SUPPLEMENTARY FIGURES AND TABLES TO THE PAPER

Orbitally forced environmental changes during the accumulation of a Pliensbachian (Lower Jurassic) black shale in northern Iberia

Naroa Martinez-Braceras^{1,2}; Aitor Payros¹; Jaume Dinarès-Turell³; Idoia Rosales⁴; Javier Arostegi¹ and Roi Silva-Casal⁵

¹Department of Geology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), P.O. Box 644, 48080 Bilbao, Spain

²Laboratorio de Evolución Humana, Departamento de Historia, Geografía y Comunicación, Universidad de Burgos, Edificio I+D+I, Plaza de Misael Bañuelos/n, 09001 Burgos, Spain

³Istituto Nazionale di Geofisica e Vulcanologia, Via di Vigna Murata 605, 00142 Rome, Italy

⁴Centro Nacional Instituto Geológico y Minero de España (IGME, CSIC), La Calera 1, Tres Cantos, 28760 Madrid, Spain

⁵Dpto. Dinàmica de la Terra i de l'Oceà, Facultat de Ciències de la Terra, Universitat de Barcelona, 08028 Barcelona, Spain.

List of Figures

Figure S1	1
Figure S2	2
Figure S3	3
Figure S4	4
Figure S5	5
Figure S6	6
List of Tables	
Table S1	7
Table S2	14
Table S3	15
Table S4	17
Table S5	19

Figure S1. A) Geological map of the Santiurde de Reinosa area, where the herein studied motorway section (B) and the train station section studied by others (C) are located. Calcareous couplets in both Santiurde outcrops are numered in white and bundles B8-B11 in green. Bed by-bed correlation between separate and discontinuous outcrops was carried out on visual grounds, by the identification of key beds with distinctive sedimentary features (mainly lithology and thickness) and characteristic bed arrangements in the succession.

24

Black shale interval 1 Santiurde de Reinosa (motorway

antiurde de Reinosa (train stațio

Figure S2. Stratigraphic log and chronostratigraphy of the studied section, showing the MS and colour data curves. Bundles (B) and couplets (C) identified in the sedimentary alternation are numbered in ascending stratigraphic order. The grey background shows the extent of the Uptonia jamesoni Black Shale 1, and the pink interval in its upper part shows the interval studied herein in detail. Close-ups of the colour and $%CaCO_3$ curves of the interval studied in detail are shown, as well as the crossplot of both variables and their Pearson correlation value (r). Crossplots of colour vs MS of the complete section and $%CaCO_3$ vs MS of the interval studied in detail are also shown.

Normalized MS (m/kg)

Figure S3. A) Thermomagnetic curve of a limestone sample (C43L) indicating the presence of an original ferromagnetic phase (magnetite). Secondary magnetic iron sulfides (pyrrhotite?) are created upon heating the sample up to 700°C as inferred from the cooling curve. B) Isothermal remanent magnetization (IRM) acquisition curves for a limestone (C43L) ans marl (C43M) samples compatible with magnetite as the ferromagnetic carrier. Note the higher saturation remanence for the limestone sample.

Figure S4. Stratigraphic log and chronostratigraphy of the studied section, showing the detrended MS curve. Bundles (B) and couplets (C) identified in the sedimentary alternation are numbered in ascending stratigraphic order. The 2n-MTM and EHA spectra of the MS data series are presented.

Limestones usually present higher magnetic susceptibility values than adjacent marls/shales. However, the MS data series displays a greater dispersion and a spikier appearance than the colour and %CaCO₃ data series, which very likely explains the low correlation coefficient between the MS data series and the colour and %CaCO₃ data series (Fig. S2). The MS signal is mainly carried by magnetite content (Fig.S3), which could be either detrital in origin or related to postdepositional changes in redox state. The influence of early diagenetic processes, such as partial replacement of pyrite with iron oxides at more oxygenated conditions, might explain the high variability of the MS curve. Notwithstanding the potential flaws of the MS data series, the spectral analysis shows that it records a significant periodicity with an average thickness equivalent to that of precession couplets. Despite being less prominent, cycles correlatable with those attributed to obliquity(?), short eccentricity (bundles) and long eccentricity in the colour spectral analysis series can also be identified in the MS spectra.

Figures S5. A) Bulk stable isotope composition of the Santiurde succession. Note that samples are organized following the normal diagenetic trend controlled by local carbonate dissolution and reprecipitation during burial. B) Crossplot of $\delta^{13}C_{carb}$ and %CaCO₃ content of the interval studied in detail (limestone and marly limestone samples: white dots; marl and shale samples: black dots).

Figure S6. Crossplots between several diagenetic sensitive elements (Fe, Mn, Sr and ¹⁸O_{carb}).

Table S1. Stratigraphic location of the Santiurde samples and their mass-normalized low-field magnetic susceptibility (MS) and colours (mean RGB) values.

