

1

1 A global analysis of reconstructed land climate changes during Dansgaard-

- 2 **Oeschger events**
- 3 Mengmeng Liu^{1,2,*}, Iain Colin Prentice¹, Sandy P. Harrison²
- 4 1: Georgina Mace Centre for the Living Planet, Department of Life Sciences, Imperial College
- 5 London, Silwood Park Campus, Buckhurst Road, Ascot SL5 7PY, UK
- 6 2: Department of Geography and Environmental Science, University of Reading, Reading,
- 7 RG6 6AB, UK

8 * Corresponding author: m.liu18@imperial.ac.uk

9

10 Abstract

Dansgaard-Oeschger (D-O) warming events are comparable in magnitude and rate to the 11 12 anticipated 21st century warming. As such, they provide a good target for evaluation of the 13 ability of state-of-the-art climate models to simulate rapid climate changes. Despite the wealth of qualitative information about climate changes during the D-O events, there has been no 14 15 attempt to date to make quantitative reconstructions globally. Here we provide reconstructions 16 of seasonal temperature changes and changes in plant-available moisture across multiple D-O events during Marine Isotope Stage 3 based on available pollen records across the globe. These 17 18 reconstructions show that the largest changes in temperature occurred in northern extratropics, especially Europe and Eurasia. The change in winter temperature was not significantly different 19 20 from the change in summer temperature, and thus there is no evidence that the D-O events 21 were characterised by a change in seasonality. Although broadscale features of the temperature 22 changes were consistent across the eight D-O events examined, the spatial patterns of 23 temperature changes vary between events. Globally, changes in moisture were positively 24 correlated with changes in temperature, but the strength and the sign of this relationship vary 25 regionally. These reconstructions can be used to evaluate the spatial patterns of changes in 26 temperature and moisture in the transient simulations of the D-O events planned as part of the Palaeoclimate Modelling Intercomparison Project. 27

2

28 1. Introduction

29 Dansgaard–Oeschger (D–O) events are characterised in Greenland by a transition from cold 30 Greenland Stadial (GS) to warmer Greenland Interstadial (GI) conditions (Dansgaard et al., 31 1993). The surface air temperature in Greenland increased by 10–15° C during the warming 32 phases; these warming events occur over an interval of between 50 and 200 years (Huber et 33 al., 2006; Kindler et al., 2014). Thus, the D-O events offer a parallel in terms of speed to 34 projected future warming, although both the baseline state and the mechanism inducing this 35 warming differ from anticipated 21st century climate changes. D-O events could therefore 36 provide an opportunity to determine how well climate models that are used for future 37 projections can simulate rapid climate changes (Malmierca-Vallet et al., 2023).

D-O events are registered globally (Voelker, 2002; Sánchez Goñi and Harrison, 2010; Harrison 38 and Sánchez Goñi, 2010; Sánchez Goñi et al., 2017; Adolphi et al., 2019; Corrick et al., 2020). 39 40 Shifts in vegetation types between GI and GS states have been interpreted as primarily a 41 temperature signal in the extratropics and a moisture signal in the tropics (Harrison and Sánchez Goñi, 2010). Speleothem records provide a good time-control on the synchroneity of 42 43 climate changes globally with the D-O events registered in Greenland (Adolphi et al., 2019; Corrick et al., 2020), but the driver of this signal can either be temperature or precipitation 44 45 depending on the region. There are quantitative climate reconstructions based on pollen records from La Grande Pile (Guiot et al., 1993), Lago Grande di Monticchio (Huntley et al., 1999), 46 Padul (Camuera et al., 2022), El Cañizar de Villarquemado (Wei et al., 2021; Camuera et al., 47 2022) and Lake Ohrid (Sinopoli et al., 2019), diatom assemblages at Les Echets, France 48 49 (Ampel et al., 2010), bacterial membrane lipid records from the Eifel region (Zander et al., 2023), isotopic measurements of earthworm calcite from the Rhine Valley (Prud'homme et al., 50 51 2022) and clumped isotope measurements on snails in Hungary (Újvári et al., 2021). Aside 52 from the lack of comparable quantitative estimates from outside Europe, differences in the 53 methodology employed and in the specific climate variables reconstructed in each of these 54 studies limits their usefulness for model evaluation. In particular, given that there is still 55 uncertainty as to whether the D-O cycles are characterised by changes in seasonality such that 56 warming events are primarily driven by changes in winter (Flückiger et al., 2008; Zander et al., 57 2023), in the regional strength of the warming (Harrison and Sánchez Goñi, 2010) and how warming relates to changes in moisture (Wei et al., 2021), there is a need for more systematic 58 59 reconstruction of seasonal climate changes.

