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More is not always better: delta-downscaling climate model outputs from 30 to 5-minute resolution has
minimal impact on coherence with Late Quaternary proxies
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Abstract. Both proxies and models provide key resources to explore how palacoenvironmental changes may have impacted
diverse biotic communities and cultural processes. While proxies are thought to provide the ‘gold standard’ in reconstructing
the local environment, they only provide point estimates for a limited number of locations. On the other hand, models have the
potential to afford more extensive and standardised geographic coverage of multiple bioclimatic variables. A key decision
when using model output is the appropriate geographic resolution to adopt; models are coarse scale, in the order of several arc
degrees, and so their outputs are usually downscaled to a higher resolution. Most publicly available model time-series have
been downscaled to 30 or 60 arc-minutes, but it is unclear whether such resolution is sufficient for certain applications like
species distribution models, or whether this may homogenise environments and mask the spatial variability that is often the
primary subject of analysis. Here, we explore the impact of increasing the resolution of model output from 30 to 5 arc-minutes
using the delta-downscaling method, which interpolates and applies the long-term difference between past and present model
datasets to a higher resolution grid of observed present-day climate. We seek to determine to what extent further downscaling
captures climatic trends at the site-level through direct comparison with proxy reconstructions, evaluating the different versions
of the output from the HadCM3 Global Circulation model for annual temperature, mean temperature of July, and annual
precipitation against a large empirical dataset of pollen-based reconstructions from across the Northern Hemisphere. Our
results demonstrate that models tend to provide broadly similar accounts of past climate to that obtained from proxy
reconstructions, with coherence tending to decline with age and at higher altitudes. However, our results imply that using the
delta method to downscale to a very fine resolution has minimal net effect on the coherence of model output with pollen
records in most cases. Optimal spatial resolution is therefore likely to be highly dependent on specific research contexts and
questions, with careful consideration required regarding the trade-off between highlighting local-scale variations and

increasing potential error via unreliable interpolation.
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1 Introduction

Realistic reconstructions of global paleoclimates are vital for modelling long-term evolutionary and ecological processes in
fields like evolutionary biology, palaecoecology, palacontology, and archacology. Proxy records, such as those derived from
pollen or other biomarkers, tend to be the preferred method for characterising past environments at specific locations; however,
in order to extrapolate beyond the individual core sites and across wider regions, often it is necessary to rely on modelled or
simulated climatic conditions. Recently, the production of high-resolution simulations, characterising climatic variables across
vast time periods, have allowed for the production and analyses of time series similar to those produced using proxy data (e.g.,
Fordham et al., 2017; Armstrong et al., 2019; Holden ef al., 2019; Beyer et al., 2020; Brown et al., 2020; Karger et al., 2021,
Krapp et al., 2021; Timmerman et al., 2022). Openly accessible simulated datasets, such as those published by Beyer ef al.
(2020a), Krapp et al. (2021), Yun et al. (2023) and Barreto et al. (2023), and associated toolkits (e.g., the analytical package
pastclim for manipulating and extracting modelled data; Leonardi ef al., 2023), are particularly useful for scientists interested
in Pleistocene and Holocene timescales, facilitating continuous-time analyses at a high spatial resolution across a wide range
of applications, such as habitat and species distribution modelling (SDM) and the quantitative analysis of climate change in
relation to spatiotemporally diverse biological and behavioural phenomena (e.g. Beyer et al., 2021; Padilla-Iglesias et al.,
2022; Blinkhorn et al., 2022; Timmerman et al. 2022; Leonardi et al., 2022; Zeller and Timmerman 2024; Mondanaro et al.
2025).

Proxy data, while allowing for detailed reconstructions of climatic conditions through time, are rarely in direct association
with archaeological or palacontological sites, nor do they consistently provide an absolute, linear, and standardised
representation of past climate across large geographic areas. In this sense, they often provide relative estimates of past climate,
an issue highlighted in a synthesis of eastern African Late-Middle Pleistocene climate records by Timbrell ef al. (2022),
demonstrating that different proxy records — even from within a relatively spatiotemporally restricted region — can provide
alternate ideas of relative ‘humidity’. This is the result of the diverse nature of the data employed (i.e., pollen, lake sediments,
ice cores etc.), which record climate in an inconsistent way that typically cannot be articulated as the bioclimatic indicators
and environmental parameters that are routinely in species distribution models (SDMs) (e.g. Beyer et al. 2021; Blinkhorn et
al. 2022; Leonardi et al. 2022). Model output have the potential to overcome these shortfalls, providing tangible values for
parameters such as temperature, precipitation, and a range of derived bioclimatic indices (e.g., Hijmans ef al., 2005), that are
consistent across variables for a more complete account of climatic conditions. Models additionally offer much wider spatial
coverage of the landscape that can be directly related to specific study sites and the palacoclimatic differences between them.
However, the integration of modelled climate with proxy data is not straightforward. For example, using simulations at a coarse
resolution can produce biases when compared to on-site proxies due to the underlying complexity of the physical landscape,
particularly in coastal and topographically diverse regions (Maraun and Widmann, 2018). Resultant differences can be in the

order of several degrees for temperature and tens of percent for precipitation, which could lead to substantially different biome
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classifications and estimations of ecologies experienced (Kottek ez al., 2006). Such variations can have important implications
for the diverse fields employing model output for the reconstruction of past and present species distributions, dispersal and

extinction processes, and biogeographic patterns.

High resolution simulations of multiple time slices are often desired by consumers of model output yet difficult to obtain due
to computational costs. For example, dynamical downscaling allows for the detailed description of processes in the climatic
system and can improve the capturing of localised climatic conditions (Rummukainen, 2016; Strandberg et al., 2023), however
this method is rarely applied in fields like palacoecology and archaeology due to the computational costs, particularly when a
large number of time steps are required. Most of the recently produced time series of palacoclimate outputs have been
downscaled from the native resolution of the models (usually in the order of 2 or 3 arc-degrees) to a higher resolution of 30
arc-minutes using statistical methods (Fordham et al. 2017; Beyer et al. 2020a; Krapp et al. 2021; Zeller and Timmerman
2024; Mondanaro et al. 2025) as these approaches can be more easily applied to several time periods. Within statistical
downscaling, different methods exist to increase the spatial resolution of model simulations; these include the delta method,
generalised additive models (GAMs), and quantile mapping. These are all aimed at minimising biases in models, characterised
as differences in statistical distributions between observed and simulated series. Analyses by Beyer et al. (2020b) comparing
debiased simulation data and empirical reconstructions at 30-minute resolution indicate the effectiveness of the delta method,
which generally produced the most accurate simulation, though with substantial spatial and temporal variation in model
performance. To debias simulations, delta-downscaling uses a map of local differences between observed and modelled values
in the present day to correct for bias in the past (Maraun and Widmann, 2018). In this sense, the method assumes that biases
are location specific and constant over time. Delta-downscaling can account for some climatic variations in relation to the
underlying landscape, such as capturing some of the effects of topography on temperature and rainfall, which can be useful in

certain analyses of past processes and dynamics.