Stratigraphic	Sample	Normalized	Colour (mean RGB)
0.17	ST99	1.67442E-05	138.99
0.27	ST100	1.5824E-05	137.081
0.37	ST101	1.63145E-05	133,206
0.43	ST102	1.00110E 00	130.76
0.48	ST103	1.35599E-05	146 978
0.10	ST104	1.62909E-05	145 736
0.58	ST105	1.56725E-05	152.26
0.63	ST106	1.25637E-05	137 437
0.66	ST107	1.20007E-05	137 996
0.69	ST108	1.16674E-05	150 653
0.00	ST109	1 19349E-05	150 601
0.79	ST110	1.10010E 00	158 476
0.75	ST111	1.00700E 00	139 377
0.00	ST112	8 77446E-06	121 155
0.00	ST113	1 1//79E-05	1/2 776
1.00	ST11/	1.14479E-05	142.770
1.03	ST115	1.29000E-05	142 122
1.21	ST116	0.27002E-06	143.122
1.20	ST117	9.27092E-00	77.076
1.32	ST112	0.71265E.06	121 092
1.33	ST110	9.7 1303E-00	121.902
1.4	ST19	1.04224E-05	121.994
1.40	ST120	1.37901E-05	130.09
1.52	ST121	1.19297E-05	152.407
1.57	ST122	1.11972E-05	138.032
1.0	ST123	1.08411E-05	134.172
1.03	ST124	1.02444E-05	88.85
1.71	ST125	1.31528E-05	136.667
1.82	ST126	1.14434E-05	142.014
1.93	ST127	1.08706E-05	140.868
2	ST128	1.08632E-05	113.397
2.03	ST129	9.45017E-06	130.765
2.06	ST130	1.12191E-05	118.475
2.1	ST131	1.13269E-05	115.795
2.13	ST132	1.139E-05	114.045
2.16	ST133	1.17406E-05	125.946
2.19	ST134	1.15517E-05	115.138
2.21	51135	7.94355E-06	107.688
2.23	51136	1.15176E-05	no data
2.25	51137	9.75741E-06	97.151
2.3	ST138	1.0324E-05	91.159
2.33	ST139	9.77143E-06	87.5
2.36	ST140	7.97792E-06	86.845
2.4	51141	1.30297E-05	125.475
2.45	51142	1.409/7E-05	125.018
2.5	51143	1.1/9/3E-05	105.376
2.57	51144	7.66919E-06	74.267
2.6	51145	7.8318E-06	74.381
2.66	51146	7.61/1/E-06	/9.095
2.72	51147	8.00354E-06	79.64
2.78	51148	7.51443E-06	74.741
2.84	ISI149	7.54457E-06	76.958

2.9	ST150	7.7758E-06	72.247
2.96	ST151	7.46452E-06	82.71
3.02	ST152	7.61998E-06	87.29
3.08	ST153	7.70374E-06	88.963
3.11	ST154	7.96278E-06	105.022
3.15	ST155	9.04677E-06	103.19
3.19	ST156	5.14505E-06	117.398
3.24	ST157	7.46569E-06	76.518
3.3	ST158	7.27616E-06	79.128
3.36	ST159	6.78114E-06	77.547
3.42	ST160	7.07834E-06	75.285
3.48	ST161	6.89781E-06	77.862
3.54	ST162	6.12822E-06	73.574
3.6	ST163	6.90624E-06	75.942
3.66	ST164	6.97805E-06	74.878
3.72	ST165	6.87322E-06	82.012
3.78	ST166	7.01549E-06	86.408
3.84	ST167	7.05331E-06	80,169
3.9	ST168	7.30004E-06	78.327
3.96	ST169	6.95972E-06	77.523
4 03	ST170	7 0984E-06	100 508
4 09	ST171	9 78964E-06	111 107
4 15	ST172	7 40183E-06	99.022
4.13	ST173	7.23596E-06	79 952
4.21	ST174	7.23330E-00	77 786
4.27	ST175	7.10102E 00	78 835
4.30	ST176	7.07744E-00	80 258
4.55	ST177	7.1/207E-00	83.012
4 51	ST178	7.14103E 00	84 048
4 57	ST179	7.85471E-06	84 834
4.63	ST180	7.69114E-06	79 104
4 69	ST181	7 25102E-06	79 565
4 75	ST182	7.57999E-06	80.9
4 81	ST183	7 7201E-06	83 913
4 87	ST184	8.33228E-06	83 611
4 93	ST185	7.33936E-06	80.676
5.01	ST186	7.44357E-06	102 363
5.07	ST187	9 56652E-06	117 983
5.07	ST188	5.0797E-06	107 729
5.13	ST1	7 935955-06	86 807
5 31	ST2	8 18208E-06	Q1 896
5.01	ST3	7 74231F-06	86 796
5.40	ST4	7 891235-06	106 560
5.49	ST5	7 68375-00	100.009
5.55	ST6	8 1713 -00	78 804
5.0	ST7	8 701575 00	21 74
5.05	STR	7 662475 00	01.74 70 924
5.71	STO	8 37142E 06	10.021
5.70	ST3	9 715125 00	107.110
0.C	ST10	8 55021E 00	100.010
5.04	QT10	0.00001E-00	60.960
5.00	QT12	9 50240E 00	03.000
5.92	ST13	0.00249E-00	01.070
5.97	ST14	0.00990E-00	00.325
6.01	ST15	0.101/0E-00	75.16
6.06	S110		79.528
6.1	ST1/	0.0/142E-06	73.414

