability, with maximum values in full foliage being 20-50% larger than annual lows. Second,
the peak in summergreen tree cover between ca. 8.5 and 4.5 ka (Fig. 2) may indicate a seasonal-scale
positive feedback loop between summer insolation, summergreen phenology, and summer temperatures.
Studies have suggested that the late-Pleistocene to early-Holocene peak in summer insolation favored
summergreen phenology and carbon acquisition strategies over evergreen strategies (Delcourt and
Delcourt, 1994; Williams and Jackson, 2007). Studies from the Pacific Northwest and Alaska also show
a peak in Alnus and other summergreen tree and shrub taxa during the early Holocene (Fig. 7¢),
coincident with the summer insolation maximum and local maxima in temperature (Gavin et al., 2013;
Edwards et al., 2005; Whitlock, 1992). This climate-driven response, in turn, may have increased the
seasonal range of albedo and surface temperatures, thereby further favoring summergreen strategies. This
summergreen feedback might have also contributed to some summer cooling, due to the higher summer
albedo of summergreen trees (Hollinger et al., 2010). As an alternative hypothesis, Herzschuh (2020)
suggested that the Eurasian distribution of evergreen spruce-dominated and deciduous larch-dominated
evergreen forests was due to historical contingencies and alternate stable states. Although many studies
have explored the effect of early to middle Holocene afforestation on vegetation feedbacks in the northern
latitudes (Brovkin et al., 2009; Kutzbach et al., 1996), to our knowledge no paper has yet focused
specifically on the seasonal feedback effects associated with shifting proportions of summergreen and

evergreen trees and shrubs.

4.3 Uncertainties and limitations in pollen-vegetation model reconstructions

Land cover reconstructions from pollen rely upon a variety of pollen-vegetation models (PVMs), some of
which have well-understood limitations and uncertainties, and some of which are newer and are still being
studied. The REVEALS PVM used here is has been widely adopted (Li et al., 2020; Githumbi et al.,
2022b; Serge et al., 2023; Azuara et al., 2019; Hoevers et al., 2022) because it represents some of the
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taxon-level processes governing pollen production, transport, and representation (Prentice, 1985; Sugita,
2007a). However, processes such as atmospheric transport are simplified (Jackson and Lyford, 1999) and
key parameters such as pollen productivity estimates (PPES) carry uncertainties (Wieczorek and
Herzschuh, 2020; Brostrom et al., 2008; Hayashi et al., 2022) that translate to uncertainties in fractional-
weighted land cover area. Most PPE estimates are generated from models fitted to spatial networks of
vegetation surveys and surface pollen samples, and these PPE estimates depend strongly on models of
pollen dispersal (Theuerkauf et al., 2012).

Such issues may explain some of the surprising aspects of the reconstructions presented here. For
example, reconstructed Acer cover in the NEUS/SEC (Fig. 4c) is high compared to settlement-era
estimates from witness trees and land surveys (Thompson et al., 2013; Paciorek et al., 2016). Similarly,
reconstructed cover of Abies in both the NEUS/SEC and PCCS is higher than expected (Figs. 4c, 7c).
Abies and Acer are notoriously underrepresented in fossil pollen assemblages (Bradshaw and Webb,
1985), relative to independent surveys of tree abundance in the surrounding ecosystems, due to the low
pollen productivity of maple trees relative to other taxa (Finkelstein et al., 2006; Liu et al., 2022) and high
fall speeds of Abies (Jackson and Lyford, 1999). Hence, a key value of process-based PVMs, such as
REVEALS, is the ability to correct for these known biases. However, REVEALS estimates are sensitive
to parameter choices and it is possible that the estimates of Abies and Acer are too high. There are few
estimates of Abies fall speeds compared to other taxa, and the fall speeds used here from Wieczorek and
Herzschuh (2020) are similar to the values for Larix that initial testing indicated led to Larix
overrepresentation. Larix is also challenging to model accurately in pollen-vegetation models, because its
large pollen grains do not disperse far. Hence, local populations of larch can be difficult to differentiate
in pollen records, from those occurring across the broader source area. Moreover, the scarcity of Larix
pollen grains means that the REVEALS reconstructions are highly sensitive to its parameterizations for
Larix.