As a community, we are becoming increasingly aware of issues related to the scale and resolution of climate variables, yet it
is currently unclear what level of downscaling is desirable for applications like SDM. Indeed, the ODMAP (Overview, Data,
Model, Assessment, Prediction) protocol stresses the importance of spatial resolution and extent of environmental predictors,
as well as processing and scaling (Fitzpatrick et al. 2021), yet there is still no universally agreed upon pipeline for SDM to
help determine when downscaling may be important. Recently a resolution of 1km was obtained for the TRACE21K
simulations using the CHELSA algorithm (Karger et al. 2023), interpolating very high-resolution climate for every 100 years
for the last 21,000 years. Some studies support that much finer-scale simulations have higher predictive power in SDMs of
modern populations (Chauvier et al. 2022; Ozdemir 2024), though whether such accuracy can be extended to predicted
distributions in the past or future is unclear, particularly due to the assumptions of the delta-downscaling method that local
biases remain constant through time (Franklin ef al. 2015). Proxies offer a more localised account of climate in certain places,

yet they too can be associated with high degrees of uncertainty, arising from multiple sources. Nonetheless, determining model
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agreement with empirical reconstructions from proxies remains a widely applied method for ground-truthing downscaled

climatic output.

Previous studies have produced varied results when comparing the climatic time series produced by model simulations with
proxy-based reconstructions. Some find that simulations and reconstructions reproduce similar major changes in temperature
at large spatial scales (Fernandex-Donado et al., 2013; Zhu ef al, 2019), whilst others suggest divergence (Laepple and
Huybers 2014; Rehfeld et al., 2018). A recent meta-analysis by Laepple et al. (2023) found that studies in the Northern
Hemisphere (where data are more abundant) have mixed results, suggesting potential areas of mismatch at local and regional
scales. These authors suggest that shortcomings in both model simulations and proxy reconstructions may contribute to this
divergence with models being less efficient at simulating local and regional temperature variability at relatively long timescales
and methods of temperature reconstruction from proxies facing systematic deficiencies, though stronger emphasis is placed on
the former. Strandberg et al. (2022) conversely suggest that comparisons between models and proxies are mostly limited by

the large errors associated with proxy data.

Given the ever-increasing demand to produce more accurate models of past climate across extended timeframes, we tested
whether downscaling climatic models from a relatively coarser (30-min) to a higher resolution (5-min) leads to increased
agreement with empirical reconstructions of past climate from proxies. We applied a new suite of functions in the pastclim R
package (Leonardi ef al., 2023) for delta-downscaling model output, and present new high-resolution climatic simulations for
17 bioclimatic variables for the HadCM3 Global Circulation Model (GCM) output (Huntley et al. 2022) and the Beyer ef al.
(2020a) model time series. We have provided an assessment of the 2,592 Northern Hemisphere records for the last 30,000
years available from LegacyClimate 1.0 (Herzschuh et al. 2023), a pollen-based database reconstructing past annual
temperature and precipitation and July temperature, that can be directly compared to variables from these model outputs at
varying spatial resolution. Our work has quantified the average divergence between the time series produced using modelled
climate at varied spatial resolution and method of proxy reconstruction, with our results ultimately endorsing the use of model
output in the absence of high-resolution proxies, though with careful consideration as to the most appropriate resolution for

analysis.

2 Materials and methods
2.1 Climate models

To test the impact of delta-downscaling at different resolutions, we used two time series of model simulations. The first one is
a set of raw temperature and precipitation outputs from the HadCM3 Global Circulation Model, at their native resolution of
3.275 x2.5 arc-degrees taken from Huntley et al. (2022). We consider a set of simulations in which the HadCM3 was run with

appropriate boundary conditions for the last 120k years at 2,00 years intervals (the original set in that paper covered the last
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800k years). The second series comes from Beyer et al. (2020a) within the pastclim R package (Leonardi et al. 2023). This is
based on an older series of runs of the HadCM3 Global Circulation Model (Singarayer and Valdes 2010, Singarayer and
Burrough, 2015; Valdes et al. 2017) for the last 120k years, in 72 snapshots (2,000-year time steps between 120,000 BP and
22,000 BP; 1,000-year time steps between 22,000 BP and the pre-industrial modern era). As in the other set, the original model
output of HadCM3 had a grid resolution of 3.75 x 2.5 arc-degrees.

These outputs were first downscaled using a series of runs of the higher resolution HadAM3H model, available at 1.25 x 0.83
arc-degrees for the last 21,000 years in 9 snapshots (2,000-year time steps between 12,000 BP and 6,000 BP; 3,000-year time
steps otherwise) using an approached termed dynamic delta downscaling by Beyer et al (2020a). This method consists of
generating a set of delta matrices based on the few time steps for which outputs were available from both HadCM3 and
HadAM3H, and then using these matrices to downscale each time step in the full set by using a weighted interpolation of the
two closest delta matrices based on COz (see Beyer et al, 2020a, for details). This approach takes advantage of the higher
resolution of local dynamics captured by HadAM3H, which is computationally too expensive to be run for all time steps. These
outputs were then debiased and downscaled in Beyer et al. (2020a) to 0.5 x 0.5 arc-degrees with the delta method using the
Climate Research Unit Global Climate Dataset (CRU) as the modern climatic reference (Mitchell and Jones, 2005).