1			
6.15	ST18	8.72787E-06	81.323
6.2	ST19	8.62469E-06	78.148
6.25	ST20	9.49319E-06	80.262
6.3	ST21	9.2451E-06	80.422
6.35	ST22	9.3249E-06	75.93
6.4	ST23	9.26533E-06	76.294
6.45	ST24	8.85747E-06	76.256
6.5	ST25	8 18453E-06	79.358
6.55	ST26	9.06685E-06	76 077
6.6	ST27	1 00343E-05	81 543
6.65	ST28	9 99865E-06	80 485
6.7	ST20	9.99003E-00	80.172
6.75	ST20	9.09109E-00	03.172
6.75	ST30	9.00032E-00	90.629
0.0	0101	9.10224E-00	00.020
6.80	S132	8.43888E-06	76.773
6.9	5133	8.16577E-06	//.66/
6.95	ST34	9.66771E-06	84.902
7	5135	9.8878E-06	91.912
7.04	S136	9.753E-06	95.607
7.09	ST37	9.2761E-06	79.758
7.13	ST38	1.0259E-05	91.171
7.18	ST39	8.42434E-06	79.047
7.25	ST40	8.35561E-06	115.406
7.36	ST41	1.14253E-05	133.291
7.46	ST42	1.08799E-05	118.286
7.55	ST43	8.18621E-06	79.894
7.61	ST44	9.47207E-06	84.544
7.65	ST45	1.12552E-05	123.898
7.68	ST46	1.1429E-05	108.122
7.73	ST47	1.16688E-05	87.406
7.8	ST48	9.66985E-06	77.31
7.87	ST49	9.91593E-06	83.204
7.94	ST50	9.97166E-06	81.649
8.01	ST51	1.05895E-05	80.943
8.08	ST52	1.21341E-05	85.481
8.15	ST53	1.17715E-05	80.455
8.22	ST54	1.20708E-05	78.955
8 29	ST55	9.92636F-06	79 432
8.36	ST56	1.04424F-05	78 515
8.45	ST57	1 19055E-05	101 533
8.57	ST58	1 15113E-05	108.355
8 60	ST59	1.30147E-05	115 570
Q 70	ST60	9 058655-06	82 011
0.79	ST61	8 86627= 06	85 502
0.07	STE2	1 009255 05	00.092
0.95	0102 0T62		33.024
9.02	S103	1.00115E-05	114.408
9.09	S104	1.09077E-05	119.076
9.16	51189	1.0/8//E-05	88.14
9.22	51190	9.46597E-06	85.508
9.28	SI 191	8.97564E-06	91.347
9.33	ST192	1.18215E-05	128.457
9.38	ST193	1.19446E-05	122.547
9.43	ST194	1.09268E-05	115.89
9.51	ST195	1.23776E-05	107.021
9.58	ST196	1.00012E-05	91.934
9.65	ST197	8.18969E-06	83.05

1			
9.72	ST198	1.22044E-05	92.845
9.78	ST199	1.27715E-05	116.819
9.84	ST200	1.27046E-05	115.668
9.89	ST201	7.93999E-06	83.428
9.94	ST202	7.99671E-06	82.552
9.99	ST203	7.90253E-06	82.98
10.05	ST204	8.24674E-06	86.51
10.1	ST205	8.04087E-06	87.778
10.15	ST206	8 44073E-06	91 075
10.21	ST207	7 58551E-06	85.86
10.21	ST208	7 91025E-06	80 533
10.20	ST200	7.85355E-06	75 655
10.31	ST65	1.00000E-00	105 531
10.30	ST66	1.1007E-05	110 721
10.43	ST00	1.13003E-05	114.462
10.40	S107	1.07674E-05	07.511
10.53	S100	9.09079E-00	07.311
10.58	5169	7.6928E-06	84.417
10.63	ST70	1.09187E-05	120.9
10.7	ST/1	1.1201E-05	128.075
10.77	ST/2	1.19598E-05	136.735
10.84	ST73	1.12305E-05	130.755
10.89	ST74	1.09638E-05	113.094
10.94	ST75	8.06623E-06	84.837
10.98	ST76	6.26965E-06	82.936
11.04	ST77	1.11663E-05	114.485
11.1	ST78	1.14269E-05	120.731
11.16	ST79	1.25556E-05	104.451
11.23	ST80	9.53234E-06	96.407
11.27	ST81	7.39764E-06	77.815
11.31	ST82	6.38315E-06	78.569
11.37	ST83	8.75142E-06	152.745
11.47	ST84	1.01356E-05	143.102
11.57	ST85	9.27965E-06	136.267
11.66	ST86	1.28295E-05	129.376
11.73	ST87	1.01102E-05	88.858
11.79	ST88	7.61266E-06	77.67
11.85	ST89	8.5893E-06	85.953
11.91	ST90	1.28525E-05	136.919
11.97	ST91	1.30793E-05	140.868
12.03	ST92	1.113E-05	137.7
12.09	ST93	9.73047E-06	104.51
12.14	ST94	9.13617E-06	88.701
12 19	ST95	7,70385E-06	104 078
12.15	ST96	1 12064F-05	133 795
12.23	ST97	1 17248F-05	142 358
12.01	STOR	1 187085-05	125 802
12.57	ST18M2	1 000355-05	107 727
12.44	ST18M2	9 001565 00	Q1 012
12.0	QT10M4	1 129645 05	74 070
12.56	ST 101V14	1.13004E-05	11.278
12.63	STIKLZ	1.22484E-05	138.899
12.69	ST18L3	1.16443E-05	129.432
12.75	S118L4	1.05336E-05	123.85
12.82	ST19MA2	8.28635E-06	100.254
12.88	5119MA3	8.07623E-06	/5.848
12.94	SI19MA4	9.72744E-06	85.176
13.01	ST19LA2	1.19423E-05	79.168

