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Abstract 13 

The marine nitrogen (N) cycle profoundly impacts global ocean productivity. Amid rising deoxygenation in 14 

marine environments due to anthropogenic pressures, understanding the impact of this on the marine N-cycle 15 

is vital. The Black Sea’s evolution from an oxygenated lacustrine basin to an anoxic marine environment over 16 

the last deglaciation and Holocene offers insight into these dynamics. Here, we generated records of the organic 17 

biomarkers heterocyte glycolipids, crenarchaeol, and bacteriohopanetetrol, associated with various water-18 

column microbial N-cycle processes, which indicate a profound change in Black Sea N-cycle dynamics at 7.2 ka 19 

when waters became severely deoxygenated. This transition substantially reduced Thaumarchaeota-driven 20 

nitrification and enhanced loss of bioavailable nitrogen through anammox. In contrast, other climatic changes 21 

over the last deglaciation and Holocene, such as freshwater input, water-level variations and temperature 22 

changes, did not impact these processes. Cyanobacterial nitrogen fixation in surface waters proved more 23 

responsive to changes in salinity and associated water column stratification. Our results indicate that future 24 

deoxygenation in marine environments may enhance bioavailable nitrogen loss by anammox and reduce 25 

nitrification by Thaumarchaeota, while enhanced stratification may increase cyanobacterial nitrogen fixation in 26 

the surface waters.  27 

 28 

1. Introduction 29 

The marine nitrogen (N) cycle is a significant control of biological productivity in our global oceans. It is directly 30 

connected to the fixation of atmospheric carbon dioxide and carbon export from the ocean's surface, influencing 31 

atmospheric CO2 levels over geological time scales (Falkowski et al., 1998). As the marine N-cycle is strongly 32 

regulated by biology, the (de)oxygenation of the ocean determines the microorganisms involved in these 33 

biogeochemical cycles and the aerobic/anaerobic pathways that occur. Under anoxic conditions, loss of 34 

bioavailable nitrogen is substantial, attributed to anaerobic ammonium oxidation (anammox) and denitrification 35 

(Kuypers et al., 2003; Dalsgaard et al., 2012). With deoxygenation in marine environments increasing due to 36 

anthropogenic climate and environmental changes (i.e., Keeling et al., 2010; Bopp et al., 2013), and research 37 

linking deoxygenation to changes in the marine N-cycle (Kalvelage et al., 2013; Naafs et al., 2019), it is important 38 
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to enhance our understanding of how the marine N-cycle may respond to future deoxygenation and what the 39 

associated feedbacks on carbon fixation might be. 40 

 41 

Marine basins that have experienced changes in oxygenation in the past can provide perspective on the current 42 

deoxygenation of modern global oceans and the associated feedbacks in the marine N-cycle, in particular on 43 

timescales beyond the observational record. Today, the Black Sea is the world’s largest permanently stratified 44 

anoxic basin with limited connection to the global ocean through the Bosporus Strait and its redox gradient is a 45 

hotspot of diverse microbial populations and metabolisms (Kusch et al., 2022). However, over the last 46 

deglaciation and Holocene (approximately the last 20 ka), the Black Sea experienced large hydrological changes. 47 

The basin was an oxygenated fresh-water lacustrine environment during the Last Glacial Maximum (LGM) 48 

(Schrader, 1979) and experienced many environmental changes during the subsequent deglaciation, including 49 

temperature changes (Bahr et al., 2005; 2008; Ion et al., 2022), water-level variations (Ivanova et al., 2007; 50 

Nicholas et al., 2011; Piper & Calvert, 2011), and changes in freshwater input into the basin, both through 51 

melting of Eurasian icesheets and alpine glaciers after the LGM and changes in regional precipitation (Bahr et 52 

al., 2005; 2006; 2008; Badertscher et al., 2011; Shumilovskikh et al., 2012). It became reconnected to the global 53 

ocean at ~9.6 ka when post-glacial sea-level rise caused an initial marine inflow (IMI) over the Bosporus sill (Aksu 54 

et al., 2002; Major et al., 2006; Bahr et al., 2008; Ankindinova et al., 2019), leading to enhanced salinity of the 55 

upper part of the water column (Marret et al., 2009; Verleye et al., 2009; Filipova-Marinova et al., 2013) and 56 

euxinic deep waters developing in the basin after 7.2 ka (Arthur & Dean, 1998; Eckert et al., 2013). Thus, 57 

sedimentary records of the Black Sea may provide a unique perspective of the impact of deoxygenation, as well 58 

as changing temperature and salinity, on the marine N-cycle. 59 

 60 

Diagnostic lipid biomarkers of microbes preserved in the geological record can offer a unique insight into past 61 

changes in the N-cycle (Rush & Sinninghe Damsté, 2017 and references cited therein; Elling et al., 2021; van 62 