3

In the paper, we provide reconstructions of seasonal temperature changes and changes in plantavailable moisture across multiple D-O events during Marine Isotope Stage 3 based on
available pollen records globally. We employ a standard methodology to construct age models
for these records, as well as a standard regression-based approach to make the reconstructions.
We analyse the regional patterns to identify key targets for model evaluation.

65 **2. Methods**

66 **2.1. Data sources**

Modern pollen data were obtained from version 2 of the SPECIAL Modern Pollen Data Set 67 68 (SMPDSv2: Villegas-Diaz and Harrison, 2022). This global data set contains 24649 modern pollen records from 17827 sites. The dataset contains relative abundance records for 4816 69 70 pollen taxa, created after removing taxa that are not climatically diagnostic (e.g. obligate 71 aquatics, carnivorous species, cultivated plants). The data set provides several levels of 72 taxonomic aggregation; here we use the most aggregated level, where woody species were 73 generally combined at genus level and herbaceous species at sub-family or family level unless 74 they were palynologically distinctive, occupied distinctive ecological niches and were sufficiently geographically widespread. This "amalgamated" data set contains relative 75 76 abundance information for 1338 taxa. These samples were aggregated by longitude, latitude 77 and elevation in order to remove duplicates. Counts for Quercus, Quercus (deciduous) and 78 Quercus (evergreen) were combined because of inconsistent differentiation of Quercus pollen 79 in different regional records. Taxa with <10 occurrences were removed to avoid the problem 80 of rarity (Liu et al., 2020). After this filtering, the data set contains 17547 sites (Figure 1) with 81 591 taxa.

The SMPDSv2 also provides climatic information at each pollen site, specifically the mean temperature of the coldest month (MTCO), mean temperature of the warmest month (MTWA), and a moisture index (α) calculated as the ratio of actual evapotranspiration to equilibrium evapotranspiration. These bioclimate variables reflect mechanistically distinct controls on plant growth.

The fossil pollen data were obtained from the Abrupt Climate Changes and Environmental
Responses (ACER) database (Sánchez Goñi et al., 2017), which includes 93 records from the
last glacial period (73-15 ka) with sufficient resolution and dating control to detect sub-

4

millennial scale variability. Here we focus on the 73 records covering most of Marine Isotope
Stage 3 (50-30 ka); 54 of these records are from terrestrial sites and 19 from continental-shelf
marine sites (Figure 1; Table 1). The fossil data were taxonomically harmonised to be

93 consistent with the SMPDSv2.

94 2.2. Climate reconstruction method

95 We used tolerance-weighted Weighted Averaging Partial Least Squares (fxTWA-PLS: Liu et 96 al., 2020; Liu et al., 2023) regression to model the relationships between taxon abundances and 97 individual climate variables in the SMPDSv2 modern training dataset and then applied these 98 relationships to reconstruct past climate using the fossil assemblages from the ACER database 99 (Figure 2). fxTWA-PLS reduces the tendency of regression methods to compress reconstructions towards the centre of the sampled climate range by applying a sampling 100 101 frequency correction to reduce the influence of uneven sampling of climate space and 102 weighting the contribution of individual taxa according to their climate tolerances (Liu et al., 103 2020). Version 2 of fxTWA-PLS (fxTWA-PLS2, Liu et al., 2023) uses P-splines smoothing to derive the frequency correction and applies this correction both in estimating the climate 104 105 optima and tolerances, and in the regression itself, producing a further improvement in model 106 performance compared to version 1 (Liu et al., 2020).

107 We evaluated the fxTWA-PLS models by comparing the reconstructions with observations using leave-out cross-validation, where one site at a time was randomly selected as a test site 108 109 and geographically and climatically similar sites were removed from the training set to prevent redundancy in the climate information from inflating the cross-validation goodness of fit. We 110 111 selected the last significant number of components (p-value ≤ 0.01) and assessed model 112 performance using the root mean square error of prediction (RMSEP). Compression was assessed using linear regression and local compression was assessed by loess regression 113 (locfit). Reconstructions of MTCO, MTWA and a were made for every sample in each fossil 114 115 record. Sample specific errors were estimated via bootstrapping, as described in Liu et al. 116 (2020). We corrected for the effect of changes in atmospheric CO_2 on plant water-use 117 efficiency, and hence the reconstructions of α (Figure S1), following Prentice et al. (2022). 118 Appropriate values of CO₂ were taken from the WAIS Divide ice core record (Bauska et al., 119 2021).

