Climate of the Past

Supplementary materials

Late Quaternary glacial maxima in Southern Patagonia: insights from the

Lago Argentino glacier lobe

Matias Romero^{1,2,3}, Shanti B. Penprase^{4,5}, Maximillian S. Van Wyk de Vries^{4,5,6,7,8,9,10}, Andrew D. Wickert^{4,5}, Andrew G. Jones³, Shaun A. Marcott³, Jorge A. Strelin^{2,11}, Mateo A. Martini^{1,2}, Tammy M. Rittenour¹², Guido Brignone¹, Mark D. Shapley¹³, Emi Ito^{4,13}, Kelly R. MacGregor¹⁴, and Marc W. Caffee^{15,16}

¹Facultad de Ciencias Exactas, Físicas y Naturales (FCEFyN), Universidad Nacional de Córdoba, Av. Haya de la Torre, Córdoba, X5000HUA, Argentina; ²Centro de Investigaciones en Ciencias de la Tierra (CICTERRA), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Córdoba, X5000IND, Argentina; ³Department of Geoscience, University of Wisconsin-Madison, Madison, Wisconsin, USA; ⁴Department of Earth Environmental Sciences, University of Minnesota, Minneapolis, MN 55455, USA; ⁵Saint Anthony Falls Laboratory, University of Minnesota, Minneapolis, MN 55455, USA; 6School of Environmental Sciences, University of Liverpool, Liverpool, L3 5DA, UK; ⁷School of Geography and the Environment, University of Oxford, Oxford OX1 3QY, UK; 8School of Geography, University of Nottingham, Nottingham, NG7 2RD, UK; ⁹Department of Geography, University of Cambridge, Cambridge CB2 3EL, UK.; ¹⁰Department of Earth Sciences, University of Cambridge, Cambridge CB3 0EZ, UK; ¹¹Sektion 4.6: Geomorphologie, Deutsches GeoForschungsZentrum (GFZ), Potsdam, 14473, Germany; ¹²Instituto Antártico Argentino, Argentina; ¹³Department of Geosciences, Utah State University, Logan, UT 84322; ¹⁴Continental Scientific Drilling Facility, Department of Earth and Environmental Sciences, University of Minnesota, Minneapolis, MN, 55455, USA; ¹⁵Department of Geology, Macalester College, Saint Paul, Minnesota 55105, USA; ¹⁶Department of Physics and Astronomy, Purdue University, West Lafayette, IN 47907, USA; ¹⁷Department of Earth, Atmospheric, and Planetary Science, Purdue University, West Lafayette, IN 47907, USA Correspondence: Matias Romero (mromero6@wisc.edu)

List of tables and figures

Table S1: Cosmogenic nuclide surface exposure ages calculated with different erosion rates. Table S2: ¹⁰Be blank data.

Figure S1: A) Aerial orthomosaic of the upper Rio Santa Cruz basin. B) Mapped extent.

Figure S2: A) Direction and length of mapped glacial lineations. B) Histogram of mapped landforms according to their different depositional environments.

Figure S3: Mapped vs not mapped comparison of the most representative landforms identified in this study.

Figure S4: Erosional and depositional features identified in the field and by satellite imagery.

Figure S5: Probability distribution functions of the three moraine complexes sampled and dated.

Figure S7: Probability distribution functions of the three moraine complexes dated along with the distributions obtained for different erosion rates.

Figure S8: IRSL age distributions.

References.

Table S1: ¹⁰Be ages for boulders sampled from the three moraine complexes in this study. We report the ages according to the different scaling schemes time dependent scaling (Lm: Lal, 1991; Stone, 2000), the non-time-dependent scaling (St: Stone, 2000; Lal, 1991), and the LSDn scaling scheme developed by Lifton et al. (2014) along with 1sigma internal uncertainty. We calculate these ages with three different erosion rates as a part of a sensitivity test with published erosion rates in Patagonia ranging from 0.2–1.4 mm/ka according to Douglass et al. (2006) and Kaplan et al. (2005), respectively. These ages were calculated using a local production rate developed for the late Glacial chronology at Lago Argentino (3.71 ± 0.11 atoms/g/yr: Kaplan et al., 2011).