Kemenade et al., 2023). Nitrogen fixing heterocytous cyanobacteria play a crucial role in transforming nitrogen 63 

gas (N2) to bioavailable nitrogen (NH3) and sustaining primary productivity in both marine and freshwater 64 

environments (Villareal, 1992; Ploug et al., 2008). Identification of their diagnostic biomarkers, heterocyte 65 

glycolipids (HGs), in the geological record enables exploration of past changes in nitrogen fixation by these 66 

microbes (Bauersachs et al., 2009; 2010; Sollai et al., 2017; Bale et al., 2019; Elling et al., 2021). Nitrification, the 67 

microbial two-step conversion of ammonia (NH3) and/or ammonium (NH4
+) to nitrate (NO3-), is a central part of 68 

the marine N-cycle. Archaea of the phylum Thaumarchaeota (also known as Nitrososphaerota) are among the 69 

most abundant and widespread marine prokaryotes (Karner et al., 2001; Francis et al., 2005), playing a crucial 70 

role in nitrification in the Black Sea (Lam et al., 2007) by aerobically oxidizing ammonia to nitrite (Könneke et al., 71 

2005; Wuchter et al., 2006). As Thaumarchaeota are the exclusive producers of the membrane spanning lipid, 72 

crenarchaeol (Sinninghe Damste et al., 2002), this biomarker can be used to identify Thaumarchaeota in the 73 

geological record and explore the palaeo marine N-cycle. Another critical part of the N-cycle is the loss of 74 

bioavailable nitrogen to N2. Under anoxic conditions, bioavailable nitrogen (NO3-, NO3-, NH3 and NH4
+) can be 75 

lost through two processes in subsurface waters: anammox (van de Graaf et al., 1997; Kuypers et al., 2003) and 76 
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denitrification (Kuenen and Robertson, 1988). It is possible to explore past changes in anammox activity in the 77 

sedimentary record using the unique ladderane fatty acids (Sinninghe Damste et al., 2002) but these are 78 

relatively poorly preserved in sediments (Jaeschke et al., 2007). Alternatively, the ratio of bacteriohopanetetrol 79 

(BHT)-34S (which is ubiquitously synthesized by aerobic bacteria) and the later eluting stereoisomer BHT-x 80 

(which is predominately synthesized by marine anammox bacteria, i.e., Ca. Scalindua spp.) (Rush et al., 2014; 81 

Schwartz-Narbonne et al., 2020; van Kemenade et al., 2023) can be used to trace past anammox activity. 82 

Denitrification is performed by a large range of organisms (Knowles, 1982), but at present, there are no 83 

associated diagnostic lipid biomarkers (Rush et al., 2017). 84 

 85 

In this study, we used lipid biomarkers of microbes involved in the N-cycle in combination with other 86 

geochemical records from a sediment core located in the western Black Sea spanning the last deglaciation and 87 

Holocene (~20 ka – present) to better constrain and assess the sensitivity of the marine N-cycle under changing 88 

hydrological and oxygenation conditions and explore its potential links to broader global climate dynamics.  89 

 90 

2. Regional Setting 91 

The Black Sea is a large meromictic marginal basin connected to the Mediterranean Sea via the Turkish Straits 92 

(the Bosporus, the Sea of Marmara, and the Dardanelles Strait) (Fig. 1). The Black Sea has a net outflow into the 93 

Aegean Sea via the Turkish Straits, and is primarily supplied by three major rivers, the Danube, Dnieper, and 94 

Don. With freshwater flowing out of the basin and dense, highly saline waters flowing in, the water column is 95 

highly stratified with respect to salinity (density). An oxygenated colder surface layer (0 – 50 m) overlies warmer, 96 

anoxic, sulfidic, hypersaline deep waters (100 – 2300 m), separated by a suboxic layer (50 – 100 m) (Murray et 97 

al., 1989; 1995). The general circulation of Black Sea surface-waters is a basin-scale cyclonic boundary current 98 

encompassing large eastern and western cyclonic gyres, with several smaller, anticyclonic coastal eddies (Fig. 1) 99 

(Özsoy and Ünlüata, 1997).  100 

 101 

3. Methods 102 

During the cruise with the RV Pelagia in April 2017, piston core 64PE418 (235 cm length) was recovered from 103 

1970 m below sea level (mbsl) depth in the Black Sea (42°56 N, 30°02 E) (Fig. 1). 44 sediment samples were taken 104 

at 5 cm intervals along the depth of the core.  105 

 106 

3.1. Biomarker extraction and analysis 107 

Lipids were extracted from these samples using a modified Bligh and Dyer extraction method as described 108 

previously (Bale et al., 2021). Using a mixture of methanol (MeOH), dichloromethane (DCM), and phosphate 109 

buffer (2:1:0.8, v:v), the sediment was twice extracted ultrasonically (10 min). The combined supernatants were 110 

phase-separated by adding DCM and phosphate buffer to create a solvent ratio of 1:1:0.9 (v:v). The organic 111 

phase was collected, and the aqueous phase re-extracted three times using DCM. All extraction steps were then 112 

repeated on the residue but with a mixture of MeOH, DCM and aqueous trichloroacetic acid solution (TCA) pH 113 

