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Abstract. Both proxies and models provide key resources to explore how palaeoenvironmental changes may have impacted 

diverse biotic communities and cultural processes. While proxies are thought to provide the ‘gold standard’ in reconstructing 

the local environment, they only provide point estimates for a limited number of locations. On the other hand, models have the 15 

potential to afford more extensive and standardised geographic coverage of multiple bioclimatic variables. A key decision 

when using model output is the appropriate geographic resolution to adopt; models are coarse scale, in the order of several arc 

degrees, and so their outputs are usually downscaled to a higher resolution. Most publicly available model time-series have 

been downscaled to 30 or 60 arc-minutes, but it is unclear whether such resolution is sufficient for certain applications like 

species distribution models, or whether this may homogenise environments and mask the spatial variability that is often the 20 

primary subject of analysis. Here, we explore the impact of increasing the resolution of model output from 30 to 5 arc-minutes 

using the delta-downscaling method, which interpolates and applies the long-term difference between past and present model 

datasets to a higher resolution grid of observed present-day climate. We seek to determine to what extent further downscaling 

captures climatic trends at the site-level through direct comparison with proxy reconstructions, evaluating the different versions 

of the output from the HadCM3 Global Circulation model for annual temperature, mean temperature of July, and annual 25 

precipitation against a large empirical dataset of pollen-based reconstructions from across the Northern Hemisphere. Our 

results demonstrate that models tend to provide broadly similar accounts of past climate to that obtained from proxy 

reconstructions, with coherence tending to decline with age and at higher altitudes. However, our results imply that using the 

delta method to downscale to a very fine resolution has minimal net effect on the coherence of model output with pollen 

records in most cases. Optimal spatial resolution is therefore likely to be highly dependent on specific research contexts and 30 

questions, with careful consideration required regarding the trade-off between highlighting local-scale variations and 

increasing potential error via unreliable interpolation.   
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1 Introduction 

Realistic reconstructions of global paleoclimates are vital for modelling long-term evolutionary and ecological processes in 35 

fields like evolutionary biology, palaeoecology, palaeontology, and archaeology. Proxy records, such as those derived from 

pollen or other biomarkers, tend to be the preferred method for characterising past environments at specific locations; however, 

in order to extrapolate beyond the individual core sites and across wider regions, often it is necessary to rely on modelled or 

simulated climatic conditions. Recently, the production of high-resolution simulations, characterising climatic variables across 

vast time periods, have allowed for the production and analyses of time series similar to those produced using proxy data (e.g., 40 

Fordham et al., 2017; Armstrong et al., 2019; Holden et al., 2019; Beyer et al., 2020; Brown et al., 2020; Karger et al., 2021; 

Krapp et al., 2021; Timmerman et al., 2022). Openly accessible simulated datasets, such as those published by Beyer et al. 

(2020a), Krapp et al. (2021), Yun et al. (2023) and Barreto et al. (2023), and associated toolkits (e.g., the analytical package 

pastclim for manipulating and extracting modelled data; Leonardi et al., 2023), are particularly useful for scientists interested 

in Pleistocene and Holocene timescales, facilitating continuous-time analyses at a high spatial resolution across a wide range 45 

of applications, such as habitat and species distribution modelling (SDM) and the quantitative analysis of climate change in 

relation to spatiotemporally diverse biological and behavioural phenomena (e.g. Beyer et al., 2021; Padilla-Iglesias et al., 

2022; Blinkhorn et al., 2022; Timmerman et al. 2022; Leonardi et al., 2022; Zeller and Timmerman 2024; Mondanaro et al. 

2025). 

 50 

Proxy data, while allowing for detailed reconstructions of climatic conditions through time, are rarely in direct association 

with archaeological or palaeontological sites, nor do they consistently provide an absolute, linear, and standardised 

representation of past climate across large geographic areas. In this sense, they often provide relative estimates of past climate, 

an issue highlighted in a synthesis of eastern African Late-Middle Pleistocene climate records by Timbrell et al. (2022), 

demonstrating that different proxy records – even from within a relatively spatiotemporally restricted region – can provide 55 

alternate ideas of relative ‘humidity’. This is the result of the diverse nature of the data employed (i.e., pollen, lake sediments, 

ice cores etc.), which record climate in an inconsistent way that typically cannot be articulated as the bioclimatic indicators 

and environmental parameters that are routinely in species distribution models (SDMs) (e.g. Beyer et al. 2021; Blinkhorn et 

al. 2022; Leonardi et al. 2022). Model output have the potential to overcome these shortfalls, providing tangible values for 

parameters such as temperature, precipitation, and a range of derived bioclimatic indices (e.g., Hijmans et al., 2005), that are 60 

consistent across variables for a more complete account of climatic conditions. Models additionally offer much wider spatial 

coverage of the landscape that can be directly related to specific study sites and the palaeoclimatic differences between them. 

However, the integration of modelled climate with proxy data is not straightforward. For example, using simulations at a coarse 

resolution can produce biases when compared to on-site proxies due to the underlying complexity of the physical landscape, 

particularly in coastal and topographically diverse regions (Maraun and Widmann, 2018). Resultant differences  can be in the 65 

order of several degrees for temperature and tens of percent for precipitation, which could lead to substantially different biome 
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classifications and estimations of ecologies experienced  (Kottek et al., 2006). Such variations can have important implications 

for the diverse fields employing model output for the reconstruction of past and present species distributions, dispersal and 

extinction processes, and biogeographic patterns. 

 70 

High resolution simulations of multiple time slices are often desired by consumers of model output yet difficult to obtain due 

to computational costs. For example, dynamical downscaling allows for the detailed description of processes in the climatic 

system and can improve the capturing of localised climatic conditions (Rummukainen, 2016; Strandberg et al., 2023), however 

this method is rarely applied in fields like palaeoecology and archaeology due to the computational costs, particularly when a 

large number of time steps are required. Most of the recently produced time series of palaeoclimate outputs have been 75 

downscaled from the native resolution of the models (usually in the order of 2 or 3 arc-degrees) to a higher resolution of 30 

arc-minutes using statistical methods (Fordham et al. 2017; Beyer et al. 2020a; Krapp et al. 2021; Zeller and Timmerman 

2024; Mondanaro et al. 2025) as these approaches  can be more easily applied to several time periods. Within statistical 

downscaling, different methods exist to increase the spatial resolution of model simulations; these include the delta method, 

generalised additive models (GAMs), and quantile mapping. These are all aimed at minimising biases in models, characterised 80 

as differences in statistical distributions between observed and simulated series. Analyses by Beyer et al. (2020b) comparing 

debiased simulation data and empirical reconstructions at 30-minute resolution indicate the effectiveness of the delta method, 

which generally produced the most accurate simulation, though with substantial spatial and temporal variation in model 

performance. To debias simulations, delta-downscaling uses a map of local differences between observed and modelled values 

in the present day to correct for bias in the past (Maraun and Widmann, 2018). In this sense, the method assumes that biases 85 

are location specific and constant over time. Delta-downscaling can account for some climatic variations in relation to the 

underlying landscape, such as capturing some of the effects of topography on temperature and rainfall, which can be useful in 

certain analyses of past processes and dynamics.  