Sample	Age (ka) - St	Age (ka) - Lm	Age (ka) - LDSn	Age (ka) - St	Age (ka) - Lm	Age (ka) - LDSn	Age (ka) - St	Age (ka) - Lm	Age (ka) - LDSn
	Erosion rate = 0 mm/yr			Erosion rate = 0.2 mm/yr			Erosion rate = 1.4 mm/yr		
Arroyo Verde II									
AV-001	258.04 ± 12.26	250.07 ± 11.86	243.05 ± 11.50	259.18 ± 12.37	251.15 ± 11.96	244.06 ± 11.60	266.34 ± 13.09	257.86 ± 12.63	250.40 ± 12.23
AV-002	139.40 ± 6.59	135.59 ± 6.41	132.10 ± 6.24	139.73 ± 6.63	135.90 ± 6.44	132.40 ± 6.27	141.73 ± 6.82	137.79 ± 6.62	134185 ± 6440
AV-003	172.62 ± 8.31	167.79 ± 8.06	163.59 ± 7.85	173.13 ± 8.35	168.27 ± 8.11	164.04 ± 7.90	176.23 ± 8.67	171.19 ± 8.40	166.83 ± 8.17
AV-004	172.13 ± 8.39	167.21 ± 8.14	163.15 ± 7.93	172.63 ± 8.44	167.68 ± 8.19	163.61 ± 7.99	175.72 ± 8.75	170.59 ± 8.48	166.39 ± 8.26
El Tranquilo II									
ET-002	61.44 ± 3.09	60.18 ± 3.03	59.14 ± 2.97	61.50 ± 3.10	60.24 ± 3.03	59.20 ± 2.98	61.88 ± 3.14	60.60 ± 3.07	59.54 ± 3.02
ET-004	35.69 ± 2.44	34.99 ± 2.39	34.39 ± 2.35	35.67 ± 2.44	35.01 ± 2.40	34.42 ± 2.35	35.83 ± 2.46	35.13 ± 2.41	34.53 ± 2.37
ET-006	32.02 ± 2.20	31.41 ± 2.16	30.86 ± 2.12	32.04 ± 2.20	31.43 ± 2.16	30.88 ± 2.12	32.14 ± 2.22	31.523 ± 2.17	30.98 ± 2.14
ET-012	44.64 ± 2.16	43.68 ± 21.15	42.79 ± 2.07	44.67 ± 2.16	43.72 ± 2.12	42.82 ± 2.08	44.87 ± 2.19	43.91 ± 2.14	43.00 ± 2.09
ET-013	38.49 ± 6.04	37.72 ± 5.92	37.10 ± 5.82	38.51 ± 6.05	37.75 ± 5.93	37.13 ± 5.83	38.66 ± 6.10	37.88 ± 5.97	37.26 ± 5.87
ET-014	47.83 ± 2.88	46.78 ± 2.82	45.84 ± 2.77	47.87 ± 2.89	46.82 ± 2.83	45.88 ± 2.77	48.10 ± 2.92	47047 ± 2854	46.09 ± 2.80
ET-017	39.04 ± 2.46	38.27 ± 2.42	37.60 ± 2.37	39.06 ± 2.47	38.29 ± 2.42	37.62 ± 2.38	39.21 ± 2.49	38.43 ± 2.44	37.75 ± 2.39
ET-018	28.69 ± 1.59	28.20 ± 1.57	27.73 ± 1.54	28.70 ± 1.60	28.21 ± 1.57	27.75 ± 1.54	28.79 ± 1.61	28.29 ± 1.58	27.82 ± 1.55
El Tranquilo I									
ET-007	39.18 ± 1.96	38.39 ± 1.92	37.76 ± 1.89	39.20 ± 1.97	38.42 ± 1.93	37.79 ± 1.89	39.35 ± 1.98	38.56 ± 1.94	37.93 ± 1.91
ET-008	38.60 ± 1.96	37.84 ± 1.91	37.22 ± 1.89	38.63 ± 1.96	37.86 ± 1.92	37.24 ± 1.89	38.78 ± 1.98	38.01 ± 1.94	37.38 ± 1.90
ET-009	37.04 ± 1.85	36.32 ± 1.82	35.74 ± 1.78	37.07 ± 1.86	36.34 ± 1.82	35.76 ± 1.79	37.20 ± 1.87	36.47 ± 1.83	35.89 ± 1.80
ET-010	39.20 ± 1.90	38.41 ± 1.86	37.78 ± 1.83	39.22 ± 1.90	38.43 ± 1.87	37.81 ± 1.83	39.38 ± 1.92	38.58 ± 1.88	37.95 ± 1.85
ET-011	36.49 ± 2.26	35.78 ± 2.21	35.21 ± 2.18	36.51 ± 2.26	35.80 ± 2.22	35.23 ± 2.18	36.64 ± 2.28	35.93 ± 2.23	35.35 ± 2.20
LA-01	37.13 ± 2.66	36.38 ± 2.61	35.76 ± 2.56	37.15 ± 2.67	36.40 ± 2.6	35.78 ± 2.57	37.29 ± 2.69	36.53 ± 2.63	35.90 ± 2.59