For this study, we delta downscaled and debiased these two model outputs to a resolution of both 30 arc-minutes and 5 arc-
minutes using modern observation from WorldClim2 (Fick and Hijmans, 2017). For the Beyer et al (2020a) model, as it was
already at 30 arc-minutes, the delta downscaling at this resolution gives us a debiased version based on WorldClim2 rather
than CRU. We used a global relief map from ETOPO2022 (NOAA National Center for Environmental Information, 2022) to
reconstruct past coastlines following sea level change (Spratt and Lisiecki, 2016). We selected WorldClim2 as the modern
reference as the transfer functions used in the LegacyClimatel.0 dataset were also derived from this dataset (at 30-minute
resolution), allowing us to control for the effects of the modern data used for debiasing on our results. All data manipulations

were done using the R package pastclim (Leonardi et al. 2023).

Downscaling was performed one monthly variable at a time (i.e., January temperature) by taking the coarse simulations from
Beyer et al. (2020a) with the corresponding set of high-resolution modern simulations from WorldClim2 (Fick and Hijmans,
2017) and equally high-resolution global relief map (NOAA National Centres for Environmental Information, 2022). Through
integrating both bathymetric and topographic values for masking sea level changes, a delta raster was computed, adding the
difference between past and present-day simulated climate to present-day observed climate, following Beyer et al. (2020a) and
Krapp et al. (2021) The delta method therefore assumes that local (i.e. grid-cell-specific) model biases are constant over time
(Maraun and Widmann, 2018). The resulting matrix only covers the land extent at the present. We then expanded this matrix
to reach the largest land-extent in any of the times-steps under consideration using an inverse-distance-weighted interpolation.

For most of the world, at the resolution of 30 and 5 arc-minutes, this only requires interpolating a small number of cells away
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from the coastline; for higher resolutions, other interpolating algorithms might be more appropriate. We note that the delta-
downscaling can also be obtained by creating first the difference between model outputs, which is then applied to the
observational model. However, such a direction is more computationally expensive, as the interpolation outside the coastlines

would have to be repeated for each time step.

For temperature variables, the bias in a geographical location x (a cell with a given latitude and longitude) is given by the

difference between present-day observed T,,.(x, 0) and simulated Tf?m

(x,0) temperature, interpolated to the desired higher

resolution grid via bilinear interpolation. Downscaled temperature (T35 in x at time t is thus estimated as

TR0 (6, t) = T, (2,6) + (Tops (v, 0) = T3, (x, 0))

(1)

Precipitation is lower bounded by zero and covers different orders of magnitude across different regions compared to
temperature. Multiplying rather than adding the bias correction is common when applying the delta method for precipitation,
which corresponds to applying the simulated relative change to the observations (Maraun and Widmann, 2018). However, this
method can therefore be hypersensitive in drylands, leading to overprediction of precipitation (and thus exacerbating the
‘drizzling’ bias of GCM). We have therefore adopted an additive approach for precipitation, analogous to the one used for
temperature, with clamping within the range of observed maximum and minimum for current climate (Beyer et al. 2020a).

Like temperature, downscaled precipitation is estimated as

POR (6, 8) = P, (6, 6) + (Pops (x,0) — P, (x,0))

@)

The resulting monthly datasets were then utilised within the pastclim framework to recompute the 17 bioclimatic variables
available in the original dataset (Supplementary Table S1), with mean annual temperature (bio0O1), mean temperature of the
warmest quarter (biol0) and total annual precipitation (biol2) extracted here for further analysis given their relevance to the

variables captured by the proxy reconstructions employed.

Interpolating over small spatial extents can lead to the introduction of artefacts due to the application of inverse distance
weighted interpolation, which takes information from neighbouring cells to produce high-resolution reconstructions (Beyer et
al. 2020b). Given the wide spatial distribution of the proxy dataset, we thus performed downscaling for the entire world for all
of the time steps available in Beyer et al. (2020a) and the HadCM3 GCM (Huntley ef al. 2022 ) for the last 120,000 years. The
global downscaled bioclimatic variables have been made available on Zenodo (https://doi.org/10.5281/zenodo.7828453) for

6



200 future use. Figure 1 shows the different climatic models tested in this research for both the present day and the Last Glacial
Maximum (LGM) and the geographic coverage of the proxy records.
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Figure 1. Site locations of proxy records studied in this analysis (left), against mean annual temperature (bio0O1) from the
different model outputs for the present day and the Last Glacial Maximum (LGM), manipulated within pastclim (Leonardi et

al. 2023). Land mass in each time slice is masked by global ice sheets (plotted in white) and predicted sea level.

2.2 Proxy reconstructions

We employed the LegacyClimate 1.0 proxy dataset by Herzschuh et al. (2023) for direct validation of the model outputs. Mean
annual temperature (Tam), Mean July temperature (Tjuy) and total annual precipitation (Pann) were reconstructed from fossil
pollen data using the Weighted-Averaging Partial Least Squares (WA-PLS) and Modern Analogue Technique (MAT)
methods, both of which are widely used and generate similar time series, though each method’s performance vary in response
to various factors, such as the quality and diversity of the calibration data, the time interval to be reconstructed, and the
resolution of the pollen data (Sweeney et al., 2018; Birks et al. 2010; Chevalier et al., 2020). In LegacyClimate 1.0, the diverse
pollen records are handled consistently through merging taxa into high-level harmonised taxonomic groups, increasing the
possibility of matching modern climate analogues and fossil datasets. Its geographic coverage across the Northern Hemisphere
is also much larger than other databases (e.g. Mauri ef al., 2015; Marsicek et al., 2018; Routson et al., 2019). Our use of a
single database reconstructing climate based on a single proxy reduces inter-site variability resulting from the type of data
utilised and allows the generation of analogous climatic parameters with direct relevance to bioclimatic variables available in
the Beyer et al. (2020a) model; Tann, Tjuy and Pann from LegacyClimatel.0 are the equivalent bioclimatic variables to bio0O1,
biol0 and biol2 from HadCM3 GCM (Huntley et al. 2022) and Beyer et al. (2020a) model time series, which are standardly

used in climatic modelling.

