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More is not always better: delta-downscaling climate model outputs from 30 to 5-minute resolution has
minimal impact on coherence with Late Quaternary proxies
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Abstract. Both proxies and models provide key resources to explore how palaecoenvironmental changes may have impacted

diverse biotic communities and cultural processes. While,proxies are thought to provide the ‘gold standard’ in reconstructing

the local environment, they only provide point estimates for a limited number of locations, Op the other hand, models have the

potential to afford more extensive and standardised geographic coverage of multiple bioclimatic variables. A key decision

when using model output,is the appropriate geographic resolution to adopt; models are coarse scale, in the order of several arc

degrees, and so their outputs are usually downscaled to a higher resolution. Most publicly available model time-series have

been downscaled to 30 or 60 arc-minutes, but it is unclear whether such resolution is sufficient for certain applications like

species distribution models, or whether this may homogenise environments and mask the spatial variability that is often the

primary subject of analysis. Here, we explore the impact of jncreasing the resolution of model output,from 30 to 5 arc-minutes
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further downscaling

using the delta-downscaling method, which interpolates and applies,the long-term difference between past and present model

datasets to a higher resolution grid of observed present-day climate,We seek to determine to what extent further downscaling
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captures climatic trends at the site-level,through direct comparison with proxy reconstructions, evaluating the different versions CDeIeted: to increase spatial resolution of simulations
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precipitation against a large empirical dataset of pollen-based reconstructions from across the Northern Hemisphere. Our ‘(Delete a:

results demonstrate that ;nodels tend to provide broadly similar accounts of past climate to that obtained from proxy

reconstructions, with coherence tending to decline with age and at higher altitudes. However, our results imply that using the
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delta method to downscalg, to a very fine yesolution has minimal net gffect on the coherence of model output with pollen

records_in most cases. Optimal spatial resolution is therefore likely to be highly dependent on specific research contexts and ‘

questions, with careful consideration required regarding the trade-off between highlighting local-scale variations and

increasing potential error via unreliable interpolation.
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1 Introduction

Realistic reconstructions of global paleoclimates are vital for modelling long-term evolutionary and ecological processes in

fields like evolutionary biology, palacoecology, palacontology, and archacology. Proxy records, such as those derived from

pollen or other biomarkers, fend to be the preferred method for characterising past environments at specific locations; however,
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consistent across variables for a more complete account of climatic conditions. Models additionally, offer, much wider spatial
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coverage of the landscape that can be directly related to specific study sites and the palaeoclimatic differences between them.

However, the integration of modelled climate with proxy data is not straightforward. For example, using simulations at a coarse

resolution can produce biases when compared to on-site proxies due to the underlying complexity of the physical landscape,

particularly in coastal and fopographically diverse regions (Maraun and Widmann, 2018). Resultant differences,can be in the
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classifications and estimations of ecologies experienced,(Kottek et al., 2006). Such variations can have important implications

for the diverse fields employing model output for the reconstruction of past and present species distributions, dispersal and

extinction processes, and biogeographic patterns,

High resolution simulations of multiple time slices are,often desired by consumers of model output yet difficult to obtain due

to computational costs. For example, dynamical downscaling allows for the detailed description of processes in the climatic

system and can improve the capturing of localised climatic conditions (Rummukainen, 2016; Strandberg et al., 2023), however

this method is rarely applied in fields like palacoecology and archaeology due to the computational costs, particularly when a

large number of time steps are required. Most of the recently produced time series of palacoclimate outputs have been

downscaled from the native resolution of the models (usually in the order of 2 or 3 arc-degrees) to a higher resolution of 30

arc-minutes using statistical methods (Fordham et al. 2017; Beyer et al. 2020a; Krapp et al. 2021; Zeller and Timmerman

2024; Mondanaro et al. 2025), as these approaches,, can be more easily applied to several time periods. Within statistical
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As a community, we are becoming increasingly aware of issues related to the scale and resolution of climate variables, yet it

is currently unclear what Jevel of downscaling is desirable for applications like SDM. Indeed, the ODMAP (Overview, Data,

Model, Assessment, Prediction) protocol stresses the importance of spatial resolution and extent of environmental predictors

as well as processing and scaling (Fitzpatrick et al. 2021), yet there is still no universally agreed upon pipeline for SDM to
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agreement with empirical reconstructions from proxies remains a widely applied method for ground-truthing downscaled

climatic output.