Table S2. ¹⁰ Be	Blank Dat	1σ.								
Blank ID	⁹ Be Added (g)	¹⁰ Be/ ⁹ Be ^a	Uncertainty	¹⁰ Be (10 ⁴ atoms)	Uncertaint y (10 ⁴ atoms)					
Blank_34-1	0.7697	1.06E-15	3.55E-16	1.377247	0.459392					
Blank_34-2	0.7699	1.24E-15	3.59E-16	1.608174	0.464404					
Blank_34-3	0.7689	6.17E-16	3.43E-16	0.798183	0.44401					
Blank_34-4	0.7673	7.73E-16	5.28E-16	0.997466	0.680543					
Blank_34-5	0.7651	6.94E-16	5.45E-16	0.892893	0.70129					
Blank_34-6	0.7657	9.46E-16	5.33E-16	1.217989	0.685859					
Blank_45-2	0.7652	2.33E-15	8.23E-16	2.992946	1.058384					
Blank_45-9	0.7646	6.78E-16	9.77E-16	0.871739	1.256187					
^a Measured relative to standard 07KNSTD with an assumed $^{10}Be/^{9}Be$ ratio of 2.85 x 10 ⁻¹²										
(Nishiizumi et a	I., 2007).									
^b Carrier used C	SUWhite (2	251.6 ppm								

Fig. S 2

Fig. S 3

Fig. S 5

Fig. S 6

References

Douglass, D. C., Singer, B. S., Kaplan, M. R., Mickelson, D. M., and Caffee, M. W. (2006). Cosmogenic nuclide surface exposure dating of boulders on last-glacial and late-glacial moraines, Lago Buenos Aires, Argentina: Interpretive strategies and paleoclimate implications. Quaternary Geochronology, 1(1):43–58.

Kaplan, M. R., Douglass, D. C., Singer, B. S., Ackert, R. P., and Caffee, M. W. (2005). Cosmogenic nuclide chronology of pre-last glacial maximum moraines at Lago Buenos Aires, 46S, Argentina. Quaternary Research, 63(3):301–315.

Kaplan, M. R., Strelin, J. A., Schaefer, J. M., Denton, G. H., Finkel, R. C., Schwartz, R., Putnam, A. E., Vandergoes, M. J., Goehring, B. M., and Travis, S. G. (2011). In-situ cosmogenic 10Be production rate at Lago Argentino, Patagonia: Implications for late-glacial climate chronology. Earth and Planetary Science Letters, 309(1-2):21–32.

Lal, D. (1991). Cosmic ray labeling of erosion surfaces: in situ nuclide production rates and erosion models. Earth and Planetary Science Letters, 104(2-4):424–439.

Lifton, N., Sato, T., and Dunai, T. J. (2014). Scaling in situ cosmogenic nuclide production rates using analytical approximations to atmospheric cosmic-ray fluxes. Earth and Planetary Science Letters, 386:149–160.

Stone, J. O. (2000). Air pressure and cosmogenic isotope production. Journal of Geophysical Research: Solid Earth, 105(B10):23753–23759.