13.07	ST19LA3	1.17094E-05	86.651				
13.13	ST19LA4	1.13249E-05	80.423				
13.2	ST19MB2	1.10742E-05	79.779				
13.27	ST19MB3	1.03205E-05	77.346				
13.34	ST19MB4	1.10632E-05	81.087				
13.4	ST19LB2	1.15623E-05	83.508				
13.46	ST19LB3	1.35367E-05	87 163				
13.52	ST19LB4	1 16045E-05	92.032				
13.59	ST10CM2	1.09047E-05	79.679				
13.65	ST10CM2	0.17035E-06	78.186				
13.00	ST10CM/	9.17933E-00	70.100				
12.70	ST130102	1 1909E 05	110 776				
13.79	ST 19LC2	1.1000E-05	112.770				
13.07	STIBLUS	1.31122E-05	100.00				
13.95	5119LC4	1.04412E-05	120.001				
14.01	ST20M1	8.56562E-06	109.035				
14.04	ST20M2	6.88485E-06	83.838				
14.07	S120M3	8.40984E-06	96.422				
14.12	S120L2	8.95915E-06	126.716				
14.17	ST20L3	9.93804E-06	134.469				
14.22	ST20L4	8.24838E-06	127.525				
14.28	ST21M2	1.15677E-05	94.24				
14.35	ST21M3	8.66368E-06	73.626				
14.42	ST21M4	9.02189E-06	82.293				
14.49	ST21L2	1.19172E-05	123.862				
14.54	ST21L3	1.26382E-05	131.778				
14.59	ST21L4	9.96197E-06	130.698				
14.67	ST22MA2	9.32953E-06	94.412				
14.74	ST22MA4	8.53489E-06	78.651				
14.81	ST22MA5	9.66145E-06	74.388				
14.86	ST22LA2	1.22212E-05	100.578				
14.89	ST22LA3	1.30771E-05	98.638				
14.92	ST22LA4	1.29555E-05	96.336				
14.98	ST22MB3	1.17551E-05	88.162				
15.08	ST22MB5	1.0528E-05	87.358				
15.18	ST22MB7	1.12813E-05	83.946				
15.25	ST22LB2	1.10754E-05	111.741				
15.28	ST22LB3	1.30442E-05	111.783				
15.31	ST22LB4	1.16427E-05	102.544				
15.36	ST22MC1	1 15868E-05	89 71				
15.00	ST22MC2	1.0525E-05	88 209				
15.5	ST22MC3	no data	88 811				
15 55	ST22L000	no data	117 445				
15.50	ST22L01	1 102335-05	128 805				
15.50	ST22L02	1 362035-05	132 062				
15.00	ST22L03	0.63581E-06	136 777				
15.73	0122L04	9.03301E-00	130.777				
10.79	240	0.105203E-05	00.19				
10.00	241	3.10001E-00	03.013				
10.91	242	1.07007 E-05	406.070				
15.97	243	1.03059E-05	106.976				
16.02	244	1.19/69E-05	111./13				
16.07	245	1.12663E-05	105.761				
16.14	246	9.73822E-06	87.226				
16.22	247	8.64768E-06	79.015				
16.3	248	6.4875E-06	77.376				
16.35	249	9.0188E-06	81.829				
16.4	250	1.10888E-05	112.454				