3 (2:1:0.8, v:v). Finally, the organic extracts were combined and dried under a N2 gas stream. A deuterated 114 
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betaine lipid {1,2-dipalmitoyl-sn-glycero-3-O-4′-[N,N,N-trimethyl(d9)]-homoserine; Avanti Lipids} internal 115 

standard was added to each sample before filtering the extract through 0.45 μm cellulose syringe filters (4 mm 116 

diameter; BGB, USA). Extraction blanks were performed alongside the sediment extractions, using the same 117 

glassware, solvents and extraction methodology, but without sediment. Analysis of the extracts was performed 118 

using the following UHPLC-HRMS reversed phase method. An Agilent 1290 Infinity I UHPLC was used, equipped 119 

with thermostatted auto-injector and column oven, coupled to a Q Exactive Orbitrap MS with Ion Max source 120 

with heated electrospray ionization (HESI) probe (Thermo Fisher Scientific, Waltham, MA). Separation was 121 

achieved using an Acquity BEH C18 column (Waters, 2.1 × 150 mm, 1.7 μm) maintained at 30°C. The eluent 122 

composition was (A) MeOH/H2O/formic acid/14.8 M NH3aq [85:15:0.12:0.04 (v:v)] and (B) IPA/MeOH/formic 123 

acid/14.8 M NH3aq [50:50:0.12:0.04 (v:v)]. The elution program was: 95% A (for 3 min) followed by a linear 124 

gradient to 40% A (at 12 min) and then to 0% A (at 50 min), which was maintained until 80 min. The flow rate 125 

was 0.2 mL min-1. Positive ion HESI settings were: capillary temperature, 300°C; sheath gas (N2) pressure, 40 126 

arbitrary units (AU); auxiliary gas (N2) pressure, 10 AU; spray voltage, 4.5 kV; probe heater temperature, 50°C; 127 

S-lens 70 V. Lipids were analyzed with a mass range of m/z  350–2000 (resolving power 70,000 ppm at m/z 200), 128 

followed by data-dependent tandem MS/MS (resolving power 17,500 ppm), in which the 10 most abundant 129 

masses in the mass spectrum were fragmented successively. Optimal fragmentation was achieved with a 130 

stepped normalized collision energy of 15, 22.5 and 30 (isolation width, 1.0 m/z) for IPL analysis (Bale et al., 131 

2021) and 22.5 and 40 (isolation width 1.0 m/z) for BHP analysis (Hopmans et al., 2021). The Q Exactive was 132 

calibrated within a mass accuracy range of 1 ppm using the Thermo Scientific Pierce LTQ Velos ESI Positive Ion 133 

Calibration Solution. During analysis, dynamic exclusion was used to temporarily exclude masses (for 6 s) to 134 

allow selection of less abundant ions for MS/MS. 135 

 136 

Biomarkers were identified based on their retention time, exact mass, and fragmentation spectra. Integrations 137 

were performed on (summed) mass chromatograms of relevant molecular ions ([M+H]+, [M+NH4]+, and 138 

[M+Na]+) and in the case of crenarchaeol also the second isotope peak for each of the three adducts. Due to 139 

coelution of BHT-34S, BHT-x isomer and an unknown nitrogen containing compound with the same mass, 140 

identification and integration of BHT-34S and BHT-x was conducted using the m/z 529.462 dehydrated insource 141 

product ([M+H]+-H2O). Isoprenoidal glycerol dialkyl glycerol tetraether (isoGDGT) crenarchaeol, monohexose 142 

crenarchaeol, and a crenarchaeol isomer were all integrated and combined as ‘crenarchaeol’. The lipid 143 

biomarker records are all presented as peak area per gram of total organic carbon (TOC). 144 

 145 

3.2. Total organic carbon and total nitrogen and 15Nbulk measurements 146 

Freeze-dried sediments were analysed for TOC, total nitrogen (TN) and bulk 15N (15Nbulk) using a 147 

ThermoScientific Flash EA Delta V Plus IRMS. Flow was 100 ml/min and the temperature for oxidation, reduction 148 

and the oven were 900°C, 680°C, and 40°C, respectively. Nitrogen isotopic measurements were calibrated to 149 

atmospheric air (AIR) and values are expressed in permil (‰) units. Inorganic carbon was removed from the 150 

sediment prior to TOC analysis using HCl (2 mol), cleaned with bi-distilled water, then freeze-dried.  151 

 152 
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3.3. Age model 153 

Accelerator Mass Spectrometry (AMS) 14C ages of bulk organic matter were measured from core 64PE418 (n = 154 

7) to create a chronology on the 64PE418 depth scale. Samples were weighed and freeze-dried at NIOZ. The 155 

AMS 14C measurements (14C/ 12C) were determined using a Compact Carbon AMS System at the Poznań 156 