Previous studies have produced varied results when comparing the climatic time series produced by model simulations with
proxy-based reconstructions. Some find that simulations and reconstructions reproduce similar major changes in temperature
at large spatial scales (Fernandex-Donado et al.,, 2013; Zhu et al., 2019), whilst others suggest divergence (Laepple and
Huybers 2014; Rehfeld et al., 2018). A recent meta-analysis by Laepple et al. (2023) found that studies in the Northern
Hemisphere (where data are more abundant) have mixed results, suggesting potential areas of mismatch at local and regional
scales. These authors suggest that shortcomings in both model simulations and proxy reconstructions may contribute to this
divergence with models being less efficient at simulating local and regional temperature variability at relatively long timescales
and methods of temperature reconstruction from proxies facing systematic deficiencies, though stronger emphasis is placed on

the former. Strandberg gt al. (2022) conversely suggest that comparisons between models and proxies are mostly limited by

the large errors associated with proxy data,

Given the ever-increasing demand to produce more accurate models of past climate across extended timeframes, we tested

whether, downscaling glimatic models from a relatively coarser (30-min) to, a higher resolution (5-min) leads to increased .-
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2 Materials and methods
2.1 Climate models

To test the impact of delta-downscaling at different resolutions, we used two time series of model,simulations. The first one is

a set of raw temperature and precipitation outputs from the HadCM3 Global Circulation Model, at their native resolution of

3.275 x2.5 arc-degrees taken from Huntley et al. (2022), We consider a set of simulations in which the HadCM3 was run with
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from the coastline; for higher resolutions, other interpolating algorithms might be more appropriate. We note that the delta-

downscaling can also be obtained by creating first the difference between model outputs, which is then applied to the

observational model, However, such a direction is more computationally expensive, as the interpolation outside the coastlines

would have to be repeated for each time step.

For temperature variables, the bias in a geographical location x (a cell with a given latitude and longitude) is given by the

difference between present-day observed T, * 0y_and simulated T:?m - 0y_temperature, interpolated to the desired higher
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resolution grid via bilinear interpolation. Downscaled temperature (Ty;,,) in x at time t is thus estimated as

TR (6 ty = Taop (X, £y + (Tobs @ 0) =T 0))
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Precipitation is lower bounded by zero and covers different orders of magnitude across different regions compared to

temperature. Multiplying rather than adding the bias correction is common when applying the delta method for precipitation

which corresponds to applying the simulated relative change to the observations (Maraun and Widmann, 2018). However, this
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Figure 1. Site locations of proxy records studied in this analysis (left), against mean annual temperature (bio01) from_the

different model outputs for the present day and the Last Glacial Maximum (LGM), manipulated wjthin,pastclim (Leonardi et . (I‘ leted: Beyer et al. (2020a) for the present day )
al. 2023). Land mass in each time slice is masked by global ice sheets (plotted in white) and predicted sea level. N ) (Deleted: extracted )
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We employed the LegacyClimate 1.0 proxy dataset by Herzschuh ez al. (2023) for direct validation of the model outputs. Mean WorldClim2 to higher resolution (bottom).

annual temperature (Tan), Mean July temperature (Tjuy) and total annual precipitation (Pan) were reconstructed from fossil
pollen data using the Weighted-Averaging Partial Least Squares (WA-PLS) and Modern Analogue Technique (MAT)

methods, both of which are widely used and generate similar time series, though each method’s performance vary in response
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2.3 Analysis