16.45	251	1.08155E-05	114.033				
16.5	252	1.00186E-05	93.459				
16.55	253	9.81145E-06	83.411				
16.6	254	9.68022E-06	80.324				
16.65	255	1.05962E-05	84.825				
16.7	256	1.00006E-05	80.944				
16.75	257	1.2269E-05	86.286				
16.8	258	1.17738E-05	86.618				
16.85	259	1.05164E-05	82.71				
16.9	260	1.13241E-05	80.845				
16.95	261	1.10792E-05	81.754				
17	262	1.13184E-05	81.712				
17.05	263	1.17266E-05	90.586				
17.1	264	1.10982E-05	92.71				
17.15	ST24MC3	no data	90.243				
17.19	ST24L2	0.00001	113.907				
17 25	ST24L3	1 10792E-05	119.58				
17.31	ST24L4	8.50817F-06	121 363				
17.38	ST268	9.66138F-06	109 906				
17.60	ST269	7.2209E-06	92 909				
17.54	ST270	7 21123E-06	122.000				
17.6	ST271	7.21123E-00	112 022				
17.63	ST272	9.57486E-06	123.8/1				
17.65	ST273	9.07400E-00	118 /06				
17.00	ST274	1.0908E-05	107 153				
17.75	ST274	8 00115E 06	05.91				
17.03	ST275	0.00113E-00	95.81				
18.06	ST270	9.007E-00	90.001				
18.00	QT279	1 14202E 05	115 114				
18.09	ST270	1.14392E-05	120 122				
18.16	ST280	8 18408E-06	106 101				
18.10	ST200	7.42684E.06	121.074				
18.26	ST282	7.43004E-00	136.401				
19.20	ST202	7.90032E-00	100.491				
19.32	ST203	1.30904E-00	123.721				
10.33	ST204	0.02415E.06	137.742				
10.30	ST200 ST206	0.02413E-00	137.403				
10.42	01200 0T207	9.12400E-00	139.473				
10.47	ST207	1.00197E-06	130.792				
10.52	ST200	1.03062E-05	141.194				
18.6	ST200		143.401				
10.7	ST290	0.09092E-00	140.393				
10.78	ST291	3.00014E-00	131.594				
18.83	ST292	7.80432E-06	104.158				
18.88	ST293	9.21539E-06	138.488				
18.94	S1294	8.22598E-06	137.03				
19.01	S1295	9.40489E-06	139.943				
19.08	51296	1.00384E-05	121.654				
19.16	51297	8.08/86E-06	104.215				
19.24	S1298	7.93829E-06	100.848				
19.31	S1299	1.08363E-05	135.918				
19.38	S1300	1.1977E-05	142.815				
19.45	S1301	8.61761E-06	138.217				
19.52	S1302	9.79555E-06	148.616				
19.58	ST303	1.00304E-05	105.657				
19.64	ST304	8.5068E-06	84.758				
19.71	ST305	1.0782E-05	100.607				

19.78	ST306	1.26806E-05	122.273
19.87	ST307	1.18391E-05	113.48
19.95	ST308	8.68172E-06	88.704
20.03	ST309	8.42959E-06	81.464
20.11	ST310	1.1565E-05	127.869
20.19	ST311	9.0031E-06	139.74
20.24	ST312	1.16767E-05	131.266
20.27	ST313	1.02706E-05	102.468
20.3	ST314	9.10602E-06	82.365
20.37	ST315	1.02091E-05	145.283
20.46	ST316	1.23915E-05	158.989
20.55	ST317	9.06889E-06	147.858
20.63	ST318	1.06683E-05	122.359
20.7	ST319	8.84106E-06	90.673
20.77	ST320	8.47331E-06	89.228
20.83	ST321	9.28094E-06	95.702
20.88	ST322	1.21715E-05	127.544
20.93	ST323	1.05003E-05	114.968
21.01	ST324	9.09551E-06	101.088
21.1	ST325	8.57903E-06	84.141
21.19	ST326	9.14246E-06	80.179
21.26	ST327	1.1917E-05	102.259
21.3	ST328	8.46159E-06	139.61
21.34	ST329	1.10946E-05	123.08
21.39	ST330	9.67204E-06	90.013
21.46	ST331	7.9265E-06	75.234
21.53	ST332	6.81239E-06	76.673
21.61	ST333	1.16855E-05	140.002
21.69	ST334	1.45418E-05	147.725
21.78	ST335	8.59826E-06	137.585
21.84	ST336	1.13629E-05	102.931
21.89	ST337	9.75887E-06	91.144
21.94	ST338	8.72187E-06	72.726
22	ST339	1.10461E-05	89.264
22.06	ST340	1.30876E-05	84.428
22.11	ST341	1.17539E-05	110.752
22.19	ST342	9.23814E-06	82.476
22.26	ST343	9.01362E-06	81.369
22.33	ST344	1.06887E-05	84.002
22.4	ST345	1.11698E-05	84.704
22.44	ST346	1.34191E-05	109.739
22.48	ST347	1.28092E-05	110.236