To facilitate comparison between the proxy reconstructions and the model outputs, we interpolate each proxy record via
bilinear interpolation to the equivalent chronological resolution of the climatic models to enable quantification of differences
between the time series; interpolating to regular time intervals ensures that periods of particularly dense sampling in the original
cores do not exert undue influence on the results. For this, we extracted the climatic values from the model at the coordinates
of the proxy site for the time steps captured in the proxy record. Following data-cleaning, we retain 2,385 records from
LegacyClimatel.0. One record was removed as it did not have any proxy data associated with the MAT method (ID Dataset:
100127), a further 25 were omitted due to a lack of consistent time steps in the models being available, and an additional 170
records were removed as they fall under the cropped sea-level of the Beyer ef al. (2020a) model. The latter includes some
proxy sites that are located on small islands not captured by the model or within lake margins. Table 1 summarises the proxy

records and climatic model outputs studied in this research.

Table 1. Summary of the proxy records selected from the LegacyClimate 1.0 (Herzschuh ef al., 2023) and the model outputs
(Beyer et al., 2020a; Huntley et al. 2022) selected for analysis of mean annual temperature (bio01, Tann), mean July temperature

(bio10, Tjuy) and total annual precipitation (biol2, Pann).



Regions N/ Cell Type of data  Climatic Time Time  Mean Reference
size variables ~ min max  freqof (and doi)
extracted (1,00 (1,00 records
0 (years)
years  years
ago)  ago)
Legacy Asia 2385 proxy Pollen Tanmn 0 30 670 Herzschuh, U.
Climate 1.0  East North sites reconstructio  Truy et al. (2023).
America ns Pann Scientific Data
West North (10.5194/essd-
America 15-2235-2023)
Europe
HadCM3 Global 30- and 5- Simulations, BioOl 0 120 1,000 Huntley, B.
Global min grid de-biased Biol0 until ot al. (2023).
Circulation cells and Biol2 23,000 .
Journal  of
model downscaled years
using ago and Biogeograp
WordClim2 then Ay,
(this paper) every  (10.1111/jbi
+000- " 14619)
years
Beyer et al. Global 30- and 5- Simulations, BioOl 0 120 1,000/2 Beyer, R. et al.
(2020a) min grid de-biased Biol0 ,000 (2020a).
simulations cells and Biol2 Scientific Data
downscaled (10.1038/s415
using CRU 97-020-0552-
(original) 1)
and
WordClim2
(this paper)
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2.3 Analysis

To quantify the differences between time series, we calculated the bias, root mean square error (RMSE) and normalised RMSE
(NRMSE). The RMSE measures the coherence between the model simulations and the proxy reconstructions, whilst the bias
(calculated as the mean residual) highlights whether the coarse or downscaled model overestimates (positive values) or
underestimates (negative values) the proxy records. Standardising the RMSE using the mean allows comparing the coherence
between variables. The bias can also be considered per proxy record to show which areas are over or underestimated for any
given variable, facilitating comparability. Considering that downscaling to higher resolutions is thought to capture spatial
variations in climate, we tested the statistical significance of differences in model-data coherence between lower resolution
(30-min) and higher resolution (5-min) models, using a standard significance threshold of p < 0.05 via the Kruskal-Wallis non-
parametric test. We also calculated the proportion of proxy records (reconstructed using the MAT and WA-PLS methods) that
show higher RMSE with 30-min models compared to 5-min models. Instances where the proportion is higher than 0.5 highlight

a positive net effect of downscaling on model-data coherence.

These analyses allow us to evaluate the coherence between the output of the climate models and the reconstructions of specific
climatic parameters from proxy data, depending on geographic region, Marine Isotope Stage (chronology), method of climate
reconstruction employed in the proxy datasets (MAT versus WA-PLS), elevation of site location (with sites above 1500 meter
above sea level analysed as a subset) and topographic roughness (defined as the energetic cost of movement, see SOM. 1),
with areas that require over 200 joules per meter to transverse deemed to have ‘high roughness’). All these factors could

potentially impact the articulation between the climatic model outputs and the proxy records.

3 Results

Figure 2 highlights a sample of non-interpolated time series from proxy sites across the geographic span of the LegacyClim1.0
dataset, demonstrating the coherence through time between different models and empirical reconstructions (WA-PLS and
MAT) of the three climatic parameters (annual temperature, July temperature and annual precipitation). Our results show that
overall proxy reconstructions and model simulations tend to highlight very similar climatic trends across variables, with
average bias across all comparisons for both annual and July temperature time series falling under 1 degree Celsius and annual
precipitation less than 40 mm (Fig. 2, Appendix A Tables A1-3). Considering the NRMSE, the most divergent variable on
average is mean annual temperature, particularly for the output of the HadCM3 30-min model (Appendix A Tables A1l-3).
This result contrasts with other large-scale studies (Bartlein et al. 2011; Chevalier et al. 2021), potentially due to the
assumptions made for the proxy reconstructions employed that modern analogues should be utilised from within 2000km
around each site. Precipitation should be less affected given that it is more variable through space however temperature tends
to be much more autocorrelated, meaning that much colder/warmer temperatures occurring in the past may not occur within

these geographic limits. We find that time series of annual precipitation and July temperature show consistently lower NRMSE
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values than mean annual temperature across our model-data comparisons (Appendix A Tables A1-3). These two variables also
show highly comparable results between different versions of the model outputs, even at varying spatial resolution and when
using different modern reference datasets for downscaling (Appendix A Tables A2-3). The output from the Beyer et al. (2020a)
30-min model (CRU) shows the most consistent net positive effect of downscaling (Supplementary Table S1), probably due
to the difference in modern reference data used for debiasing. However, the overall difference in coherence between the two
resolutions of both outputs is judged as minimal for all three variables, particularly when controlling for the modern dataset
(Appendix A Tables A1-3), as none of the subsets of model-data comparisons highlighted statistically significant differences

between models at 30-min and 5-min resolution (Supplementary Table S1).