 

As a community, we are becoming increasingly aware of issues related to the scale and resolution of climate variables, yet it 90 

is currently unclear what level of downscaling is desirable for applications like SDM. Indeed, the ODMAP (Overview, Data, 

Model, Assessment, Prediction) protocol stresses the importance of spatial resolution and extent of environmental predictors, 

as well as processing and scaling (Fitzpatrick et al. 2021), yet there is still no universally agreed upon pipeline for SDM to 

help determine when downscaling may be important. Recently a resolution of 1km was obtained for the TRACE21K 

simulations using the CHELSA algorithm (Karger et al. 2023), interpolating very high-resolution climate for every 100 years 95 

for the last 21,000 years. Some studies support that much finer-scale simulations have higher predictive power in SDMs of 

modern populations (Chauvier et al. 2022; Ozdemir 2024), though whether such accuracy can be extended to predicted 

distributions in the past or future is unclear, particularly due to the assumptions of the delta-downscaling method that local 

biases remain constant through time (Franklin et al. 2015). Proxies offer a more localised account of climate in certain places, 

yet they too can be associated with high degrees of uncertainty, arising from multiple sources. Nonetheless, determining model 100 
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agreement with empirical reconstructions from proxies remains a widely applied method for ground-truthing downscaled 

climatic output. 

  

Previous studies have produced varied results when comparing the climatic time series produced by model simulations with 

proxy-based reconstructions. Some find that simulations and reconstructions reproduce similar major changes in temperature 105 

at large spatial scales (Fernándex-Donado et al., 2013; Zhu et al., 2019), whilst others suggest divergence (Laepple and 

Huybers 2014; Rehfeld et al., 2018). A recent meta-analysis by Laepple et al. (2023) found that studies in the Northern 

Hemisphere (where data are more abundant) have mixed results, suggesting potential areas of mismatch at local and regional 

scales. These authors suggest that shortcomings in both model simulations and proxy reconstructions may contribute to this 

divergence with models being less efficient at simulating local and regional temperature variability at relatively long timescales 110 

and methods of temperature reconstruction from proxies facing systematic deficiencies, though stronger emphasis is placed on 

the former. Strandberg et al. (2022) conversely suggest that comparisons between models and proxies are mostly limited by 

the large errors associated with proxy data. 

 

Given the ever-increasing demand to produce more accurate models of past climate across extended timeframes, we tested 115 

whether downscaling climatic models from a relatively coarser (30-min) to a higher resolution (5-min) leads to increased 

agreement with empirical reconstructions of past climate from proxies. We applied a new suite of functions in the pastclim R 

package (Leonardi et al., 2023) for  delta-downscaling model output, and present new high-resolution climatic simulations for 

17 bioclimatic variables for the HadCM3 Global Circulation Model (GCM) output (Huntley et al. 2022) and the Beyer et al. 

(2020a) model time series. We have provided an assessment of the 2,592 Northern Hemisphere records for the last 30,000 120 

years available from LegacyClimate 1.0 (Herzschuh et al. 2023), a pollen-based database reconstructing past annual 

temperature and precipitation and July temperature, that can be directly compared to variables from these  model outputs at 

varying spatial resolution. Our work has quantified the average divergence between the time series produced using modelled 

climate at varied spatial resolution and method of proxy reconstruction, with our results ultimately endorsing the use of model 

output in the absence of high-resolution proxies, though with careful consideration as to the most appropriate resolution for 125 

analysis.  

2 Materials and methods 

2.1 Climate models 

To test the impact of delta-downscaling at different resolutions, we used two time series of model simulations. The first one is 

a set of raw temperature and precipitation outputs from the HadCM3 Global Circulation Model, at their native resolution of 130 

3.275 x2.5 arc-degrees taken from Huntley et al. (2022). We consider a set of simulations in which the HadCM3 was run with 

appropriate boundary conditions for the last 120k years at 2,00 years intervals (the original set in that paper covered the last 
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800k years). The second series comes from Beyer et al. (2020a) within the pastclim R package (Leonardi et al. 2023). This is 

based on an older series of runs of the HadCM3 Global Circulation Model (Singarayer and Valdes 2010, Singarayer and 

Burrough, 2015; Valdes et al. 2017) for the last 120k years, in 72 snapshots (2,000-year time steps between 120,000 BP and 135 

22,000 BP; 1,000-year time steps between 22,000 BP and the pre-industrial modern era). As in the other set, the original model 

output of HadCM3 had a grid resolution of 3.75 x 2.5 arc-degrees.  

 

These outputs were first downscaled using a series of runs of the higher resolution HadAM3H model, available at 1.25 x 0.83 

arc-degrees for the last 21,000 years in 9 snapshots (2,000-year time steps between 12,000 BP and 6,000 BP; 3,000-year time 140 

steps otherwise) using an approached termed dynamic delta downscaling by Beyer et al (2020a). This method consists of  

generating a set of delta matrices based on the few time steps for which outputs were available from both HadCM3 and 

HadAM3H, and then using these matrices to downscale each time step in the full set by using a weighted interpolation of the 

two closest delta matrices based on CO2 (see Beyer et al, 2020a, for details). This approach takes advantage of the higher 

resolution of local dynamics captured by HadAM3H, which is computationally too expensive to be run for all time steps. These 145 

outputs were then debiased and downscaled in Beyer et al. (2020a) to 0.5 x 0.5 arc-degrees with the delta method using the 

Climate Research Unit Global Climate Dataset (CRU) as the modern climatic reference (Mitchell and Jones, 2005). 