	Strat	Bed	1/1/1			Whole-ro	Organic geochemistry						
Bed	high (m)	thickness (cm)	ratio	%Quartz	%Clays	%Calcite	%Gypsum	%Dolomite	%Pyrite	% Nara	δ ¹⁵ N _{org}	% Com	δ ¹³ Corg(%a)
ST 18M	12.5	20		13	<i>A</i> 1	36	1	0	Q		2.63	1 Q/	-28.90
ST 18	12.0	10	0.05	5	0	83	0	0	3	0.07	2.05	0.38	-20.30
ST 18AM	12.09	19	0.95	10	3	22	1	0	0	0.02	2.03	0.00	-21.19
	12.00	19	4 00	13	44	55		0	9	0.09	3.09	2.00	-29.00
STIBAL	13.07	19	1.00	9	32	57	0	0	2	0.06	1.69	2.78	-28.74
ST 18BM	13.27	20	-	10	35	45	1	0.5	9	0.08	2.76	3.30	-29.17
ST 18BL	13.46	19	0.95	9	25	61	0	1	4	0.05	2.00	1.63	-28.29
ST 19M	13.65	20		11	40	44	1	0	4	0.07	2.90	2.84	-29.27
ST 19L	13.87	23	1.15	3	11	84	0	0	2	0.02	1.05	0.30	-27.64
ST 20M	14.04	11		12	50	28	0	4	6	0.09	3.11	2.54	-29.14
ST 20L	14.17	15	1.36	3	13	82	0	0	2	0.02	2.44	0.26	-27.22
ST 21M	14.35	21		12	45	32	1	2	8	0.09	3.18	3.41	-29.56
ST 21L	14.54	17	0.81	4	15	79	0	0	2	0.02	2.78	0.30	-27.68
ST 21AM	14.74	22		10	37	44	0.5	2	7	0.08	3.21	4.03	-29.48
ST 21AL	14.89	8	0.36	10	29	55	0	2	4	0.04	1.90	1.00	-27.78
ST 21BM	15.08	30		9	43	48	0.5	0	0.5	0.07	2.95	2.30	-28.91
ST 21BL	15.28	10	0.33	10	30	54	0	2	4	0.04	2.07	1.02	-28.03
ST 22M	15.43	20		10	47	38	0	2	3	0.07	2.80	2.35	-29.21
ST 22L	15.73	23	1.15	3	14	81	0	0	2	0.02	1.96	0.37	-27.95
ST 22AM	15.85	19		12	48	36	0	0	4	0.08	2.96	2.58	-29.05

Table S2. Bed thickness and limestone-marl thickness ratio of each couplet of the Santiurde interval studied in detail. Stratigraphic location of the samples and their whole-rock mineralogy and organic geochemistry

Strat general (m)	Sample code	CaCO3 (%)	$\delta^{13}C_{carb}$ (‰)	δ ¹⁸ O _{carb} (‰)
12.44	ST18M2	41.14	-0.298	-5.504
12.5	ST18M3	27.35	-0.029	-5.351
12.56	ST18M4	29.33	0.696	-5.562
12.63	ST18L2	78.76	-1.495	-5.376
12.69	ST18L3	88.97	-0.753	-5.75
12.75	ST18L4	77.84	-0.577	-5.663
12.82	ST19MA2	30.6	-0.355	-5.668
12.88	ST19MA3	24.63	-0.174	-5.453
12.94	ST19MA4	28.33	-0.105	-5.574
13.01	ST19LA2	32.26	-0.07	-5.498
13.07	ST19LA3	48.41	0.031	-5.477
13.13	ST19LA4	42.91	-0.016	-5.246
13.2	ST19MB2	34.69	-0.237	-5.673
13.27	ST19MB3	37.07	0.001	-5.535
13.34	ST19MB4	38.37	-0.057	-5.547
13.4	ST19LB2	56.42	-0.031	-5.497
13.46	ST19LB3	55.78	0.008	-5.398
13.52	ST19LB4	57.05	-0.211	-5.487
13.59	ST19CM2	43.05	-0.183	-5.492
13.65	ST19CM3	36.17	0.026	-5.594
13.71	ST19CM4	45.33	-0.034	-5.291
13.79	ST19LC2	50.09	-0.767	-5.698
13.87	ST19LC3	81.97	-1.093	-5.451
13.95	ST19LC4	78.53	-0.612	-5.664
14.01	ST20M1	35.91	-0.292	-5.555
14.04	ST20M2	26.05	-0.444	-5.416
14.07	ST20M3	40.47	-0.088	-5.407
14.12	ST20L2	81.83	-1.015	-5.649
14.17	ST20L3	81.59	-1.026	-5.658
14.22	ST20L4	77.23	-0.549	-5.649
14.28	ST21M2	33.83	-0.163	-5.578
14.35	ST21M3	27.72	-0.252	-5.474
14.42	ST21M4	43.21	-0.428	-5.649
14.49	ST21L2	77.36	-0.647	-5.53
14.54	ST21L3	81.56	-0.538	-5.723
14.59	ST21L4	79.92	-0.468	-5.643
14.67	ST22MA2	30.78	-0.111	-5.42
14.74	ST22MA4	30.2	-0.008	-5.333
14.81	ST22MA5	42.58	-0.199	-5.588
14.86	ST22LA2	51.77	-0.115	-5.613
14.89	ST22LA3	53.1	-0.027	-5.403
14.92	ST22LA4	52.34	-0.091	-5.504
14.98	ST22MB3	40.04	0.167	-5.436

Table S3. Stratigraphic location of the Santiurde samples and their %CaCO₃, $\delta^{13}C_{carb}$ and $\delta^{18}C_{carb}$ values.