To quantify the differences between time series, we calculated the bias, root mean square error (RMSE) and normalised RMSE

(NRMSE). The RMSE measures the coherence between the model simulations and the proxy reconstructions, whilst the bias

(calculated as the mean residual) highlights whether the coarse, or downscaled model overestimates (positive values) or - (Deleted: raw

underestimates (negative values) the proxy records. Standardising the RMSE using the mean allows comparing the coherence
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3 Results

Figure 2 highlights a sample of non-interpolated time series from proxy sites across the geographic span of the LegacyClim1.0

dataset, demonstrating the coherence through time between different models and empirical reconstructions (WA-PLS and

MAT) of the three climatic parameters (annual temperature, July temperature and annual precipitation). Our results show, that

overall proxy reconstructions and model simulations tend to highlight very similar climatic trends across variables, with

average bias across all comparisons for both annual and July temperature time series falling under 1 degree Celsius and annual -

precipitation less than, 40, mm (Fig. 2, Appendix A Tables Al-3). Considering the NRMSE, the most divergent variable on -~
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values than mean annual temperature across our model-data comparisons (Appendix A Tables A1-3). These two variables also

show highly comparable results between different versions of the ynodel outputs, even at varying spatial resolution and when

using different modern reference datasets for downscaling (Appendix A Tables A2-3). The output from the Beyer et al. (2020a)

30-min model (CRU) shows the most consistent net positive effect of downscaling (Supplementary Table S1), probably due

Deleted: Supplementary Tables S1-3). ...hese latter ...wo
variables also show highly comparable results between different
versions of the Beyer et al. (2020a) model...odel outputs, even ...t
varying spatial resolution and when using different modern reference
datasets for downscaling (Appendix A Tables A2-3). The output from
the Beyer et al. (2020a) 30-min model (CRU) shows the most

to the difference in modern reference data used for debiasing. However, the,overall difference in coherence between the two

resolutions_of both outputs is judged as minimal for all three variables, particularly when controlling for the modern dataset

(Appendix A Tables A1-3),as none of the subsets of model-data comparisons highlighted statistically significant differences

between models at 30-min and 5-min resolution (Supplementary Table S1).

Our results based on all of the comparisons in the dataset highlight that the 30-min model time series of annual temperature

from Beyer et a/(2020a) debiased using CRU as the modern reference tends to estimate slightly lower temperatures than those -

produced by, proxy reconstructions (as highlighted in the negative bias results reported in Appendix A Table A1), All other

. CDeleted: original )

Jmodel outputs,de-biased using WorldClim2 (WC) at both 30- and 5-min resolution,contrastingly tend to predict higher annual

temperatures compared to proxy records. For the HadCM3 model output, the model-data coherence is not significantly

different between the 30-min and 5-min model, with less than half of the proxy records seeing improvement in coherence in

the 5-min model (49% MAT method, p = 0.4904: 46% WA-PLS method., p = 0.4961; Supplementary Table S1). Similarly.

annual temperature time series from the Beyer et al. (2020a) 30-min (CRU) simulations tend to have more error in only around
half the records compared to the higher resolution version, at 51% (MAT method, p = 0.4904) and 50% (WA-PLS method, p |
=0.4961) of proxy sites, with the Beyer et al. (2020a) 30-min (WC) having more error in slightly less than half of records
compared to the Beyer et al. (2020a) 5-min model, at only 49% (MAT method, p = 0.4904) and 47% (WA-PLS method, p =
0.4961) (Supplementary Table S1).,,

Whether models tend to predict higher or lower precipitation compared to proxy reconstructionsyaries for different subsets of

the data, though negative bias is particularly prominent in the 30-min model outputs compared to the 5-min equivalents
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3.1 Regional differences