Our results based on all of the comparisons in the dataset highlight that the 30-min model time series of annual temperature
from Beyer et al (2020a) debiased using CRU as the modern reference tends to estimate slightly lower temperatures than those
produced by proxy reconstructions (as highlighted in the negative bias results reported in Appendix A Table Al). All other
model outputs de-biased using WorldClim2 (WC) at both 30- and 5-min resolution contrastingly tend to predict higher annual
temperatures compared to proxy records. For the HadCM3 model output, the model-data coherence is not significantly
different between the 30-min and 5-min model, with less than half of the proxy records seeing improvement in coherence in
the 5-min model (49% MAT method, p = 0.4904: 46% WA-PLS method, p = 0.4961; Supplementary Table S1). Similarly,
annual temperature time series from the Beyer et al. (2020a) 30-min (CRU) simulations tend to have more error in only around
half the records compared to the higher resolution version, at 51% (MAT method, p = 0.4904) and 50% (WA-PLS method, p
= 0.4961) of proxy sites, with the Beyer et al. (2020a) 30-min (WC) having more error in slightly less than half of records
compared to the Beyer et al. (2020a) 5-min model, at only 49% (MAT method, p = 0.4904) and 47% (WA-PLS method, p =
0.4961) (Supplementary Table S1).

Whether models tend to predict higher or lower precipitation compared to proxy reconstructions varies for different subsets of
the data, though negative bias is particularly prominent in the 30-min model outputs compared to the 5-min equivalents
(Appendix A Table A2). However, again, the overall difference in performance between the two resolutions is marginal for
both model time series. Model data-coherence for annual precipitation is not significantly different between the 30-min and 5-
min HadCM3 model outputs, with less than half of the records (49%) returning higher RMSE at the coarser resolution (MAT
and WA-PLS method, p = 0.4943 and p = 0.4961; Supplementary Table S1). Annual precipitation time series from the Beyer
et al. (2020a) 30-min model (CRU) have more error in 55% of records (MAT method and WA-PLS methods, p = 0.4923 and
p = 0.4961 respectively) than the higher resolution version (Supplementary Table S1), whereas the Beyer et al. (2020a) 30-
min model (WC) shows higher RMSE in 48% of time series (MAT and WA-PLS methods, p = 0.4936 and p = 4961)
(Supplementary Table S1).
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Models of mean temperature of warmest quarter almost always slightly underestimate temperatures compared to proxy
reconstructions of mean July temperature, regardless of resolution (Appendix A Table A3). This could be linked to the slight
discrepancy in the climatic parameter being captured between the models and the proxies. Average difference in model-data
coherence between the two spatial resolutions is not statistically significant for either the HadCM3 or the Beyer et al. (2020a)
model output, with the July temperature time series from the Beyer et al. (2020a) 30-min model (CRU) showing less coherence
in 58% (MAT method, p = 0.4904) and 56% (WA-PLS method, p = 0.4961) of proxy reconstructions when compared to that
from the Beyer et al. (2020a) 5-min model (WC), although again the Beyer et al. (2020a) 30-min model (WC) shows higher
error in less than half of the proxies (47%, MAT method, p = 0.4904, WA-PLS method, p = 0.4961) (Supplementary Table
S1). Results for the HadCM3 output mirror closely that of WC-debiased Beyer et al. (2020a) models (49% for the MAT
method, p = 0.4904, and 47% for the WA-PLS method, p = 0.4961).
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Figure 2. A sample from each regional group of simulated mean annual temperature (left), mean July temperature (middle)
and total annual precipitation (right) time series, comparing different model outputs (solid lines) and corresponding non-

interpolated proxy reconstructions from LegacyClimate 1.0 (Herzshuch et al., 2021) (dashed lines).
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3.1 Regional differences

As highlighted in Fig. 3 and Supplementary Fig. S1-2, our results demonstrate some key differences between regions. Firstly,
for annual temperature, average bias in European records is positive, suggesting model output in this region tends to
overestimate temperatures compared to proxy records, whereas for all other regions annual temperature bias is negative
(Appendix A Table Al). Asia and Europe have the highest NRMSE (indicating the highest divergence between proxy records
and model outputs) for annual temperature in the Beyer et al. (2020a) 30-min model output (CRU) (Appendix A Table Al,
Supplementary Fig. S1). However, Asia sees higher model-data coherence in both types of 30-min (WC) model outputs
compared to their equivalent downscaled 5-min (WC) outputs, whereas the HadCM3 30-min model output produces very high
NRMSE for European records (Appendix A Table Al; Supplementary Fig. S1). Downscaling the HadCM3 model output for
annual temperature to a 5-min resolution has a positive impact on average coherence in Europe (Appendix A Table Al;
Supplementary Figure S1), although this effect is reflected in less than half of the pair-wise comparisons (Supplementary Table
S1). In East North America, average model-data coherence is improved by downscaling in the HadCM3 model output for
annual temperature, however the Beyer et al. (2020a) 5-min model output has higher NRMSE than the equivalent 30-min
model outputs (Appendix A Table Al; Supplementary Fig. S1). In West North America, the Beyer et al. (2020a) 30-min (WC)
and 5-min (WC), as well as the HadCM3 5-min (WC), model outputs for annual temperature are more coherent with the proxy
records than the Beyer et al. (2020a) 30-min (CRU) model and the HadCM3 3-min (WC) model outputs, with little difference
between the two resolutions for the Beyer et al. (2020a) model debiased with WC (Appendix A Table A1; Supplementary Fig.
S1).

Average model-data bias for precipitation varies regionally, with Europe, West North America and East North America
showing consistently negative bias, suggesting that the models underestimate rainfall in these regions (Appendix A Table Al;
Supplementary Fig. S1), in contrast to Asian localities where often average precipitation bias is positive. Model-data coherence
for precipitation is highly similar across different resolutions of model output debiased using WC for East North America and
Europe, whereas Asia and West North America has less coherence with proxy records in Beyer et al. (2020a) CRU 30-min
model and the Beyer et al. (2020a) 5-min model (Appendix A Table A2; Supplementary Fig. 1). Precipitation proxy
reconstructions from West North America show the highest NRMSE with the HadCM3 outputs, whereas for Asia the highest
NRMSE model-data comparison is the Beyer et al. (2020a) CRU model, followed by the HadCM3 outputs (Appendix A Table
A2; Supplementary Fig. S1)

July temperatures have negative model-data bias for all regions except in Asia for the WC-debiased Beyer et al. (2020a) 30-
min and 5-min model output (Appendix A Table A3; Supplementary Fig. 1). In West North America, NRMSE is higher in the
HadCM3 model outputs compared to that from Beyer et al. (2020a), with no differences between resolutions in the latter (when

debiased using WC) and a slight improvement in coherence due to downscaling in the former (Appendix A Table A3;
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Supplementary Fig. 1). There is no difference in average NRMSE between resolutions of model output for July temperatures
in East North America, apart from the Beyer et al. (2020a) 30-min (CRU) model which has higher model-data divergence
(Appendix A Table A3; Supplementary Fig. 1). In Asia, downscaling the Beyer et al. (2020a) 30-min (WC) and the HadCM3
model output improves coherence, whereas in Europe these higher resolution model outputs lead to slight decreases in

coherence (Appendix A Table A3; Supplementary Fig. 1).