 

For this study,  we delta downscaled and debiased these two model outputs to a resolution of both 30 arc-minutes and 5 arc-

minutes using modern observation from WorldClim2 (Fick and Hijmans, 2017). For the Beyer et al (2020a) model, as it was 150 

already at 30 arc-minutes, the delta downscaling at this resolution gives us a debiased version based on WorldClim2 rather 

than CRU. We used a global relief map from ETOPO2022 (NOAA National Center for Environmental Information, 2022) to 

reconstruct past coastlines following sea level change (Spratt and Lisiecki, 2016). We selected WorldClim2 as the modern 

reference as the transfer functions used in the LegacyClimate1.0 dataset were also derived from this dataset (at 30-minute 

resolution), allowing us to control for the effects of the modern data used for debiasing on our results. All data manipulations 155 

were done using the R package pastclim (Leonardi et al. 2023). 

 

Downscaling was performed one monthly variable at a time (i.e., January temperature) by taking the coarse simulations from 

Beyer et al. (2020a) with the corresponding set of high-resolution modern simulations from WorldClim2 (Fick and Hijmans, 

2017) and equally high-resolution global relief map (NOAA National Centres for Environmental Information, 2022). Through 160 

integrating both bathymetric and topographic values for masking sea level changes, a delta raster was computed, adding the 

difference between past and present-day simulated climate to present-day observed climate, following Beyer et al. (2020a) and 

Krapp et al. (2021) The delta method therefore assumes that local (i.e. grid-cell-specific) model biases are constant over time 

(Maraun and Widmann, 2018). The resulting matrix only covers the land extent at the present. We then expanded this matrix 

to reach the largest land-extent in any of the times-steps under consideration using an inverse-distance-weighted interpolation. 165 

For most of the world, at the resolution of 30 and 5 arc-minutes, this only requires interpolating a small number of cells away 
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from the coastline; for higher resolutions, other interpolating algorithms might be more appropriate. We note that the delta-

downscaling can also be obtained by creating first the difference between model outputs, which is then applied to the 

observational model. However, such a direction is more computationally expensive, as the interpolation outside the coastlines 

would have to be repeated for each time step. 170 

 

For temperature variables, the bias in a geographical location 𝑥 (a cell with a given latitude and longitude) is given by the 

difference between present-day observed 𝑇!"#(𝑥, 0) and simulated	𝑇#$%
⊕ (𝑥, 0) temperature, interpolated to the desired higher 

resolution grid via bilinear interpolation. Downscaled temperature (𝑇#$%'' ) in 𝑥 at time 𝑡 is thus estimated as 

 175 

𝑇#$%'' (𝑥, 𝑡) ≔ 𝑇#$%
⊕ (𝑥, 𝑡) + +𝑇!"#(𝑥, 0) − 𝑇#$%

⊕ (𝑥, 0)-       

(1) 

 

Precipitation is lower bounded by zero and covers different orders of magnitude across different regions compared to 

temperature. Multiplying rather than adding the bias correction is common when applying the delta method for precipitation, 180 

which corresponds to applying the simulated relative change to the observations (Maraun and Widmann, 2018). However, this 

method can therefore be hypersensitive in drylands, leading to overprediction of precipitation (and thus exacerbating the 

‘drizzling’ bias of GCM). We have therefore adopted an additive approach for precipitation, analogous to the one used for 

temperature, with clamping within the range of observed maximum and minimum for current climate (Beyer et al. 2020a). 

Like temperature, downscaled precipitation is estimated as 185 

 

𝑃#$%'' (𝑥, 𝑡) ≔ 𝑃#$%
⊕ (𝑥, 𝑡) + +𝑃!"#(𝑥, 0) − 𝑃#$%

⊕ (𝑥, 0)-  

 (2) 

 

The resulting monthly datasets were  then  utilised within the pastclim framework to recompute the 17 bioclimatic variables 190 

available in the original dataset (Supplementary Table S1), with mean annual temperature (bio01), mean temperature of the 

warmest quarter (bio10) and total annual precipitation (bio12) extracted here for further analysis given their relevance to the 

variables captured by the proxy reconstructions employed.  

 

Interpolating over small spatial extents can lead to the introduction of artefacts due to the application of inverse distance 195 

weighted interpolation, which takes information from neighbouring cells to produce high-resolution reconstructions (Beyer et 

al. 2020b). Given the wide spatial distribution of the proxy dataset, we thus performed downscaling for the entire world for all 

of the time steps available in Beyer et al. (2020a) and the HadCM3 GCM (Huntley et al. 2022 ) for the last 120,000 years. The 

global downscaled bioclimatic variables have been made available on Zenodo (https://doi.org/10.5281/zenodo.7828453) for 
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future use. Figure 1 shows the different climatic models tested in this research for both the present day and the Last Glacial 200 

Maximum (LGM) and the geographic coverage of the proxy records. 
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Figure 1. Site locations of proxy records studied in this analysis (left), against mean annual temperature (bio01) from the 

different model outputs for the present day and the Last Glacial Maximum (LGM), manipulated within pastclim (Leonardi et 205 

al. 2023). Land mass in each time slice is masked by global ice sheets (plotted in white) and predicted sea level.  

2.2 Proxy reconstructions 

We employed the LegacyClimate 1.0 proxy dataset by Herzschuh et al. (2023) for direct validation of the model outputs. Mean 

annual temperature (Tann), Mean July temperature (Tjuly) and total annual precipitation (Pann) were reconstructed from fossil 

pollen data using the Weighted-Averaging Partial Least Squares (WA-PLS) and Modern Analogue Technique (MAT) 210 

methods, both of which are widely used and generate similar time series, though each method’s performance vary in response 

to various factors, such as the quality and diversity of the calibration data, the time interval to be reconstructed, and the 

resolution of the pollen data (Sweeney et al., 2018; Birks et al. 2010; Chevalier et al., 2020). In LegacyClimate 1.0, the diverse 

pollen records are handled consistently through merging taxa into high-level harmonised taxonomic groups, increasing the 

possibility of matching modern climate analogues and fossil datasets. Its geographic coverage across the Northern Hemisphere 215 

is also much larger than other databases (e.g. Mauri et al., 2015; Marsicek et al., 2018; Routson et al., 2019). Our use of a 

single database reconstructing climate based on a single proxy reduces inter-site variability resulting from the type of data 

utilised and allows the generation of analogous climatic parameters with direct relevance to bioclimatic variables available in 

the Beyer et al. (2020a) model; Tann, Tjuly and Pann from LegacyClimate1.0 are the equivalent bioclimatic variables to bio01, 

bio10 and bio12 from HadCM3 GCM (Huntley et al. 2022) and Beyer et al. (2020a) model time series, which are standardly 220 

used in climatic modelling.   