15.08	ST22MB5	38.64	0.137	-5.422
15.18	ST22MB7	40.07	-0.113	-5.466
15.25	ST22LB2	58.89	-0.239	-5.541
15.28	ST22LB3	56.07	-0.178	-5.552
15.31	ST22LB4	45.23	-0.036	-5.429
15.36	ST22MC1	31.83	0.425	-5.399
15.43	ST22MC2	31.41	0.107	-5.546
15.5	ST22MC3	40.66	-0.036	-5.289
15.58	ST22LC2	83.26	-0.746	-5.843
15.66	ST22LC3	82.17	-0.951	-5.598
15.73	ST22LC4	80.43	-1.092	-5.727
15.79	ST22AM2	31.42	0.248	-5.373
15.85	ST22AM3	31.45	0.355	-5.302
15.91	ST22AM4	33.41	0.365	-5.256

Bed	Strat	SiO ₂	TiO ₂	Al ₂ O ₃	CaO	Fe ₂ O ₃	K ₂ O	MgO	MnO	Na ₂ O	P ₂ O ₅	LOI	Co	Cr	Cu	Ni	Sr	V	Zn
	(m)	%	%	%	%	%	%	%	%	%	%	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm
ST 18M	12.5	31.63	0.54	14.07	19.43	6.23	3.33	1.53	0.02	0.66	0.13	22.9	11.0	78.3	88.4	62.0	392	156	981
ST 18L	12.69	9.39	0.18	5.41	44.50	3.42	0.36	0.98	0.02	0.15	0.05	35.4	2.44	31.5	26.5	10.7	380	35.0	11.5
ST 18AM	12.88	32.98	0.60	15.25	15.73	6.27	3.87	1.91	0.02	0.52	0.12	22.9	11.3	99.3	68.7	67.7	398	206	298
ST 18AL	13.07	22.43	0.38	11.81	27.99	4.51	1.93	1.58	0.02	0.43	0.07	28.7	5.27	86.3	34.0	29.9	527	115	34.3
ST 18BM	13.27	25.14	0.47	13.02	23.51	5.90	2.89	1.82	0.03	0.46	0.11	27.2	8.99	79.7	66.8	83.8	419	235	1058
ST 18BL	13.46	21.16	0.34	8.66	31.93	4.35	1.62	1.65	0.02	0.46	0.07	29.5	6.27	81.6	53.9	37.8	203	101	36.5
ST 19M	13.65	29.30	0.51	11.81	22.79	5.40	2.88	1.79	0.03	0.67	0.11	25.5	10.5	92.4	76.9	86.2	280	247	319
ST 19L	13.87	7.67	0.16	4.83	46.19	2.92	0.48	1.08	0.03	0.17	0.04	36.8	2.78	29.4	27.3	16.8	298	45.1	12.7
ST 20M	14.04	34.77	0.68	13.97	14.73	6.97	3.79	2.42	0.03	0.56	0.17	21.3	13.9	103	87.1	71.0	336	219	281
ST 20L	14.17	8.02	0.18	5.34	46.34	3.16	0.37	1.08	0.03	0.14	0.04	36.2	3.29	30.6	17.3	15.1	327	37.8	12.3
ST 21M	14.35	2.70	0.02	0.52	68.97	0.30	0.10	3.70	0.01	0.05	0.03	24.3	<lmd< td=""><td>8.4</td><td>8.08</td><td>9.28</td><td>684</td><td>9.8</td><td>34.7</td></lmd<>	8.4	8.08	9.28	684	9.8	34.7
ST 21L	14.54	8.89	0.18	5.64	44.72	3.25	0.35	1.15	0.03	0.17	0.06	35.6	3.02	33.0	21.6	13.4	421	47.6	15.7
ST 21AM	14.74	25.56	0.44	11.49	23.40	6.16	2.57	1.75	0.03	0.58	0.12	27.6	9.08	87.7	94.4	97.7	383	240	358
ST 21AL	14.89	22.26	0.38	11.21	29.34	5.14	1.89	1.85	0.03	0.45	0.08	27.5	5.67	73.3	42.0	24.8	592	85.3	36.4
ST 21BM	15.08	26.17	0.46	12.56	23.99	5.06	2.87	1.72	0.03	0.48	0.11	26.0	8.29	88.1	56.4	43.2	434	134	50.5
ST 21BL	15.28	22.10	0.37	9.73	31.42	4.73	1.59	1.84	0.03	0.45	0.08	28.5	5.78	68.5	36.2	26.1	397	78.9	36.6
ST 22M	15.43	29.22	0.51	12.76	21.18	5.11	2.95	1.85	0.03	0.65	0.12	25.1	8.99	86.4	64.1	49.9	432	168	484
ST 22L	15.73	8.38	0.17	5.32	46.17	2.90	0.34	1.05	0.03	0.15	0.09	36.4	2.54	35.5	18.4	13.1	474	41.7	15.1
ST 22AM	15.85	32.41	0.55	14.11	17.61	5.86	3.56	1.83	0.03	0.56	0.12	22.8	9.68	96.1	61.0	51.2	461	187	70.5
LM	D (ppb)	774	0.90	11.3	188	18.5	112	2.15	0.07	15.2	64.4		1.40	2.92	57.0	44.6	1.30	1.17	5.94
BCR-2 mea	an (n=4)	94	100	99	101	98	102	97	101	104	84		106	107	93	85	107	105	105
	ERROR	0.03	0.05	0.05	0.04	0.04	0.06	0.05	0.04	0.04	0.04		0.05	0.05	0.34	0.41	0.05	0.05	0.05

Table S4. Stratigraphic location of the Santiurde samples and their major and trace element content