As highlighted in Fig. 3 and Supplementary Fig. S1-2, our results demonstrate some key differences between regions. Firstly,

for annual temperature, average bias in European records is positive, suggesting model output in this region tends to

overestimate temperatures compared to proxy records, whereas for all other regions annual temperature bias is negative

(Appendix A Table Al). Asia and Europe have the highest NRMSE (indicating the highest divergence between proxy records

and model outputs) for annual temperature in the Beyer et al. (2020a) 30-min model output (CRU) (Appendix A Table Al

Supplementary Fig. S1). However, Asia sees higher model-data coherence in both types of 30-min (WC) model outputs

compared to their equivalent downscaled 5-min (WC) outputs, whereas the HadCM3 30-min model output produces very high

NRMSE for European records (Appendix A Table Al; Supplementary Fig. S1). Downscaling the HadCM3 model output for

annual temperature to a 5-min resolution has a positive impact on average coherence in Europe (Appendix A Table Al;

Supplementary Figure S1), although this effect is reflected in less than half of the pair-wise comparisons (Supplementary Table

S1). In East North America, average model-data coherence is improved by downscaling in the HadCM3 model output for

annual temperature, however the Beyer et al. (2020a) 5-min model output has higher NRMSE than the equivalent 30-min
model outputs (Appendix A Table Al; Supplementary Fig. S1).Jn West North America, the Beyer et al. (2020a) 30-min (WC)

and 5-min (WC), as well as the HadCM3 5-min (WC), model outputs for annual temperature are;more coherent with the proxy

records than ¢he Beyer et al. (2020a) 30-min (CRU) model and the HadCM3 3-min (WC) model outputs, with little difference

between the two resolutions for the Beyer et al. (2020a) model debiased with WC (Appendix A Table Al; Supplementary Fig.
S1y.

Average model-data bias for precipitation varies regionally, with Europe, West North America and East North America
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model and the Beyer et al. (2020a) 5-min model (Appendix A Table A2; Supplementary Fig. 1). Precipitation proxy
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A2: Supplementary Fig. S1)
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Supplementary Fig. 1). There is no difference in average NRMSE between resolutions of model output for July temperatures

in East North America, apart from the Beyer et al. (2020a) 30-min (CRU) model which has higher model-data divergence
(Appendix A Table A3; Supplementary Fig. 1). In Asia, downscaling the Beyer et al. (2020a) 30-min (WC) and the HadCM3

model output improves coherence, whereas in Europe these higher resolution model outputs lead to slight decreases in

coherence (Appendix A Table A3; Supplementary Fig. 1).,

Fig. 3 and Supplementary Fig. S2 highlight these spatial heterogeneities in bias across the, Northern Hemisphere, which could
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Visualisation of bias for the WA-PLS method is reported in Supplementary Figure S2,
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However, our analysis presents mixed results; for example, for annual temperature, subsets of proxy records at higher altitudes

and in regions of higher topographic roughness both have higher NRMSE for the 30-min HadCM3 model compared to the

equivalent 5-min version for the MAT method, yet for the WA-PLS method downscaling this output increases NRMSE for

records in areas of higher roughness(App endix A Table Al; Supplementary Fig. S3). Similarly, a negative effect of

downscaling on model-data coherence for locations of high roughness is observed for the Beyer et al. (2020a) 30-min model

output (WC) for both the MAT and WA-PLS method, as well as proxy reconstructions using the MAT-method in high altitude

arcas (Appendix A Table Al; Supplementary Figure S3). Annual temperature at higher elevations and topographic complexity

modelled based on Beyer et al. (2020a) 30-min (CRU) has consistently higher NRMSE compared to alternate versions of this

model output, although the 30-min HadCM3 30-min model is the most divergent from proxy records, particularly for high

altitude locations (Appendix A Table Al; Supplementary Fig. S3). In lower altitude and flat locations, downscaling the