Fig. 3 and Supplementary Fig. S2 highlight these spatial heterogeneities in bias across the Northern Hemisphere, which could
have many potential different sources, i.e. geographic variation in the performance of the model outputs, the quality of the
present-day calibration data for LegacyClimate 1.0 or the modern reference used for debiasing, and/or the impact of
confounding variables on the pollen-climate relationships. The East North American subset of proxy reconstructions appear
to be the most coherent with the model outputs, generally showing the lowest NRSME values across all variables (Appendix
A Table A1-A3; Supplementary Fig S1.). Europe tends to show the lowest proportion of records where error is higher in the
coarser models (30 min) compared to the higher-resolution models (5 min), with downscaling having the strongest impact on
model-proxy divergence in East and North America, particularly when compared to the Beyer et al. (2020a) 30-min model
(CRU) (Supplementary Table S1). Regions showing the least coherence varies depending on the climatic parameter, with Asia
and East North America having the highest RMSE values for annual temperatures (Appendix A Table Al; Supplementary Fig.
S1), Asia and West North America for precipitation (Appendix A Table A2; Supplementary Fig. S1) and East North America
for July temperatures (Appendix A Table A3; Supplementary Fig. S1). Overall, no region shows a statistically significant
difference in model-data coherence between models of different resolutions (Supplementary Table S1 and Figure S1). Indeed,
often the coarser models have a higher proportion of proxy records with lower error than the 5-min models (Supplementary

Table S1), particularly in Europe and Asia, suggesting higher resolutions could simply be adding noise in many scenarios.
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Figure 3. Absolute bias for mean annual temperature, mean annual precipitation, and mean July temperature for each proxy
site, comparing the climatic values produced by the MAT method of proxy reconstruction against different versions of the
HadCM3 GCM and Beyer et al. (2020a) model. Outliers have been highlighted in red, defined as =< -5 and => 5 degrees
Celsius for mean annual temperature and July temperature, and =< -800 and => 800 millimetres for total annual precipitation.

Visualisation of bias for the WA-PLS method is reported in Supplementary Figure S2.
3.2 Effects of landscape heterogeneity

Downscaling model outputs to a very high resolution is often performed to account for smaller-scale landscape features that
can locally impact climatic conditions, such as topography and coastlines (Fig. 4). Figure 4 highlights these effects of
increasing model resolution in different areas of varying landscape complexity; for example, in the Pittsburg Basin (which is
inland and flat) there is little change in the climate signal captured at proxy sites (white circles) following downscaling,
whereas, in southern Italy and the Qillian Mountains, downscaling captures more localised details in climates associated with
landscape-level variations. Proxy records at higher elevations and topographic complexity may therefore be expected to show

stronger coherence with the higher resolution models compared to those at relatively lower resolution.
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However, our analysis presents mixed results; for example, for annual temperature, subsets of proxy records at higher altitudes
and in regions of higher topographic roughness both have higher NRMSE for the 30-min HadCM3 model compared to the
equivalent 5-min version for the MAT method, yet for the WA-PLS method downscaling this output increases NRMSE for
records in areas of higher roughness(App endix A Table Al; Supplementary Fig. S3). Similarly, a negative effect of
downscaling on model-data coherence for locations of high roughness is observed for the Beyer et al. (2020a) 30-min model
output (WC) for both the MAT and WA-PLS method, as well as proxy reconstructions using the MAT-method in high altitude
areas (Appendix A Table A1; Supplementary Figure S3). Annual temperature at higher elevations and topographic complexity
modelled based on Beyer et al. (2020a) 30-min (CRU) has consistently higher NRMSE compared to alternate versions of this
model output, although the 30-min HadCM3 30-min model is the most divergent from proxy records, particularly for high
altitude locations (Appendix A Table Al; Supplementary Fig. S3). In lower altitude and flat locations, downscaling the
HadCM3 model shows modest improvements in NRMSE whereas the Beyer et al. (2020a) 5-min (WC) model output is less
coherent for these subsets than the equivalent 30-min (WC) version (Appendix A Table Al; Supplementary Fig. S3). In terms
of proportions of records that show more error at coarser resolutions, the high altitude subset consistently has a net positive
impact of downscaling for annual temperature, yet no model-data comparisons highlight statistically significant differences in
coherence (Supplementary Table S1). Our results also show that proxy reconstructions tend to indicate warmer temperatures
at higher elevations and/or in areas of higher topographic roughness compared to model outputs and colder temperatures at
lower elevations and/or lower topographic roughness (Appendix A Table A2). This is a known bias of transfer functions when
constructing more ‘extreme climates’ from proxies, given that elevation negatively correlates with temperature and these

functions rely on averages of data from modern calibration data sets (Chevalier et al., 2020).

For precipitation, only in low altitude and/or flat areas does the Beyer et al. (2020a) 30-min model (CRU) produce lower values
than the proxy reconstructions, indicated by negative bias (Appendix A Table A2; Supplementary Fig. S3). NRME tends to be
higher in areas of high altitude (particularly) and areas of high topographic roughness (Appendix A Table A2; Supplementary
Fig. S3), however the higher resolution versions of the models do not show an improvement in coherence. For these subsets,
the Beyer et al. (2020a) WC model outputs show better average coherence than the Beyer et al. (2020a) CRU and the HadCM3
outputs (Appendix A Table A2; Supplementary Fig. S3). Our results highlight that subsets of low altitude and low roughness
proxy records tend to show more instances of downscaling improving the model-data coherence compared to subsets of high
altitude and high roughness records, although these are minimal and not statistically significant (Supplementary Table S1, Fig.
S3).