REVEALS is not spatial or temporal in nature, so there is no representation of spatiotemporal
dependencies among site-level reconstructions (Supp. Fig. S2, S3). REVEALS estimates of fractional
cover uncertainty are based on the total number of pollen grains counted in a sample and the error
associated with the PPEs, but do not include process uncertainty or uncertainty in other model inputs.
The GMRF serves as a post-hoc interpolator to generate spatially complete vegetation reconstructions for
each time period, but this approach does not mechanistically represent the underlying processes that link
pollen to vegetation. Neither REVEALS nor the GMRF include soil, slope, aspect, or other edaphic
controls on vegetation cover. The REVEALS-GMRF workflow as currently implemented does not
account for pollen sample age uncertainty. While the Bchron age-depth modeling approach is a Bayesian

approach that estimates posterior distributions of sample ages, propagating this through the REVEALS-
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GMRF workflow would require addition of temporal dependence in the interpolation model. Initial
experiments to add temporal dependence have been computationally prohibitive; alternative model
specifications that would make this possible are currently being tested. Even so, given the temporal grain
of the time bins (500 years throughout the Holocene, except for the last 700 years, 100-350 years), we
expect that within uncertainty the majority of sample ages will not shift among time bins. While
REVEALS does quantify standard errors associated with relative abundance estimates, these standard
errors are not considered by the REVEALS-GMRF approach. This means that uncertainty estimates from
the REVEALS-GMRF approach quantify the uncertainty determined by the variability of REVEALS
fractional land cover around the estimated spatial field (Supp. Fig. S4). Validation experiments would be
useful to understand the impacts of sample unevenness; such experiments have been done using the
REVEALS-GMRF approach for Europe (Pirzamanbein et al., 2018). This work generally showed little
change in the predictions when data were withheld. These cross-validation experiments have a high
computational burden. Future work aims to improve computational efficiency of the approach, at which point
such experiments will be possible for larger domains like North America.

To address these limitations with the REVEALS workflow (spatial and -temporal incompleteness,
input parameter uncertainty, and uncertainty quantification), other forms of PVMs have been developed.
ROPES uses pollen accumulation rates and REVEALS to estimate pollen productivity (Theuerkauf and
Couwenberg, 2018). However, the dependence of ROPES on pollen accumulation rates may limit its
widespread utility. At many sites, pollen accumulation rates have high uncertainties due to variations in
sedimentation rate, few radiometric dates and poor chronological controls, and spike counting
uncertainties (Perrotti et al., 2022). STEPPS is a Bayesian spatio-temporal PVM (Dawson et al., 2016,
2019). While theoretically sound, STEPPS is computationally intensive and its estimates are dependent
upon the density and quality of spatial forest compositional calibration datasets, limiting its applicability
to regional-scale domains. Other spatial Bayesian models developed for high-resolution networks of
pollen and vegetation data suggest that if the spatial site density is too low, STEPPS and similarly

structured PVMs can over-estimate pollen dispersal distance (Liu et al., 2022).

4.4 Future work

With North American REVEALS-based reconstructions now in place, all middle- and high-latitudes in
the Northern Hemisphere have quantitative reconstructions of Holocene land cover that are well
constrained by dense networks of fossil pollen records (Githumbi et al., 2022b; Li et al., 2023). The
reconstructions for North America and Europe also have estimates of uncertainty from the spatiotemporal
GMRF model (Pirzamanbein et al., 2018). This hemispheric coverage now enables the creation of a next

generation of modeling scenarios, well-constrained by data, to explore land cover feedbacks in the
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Holocene climate system (Harrison et al., 2020), with relevance to both the Holocene temperature
conundrum (Kaufman and Broadman, 2023; Liu et al., 2014) and the question of the missing Holocene
carbon source (Brovkin et al., 2019; Indermihle et al., 1999; Ruddiman, 2003). These land cover
reconstructions also help identify places where new local-scale, site-based research are needed to better
understand human impacts, better constrain land cover changes in areas of sparse data and high
uncertainty, and better understand how local and taxon-level dynamics scale up to affect regional- to
continental-scale vegetation and climate dynamics.

Multiple opportunities exist to further enhance these reconstructions. First, this work underscores
the critical need for more work to better constrain PPEs and fall speeds, particularly for North American
plant taxa. The REVEALS estimates in this analysis appear to be particularly sensitive to the
parameterizations for underrepresented taxa such as Abies and Acer. Second, these land cover
reconstructions could be further parsed into boreal, temperate, and subtropical components, given what is
known about these individual pollen types and their climatic affinities. However, statistically modeling
more finely resolved land cover groupings or taxa is complicated by the many zero-count observations in
more finely resolved groupings, especially for such a large spatio-temporal domain (Haslett et al., 2021).
Third, these pollen-based vegetation reconstructions would be improved by the incorporation of
additional proxies, particularly in semi-arid regions, where carbon isotopic records from soils, lakes,
speleothems, and other archives can provide information about the relative abundance of C; and C,
grasslands (Braun et al., 2019; Nordt et al., 2007) and phytoliths can provide information about grassland
composition (Blinnikov et al., 2002; Evett and Bartolome, 2013), although multiple factors affect §"°C
variations (Fohlmeister et al., 2020). Fourth, for some subregions where a dense network of high-
resolution, well-dated records exists, such as New England (Oswald et al., 2018)