Radiocarbon Laboratory, Poland. The sediment samples were pre-treated with 0.25M HCl (room temperature 157 

overnight, then 80°C, 1+ hour), and rinsed with deionised water until pH = 7. Samples were then combusted in 158 

closed (sealed under vacuum) quartz tubes, together with CuO and Ag wool (900°C, 10 hours). The CO2 released 159 

was then dried in a vacuum line and reduced with H2 using 2 mg of iron (Fe) powder as a catalyst. The obtained 160 

carbon and Fe mixture was then pressed into an aluminium holder (Czernik & Goslar, 2001). The measurement 161 

was performed by comparing intensities of ionic beams of 14C, 13C and 12C measured for each sample and for 162 

standard samples (with “Oxalic Acid II” used as modern standard; “coal” used as background standard of 14C-163 

free carbon). In each AMS run, 30-33 samples of unknown age were measured, alternated with measurements 164 

of 3-4 samples of modern standard and 1-2 samples of background standard. The measured 14C/ 12C ratios are 165 

corrected for isotopic fractionation and reported as conventional radiocarbon age according to Stuiver & Polach 166 

(1977).  167 

 168 

Seven bulk organic matter 14C dates were used in the production of the age-model for core 64PE418 (Table 1 169 

and Fig. S3). Six of these were from this core, with an additional bulk organic carbon 14C date from the widely 170 

acknowledged Unit I/II boundary of core KNR 134-08 BC17, which was used to further refine the age model for 171 

the upper part of the core (Jones & Gagnon, 1994). Core KNR 134-08 BC17 was sourced from the same location 172 

and water depth as 64PE418 and this boundary was identified in our core using the same significant colour and 173 

elemental changes described in previous studies (Fig. S1 & S2) (i.e., Arthur & Dean, 1998; Bahr et al., 2005). 174 

While seven 14C measurements were conducted on core 64PE418, one was excluded from the age model due to 175 

an age reversal (142.5 cm), likely due to the presence of reworked material. Variable reservoir-ages were added 176 

to our calibration (Table 1), using those calculated by Kwiecien et al., (2008) for intermediate water depths in 177 

the Black Sea over the last deglaciation and Holocene. The 14C dates were calibrated using the Marine20 178 

calibration curve (Heaton et al., 2020) for the upper three samples (24.5, 39, 76.5 cm) which reflect the period 179 

after the infiltration of marine water; this is based on the colour and elemental changes in the core which 180 

indicate that these samples fall within Units I and II (Arthur & Dean, 1998; Bahr et al., 2005). The lower four 181 

samples (118.5, 158.5, 183.5 and 217.5 cm) were calibrated using the IntCal20 calibration curve (Reimer et al., 182 

2020), as they reflect the period prior to the marine infiltration when then Black Sea was a lacustrine 183 

environment, as indicated by colour and elemental signatures in the core (Arthur & Dean, 1998; Bahr et al., 184 

2005). Using the R-code CLAM (Blaauw, 2010), the age–depth model was created based on the seven 14C dates. 185 

Our age model shows that the 64PE418 biomarker records span the last 19.5 ka, with an average resolution of 186 

450 years. The following transitions are identified in our core by colour (Fig. S1) and elemental changes (Fig. 187 

S2) and dated by our age model as follows: the onset of the IMI (138 cm) is at 9.6 ka ± 237 yrs, the boundary of 188 

Unit II/III (96 cm) is dated at 7.2 ka ± 202 yrs, and the Unit I/II boundary (39 cm) is dated at 2.6 ka ± 402 yrs. The 189 
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dates of these boundaries align well with previously published calibrated ages for these transitions (i.e., Jones 190 

& Gagnon, 1994; Ankindinova et al., 2019; Huang et al., 2021), as shown in Fig. S4. 191 

 192 

4. Results 193 

 194 

4.1. TOC, TN and colour changes 195 

Sedimentary bulk TOC (%), bulk TN (%), and 15Nbulk (‰) range between 0.3 – 22.8% for TOC and 0.05 – 1.9% for 196 

TN, and 5.2 – 0.0‰ for 15Nbulk (Fig. 2). There are significant colour changes in the core, as shown in Fig. S1 which 197 

correspond to changes in TOC, TN and the elemental composition (Fig. S2). In the lower part of the core (19.5 – 198 

9.6 ka), values are relatively low for TOC and TN, at 0.84% and 0.10%, respectively. At 9.6 ka, there is an 199 

appreciable change in the elemental composition of the core, with increases in Ti/Ca, K and V and a decrease in 200 

Mn/Al, which corresponds with a transition to darker sediments and an increase in TOC and TN to 2.41% and 201 

0.26%, respectively. At 7.2 ka there is another major change in the colour and bulk elemental composition of 202 

the core, with an increase in redox-sensitive elements U, V, and Mo and a decrease in Ti/Ca and K (Fig. S2), which 203 

corresponds with darker sediments and increasing TOC values. TOC peaks between 6.6 – 4.6 ka (21% for TOC 204 

and 1.7% for TN), declining towards the top of the core. 15Nbulk shows a general decline in values from the 205 

upper to the lower part of the core. This decline is small between 19.5 – 7.7 ka (4.9 – 3.3‰), before a more 206 

significant decrease to 1.2‰ at 6.6 ka (3.3 – 1.2‰). Values increase to 3.7‰ at 6.1 ka before declining to 0.0‰ 207 

at 3.9 ka, increasing slightly towards the top of the core to values of 1.3‰.  208 