Models of July temperatures always produce lower values than that of proxies, regardless of landscape properties (Appendix
A Table A3; Supplementary Fig. S3). Our results suggest that, apart from downscaling the HadCM3 model output where
minimal improvements in NRMSE are noted, model-data coherence for July temperature is not effected by model resolution

when controlling for the modern referenced used to debias (Appendix A Table A3; Supplementary Fig. S3). Overall, we find
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that the proportion of proxy records that show higher error (NRMSE) with lower resolution models than higher resolution is
around half for all subsets according to landscape variations, indicating no statistically significant effect of further downscaling

425 on data-model coherence, even in areas of landscape heterogeneity (Supplementary Table S1, Fig. S3).

Pittsburg Basin South Italy/Sicily Qilian Mountains
bio01

Beyer 30-min model (CRU)

Beyer 30-min model (WC)

-
o

Beyer 5-min model (WC)

O

(N: 34-41, W: 91-85) (N: 44-36, E: 12-21) (N: 40-36, E: 99-103)

Figure 4. Three regional examples of modelled mean annual temperature for the present day (bio0Ol), demonstrating how
downscaling increases spatial resolution by capturing the effects of landscape dynamics through space on climate depending
on the underlying topography. Geographic variability in temperature is shown, as simulated by the Beyer et al. (2020a) 30-
430 min model output (CRU), Beyer et al. (2020a) 30-min model output (WC), and Beyer et al. (2020a) 5-min model output (WC),

Locations of proxy locations from LegacyClimate 1.0 are shown as white circles.
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3.3 Glacial versus inter-glacial variability

We then examined discrepancies in model-data coherence through time, separating time slices from the model outputs covering
the present day (i.e. timeslice 0), Marine Isotope Stage 1 (MIS 1; 0 — 14,000 years ago) and MIS 2 (14-29,000 years ago). In
total, 1060 records were associated with the present day (44% of dataset), 2363 records captured time slices in MIS 1 (99% of
dataset) whereas 473 spanned into MIS 2 (20%). Separate analysis of interpolated data points capturing the present day was
performed, as the pollen proxies captured in these records should be highly representative of modern ecological communities
whilst model data points are based on present-day observations as opposed to simulations into the past, thus providing

somewhat of a baseline of model-data divergence.

Our results demonstrate that data points representative of the present have the lowest NRMSE (Appendix Tables A1-3; Fig.
5), though considerable error in some time series exists (Fig. 5). In contrast, the smaller subset of time series covering MIS 2
show the highest bias and NRMSE (Appendix Tables Al-3; Fig. 5), both across model outputs and resolutions, as well as
methods of proxy reconstruction. Models capturing older time periods underestimate annual and July temperatures compared
to proxy reconstructions and (often) overestimate annual precipitation (Appendix A Tables A1-A3; Fig. 5). We find that the
proportion of proxy records that show higher RMSE (and therefore are less coherent) with lower resolution models compared
to those of higher resolution is almost always over half for the present day, with annual temperature and July temperature
during MIS 2 seeming to also see a slight benefit of downscaling, though this is not statistically significant for any comparison

(Supplementary Table S1).

Figure 5 highlights the differences between RMSE values from the present day, MIS 1 and MIS 2, confirming that data-model
discrepancies tend to increase with age though not significantly so (p > 0.05). Chronological uncertainties in the proxy age
model may complicate the comparison between climate simulations and pollen-based records, as well as the process of signal
smoothing via interpolation to facilitate analysis. Delta-downscaled models are also inherently designed to replicate current
rather than past climate patterns, and proxy reconstructions rely on the identification of modern analogue species that may
have a different link to climate than palacoecological communities, likely further contributing to higher divergence in older
time periods (Chevalier et al. 2020). Nonetheless, all of the distributions highlighted in Fig. 5 are highly positively skewed
even after normalisation— there are many extreme values— confirming that age is just one contributing factor in the divergence

between time series (Supplementary Fig. S1, S3).
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Figure 5. Boxplots of pair-wise log root mean square error (RMSE) results model-data comparisons of mean annual

temperature (blue), mean annual precipitation (purple) and mean July temperature (green) from those representing the present

(0), MIS 1 (1) and MIS 2 (2).
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3.4 Exploring the most divergent time series

Observing the distribution of the data in Fig. 5 and Supplementary Figures S1 and S3, we decided to segment the highest 5%
of RMSE values for each pair-wise model-data comparison for further investigation. We then amalgamated those that routinely
fall into this category for each climatic variable, representing the most divergent time series of the overall dataset for the three
parameters studied here (Appendix A Table A4). None of the individual records fall into the most divergent subset for all three
variables studied, suggesting more extreme divergence is not related to any systematic issue in the model nor the proxy at
specific locations. We then produced 1000 bootstrapped samples (without replacement) of corresponding sample size,
ascertaining whether the observed proportion of time series in this highly divergent subset is greater than expected by random

chance (Appendix A Table A4).

To summarise, 44 records of mean annual temperature fall into the most divergent 5% of time series based on RMSE, of which
statistically significantly higher proportions of these than expected cover the present day and/or MIS 2, and/or are located in
Asia, areas of high altitude and/or low roughness (Appendix A Table A4). For mean annual precipitation, only 21 records
consistently fall in the top 5% based on RMSE, demonstrating higher inconsistency in pairwise model-data coherence between
different model versions and methods of proxy reconstruction compared to the temperature variables (Appendix A Table A4).
We found that, for this parameter, significantly higher proportions of these outliers are located in Asia and West North America
and/or in areas of high altitude and high roughness (Appendix A Table A4). Finally, for mean July temperature, 30 time series
always fall into the most divergent 5%, significantly higher proportions of which date to the present and/or MIS 2, are located
in Asia, areas of high altitude and/or areas of low topographic roughness than would be expected by chance (Appendix A
Table A4).