HadCM3 model shows modest improvements in NRMSE whereas the Beyer et al. (2020a) 5-min (WC) model output is less

coherent for these subsets than the equivalent 30-min (WC) version (Appendix A Table Al: Supplementary Fig. S3). In terms

of proportions of records that show more error at coarser resolutions, the high altitude subset consistently has a net positive

impact of downscaling for annual temperature, yet no model-data comparisons highlight statistically significant differences in

coherence (Supplementary Table S1). Our results also show that proxy reconstructions tend to indicate, warmer temperatures - Deleted
relatively

: Our results highlight that in almost all scenarios the
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entary Table S1, S3), outperforming both the original Beyer

et al. (2020a) model and the further downscaled model; only the low
altitude group of records for mean annual temperature reconstructed

MAT method show the highest coherence with the further

downscaled model, but only by 0.01 which is not statistically
significant (p = 0.4896).
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that the proportion of proxy records that show higher error (NRMSE) with lower resolution models than higher resolution is
around half for all subsets according to landscape variations, indicating no statistically significant effect of further downscaling

on data-model coherence, even in areas of landscape heterogeneity (Supplementary Table S1, Fig. S3).
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3.3 Glacial versus inter-glacial variability

We then examined discrepancies in model-data coherence through time, separating time slices from the model outputs covering

=

the present day (i.e. timeslice 0), Marine Isotope Stage 1 (MIS 1; 0 — 14,000 years ago) and MIS 2 (14-29,000 years ago). In

total, 1060 records were associated with fhe present day (447 of dataset), 2363, records captured time slices in MIS 1 (99% of

series
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8

(Supplementary Table S1),
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3.4 Exploring the most divergent time series

Observing the distribution of the data in Fig. 5 and Supplementary Figures S1 and S3, we decided to segment the highest 5%

of RMSE values for each pair-wise model-data comparison for further investigation. We then amalgamated those that routinely
fall into this category for each climatic variable, representing the most divergent time series of the overall dataset for the three

parameters studied here (Appendix A Table A4). None of the individual records fall into the most divergent subset for all three

variables studied, suggesting more extreme divergence is not related to any systematic issue in the model nor the proxy at

- (Deleted: Table 2

specific, locations, We then produced 1000 bootstrapped samples (without replacement) of corresponding sample size,
ascertaining whether the observed proportion of time series in this highly divergent subset is greater than expected by random
chance (Appendix A Table A4).

To summarise, 44 records of mean annual temperature fall into the most divergent 5% of time series based on RMSE, of which

statistically significantly higher proportions of these than expected cover the present day and/or MIS 2, and/or are located in

Asia, areas of high altitude and/or low roughness (Appendix A Table A4). For mean annual precipitation, only 21 records

consistently fall in the top 5% based on RMSE, demonstrating higher inconsistency in pairwise model-data coherence between

different model versions and methods of proxy reconstruction compared to the temperature variables (Appendix A Table A4).

We found that, for this parameter, significantly higher proportions of these outliers are located in Asia and West North America

and/or in areas of high altitude and high roughness (Appendix A Table A4). Finally, for mean July temperature, 30 time series

always fall into the most divergent 5%, significantly higher proportions of which date to the present and/or MIS 2, are located

in Asia, areas of high altitude and/or areas of low topographic roughness than would be expected by chance (Appendix A
Table A4).,

Our results highlight that records spanning into MIS 2 consistently exhibit significantly higher proportions of divergent time

series across all variables (Appendix A Table A4). This may specifically be a consequence of low CO> during MIS 2, which

was not considered in LegacyClimate1.0, although this would mainly have an effect on moisture-related variables rather than

temperature. Another potential source of divergence, leading to warmer reconstructions by proxies compared to the model

outputs as well as significant deviations in precipitation, could derive from the geographic limits imposed on the

LegacyClimatel.0 proxies for the modern samples used to perform reconstructions. This is particularly problematic for the