 209 

4.2. Biomarkers 210 

We examined a number of lipid biomarkers related to the N-cycle in Black Sea core 64PE418 (Fig. S2). HGs were 211 

identified in all samples (with the exception of 215 cm (16.4 ka)). These include HGs with a hexose (C6) headgroup 212 

i.e., hexose C26 diol, hexose C28 diol, hexose C28 triol and hexose C30 triol, which are specific to free-living 213 

cyanobacteria, found in predominately freshwater and brackish environments (Bauersachs et al, 2009; Wörmer 214 

et al., 2012). In addition, those with a pentose (C5) headgroup i.e., pentose C30 diol, pentose C30 triol, pentose 215 

C32 triol were detected which are specific to cyanobacteria symbiotic with diatoms (diatom-diazotroph 216 

associations, DDAs) (Schouten et al., 2013; Bale et al., 2015). Hexose HGs are present throughout the core, 217 

increasing substantially in abundance between 9.6 – 6.6 ka, reaching maximum values at 9.6 ka. Pentose HGs 218 

are detected from 4.3 ka onwards, increasing in abundance at the top of the record coinciding with low 219 

abundance of hexose HGs. Crenarchaeol, a marker for Thaumarchaeota, was identified throughout our record, 220 

showing high values in the early part of the record ( 1.1E+14 peak area per g TOC) until 6.9 ka, abruptly shifting 221 

to lower values  3.9E+13 peak area per g TOC thereafter. The BHT-x ratio, a biomarker for anammox bacteria, 222 

is low in the early part of our record (<0.3), due to low abundance of BHT-x. The BHT-x ratio increases after 6.9 223 

ka to values around 0.3, due to higher abundance of BHT-x and lower abundance of BHT with a 34S 224 

stereoconfiguration. 225 

 226 
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Finally, to reconstruct levels of oxygen in the subsurface waters of the Black Sea, isorenieratene was identified 227 

(as described in Bale et al., 2021). Isorenieratene is a marker of the brown-coloured strains of the photosynthetic 228 

green sulfur bacteria, Chlorobiaceae, which are anoxygenic photoautotrophs that require light and hydrogen 229 

sulphide (H2S); their presence indicates photic zone euxinia, whereby anoxic, sulfidic waters reached the photic 230 

zone (Sinninghe Damste et al., 1993; Koopmans et al., 1996). Isorenieratene was identified in many of our 231 

samples after 9.5 ka, peaking between 5.6 – 4.3 ka (reaching 3.39E+12 per g TOC at 5.6 ka), but was not detected 232 

between 3.9 – 2.7 ka. 233 

 234 

5. Discussion 235 

Based on clear changes in TOC (Fig. 2), colour and elemental signatures (Fig. S1 & S2), we divided core 64PE418 236 

into three widely acknowledged units, in line with previous studies (Jones & Gagnon, 1994; Arthur & Dean, 1998; 237 

Bahr et al., 2005). Unit III spans ~20 – 7.2 ka, covering the period where the Black Sea was a lacustrine 238 

environment, disconnected from the global ocean, and also the transition interval, where the basin moved 239 

towards a marine environment after the IMI over the Bosporus sill at ~9.6 ka (Aksu et al., 2002; Major et al., 240 

2006; Bahr et al., 2008; Ankindinova et al., 2019). Unit II (~7.2 – 2.6 ka) and Unit I (~2.6 ka - present) span the 241 

period where the Black Sea had become an anoxic brackish-to-marine environment. 242 

 243 

5.1. Oxic lacustrine phase (19.5 – 9.6 ka) 244 

Throughout the last deglaciation and early Holocene (19.5 – 9.6 ka), TOC and TN levels are low, likely due to 245 

poor preservation of organic material, caused by the well-ventilated, oxygenated, freshwater environment that 246 

existed in the basin at this time (Schrader, 1979). Isorenieratene is not detected during this period, while 247 

elements that accumulate in sediment under anoxic conditions (i.e., Algeo and Li, 2020) also remained low (i.e., 248 

U, V, Mo; see Fig. S2), which all points to a well-oxygenated environment. Freshwater/brackish conditions 249 

prevailed throughout this time, as shown by previous studies (Fig. S5; Filipova-Marinova et al., 2013; Ion et al., 250 

2022; Huang et al., 2022).Throughout this period, the abundance of Thaumarchaeota, indicated by crenarchaeol 251 

abundance, and anammox, indicated by the BHT-x ratio, remained relatively steady. This stability is remarkable 252 

since the region experienced significant climatic changes which led to large variations in the surface water 253 

temperatures of the Black Sea, varying from 10C during the Bølling Allerød, 7C during the Younger Dryas 254 

and 14C by the Early Holocene (Ménot & Bard, 2012), as well as changes in the input of freshwater into the 255 

basin due regional precipitation variability and the melting of Eurasian icesheets and alpine glaciers (Bahr et al., 256 

2005; 2006; 2008; Badertscher et al., 2011; Shumilovskikh et al., 2012; Filipova-Marinova et al., 2013; Ion et al., 257 