5

120 **2.3.** Age modelling

121 Although the ACER database provides age models for each pollen record, the resolution of the 122 individual records is variable (mean resolution 474 years) and these models are often 123 imperfectly aligned with the dating of D-O events as recorded in the Greenland ice core. To 124 create a better alignment, we used dynamic time warping (DTW: Belman and Kalaba, 1959; 125 Burstyn et al., 2021) to adjust the age scale for each individual record (Figure 2). Dynamic 126 time warping optimises the similarity between two sequences by stretching or compressing one 127 sequence in the time dimension to match the other. Here, we use simulated mean annual 128 temperature from a transient simulation of the interval 50-30 ka made with the LOVECLIM 129 model (Menviel et al., 2014) as the reference sequence. We used the mid-point between the 130 start dates of each D-O event (Wolff et al., 2010; converted into AICC2012 timescale) to sub-131 divide each record into discrete intervals. For each site in each interval, we modify the time 132 scale of the reconstructed mean annual temperature series in each ACER record to match the reference, after having normalised both sequences to remove the influence of differences in 133 134 absolute values and the amplitude of changes. To remove the influence of the variable temporal 135 resolution of the pollen records we interpolated the reconstructions from individual samples to 136 provide estimates at regular intervals (25 years) through each record. The adjusted age model 137 for each site was then applied to the reconstructions of MTCO, MTWA, and α for that site.

138 2.4. Assessment of changes during D-O events

139 To estimate the magnitude of climate changes over the D-O events, we used a third-order polynomial to fit the reconstructions during the interval from 300 years before to 600 years 140 141 after the official start date of each event (Wolff et al., 2010; converted into AICC2012 142 timescale) to obtain the sign of changes (increase or decrease). We used the ages corresponding to the minimum and maximum in the fitted polynomial (tmin polynomial, tmax polynomial) but, since 143 the smoothed polynomial may underestimate the amplitude of change, we used the 144 145 reconstructed minimum or maximum value within the period $t_{min polynomial} \pm 100$ years or t_{max} 146 $polynomial \pm 100$ years respectively.

147 In cases where no change was registered for all of the three climate variables, we assume that 148 the event was not registered at the site. As a measure of the accuracy of the DTW method to 149 identify D-O events, we compared the number of identified events with the number of D-O 150 events that occurred during the time covered by each record (Table 1). To assess whether events

6

were missed in a particular record due to low sampling resolution, we examined the number of samples present in the 900-year interval covering the sampled D-O (i.e. 300 years before to 600 years after the official start date of each event), where low resolution was defined as \leq 3 samples in this 900-year interval. Reconstructions covering intervals where a signal was not identified were not used in subsequent analyses.

156 **3. Results**

157 *fx*TWA-PLS reproduces the modern climate reasonably well (Table 2). The performance is 158 best for MTCO (\mathbb{R}^2 0.75, RMSEP 6.51, slope 0.85) but is also good for MTWA (\mathbb{R}^2 0.59, 159 RMSEP 3.68, slope 0.71) and α (\mathbb{R}^2 0.65, RMSEP 0.18, slope 0.71). Assessment of the variance 160 inflation factor scores shows that there is no problem of multicollinearity so that it is possible 161 to reconstruct all three climate variables independently (Liu et al., 2023).

162 The use of dynamic time-warping made it possible to identify D-O events robustly (Table 1). 163 Across the 73 sites, we identified 204 out of the 210 individual D-O events that occurred during 164 the intervals covered by the records. In the majority of cases where a D-O event should have 165 been registered but could not be identified in an individual record (5 out of 6 cases), the 166 resolution of that part of the record was extremely poor (\leq 3 samples in the 900-year interval 167 starting 300 years before to 600 years after the official start date of the event).

168 Changes in both MTCO and MTWA were generally largest in the extratropics and were more 169 muted in the tropics (Figure 3). The change in MTCO was larger, but not significantly larger, 170 in the northern extratropics when considered across all D-O events and sites; the change in 171 MTCO was smaller, but not significantly smaller, in the southern extratropics; the changes in 172 MTCO are not correlated with the changes in MTWA in the tropics (Table 3). There is a 173 significant positive relationship between the change in α and the change in MTWA in all 174 regions (Figure 4; Table 4).