Bed	Strat high (m)	La	Ce	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
		ppm													
ST 18M	12.5	38.4	62.9	7.62	27.0	4.93	0.97	4.41	0.66	3.82	0.64	2.16	0.38	2.38	0.43
ST 18L	12.69	20.4	35.6	4.85	20.2	4.15	0.82	3.88	0.58	3.21	0.52	1.70	0.28	1.59	0.28
ST 18AM	12.88	47.0	76.6	9.33	31.8	5.38	0.97	4.92	0.73	4.19	0.71	2.45	0.45	2.79	0.49
ST 18AL	13.07	29.5	51.9	6.78	26.7	5.27	1.03	4.87	0.73	4.18	0.69	2.26	0.38	2.28	0.40
ST 18BM	13.27	35.4	60.5	7.62	28.7	5.42	0.98	4.91	0.74	4.24	0.69	2.32	0.40	2.45	0.43
ST 18BL	13.46	19.8	32.5	4.31	16.7	3.25	0.70	2.91	0.44	2.47	0.41	1.36	0.23	1.40	0.24
ST 19M	13.65	13.9	22.1	3.01	12.4	2.49	0.52	2.37	0.36	2.04	0.33	1.09	0.18	1.04	0.18
ST 19L	13.87	35.7	55.4	6.67	22.9	3.98	0.81	3.75	0.54	3.14	0.52	1.82	0.32	1.98	0.35
ST 20M	14.04	17.7	29.1	3.97	16.4	3.30	0.65	3.08	0.46	2.62	0.44	1.44	0.23	1.35	0.24
ST 20L	14.17	21.7	37.1	4.54	16.7	3.19	0.63	2.89	0.44	2.57	0.43	1.47	0.26	1.58	0.28
ST 21M	14.35	33.4	55.7	7.52	31.0	6.38	1.28	5.93	0.92	5.23	0.86	2.78	0.46	2.69	0.48
ST 21L	14.54	28.7	52.0	6.97	27.5	5.52	1.06	4.96	0.77	4.39	0.71	2.34	0.40	2.36	0.41
ST 21AM	14.74	18.7	33.7	4.30	17.1	3.43	0.64	3.18	0.47	2.71	0.45	1.46	0.25	1.47	0.26
ST 21AL	14.89	39.8	68.6	8.65	32.6	6.19	1.20	5.63	0.85	4.85	0.80	2.69	0.46	2.87	0.50
ST 21BM	15.08	29.7	52.6	7.04	28.1	5.60	1.11	4.90	0.75	4.24	0.69	2.30	0.39	2.37	0.41
ST 21BL	15.28	33.1	55.1	6.81	24.5	4.42	0.87	4.00	0.60	3.49	0.58	1.97	0.35	2.12	0.37
ST 22M	15.43	16.2	27.3	3.86	16.4	3.43	0.74	3.26	0.49	2.73	0.45	1.42	0.23	1.34	0.24
ST 22L	15.73	40.3	66.9	8.14	28.4	4.93	0.92	4.47	0.67	3.86	0.65	2.26	0.40	2.45	0.43
ST 22AM	15.85	34.1	57.1	7.05	25.5	4.57	0.88	4.21	0.63	3.69	0.61	2.07	0.36	2.23	0.39
LMD (ppb)		0.14	0.07	0.01	0.09	0.02	0.01	0.02	0.005	0.034	0.004	0.014	0.004	0.014	0.003
BCR-2 mean (n=4)		103	103	107	109	106	101	95	100	97	96	95	101	94	108
	ERROR	0.05	0.05	0.05	0.04	0.06	0.06	0.03	0.04	0.04	0.05	0.04	0.03	0.03	0.03

Table S5. Factor matrix containing the rotated factor loadings, which are equivalent to the correlation between the variable and the factor. The amount of total variance explained by each factor is also represented. Values in bold exceed 0.65; values in bold and italics are between 0.50 and 0.64.

Rotated Component Matrix										
	Factor									
	1	2	3	4						
% of variance	44.54	25.78	9.92	7.73						
Cumulative %	44.54	70.32	80.24	87.97						
Ni	0.88	0.33	-0.14	0.12						
Co	0.88	0.33	-0.01	0.00						
Cu	0.87	0.37	-0.12	0.12						
P_2O_5	0.84	0.40	0.06	-0.15						
V	0.83	0.49	-0.11	0.02						
%piryte	0.79	0.09	0.11	0.42						
%C _{org} .	0,70	0.59	-0.03	0.08						
%clays	0.66	0.71	0.06	-0.14						
Zn	0.64	0.20	0.04	0.50						
AI_2O_3	0.59	0.74	0.18	0.01						
Na ₂ O	0.43	0.84	-0.13	0.02						
$\delta^{13}C_{\text{carb}}$	0.17	0.95	0.08	0.09						
Sr	0.04	0.12	0.89	-0.13						
MnO	0.00	0.01	0.01	-0.91						
Ва	-0.18	-0.07	0.91	0.16						
%calcite	-0.73	-0.65	-0.07	0.05						
$\delta^{13}C_{\text{org}}$	-0.74	-0.60	0.09	-0.08						
MS	-0.84	-0.19	0.16	0.05						