2022). In contrast, changes in HG abundance and distribution suggest that surface-dwelling nitrogen-fixing 258 

cyanobacteria were sensitive to hydrological changes in the Black Sea over this period (Fig. 3). The dominant HG 259 

structure varies between hexose C26 diol, hexose C28 diol and hexose C30 triol and after 11 ka, hexose C28 triol 260 

becomes present, which has been shown to be the major HG in members of the Rivulariaceae family (i.e., 261 

Calothix sp.) (Bauersachs et al., 2009). The warmer wetter conditions of the Early Holocene may have provided 262 

a trigger for this change in HG abundance and composition. Indeed, an increase in the abundance of the 263 

genus Rivularia was also noted in coastal regions of SW India during this period, coinciding with an increasingly 264 
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warm and wet climate (Limaye et al., 2017). Another cause for this shift may have been related to changes in 265 

nutrient availability, with members of the Rivulariaceae family typically occurring in environments with highly 266 

variable phosphorus availability (Whitton & Mateo, 2012).     267 

 268 

5.2. Transition phase (9.6 – 7.2 ka) 269 

In line with existing research (Arthur & Dean, 1998; Bahr et al., 2006; 2008), the IMI occurred at 9.6 ka, leading 270 

to a significant change in colour (Fig. S1) and elemental composition of the sedimentary record (Fig. S2), as well 271 

as a substantial increase in abundance of HGs. This increase does not coincide with higher TOC content, 272 

suggesting that enhanced preservation of HGs was not the cause. It is possible that these lipid biomarkers were 273 

transported fluvially to this site from lakes within the catchment basin of the Black Sea due to the warm/wet 274 

conditions at this time (Göktürk et al., 2011; Shumilovskikh et al., 2012; Filipova-Marinova et al., 2013). This, 275 

however, appears unlikely as our site is located a substantial distance from the mouths of major rivers (>230 276 

km), and the BIT index remains low during this period (0.08; pers. comms. B.Yang), indicating only a minor 277 

contribution of terrestrial organic matter at our site (Hopmans et al., 2004). Furthermore, as the proceeding 278 

period (7 – 5.6 ka) was also warm and wet (Göktürk et al., 2011; Shumilovskikh et al., 2012; Filipova-Marinova 279 

et al., 2013), we would expect the continuation of this peak if the HGs were being sourced from surrounding 280 

lacustrine environments. Instead, these high values decline abruptly after 6.6 ka. 281 

 282 

It is therefore likely that the peak abundance in nitrogen-fixing cyanobacteria is related to warmer Black Sea 283 

surface temperatures during the early to mid-Holocene (Bahr et al., 2008) in combination with surface water 284 

stratification (Bahr et al., 2006). This stratification may have been driven in part by enhanced freshwater influx 285 

due to wetter conditions but may also have been triggered by the IMI through the Bosporus Strait at 9.6 ka 286 

(Major et al., 2006; Bahr et al., 2008; Ankindinova et al., 2019). This IMI likely led to the gradual salinisation of 287 

the water column over this transition interval and intermittent build-up of anoxia in the water column. This, in 288 

turn, led to periods of higher preservation of organic matter compared to the preceding period, as indicated by 289 

the slight increase in TOC after 9.6 ka. The presence of isorenieratene after 9.4 ka indicates that anoxia reached 290 

the photic zone at intermittent periods during this transition interval, thereby providing sufficient conditions for 291 

the presence of the anoxygenic photoautotrophs, Chlorobiaceae. While the peak in nitrogen-fixing 292 

cyanobacteria occurs 2 ka before anoxia intermittently entered the photic zone, the initial influx of dense saline 293 

water may have led to some reduction in vertical circulation, which reduced the amount of fixed nitrogen 294 

upwelled to the upper water column, leading to the presence of nitrogen-fixing cyanobacteria at 9.6 ka. This 295 

also coincides with a change in the distribution of HGs in our record between 9.7 – 6.9 ka where hexose C28 diol 296 

and hexose C30 triol increase in abundance and hexose C28 triol declines in relative abundance and is no longer 297 

present after 9.1 ka, coinciding with the presence of isorenieratene. These changes may reflect a shift in species 298 

composition, linked to the gradual salinisation and periodic anoxification of the water column after the IMI. The 299 

IMI at 9.6 ka appears, however, to have had little impact on the abundances of anammox and Thaumarchaeota. 300 

This is possibly because basin-wide water column stratification and the permanent build-up of anoxia did not 301 

occur until later in the record, meaning that neither process instantaneously reacted to the IMI at 9.6 ka. 302 
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 303 

5.3. Shift to anoxic brackish-to-marine mode of operation: a critical N-cycle threshold (7.2 ka to present) 304 

After 7.2 ka there was a substantial increase in TOC and TN and an abrupt shift in parts of the subsurface N-305 

cycle. The latter is shown by an increase in the BHT-x ratio, indicating an intensification of anammox, which is 306 

coeval with a decrease in crenarchaeol, indicating that there was a decline in Thaumarchaeota-driven 307 

nitrification. Studies have shown that by 7.2 ka anoxia had built up in the water column, as indicated by changes 308 

in redox elements (Fig. S2 and Eckert et al., 2013; Wegwerth et al., 2018) and water column salinity had 309 

significantly increased (Fig. S5; Hiscott et al., 2007; Marret et al., 2009; Soulet et al., 2011; Filipova-Marinova et 310 

al., 2013), following the IMI from the Sea of Marmara at 9.6 ka (Major et al., 2002; 2006; Bahr et al., 2005; 311 