 

To facilitate comparison between the proxy reconstructions and the model outputs, we interpolate each proxy record via 

bilinear interpolation to the equivalent chronological resolution of the climatic models to enable quantification of differences 

between the time series; interpolating to regular time intervals ensures that periods of particularly dense sampling in the original 225 

cores do not exert undue influence on the results. For this, we extracted the climatic values from the model at the coordinates 

of the proxy site for the time steps captured in the proxy record. Following data-cleaning, we retain 2,385 records from 

LegacyClimate1.0. One record was removed as it did not have any proxy data associated with the MAT method (ID Dataset: 

100127), a further 25 were omitted due to a lack of consistent time steps in the models being available,  and an additional 170 

records were removed as they fall under the cropped sea-level of the Beyer et al. (2020a) model. The latter includes some 230 

proxy sites that are located on small islands not captured by the model or within lake margins. Table 1 summarises the proxy 

records and climatic model outputs studied in this research. 

 

Table 1. Summary of the proxy records selected from the LegacyClimate 1.0 (Herzschuh et al., 2023) and the model outputs 

(Beyer et al., 2020a; Huntley et al. 2022) selected for analysis of mean annual temperature (bio01, Tann), mean July temperature 235 

(bio10, Tjuly) and total annual precipitation (bio12, Pann).  
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0 
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ago) 
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(1,00
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Climate 1.0 
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East North 

America 

West North 

America 
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2385 proxy 

sites 

Pollen 

reconstructio
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Tann  

TJuly  

Pann  

0 30  670 Herzschuh, U. 

et al. (2023). 

Scientific Data 

(10.5194/essd-

15-2235-2023)  

HadCM3 

Global 

Circulation 

model 

Global 30- and 5-

min grid 

cells 

Simulations, 

de-biased 

and 

downscaled 

using 

WordClim2 

(this paper)  

Bio01 

Bio10 

Bio12 

0 120 1,000 

until 

23,000 

years 

ago and 

then 

every 

4,000 

years 

 Huntley, B. 

et al. (2023). 

Journal of 

Biogeograp

hy, 

(10.1111/jbi

.14619) 

Beyer et al. 

(2020a) 

simulations 

Global  30- and 5-

min grid 

cells 

Simulations, 

de-biased 

and 

downscaled 

using CRU 

(original) 

and 

WordClim2 

(this paper) 

Bio01 

Bio10 

Bio12 

0 120 1,000/2

,000 

Beyer, R. et al.  

(2020a). 

Scientific Data 

(10.1038/s415

97-020-0552-

1) 
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2.3 Analysis 

To quantify the differences between time series, we calculated the bias, root mean square error (RMSE) and normalised RMSE 240 

(NRMSE). The RMSE measures the coherence between the model simulations and the proxy reconstructions, whilst the bias 

(calculated as the mean residual) highlights whether the coarse or downscaled model overestimates (positive values) or 

underestimates (negative values) the proxy records. Standardising the RMSE using the mean allows comparing the coherence 

between variables. The bias can also be considered per proxy record to show which areas are over or underestimated for any 

given variable, facilitating comparability. Considering that downscaling to higher resolutions is thought to capture spatial 245 

variations in climate, we tested the statistical significance of differences in model-data coherence between lower resolution 

(30-min) and higher resolution (5-min) models, using a standard significance threshold of p < 0.05 via the Kruskal-Wallis non-

parametric test. We also calculated the proportion of proxy records (reconstructed using the MAT and WA-PLS methods) that 

show higher RMSE with 30-min models compared to 5-min models. Instances where the proportion is higher than 0.5 highlight 

a positive net effect of downscaling on model-data coherence.  250 

 

These analyses allow us to evaluate the coherence between the output of the climate models and the reconstructions of specific 

climatic parameters from proxy data, depending on geographic region, Marine Isotope Stage (chronology), method of climate 

reconstruction employed in the proxy datasets (MAT versus WA-PLS), elevation of site location (with sites above 1500 meter 

above sea level analysed as a subset) and topographic roughness (defined as the energetic cost of movement, see SOM. 1), 255 

with areas that require over 200 joules per meter to transverse deemed to have ‘high roughness’). All these factors could 

potentially impact the articulation between the climatic model outputs and the proxy records.  

3 Results 

Figure 2 highlights a sample of non-interpolated time series from proxy sites across the geographic span of the LegacyClim1.0 

dataset, demonstrating the coherence through time between different models and empirical reconstructions (WA-PLS and 260 

MAT) of the three climatic parameters (annual temperature, July temperature and annual precipitation). Our results show that 

overall proxy reconstructions and model simulations tend to highlight very similar climatic trends across variables, with 

average bias across all comparisons for both annual and July temperature time series falling under 1 degree Celsius and annual 

precipitation less than 40 mm (Fig. 2, Appendix A Tables A1-3). Considering the NRMSE, the most divergent variable on 

average is mean annual temperature, particularly for the output of the HadCM3 30-min model (Appendix A Tables A1-3). 265 

This result contrasts with other large-scale studies (Bartlein et al. 2011; Chevalier et al. 2021), potentially due to the 

assumptions made for the proxy reconstructions employed that modern analogues should be utilised from within 2000km 

around each site. Precipitation should be less affected given that it is more variable through space however temperature tends 

to be much more autocorrelated, meaning that much colder/warmer temperatures occurring in the past may not occur within 

these geographic limits. We find that time series of annual precipitation and July temperature show consistently lower NRMSE 270 
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values than mean annual temperature across our model-data comparisons (Appendix A Tables A1-3). These two variables also 

show highly comparable results between different versions of the model outputs, even at varying spatial resolution and when 

using different modern reference datasets for downscaling (Appendix A Tables A2-3). The output from the Beyer et al. (2020a) 

30-min model (CRU) shows the most consistent net positive effect of downscaling (Supplementary Table S1), probably due 

to the difference in modern reference data used for debiasing. However, the overall difference in coherence between the two 275 

resolutions of both outputs is judged as minimal for all three variables, particularly when controlling for the modern dataset 

(Appendix A Tables A1-3), as none of the subsets of model-data comparisons highlighted statistically significant differences 

between models at 30-min and 5-min resolution (Supplementary Table S1).  