Lastly, given the maturation of pollen-vegetation modeling as a field of study and the emergence
of multiple PVMs, there is now the opportunity for intercomparison studies among PVMs and, perhaps,
the development of ensemble-based inferences of past vegetation cover. There is a long history of
methodological comparisons in pollen-based paleoclimatic inferences and paleoclimatology more broadly
(Chevalier et al., 2020). Few systematic intercomparisons of PVMs yet exist (Roberts et al., 2018),
although individual papers have discussed strengths and weaknesses of different modeling approaches
(Liu et al., 2022; Theuerkauf et al., 2012). Initial efforts are underway to compare land cover
reconstructions from REVEALS-GMRF to those from the Bayesian spatio-temporal model STEPPS.
Moreover, given that ensemble-based approaches have been shown to have higher predictive ability in
fields such as climate modeling and species distribution modeling (Deser et al., 2020; Bothe et al., 2013;
Rangel et al., 2009; Thuiller et al., 2009), there is value in developing approaches for ensemble-based

PVMs for past land cover inference.
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5. Conclusions

Continental-scale changes in land cover in North America during the Holocene are the outcome of
multiple interacting drivers operating over a range of temporal and spatial scales. For much of the
Holocene (ca. 8 to 1.5 ka), the spatial configurations of continental-scale fractional forest cover were
broadly stable. Major continental-scale trends included early Holocene afforestation, a middle-Holocene
peak in the areal proportion of summergreen trees and shrubs, and a last-millennium increase in open
land. These trends were driven by taxon-level dynamics that varied strongly within and among regions.
The regional dynamics can be attributed to individualistic postglacial shifts in the range and abundance of
plant taxa driven by changing climates and increased land area after deglaciation; abrupt and large
species-level events, such as the mid-Holocene collapse of eastern hemlock; and a shift from localized
land use during the late Holocene to massive ecosystem transformation following EuroAmerican
settlement. This work rejects the ideas of both pre-industrial forest stability and widespread major
conversions in land cover type.

This work contributes to the LandCover6k initiative to produce continental- to global-scale
reconstructions of Holocene land cover dynamics that are well-constrained by proxy data and are
guantified using consistent methods. These REVEALS-GMRF reconstructions establish realistic
benchmark scenarios constraining and assimilating with Earth system model simulations of the
interactions among Holocene climate, land cover, and anthropogenic change. In addition, they can help
refine Holocene models of land use and land cover change, provide a foundation for comparisons among
PVMs, and indicate priority areas for future new site-level research. Scaling up from these continental to
hemispheric and global products will enable further testing of hypotheses about the drivers and feedbacks
of Holocene land cover change, both biogeophysical and biogeochemical. These reconstructions also
highlight several potentially important but unstudied vegetation-atmosphere feedbacks, including the
collapse of eastern hemlock at ca. 5 ka and a positive feedback loop between mid-Holocene peaks in
seasonality of insolation, temperature, and vegetation phenology.

Comparison of the REVEALS-GMREF land cover reconstructions with those inferred from
alternate PVMs is a research priority. REVEALS-GMRF depends on a suite of input variables that are
both uncertain and exhibit spatial and temporal variation not accounted for in the model. Also, the use of
a post-hoc Bayesian GMRF interpolation step means that uncertainty of reconstructions associated with
these assumptions is not fully characterized.

Finally, this work emphasizes the importance of quantifying ecosystem processes and feedbacks
between the land surface and climate system. Holocene land cover changes in North America are non-

negligible and there is a pressing need to refine ecosystem models, in particular when those models are
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967  coupled within an Earth System model. The availability of well-constrained data products has been a
968  major barrier to this effort. Paleoecology and palynology are reaching a new level of maturity with

969  respect to advances in data discovery and accessibility, as well as development of consistent analytical
970  methods that permit interpretability of large-scale spatio-temporal change. Data assimilation experiments
971 that integrate these reconstructions into Earth System models have the potential to resolve major

972  questions in the field, such as the Holocene temperature conundrum and disentangling the effects of

973  climate-vegetation-human interactions upon Holocene vegetation and climate dynamics.

974 6. Code and data availability

975  Code and data used in this workflow are publicly available at https://github.com/andydawson/reveals-na.
976  The land cover reconstructions from both REVEALS and REVEALS-GMREF are archived on Dryad at
977  https://doi.org/10.5061/dryad.c2fqz61m5. The REVEALS-GMREF reconstructions with references to
978  supporting code are available at https://github.com/BehnazP/SpatioCompo_entireHolocene NA. The

979  description and implementation of the digitization of lake area is available at
980  https://github.com/NeotomaDB/neotoma_lakes.
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