2008; Ankindinova et al., 2019). This is supported by the presence of isorenieratene in our record during this 312 

time, which indicates that anoxia penetrated the photic zone. This water column anoxia likely led to the 313 

enhanced preservation of TOC and TN and triggered a shift in the subsurface N-cycle, which crossed a threshold 314 

from an oxygenated lacustrine mode of operation to an anoxic brackish-to-marine mode of operation. The 315 

anoxic water column enabled anammox bacteria to expand their habitat from the anoxic sediments, where they 316 

likely were confined when the basin was an oxygenated freshwater environment, up into the suboxic/anoxic 317 

water column. This may therefore have commenced part of the modern-day N-cycle in the Black Sea where 318 

anammox activity occurs in the lower suboxic zone (100 mbsl) where O2 is (near) depleted and H2S is absent 319 

(Jensen et al., 2008), with anammox bacteria consuming ammonium diffusing from the deep sea and utilising 320 

the nitrite produced by both Thaumarchaeota and ammonia-oxidising bacteria (AOB) (Kuypers et al., 2003; Lam 321 

et al., 2007). Consequently, it may be that the abundance of anammox bacteria increased as a result of the 322 

coupling to nitrite production by other microbes in the suboxic zone, whilst benefitting from ammonium 323 

diffusing upwards from the deep sea. The increased anammox after 7.1 ka likely indicates that more bioavailable 324 

nitrogen was lost from the system after the switch to the anoxic brackish-to-marine mode of operation. At the 325 

same time, Thaumarchaeota abundance declined, which may be in part due to the build-up of anoxia in the 326 

water column which reduced the niche of these aerobic microbes and the nitrification performed by them. Once 327 

these processes crossed a threshold from an oxygenated lacustrine mode of operation to an anoxic brackish-to-328 

marine mode of operation, they appear to have remained steady for the remainder of the Holocene despite 329 

changes in the salinity of the basin (van der Meer et al., 2008; Mertens et al., 2012; Coolen et al., 2013) and 330 

significant changes in regional temperature and precipitation (Göktürk et al., 2011; Shumilovskikh et al., 2012; 331 

Filipova-Marinova et al., 2013). This shows that deoxygenation was the main driver of the observed change in 332 

annamox as well as archaeal nitrification and that they were not affected by hydrological changes mainly 333 

occurring at the surface. 334 

 335 

At 6.1 ka, the abundance of the HGs substantially declined, coinciding with an increase in 15Nbulk, indicating a 336 

reduction in nitrogen fixation. As this decline in HG abundance and increase in 15Nbulk does not coincide with a 337 

reduction in TOC, it is unlikely that reduced preservation of HGs played a role here. As nitrogen-fixing 338 

cyanobacteria inhabit the upper surface layer, it is likely that this change is linked to the salinisation of the 339 

surface waters, with many studies demonstrating the disappearance of many freshwater mollusc, ostracod and 340 
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dinoflagellate cyst species at this time, which were replaced by an increased abundance of euryhaline 341 

Mediterranean species (Hiscott et al., 2007; Marret et al., 2009; Filipova-Marinova et al., 2013; Ivanova et al., 342 

2015). At 6.1 ka, hexose C26 diol and hexose C28 diol are the only HGs present in the record, which may reflect 343 

the dominance of genera in the Nostocaceae family (i.e., Anabaena sp., Aphanizomenon sp., Nodularia sp., 344 

Nostoc sp.), as these members demonstrate a dominance of the hexose C26 diol and also contain varying 345 

amounts of hexose C28 diol (Gambacorta et al., 1999; Bauersachs et al., 2009). This distribution is similar to that 346 

of the Baltic Sea after 7.2 ka when a series of weak intrusions of saline water led to the basin becoming fully 347 

brackish (Sollai et al., 2017). It is therefore possible that the peak in HGs in our Black Sea record between 9.6 – 348 

6.9 ka represents a transition from the dominance of freshwater tolerant nitrogen-fixing cyanobacteria to more 349 

brackish species, with brackish species dominating the surface-waters after 6.6 ka. After 6.1 ka, 15Nbulk gradually 350 

decreases, indicating a rise in nitrogen fixation, as shown in previous studies (Blumenberg et al., 2009; Fulton et 351 

al., 2012). It should be noted that a previous study has suggested, based on compound specific measurements 352 

of pyropheophytin, that sedimentary 15N in the Black Sea is primarily derived from eukaryotic algae rather than 353 

cyanobacteria (Fulton et al., 2012), meaning the use of 15Nbulk as a nitrogen fixation signal must be used with 354 

caution. HGs, however, are only derived from N-fixing cyanobacteria and are therefore an unambiguous 355 

biomarker of nitrogen fixation. Interestingly, at 4.3 ka pentose HGs are detected, coinciding with lowest 15Nbulk, 356 