 

Our results based on all of the comparisons in the dataset highlight that the 30-min model time series of annual temperature 280 

from Beyer et al (2020a) debiased using CRU as the modern reference tends to estimate slightly lower temperatures than those 

produced by proxy reconstructions (as highlighted in the negative bias results reported in Appendix A Table A1). All other 

model outputs de-biased using WorldClim2 (WC) at both 30- and 5-min resolution contrastingly tend to predict higher annual 

temperatures compared to proxy records. For the HadCM3 model output, the model-data coherence is not significantly 

different between the 30-min and 5-min model, with less than half of the proxy records seeing improvement in coherence in 285 

the 5-min model (49% MAT method, p = 0.4904:  46% WA-PLS method, p = 0.4961; Supplementary Table S1). Similarly, 

annual temperature time series from the Beyer et al. (2020a) 30-min (CRU) simulations tend to have more error in only around 

half the records compared to the higher resolution version, at 51% (MAT method, p = 0.4904) and 50% (WA-PLS method, p 

= 0.4961) of proxy sites, with the Beyer et al. (2020a) 30-min (WC) having more error in slightly less than half of records 

compared to the Beyer et al. (2020a) 5-min model, at only 49% (MAT method, p = 0.4904) and 47% (WA-PLS method, p = 290 

0.4961) (Supplementary Table S1).  

 

Whether models tend to predict higher or lower precipitation compared to proxy reconstructions varies for different subsets of 

the data, though negative bias is particularly prominent in the 30-min model outputs compared to the 5-min equivalents 

(Appendix A Table A2). However, again, the overall difference in performance between the two resolutions is marginal for 295 

both model time series. Model data-coherence for annual precipitation is not significantly different between the 30-min and 5-

min HadCM3 model outputs, with less than half of the records (49%) returning higher RMSE at the coarser resolution (MAT 

and WA-PLS method, p = 0.4943 and p = 0.4961; Supplementary Table S1).  Annual precipitation time series from the Beyer 

et al. (2020a) 30-min model (CRU) have more error in 55% of records (MAT method and WA-PLS methods, p = 0.4923 and 

p = 0.4961 respectively) than the higher resolution version (Supplementary Table S1), whereas the Beyer et al. (2020a) 30-300 

min model (WC) shows higher RMSE in 48%  of time series (MAT and WA-PLS methods, p = 0.4936 and p = 4961) 

(Supplementary Table S1).  
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Models of mean temperature of warmest quarter almost always slightly underestimate temperatures compared to proxy 

reconstructions of mean July temperature, regardless of resolution (Appendix A Table A3). This could be linked to the slight 305 

discrepancy in the climatic parameter being captured between the models and the proxies. Average difference in model-data 

coherence between the two spatial resolutions is not statistically significant for either the HadCM3 or  the Beyer et al. (2020a) 

model output, with the July temperature time series from the Beyer et al. (2020a) 30-min model (CRU) showing less coherence 

in 58% (MAT method, p = 0.4904) and 56% (WA-PLS method, p = 0.4961) of proxy reconstructions when compared to that 

from the Beyer et al. (2020a) 5-min model (WC), although again the Beyer et al. (2020a) 30-min model (WC) shows higher 310 

error in less than half of the proxies  (47%, MAT method, p = 0.4904, WA-PLS method, p = 0.4961) (Supplementary Table 

S1). Results for the HadCM3 output mirror closely that of WC-debiased Beyer et al. (2020a) models (49% for the MAT 

method, p = 0.4904, and 47% for the WA-PLS method, p = 0.4961).  
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315 
Figure 2. A sample from each regional group of simulated mean annual temperature (left), mean July temperature (middle) 

and total annual precipitation (right) time series, comparing different model outputs (solid lines) and corresponding non-

interpolated proxy reconstructions from LegacyClimate 1.0 (Herzshuch et al., 2021) (dashed lines).  
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3.1 Regional differences 

As highlighted in Fig. 3 and Supplementary Fig. S1-2, our results demonstrate some key differences between regions. Firstly, 320 

for annual temperature, average bias in European records is positive, suggesting model output in this region tends to 

overestimate temperatures compared to proxy records, whereas for all other regions annual temperature bias is negative 

(Appendix A Table A1).  Asia and Europe have the highest NRMSE (indicating the highest divergence between proxy records 

and model outputs) for annual temperature in the Beyer et al. (2020a) 30-min model output (CRU) (Appendix A Table A1, 

Supplementary Fig. S1). However, Asia sees higher model-data coherence in both types of 30-min (WC) model outputs 325 

compared to their equivalent downscaled 5-min (WC) outputs, whereas the HadCM3 30-min model output produces very high 

NRMSE for European records (Appendix A Table A1; Supplementary Fig. S1).  Downscaling the HadCM3 model output for 

annual temperature to a 5-min resolution has a positive impact on average coherence in Europe (Appendix A Table A1; 

Supplementary Figure S1), although this effect is reflected in less than half of the pair-wise comparisons (Supplementary Table 

S1). In East North America, average model-data coherence is improved by downscaling in the HadCM3 model output for 330 

annual temperature, however the Beyer et al. (2020a) 5-min model output has higher NRMSE than the equivalent 30-min 

model outputs (Appendix A Table A1; Supplementary Fig. S1). In West North America, the Beyer et al. (2020a) 30-min (WC) 

and 5-min (WC), as well as the HadCM3 5-min (WC), model outputs for annual temperature are more coherent with the proxy 

records than the Beyer et al. (2020a) 30-min (CRU) model and the HadCM3 3-min (WC) model outputs, with little difference 

between the two resolutions for the Beyer et al. (2020a) model debiased with WC (Appendix A Table A1; Supplementary Fig. 335 

S1).  