Our results highlight that records spanning into MIS 2 consistently exhibit significantly higher proportions of divergent time
series across all variables (Appendix A Table A4). This may specifically be a consequence of low CO2 during MIS 2, which
was not considered in LegacyClimatel.0, although this would mainly have an effect on moisture-related variables rather than
temperature. Another potential source of divergence, leading to warmer reconstructions by proxies compared to the model
outputs as well as significant deviations in precipitation, could derive from the geographic limits imposed on the
LegacyClimatel.0 proxies for the modern samples used to perform reconstructions. This is particularly problematic for the
LGM as comparable signals should be present in the modern climate space within the limit defined (2000km around each site),
which is likely unreasonable for some areas (e.g. northerly areas of Europe, see Fig. 1). Similarly, we find sites in Asia and
higher altitude areas, where modern calibration data tend to be more limited, also have more divergent time series than expected
given the sample size of this subset for all three variables (Appendix A Table A4). Sites in flatter areas exhibit significantly
higher proportions of divergent time series for annual and July temperatures than expected by random chance, whereas sites

in higher roughness locations and West North America are more highly divergent than expected in precipitation (Appendix A
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Table A4). Interestingly, we find that proxy records that capture the present day also occur in the most divergent subset more
often than expected for annual temperature and precipitation, however this is because many of these records also span into

MIS 2 (Appendix A Table A4).

4 Discussion

Increasing the spatial resolution of model time-series is often thought to be required to more accurately capture the climatic
conditions of specific places at specific times. But what is the optimal spatial resolution for adequately detailing finer-scale
signals? We tackle this question by testing the agreement between different model outputs and empirical reconstructions from
pollen proxies from the Late Quaternary for annual and July temperatures and annual precipitation. Ground-truthing modelled
climate in this way is common, as proxies are considered to be the ‘gold standard’ for capturing more localised variations in
climatic conditions in specific places. Our results highlight that further downscaling models via the delta method to much
higher resolutions (5-minute) fails to consistently capture more of the climatic trend from pollen proxy records. Indeed, we
were unable to demonstrate any statistically significant differences in model-data coherence between 30-min and 5-min model
resolutions in any subset of this large dataset. Overall, this implies that more downscaling may not always be the best solution,
with relatively coarser simulations (i.e. 30-minute) providing a similarly adequate representation of past climatic trends in

many scenarios, even in areas of topographic complexity.

Regardless of resolution, we find that model-data coherence predictably decreases with age, with more divergent time series
than expected by chance located in Asia, at higher altitudes and those capturing MIS 2. Annual precipitation and July
temperature show consistently lower NRMSE than annual temperature, indicating good overall agreement between simulations
and empirical reconstructions for these variables. Annual temperature shows low model-data convergence with greater
disparity between model outputs and methods of proxy reconstructions, as well as in certain contexts. Variability in coherence
between regions likely relates to spatial variability in the performance of the simulations, the quality of modern reference
datasets and proxy data employed, and the complexity in relationships between pollen and temperature tolerances in different
geographic areas. Moreover, greater divergence at high altitudes and at older time scales may reflect limitation in the
calibration with modern conditions, with reduced modern reference data at higher elevations and a lack of good analogues of

glacial/periglacial vegetations in the same areas as those in the past.

For this large-scale comparative analysis, we employed different de-biased and downscaled versions of the HadCM3 GCM
output (Huntley et al. 2022) and Beyer et al’s. (2020a) Late Pleistocene and Holocene climate simulations alongside
harmonised pollen records from LegacyClimatel.0 (Herzschuh et al. 2023), providing corresponding estimates of three key
climatic parameters for comparison between time series. Whilst the LegacyClimate 1.0 dataset provides an excellent
standardised and spatiotemporal expansive resource to address whether downscaling to higher resolutions is effective in

capturing local climatic details, it is worth noting that, because the type of proxy records employed tend to capture pollen from

23



535

540

545

550

555

560

a broad catchment, they may represent geographically wide averages of past climate. This could inherently make them more
compatible with coarser-level model simulations, which also capture broader landscape rather than local-level trends. Future
work should seek to expand systematic model-data comparisons on other types of harmonised proxies, as well as different

climatic models and modern references, ensuring that the equivalent bioclimatic variables are being predicted by both sources.

Our results suggest that using statistical methods of downscaling simulated time series to much higher resolutions does not
significantly improve the agreement between model output and pollen-proxy reconstructions, yet we note that there is a trade-
off between enhancing spatial resolution and increasing potential error. Such error in a given location could either be caused
by using too coarse a resolution on the one hand or by unreliable interpolation on the other. For this reason, there are likely to
be many circumstances in which it is still better to use downscaled models (with caveats), particularly when variability within
30-min cells (~55km on each side) is important (e.g. Boisard et al. 2025). For example, the identification of conditions at
specific locations within climatic extremes may be overlooked when using a model at a broader scale, such as at Late
Pleistocene archaeological site Fincha Habera in the Bale Mountains of southern Ethiopia (Groos ef al. 2021). Here, lower
annual temperatures predicted by delta-downscaled models may better characterise the on-site environment than that also
incorporating environmental trends in surrounding lower altitude landscape (Timbrell ef al. 2022). Other methods of increasing
model output, such as dynamical downscaling, may be better equipped for more localised applications, yet these are largely
inaccessible for consumers of model output in fields like palacoecology and archacology where the computational costs are
impractical. Overall, we present a streamlined pipeline for delta-downscaling climate model time series within the pastclim R
package (Leonardi et al. 2023), though we stress that careful consideration is required to select the optimal method and spatial

resolution, based on the scope of the research question at hand.

5 Conclusion

Paleoclimatic proxies and climate models constitute two contrasting yet complementary sources of information on past
climates. Demand for high-resolution climatic simulations that characterise landscape-scale heterogeneities come from the
multitude of fields that employ ecological data, such as those that wish to map species distributions through time and space or
quantitatively test hypotheses about the impact of climatic change and/or variability on various biological or behavioural
phenomena. We show that downscaling via the delta-method fails to consistently capture more signal from temperature and
precipitation proxy reconstructions, though model time series at both median (30-arc minutes) and fine-grained (5-arc minutes)
spatial resolutions characterise climatic variables in broadly similar ways to pollen proxies. Utilising model output for analyses
of past climate therefore involves a careful balancing act between accentuating variations relevant to the study questions and

the potential introduction of error by unreliable interpolation.
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Code and data availability

The workflow to downscale climate model outputs with the delta method has been made publicly available as functions in
pastclim. Code and data relating to this analysis, as well as a vignette for downscaling in pastclim, was made available

during the peer review of this article and can be found here: https://osf.io/dug3j/. The global downscaled models at 5-arc

minutes resolution are stored on Zenodo: https://doi.org/10.5281/zenodo.7828453.
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