indicating the presence of marine nitrogen-fixing cyanobacteria found in symbiosis with marine diatoms. This 357 

indicates that the surface water salinity had reached a threshold which enabled these marine microbes to 358 

survive, with research indicating salinity reached 17‰ during the deposition of Unit I (Ion et al., 2022) and 359 

freshwater/brackish species had disappeared by this time (Fig. S5; Filipova-Marinova et al., 2013). Indeed, 360 

reported increases in the number of euryhaline species at this time also points to the increasing salinity of the 361 

surface waters (Marret et al., 2009; Bradley et al., 2012), which may be linked to warmer/drier conditions which 362 

reduced freshwater influx and/or enhanced evaporation (Göktürk et al., 2011). Between 3.9 – 2.7 ka, 363 

isorenieratene is not detected in the samples, reflecting the findings of previous studies (Sinninghe Damsté et 364 

al., 1993). It has been suggested that this resulted from the erosion of the chemocline (Sinninghe Damsté et al., 365 

1993), while other research shows a short reoccurrence of freshwater/brackish species (Fig. S5; Filipova-366 

Marinova et al., 2013), which may indicate that enhanced freshwater input was responsible for lowering the 367 

chemocline below the photic zone. The disappearance of hexose HGs after 0.6 ka indicates that surface water 368 

salinities may more recently have become too high for the proliferation of brackish nitrogen-fixing 369 

cyanobacteria.  370 

 371 

6. Conclusions 372 

This study shows a relatively stable subsurface N-cycle in the Black Sea over the last deglaciation and Holocene 373 

with the exception of a critical threshold observed at 7.2 ka when the basin shifted from an oxygenated 374 

lacustrine environment to an anoxic brackish-to-marine basin. At this time, the loss of bioavailable nitrogen 375 

through anammox activity was enhanced and Thaumarchaeota-driven nitrification was reduced. Prior to, and 376 

after this transition, the subsurface N-cycle was remarkably stable despite various climatic and hydrological 377 

changes that impacted the basin during the deglaciation and Holocene periods. Both the amount of nitrogen 378 
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fixation by cyanobacteria and the composition of these microbes in the surface waters, however, appear to be 379 

much more dynamic and sensitive to hydrological changes over this period, responding in particular to salinity 380 

and temperature changes and stratification of the water column. Consequently, these records provide 381 

important insight into how future deoxygenation and stratification in marine environments may affect the 382 

microorganisms involved in the N-cycle. While deoxygenation in marine environments may lead to enhanced 383 

loss of bioavailable nitrogen by anammox, and reduced nitrification by Thaumarchaeota, enhanced stratification 384 

of the water column may lead to enhanced cyanobacterial nitrogen fixation in the surface waters. These changes 385 

may have associated feedbacks on nutrient cycling and carbon fixation, with implications for the future global 386 

carbon budget. 387 

 388 
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 742 

Figure 1: Map of the Black Sea basin, showing the major surface circulation and location of core 64PE418. 743 

(Adapted from: Giorgi Balakhadze, English Wikipedia, 2016). 744 

 745 
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 747 

Figure 2: Geochemical records from Black Sea core 64PE418 of: a) TOC (%); b) TN (%); c) 15Nbulk (‰); d) hexose 748 

HGs (peak area per g TOC); e) pentose HGs (peak area per g TOC); f) BHT-x ratio; g) crenarchaeol (peak area per 749 

g TOC); h)  isorenieratene (peak area per g TOC). 750 
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 751 

Figure 3: Changes over time in relative abundance of hexose and pentose HGs present in Black Sea core 64PE418 752 

 753 

Table 1: Outline of the seven 14C dates used in the production of the age-model for core 64PE418 and their 754 

calibrated ages. The 14C and calibrated age of 142.5 cm is shown but was excluded from the age-depth model 755 

due to an age reversal. 756 

 757 

 

Core Depth (cm) 

 

Material 

Radiocarbon age  

(14C yr BP) 
± 1σ 

Calendar age  

(cal yr BP) 
± 2σ 

64PE418a 24.5 TOC 2010 30 435c,e 115 

KNR134-08-BC17b 39.0 TOC 3640 70 2145c,e 205 

64PE418a 76.5 TOC 5795 35 4870c,e 170 

64PE418a 118.5 TOC 9110 50 9328d,f 128 

64PE418a 142.5 TOC 11650 60 12720d,g 50 

64PE418a 158.5 TOC 9670 50 9975d,f 205 

64PE418a 183.5 TOC 12380 70 13358d,g 123 

64PE418a 217.5 TOC 17420 110 19270d,h 250 

a 14C dates from this study 758 
b 14C dates from Jones & Gagnon, 1994 759 
c Calibrated with the Marine20 curve (Heaton et al., 2020) 760 
d Calibrated with the IntCal20 curve (Reimer et al., 2020) 761 
e R-age of 600 years applied (Kwiecien et al., 2008) 762 
f R-age of 800 years applied (Kwiecien et al., 2008) 763 
g R-age of 900 years applied (Kwiecien et al., 2008) 764 
h R-age of 1450 years applied (Kwiecien et al., 2008) 765 
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