LGM as comparable signals should be present in the modern climate space within the limit defined (2000km around each site)

which is likely unreasonable for some areas (e.g. northerly areas of Europe, see Fig. 1). Similarly, we find sites in Asia and

higher altitude areas, where modern calibration data tend to be more limited, also have more divergent time series than expected
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Table A4). Interestingly, we find that proxy records that capture the present day also occur in the most divergent subset more

often than expected for annual temperature and precipitation, however this is because many of these records also span into

MIS 2 (Appendix A Table A4).,

4 Discussion .«

Increasing the spatial resolution of model time-series, is often thought to be required to ynore accurately capture the climatic

conditions, of specific places at specific times. But what is the optimal spatial resolution for adequately detailing finer-scale
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signals? We tackle this question by testing the agreement between different model outputs and empirical reconstructions from
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pollen proxies from the Late Quaternary for annual and July temperatures and annual precipitation. Ground-truthing modelled

climate in this way is common, as proxies are considered to be the ‘gold standard’ for capturing more localised yariations in
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climatic conditions in specific places, Our results highlight that further downscaling models via the delta method to much
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were unable to demonstrate any statistically significant differences in model-data coherence between 30-min and 5-min model

resolutions in any subset of this large dataset. Overall. this implies that more downscaling may not always be the best,solution,
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Regardless of resolution, we find that model-data coherence predictably decreases with age, with more divergent time series
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output (Huntley et al. 2022) and Beyer et al’s. (2020a) Late Pleistocene and Holocene climate simulations alongside

harmonised pollen records from LegacyClimatel.0 (Herzschuh ef al. 2023), providing corresponding estimates of three key
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standardised and spatiotemporal expansive resource to address whether downscaling to higher resolutions is effective in
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a broad catchment, they may represent geographically wide averages of past climate. This could inherently make them more
compatible with coarser-level model simulations, which also capture broader landscape rather than local-level trends. Future
work should seek to expand systematic model-data comparisons on other types of harmonised proxies, as well as different

climatic models and modern references, ensuring that the equivalent bioclimatic variables are being predicted by both sources.

Qur results suggest, that using statistical methods of downscaling simulated time series to much higher resolutions does not - (l‘ leted: Whilst o

significantly improve the agreement between model output,and pollen-proxy reconstructions, yet we note that there is a trade- (Deleted: show

off between enhancing spatial resolution and increasing potential error. Such error in a given location could either be caused : (Deleted: necessarily
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by using too coarse a resolution on the one hand or by unreliable interpolation on the other. For this reason, there are likely to
be many circumstances in which it is still better to use downscaled models (with caveats), particularly when variability within

30-min cells (~55km on each side) is important (e.g. Boisard et al. 2025). For example, the identification of conditions at

specific locations within climatic extremes may be overlooked when using a model at a broader scale, such as at Late
Pleistocene archaeological site Fincha Habera in the Bale Mountains of southern Ethiopia (Groos et al. 2021). Here, lower
annual temperatures predicted by delta-downscaled models may better characterise the on-site environment than that also

incorporating environmental trends in surrounding lower altitude landscape (Timbrell et al. 2022). Other methods of increasing

model output, such as dynamical downscaling, may be better equipped for more localised applications, yet these are largely

inaccessible for consumers of model output in fields like palacoecology and archaeology where the computational costs are

impractical. Overall, we present a streamlined pipeline for delta-downscaling climate model time series within the pastclim R
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Code and data availability

The workflow to downscale climate model, outputs with the delta method has been made publicly available as functions in CDeIeted: s

pastclim. Code and data relating to this analysis, as well as a vignette for downscaling in pastclim, was made available

during the peer review of this article and can be found here: https://osf.io/dug3j/. The global downscaled models at 5-arc

minutes resolution are, stored on Zenodo: https://doi.org/10.5281/zenodo.7828453 - Cl‘ leted: is

(Deleted: hitps://doi.org/10.5281/zenodo.7828454.
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Mean July Temperature - Weighted average partial least squares (WA-PLS
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