The spatial patterns of changes in MTCO and MTWA show consistent features across multiple D-O events (Figure 5), most noticeably that the largest warming occurs in the extratropics of Europe and Eurasia, while western North America and the southern extratropics are characterised by cooling. The anti-phasing between the northern and southern extratropics is consistent across D-O events. Nevertheless, both the magnitude of the changes and the spatial patterns vary between the D-O events (Figure S2; Figure S3). Changes in α broadly follow the

7

changes in temperature, with increased α in regions characterised by warming (Figure 5) but
show more variability both spatially and between D-O events (Figure S4). This is particularly
true for Europe, which is characterised by a mixed signal of drying and wetting.

184 4. Discussion and Conclusions

185 We have presented a first attempt to map the spatial patterns of quantitative changes in seasonal temperature and plant-available moisture during D-O events globally, using a consistent 186 187 methodology and a single data source. These analyses show that there is an anti-phasing 188 between changes in the northern extratropics and the southern extratropics, with warming in 189 the north and cooling in the south. The largest and most consistent warming during D-O events 190 occurs in Europe and Eurasia. There is no indication of a significant difference in the 191 temperature change during winter and summer, and thus no indication of a large shift in 192 seasonality as inferred from some site-based reconstructions (e.g. Zander et al., 2023). 193 Globally, there is a positive relationship between the change in temperature and plant available 194 moisture, as indicated by α . This is consistent with more qualitative interpretation of palaeo-195 records from specific regions, where many regions are characterised by both warming and wetting (e.g. western Europe: Sánchez Goñi et al., 2008; Fletcher et al., 2010; eastern Europe: 196 197 Fleitmann et al., 2009; Stockehecke et al., 2016; central Siberia: Grygar et al., 2006; the Great 198 Basin USA: Denniston et al., 2007; Jiménez-Moreno et al., 2010). However, according to our 199 reconstructions, the nature of this relationship varies between regions: there are some regions that are characterised by warming and wetting, others are characterised by warming and drying. 200 201 Previous studies have also indicated drier conditions during D-O events, particularly in parts 202 of the USA such as the Pacific Northwest (Grigg and Whitlock, 2002) and Florida (Grimm et 203 al., 2006; Jiménez-Moreno et al., 2010) Although there is some consistency in the broadscale 204 patterns of changes across D-O events, the magnitude of the changes as well as the spatial 205 patterning varies between events.

These reconstructions can be used as targets for model evaluation, specifically the two transient D-O experiments planned for the next phase of the Palaeoclimate Modelling Intercomparison (see Malmierca-Vallet et al., 2023 for the experimental protocol). The first of these experiments is a baseline simulation starting at 34 ka, a time with low obliquity, moderate MIS3 greenhouse gas values, and an intermediate ice sheet configuration, which appears to be most conducive to generating D–O-like behaviour in climate models. The second experiment involves the addition of freshwater, to examine whether this in necessary to precondition a state conducive

8

to generating D-O events. The observed anti-phasing in temperature changes between the 213 214 northern and southern hemispheres is a general feature of climate model experiments. 215 However, most models show larger warming in winter than in summer in the northern 216 hemisphere (e.g. Flückiger et al., 2008; Van Meersbeeck et al., 2011; Izumi et al., 2023), which 217 is not consistent with our reconstructions. Models generally show an intensification of the 218 northern hemisphere monsoons during D-O events (e.g. Menviel et al., 2020; Izumi et al, 2023), 219 but there is less consistency about changes in plant-available moisture in the extratropics. Our 220 reconstructions of α suggest an intensification of the monsoon over northern South America 221 but there are no records from other northern hemisphere monsoon regions. However, the 222 records do provide an opportunity to evaluate moisture changes over the extratropics.