 

Average model-data bias for precipitation varies regionally, with Europe, West North America and East North America 

showing consistently negative bias, suggesting that the models underestimate rainfall in these regions (Appendix A Table A1; 

Supplementary Fig. S1), in contrast to Asian localities where often average precipitation bias is positive. Model-data coherence 340 

for precipitation is highly similar across different resolutions of model output debiased using WC for East North America and 

Europe, whereas Asia and West North America has less coherence with proxy records in Beyer et al. (2020a) CRU 30-min 

model and the Beyer et al. (2020a) 5-min model (Appendix A Table A2; Supplementary Fig. 1). Precipitation proxy 

reconstructions from West North America show the highest NRMSE with the HadCM3 outputs, whereas for Asia the highest 

NRMSE model-data comparison is the Beyer et al. (2020a) CRU model, followed by the HadCM3 outputs (Appendix A Table 345 

A2; Supplementary Fig. S1) 

 

July temperatures have negative model-data bias for all regions except in Asia for the WC-debiased Beyer et al. (2020a) 30-

min and 5-min model output (Appendix A Table A3; Supplementary Fig. 1). In West North America, NRMSE is higher in the 

HadCM3 model outputs compared to that from Beyer et al. (2020a), with no differences between resolutions in the latter (when 350 

debiased using WC) and a slight improvement in coherence due to downscaling in the former (Appendix A Table A3; 
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Supplementary Fig. 1). There is no difference in average NRMSE between resolutions of model output for July temperatures 

in East North America, apart from the Beyer et al. (2020a) 30-min (CRU) model which has higher model-data divergence 

(Appendix A Table A3; Supplementary Fig. 1). In Asia, downscaling the Beyer et al. (2020a) 30-min (WC) and the HadCM3 

model output improves coherence, whereas in Europe these higher resolution model outputs lead to slight decreases in 355 

coherence (Appendix A Table A3; Supplementary Fig. 1).  

 

Fig. 3 and Supplementary Fig. S2 highlight these spatial heterogeneities in bias across the Northern Hemisphere, which could 

have many potential different sources, i.e. geographic variation in the performance of the model outputs, the quality of the 

present-day calibration data for LegacyClimate 1.0 or the modern reference used for debiasing, and/or the impact of 360 

confounding variables on the pollen-climate relationships. The East North American subset of proxy reconstructions appear 

to be the most coherent with the model outputs, generally showing the lowest NRSME values across all variables (Appendix 

A Table A1-A3; Supplementary Fig S1.). Europe tends to show the lowest proportion of records where error is higher in the 

coarser models (30 min) compared to the higher-resolution models (5 min), with downscaling having the strongest impact on 

model-proxy divergence in East and North America, particularly when compared to the Beyer et al. (2020a) 30-min model 365 

(CRU) (Supplementary Table S1). Regions showing the least coherence varies depending on the climatic parameter, with Asia 

and East North America having the highest RMSE values for annual temperatures (Appendix A Table A1; Supplementary Fig. 

S1), Asia and West North America for precipitation (Appendix A Table A2; Supplementary Fig. S1) and East North America 

for July temperatures (Appendix A Table A3; Supplementary Fig. S1). Overall, no region shows a statistically significant 

difference in model-data coherence between models of different resolutions (Supplementary Table S1 and Figure S1). Indeed, 370 

often the coarser models have a higher proportion of proxy records with lower error than the 5-min models (Supplementary 

Table S1), particularly in Europe and Asia, suggesting higher resolutions could simply be adding noise in many scenarios.  
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Figure 3. Absolute bias for mean annual temperature, mean annual precipitation, and mean July temperature for each proxy 375 

site, comparing the climatic values produced by the MAT method of proxy reconstruction against different versions of the 

HadCM3 GCM and Beyer et al. (2020a) model. Outliers have been highlighted in red, defined as =< -5 and => 5 degrees 

Celsius for mean annual temperature and July temperature, and  =< -800 and => 800 millimetres for total annual precipitation. 

Visualisation of bias for the WA-PLS method is reported in Supplementary Figure S2.  

3.2 Effects of landscape heterogeneity 380 

Downscaling model outputs to a very high resolution is often performed to account for smaller-scale landscape features that 

can locally impact climatic conditions, such as topography and coastlines (Fig. 4). Figure 4 highlights these effects of 

increasing model resolution in different areas of varying landscape complexity; for example, in the Pittsburg Basin (which is 

inland and flat) there is little change in the climate signal captured at proxy sites (white circles) following downscaling, 

whereas, in southern Italy and the Qillian Mountains, downscaling captures more localised details in climates associated with 385 

landscape-level variations. Proxy records at higher elevations and topographic complexity may therefore be expected to show 

stronger coherence with the higher resolution models compared to those at relatively lower resolution.  
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However, our analysis presents mixed results; for example, for annual temperature, subsets of proxy records at higher altitudes 

and in regions of higher topographic roughness both have higher NRMSE for the 30-min HadCM3 model compared to the 390 

equivalent 5-min version for the MAT method, yet for the WA-PLS method downscaling this output increases NRMSE for 

records in areas of higher roughness(App endix A Table A1; Supplementary Fig. S3). Similarly, a negative effect of 

downscaling on model-data coherence for locations of high roughness is observed for the Beyer et al. (2020a) 30-min model 

output (WC) for both the MAT and WA-PLS method, as well as proxy reconstructions using the MAT-method in high altitude 

areas (Appendix A Table A1; Supplementary Figure S3). Annual temperature at higher elevations and topographic complexity 395 

modelled based on Beyer et al. (2020a) 30-min (CRU) has consistently higher NRMSE compared to alternate versions of this 

model output, although the 30-min HadCM3 30-min model is the most divergent from proxy records, particularly for high 

altitude locations (Appendix A Table A1; Supplementary Fig. S3). In lower altitude and flat locations, downscaling the 

HadCM3 model shows modest improvements in NRMSE whereas the Beyer et al. (2020a) 5-min (WC) model output is less 

coherent for these subsets than the equivalent 30-min (WC) version (Appendix A Table A1; Supplementary Fig. S3). In terms 400 

of proportions of records that show more error at coarser resolutions, the high altitude subset consistently has a net positive 

impact of downscaling for annual temperature, yet no model-data comparisons highlight statistically significant differences in 

coherence (Supplementary Table S1). Our results also show that proxy reconstructions tend to indicate warmer temperatures 

at higher elevations and/or in areas of higher topographic roughness compared to model outputs and colder temperatures at 

lower elevations and/or lower topographic roughness (Appendix A Table A2). This is a known bias of transfer functions when 405 

constructing more ‘extreme climates’ from proxies, given that elevation negatively correlates with temperature and these 

functions rely on averages of data from modern calibration data sets (Chevalier et al., 2020).  

 

For precipitation, only in low altitude and/or flat areas does the Beyer et al. (2020a) 30-min model (CRU) produce lower values 

than the proxy reconstructions, indicated by negative bias (Appendix A Table A2; Supplementary Fig. S3). NRME tends to be 410 

higher in areas of high altitude (particularly) and areas of high topographic roughness (Appendix A Table A2; Supplementary 

Fig. S3), however the higher resolution versions of the models do not show an improvement in coherence. For these subsets, 

the Beyer et al. (2020a) WC model outputs show better average coherence than the Beyer et al. (2020a) CRU and the HadCM3 

outputs (Appendix A Table A2; Supplementary Fig. S3). Our results highlight that subsets of low altitude and low roughness 

proxy records tend to show more instances of downscaling improving the model-data coherence compared to subsets of high 415 

altitude and high roughness records, although these are minimal and not statistically significant (Supplementary Table S1, Fig. 

S3).  

 

Models of July temperatures always produce lower values than that of proxies, regardless of landscape properties (Appendix 

A Table A3; Supplementary Fig. S3). Our results suggest that, apart from downscaling the HadCM3 model output where 420 

minimal improvements in NRMSE are noted, model-data coherence for July temperature is not effected by model resolution 

when controlling for the modern referenced used to debias (Appendix A Table A3; Supplementary Fig. S3). Overall, we find 
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that the proportion of proxy records that show higher error (NRMSE) with lower resolution models than higher resolution is 

around half for all subsets according to landscape variations, indicating no statistically significant effect of further downscaling 

on data-model coherence, even in areas of landscape heterogeneity (Supplementary Table S1, Fig. S3).   425 

 
Figure 4. Three regional examples of modelled mean annual temperature for the present day (bio01), demonstrating how 

downscaling increases spatial resolution by capturing the effects of landscape dynamics through space on climate depending 

on the underlying topography. Geographic variability in temperature is shown, as simulated by the Beyer et al. (2020a) 30-

min model output (CRU), Beyer et al. (2020a) 30-min model output (WC), and Beyer et al. (2020a) 5-min model output (WC), 430 

Locations of proxy locations from LegacyClimate 1.0 are shown as white circles.  
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3.3 Glacial versus inter-glacial variability 

We then examined discrepancies in model-data coherence through time, separating time slices from the model outputs covering 

the present day (i.e. timeslice 0), Marine Isotope Stage 1 (MIS 1; 0 – 14,000 years ago) and MIS 2 (14-29,000 years ago). In 

total, 1060 records were associated with the present day (44% of dataset), 2363 records captured time slices in MIS 1 (99% of 435 

dataset) whereas 473 spanned into MIS 2 (20%). Separate analysis of interpolated data points capturing the present day was 

performed, as the pollen proxies captured in these records should be highly representative of modern ecological communities 

whilst model data points are based on present-day observations as opposed to simulations into the past, thus providing 

somewhat of a baseline of model-data divergence.  

 440 

Our results demonstrate that data points representative of the present have the lowest NRMSE (Appendix Tables A1-3; Fig. 

5), though considerable error in some time series exists (Fig. 5). In contrast, the smaller subset of time series covering MIS 2 

show the highest bias and NRMSE (Appendix Tables A1-3; Fig. 5), both across model outputs and resolutions, as well as 

methods of proxy reconstruction. Models capturing older time periods underestimate annual and July temperatures compared 

to proxy reconstructions and (often) overestimate annual precipitation (Appendix A Tables A1-A3; Fig. 5). We find that the 445 

proportion of proxy records that show higher RMSE (and therefore are less coherent) with lower resolution models compared 

to those of higher resolution is almost always over half for the present day, with annual temperature and July temperature 

during MIS 2 seeming to also see a slight benefit of downscaling, though this is not statistically significant for any comparison 

(Supplementary Table S1).  

 450 

Figure 5 highlights the differences between RMSE values from the present day, MIS 1 and MIS 2, confirming that data-model 

discrepancies tend to increase with age though not significantly so (p > 0.05). Chronological uncertainties in the proxy age 

model may complicate the comparison between climate simulations and pollen-based records, as well as the process of signal 

smoothing via interpolation to facilitate analysis. Delta-downscaled models are also inherently designed to replicate current 

rather than past climate patterns, and proxy reconstructions rely on the identification of modern analogue species that may 455 

have a different link to climate than palaeoecological communities, likely further contributing to higher divergence in older 

time periods (Chevalier et al. 2020). Nonetheless, all of the distributions highlighted in Fig. 5 are highly positively skewed 

even after normalisation– there are many extreme values– confirming that age is just one contributing factor in the divergence 

between time series (Supplementary Fig. S1, S3). 
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 460 
Figure 5. Boxplots of pair-wise log root mean square error (RMSE) results model-data comparisons of mean annual 

temperature (blue), mean annual precipitation (purple) and mean July temperature (green) from those representing the present 

(0), MIS 1 (1) and MIS 2 (2). 
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3.4 Exploring the most divergent time series 

Observing the distribution of the data in Fig. 5 and Supplementary Figures S1 and S3, we decided to segment the highest 5% 465 

of RMSE values for each pair-wise model-data comparison for further investigation. We then amalgamated those that routinely 

fall into this category for each climatic variable, representing the most divergent time series of the overall dataset for the three 

parameters studied here (Appendix A Table A4). None of the individual records fall into the most divergent subset for all three 

variables studied, suggesting more extreme divergence is not related to any systematic issue in the model nor the proxy at 

specific locations. We then produced 1000 bootstrapped samples (without replacement) of corresponding sample size, 470 

ascertaining whether the observed proportion of time series in this highly divergent subset is greater than expected by random 

chance (Appendix A Table A4).  

 

To summarise, 44 records of mean annual temperature fall into the most divergent 5% of time series based on RMSE, of which 

statistically significantly higher proportions of these than expected cover the present day and/or MIS 2, and/or are located in 475 

Asia, areas of high altitude and/or low roughness (Appendix A Table A4). For mean annual precipitation, only 21 records 

consistently fall in the top 5% based on RMSE, demonstrating higher inconsistency in pairwise model-data coherence between 

different model versions and methods of proxy reconstruction compared to the temperature variables (Appendix A Table A4). 

We found that, for this parameter, significantly higher proportions of these outliers are located in Asia and West North America 

and/or in areas of high altitude and high roughness (Appendix A Table A4). Finally, for mean July temperature, 30 time series 480 

always fall into the most divergent 5%, significantly higher proportions of which date to the present and/or MIS 2, are located 

in Asia, areas of high altitude and/or areas of low topographic roughness than would be expected by chance (Appendix A 

Table A4).  

 

Our results highlight that records spanning into MIS 2 consistently exhibit significantly higher proportions of divergent time 485 

series across all variables (Appendix A Table A4). This may specifically be a consequence of low CO2 during MIS 2, which 

was not considered in LegacyClimate1.0, although this would mainly have an effect on moisture-related variables rather than 

temperature. Another potential source of divergence, leading to warmer reconstructions by proxies compared to the model 

outputs as well as significant deviations in precipitation, could derive from the geographic limits imposed on the 

LegacyClimate1.0 proxies for the modern samples used to perform reconstructions. This is particularly problematic for the 490 

LGM as comparable signals should be present in the modern climate space within the limit defined (2000km around each site), 

which is likely unreasonable for some areas (e.g. northerly areas of Europe, see Fig. 1). Similarly, we find sites in Asia and 

higher altitude areas, where modern calibration data tend to be more limited, also have more divergent time series than expected 

given the sample size of this subset for all three variables (Appendix A Table A4). Sites in flatter areas exhibit significantly 

higher proportions of divergent time series for annual and July temperatures than expected by random chance, whereas sites 495 

in higher roughness locations and West North America are more highly divergent than expected in precipitation (Appendix A 
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Table A4). Interestingly, we find that proxy records that capture the present day also occur in the most divergent subset more 

often than expected for annual temperature and precipitation, however this is because many of these records also span into 

MIS 2 (Appendix A Table A4).  

 500 

4 Discussion 

Increasing the spatial resolution of model time-series is often thought to be required to more accurately capture the climatic 

conditions of specific places at specific times. But what is the optimal spatial resolution for adequately detailing finer-scale 

signals? We tackle this question by testing the agreement between different model outputs and empirical reconstructions from 

pollen proxies from the Late Quaternary for annual and July temperatures and annual precipitation. Ground-truthing modelled 505 

climate in this way is common, as proxies are considered to be the ‘gold standard’ for capturing more localised variations in 

climatic conditions in specific places. Our results highlight that further downscaling models via the delta method to much 

higher resolutions (5-minute) fails to consistently capture more of the climatic trend from pollen proxy records. Indeed, we 

were unable to demonstrate any statistically significant differences in model-data coherence between 30-min and 5-min model 

resolutions in any subset of this large dataset. Overall, this implies that more downscaling may not always be the best solution, 510 

with relatively coarser simulations (i.e. 30-minute) providing a similarly adequate representation of past climatic trends in 

many scenarios, even in areas of topographic complexity.  

 

Regardless of resolution, we find that model-data coherence predictably decreases with age, with more divergent time series 

than expected by chance located in Asia, at higher altitudes and those capturing MIS 2. Annual precipitation and July 515 

temperature show consistently lower NRMSE than annual temperature, indicating good overall agreement between simulations 

and empirical reconstructions for these variables. Annual temperature shows low model-data convergence with greater 

disparity between model outputs and methods of proxy reconstructions, as well as in certain contexts. Variability in coherence 

between regions likely relates to spatial variability in the performance of the simulations, the quality of modern reference 

datasets and proxy data employed, and the complexity in relationships between pollen and temperature tolerances in different 520 

geographic areas. Moreover, greater divergence at high altitudes and at older time scales may reflect limitation in the 

calibration with modern conditions, with reduced modern reference data at higher elevations and a lack of good analogues of 

glacial/periglacial vegetations in the same areas as those in the past.  

 

For this large-scale comparative analysis, we employed different de-biased and downscaled versions of the HadCM3 GCM 525 

output (Huntley et al. 2022) and Beyer et al’s. (2020a) Late Pleistocene and Holocene climate simulations alongside 

harmonised pollen records from LegacyClimate1.0 (Herzschuh et al. 2023), providing corresponding estimates of three key 

climatic parameters for comparison between time series. Whilst the LegacyClimate 1.0 dataset provides an excellent 

standardised and spatiotemporal expansive resource to address whether downscaling to higher resolutions is effective in 

capturing local climatic details, it is worth noting that, because the type of proxy records employed tend to capture pollen from 530 
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a broad catchment, they may represent geographically wide averages of past climate. This could inherently make them more 

compatible with coarser-level model simulations, which also capture broader landscape rather than local-level trends. Future 

work should seek to expand systematic model-data comparisons on other types of harmonised proxies, as well as different 

climatic models and modern references, ensuring that the equivalent bioclimatic variables are being predicted by both sources.  

 535 

Our results suggest that using statistical methods of downscaling simulated time series to much higher resolutions does not 

significantly improve the agreement between model output and pollen-proxy reconstructions, yet we note that there is a trade-

off between enhancing spatial resolution and increasing potential error. Such error in a given location could either be caused 

by using too coarse a resolution on the one hand or by unreliable interpolation on the other. For this reason, there are likely to 

be many circumstances in which it is still better to use downscaled models (with caveats), particularly when variability within 540 

30-min cells (~55km on each side) is important (e.g. Boisard et al. 2025). For example, the identification of conditions at 

specific locations within climatic extremes may be overlooked when using a model at a broader scale, such as at Late 

Pleistocene archaeological site Fincha Habera in the Bale Mountains of southern Ethiopia (Groos et al. 2021). Here, lower 

annual temperatures predicted by delta-downscaled models may better characterise the on-site environment than that also 

incorporating environmental trends in surrounding lower altitude landscape (Timbrell et al. 2022). Other methods of increasing 545 

model output, such as dynamical downscaling, may be better equipped for more localised applications, yet these are largely 

inaccessible for consumers of model output in fields like palaeoecology and archaeology where the computational costs are 

impractical. Overall, we present a streamlined pipeline for delta-downscaling climate model time series within the pastclim R 

package (Leonardi et al. 2023), though we stress that careful consideration is required to select the optimal method and spatial 

resolution, based on the scope of the research question at hand. 550 

5 Conclusion 

Paleoclimatic proxies and climate models constitute two contrasting yet complementary sources of information on past 

climates. Demand for high-resolution climatic simulations that characterise landscape-scale heterogeneities come from the 

multitude of fields that employ ecological data, such as those that wish to map species distributions through time and space or 

quantitatively test hypotheses about the impact of climatic change and/or variability on various biological or behavioural 555 

phenomena. We show that downscaling via the delta-method fails to consistently capture more signal from temperature and 

precipitation proxy reconstructions, though model time series at both median (30-arc minutes) and fine-grained (5-arc minutes) 

spatial resolutions characterise climatic variables in broadly similar ways to pollen proxies. Utilising model output for analyses 

of past climate therefore involves a careful balancing act between accentuating variations relevant to the study questions and 

the potential introduction of error by unreliable interpolation.  560 
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