Identifying D-O events in pollen records is often problematic, particularly in regions where 223 224 warming (especially if accompanied by dryer conditions) leads to a reduction (or an hiatus) in 225 sedimentation as reflected in the variable resolution of the available pollen records (e.g. Sinopoli et al., 2019; Wei et al., 2021; Camuera et al., 2022; Pini et al., 2022). Interpolation of 226 the reconstructed climate between more sparsely spaced samples goes some way to improving 227 228 the identification of potential D-O events using dynamic time warping, as does the use of shorter periods (Alshehri et al., 2019). However, it is likely that some of the variability in the 229 230 reconstructed changes between different D-O events reflects imperfect identification of specific events because of the comparatively modest resolution of the records. Several new 231 high-resolution records covering MIS3 have become available since the compilation of the 232 233 ACER database (e.g. Wei et al., 2021; Camuera et al., 2022; Pini et al., 2022) and including 234 these newer records could help to improve the reliability of the global reconstructions presented here. Nevertheless, this first compilation of quantitative climate reconstructions through 235 236 multiple D-O events during MIS3 provides an opportunity for evaluation of the transient D-O 237 simulations planned as part of the next phase of the Palaeoclimate Modelling Intercomparison 238 Project (Malmierca-Vallet et al., 2023).

239

Data and code availability. All the data used are public access and cited here. The code used
to generate the reconstructions and figures is available at https://github.com/ml4418/DO-

242 <u>climate-reconstruction-paper.git</u>

9

- Author contributions. ML, SPH and ICP designed the study. ML made the reconstructions
 and produced the figures and tables. ML and SPH carried out the analyses. SPH wrote the first
 draft of the paper and all authors contributed to the final draft.
- 246 **Competing Interests.** The authors declare not competing interests.

Acknowledgements. ML acknowledges support from Imperial College through the Lee
Family Scholarship. ICP acknowledges support from the ERC under the European Union
Horizon 2020 research and innovation programme (grant agreement no.: 787203 REALM).
SPH acknowledges fruitful discussions with colleagues from the D-O community working
group.

252

253 References

- Adolphi, F., Bronk Ramsey, C., Erhardt, T., Edwards, R. L., Cheng, H., Turney, C. S. M.,
 Cooper, A., Svensson, A., Rasmussen, S. O., Fischer, H., and Muscheler, R.:
 Connecting the Greenland ice-core and U / Th timescales via cosmogenic
 radionuclides: testing the synchroneity of Dansgaard–Oeschger events, Clim. Past, 14,
 1755–1781, https://doi.org/10.5194/cp-14-1755-2018, 2018.
- Alshehri, M., Coenen, F., and Dures, K.: Effective sub-sequence-based dynamic time warping.
 In: Bramer, M., Petridis, M. (eds) Artificial Intelligence XXXVI. SGAI 2019. Lecture
 Notes in Computer Science, 11927. Springer, Cham. https://doi.org/10.1007/978-3030-34885-4_23, 2019.
- Ampel, L., Bigler, C., Wohlfarth, B., Risberg, J., Lotter, A.F., and Veres, D.: Modest summer
 temperature variability during DO cycles in western Europe, Quat. Sci. Rev., 29, 1322–
 1327, https://doi.org/10.1016/j.quascirev.2010.03.002, 2010.
- Bauska, T. K., Marcott, S. A. and Brook, E. J.: Abrupt changes in the global carbon cycle
 during the last glacial period, Nat. Geosci., 14(2), 91–96, doi:10.1038/s41561-02000680-2, 2021.

269	Bellman, R., and Kalaba, R.: On adaptive control processes, Automatic Control, IRE
270	Transactions, 4, 1-9, http://ieeexplore.ieee.org/xpls/abs all.jsp? arnumber=1104847,
271	1959.
272	Burstyn, Y., Gazit, A., and Omri Dvir, O.: Hierarchical Dynamic Time Warping methodology
273	for aggregating multiple geological time series, Comp. & Geosci., 150, 104704,
274	https://doi.org/10.1016/j.cageo.2021.104704, 2021.
275	Camuera, J., Ramos-Román, M.J., Jiménez-Moreno, G. et al.: Past 200 kyr hydroclimate
276	variability in the western Mediterranean and its connection to the African Humid
277	Periods, Sci. Rep., 12, 9050, https://doi.org/10.1038/s41598-022-12047-1, 2022.
278	Corrick, E.C., Drysdale, R.N., Hellstrom, J.C., Capron, E., Rasmussen, S.O., Zhang, X.,
279	Fleitmann, D., Couchoud, I., and Wolff, E.: Synchronous timing of abrupt climate
280	changes during the last glacial period, Science, 369, 963–969,
281	https://doi.org/10.1126/science.aay5538, 2020.
282	Dansgaard, W., Johnsen, S.J., Clausen, H.B., Dahl-Jensen, D., Gundestrup, N.S., Hammer,
283	C.U., Hvidberg, C.S., Steffensen, J.P., Sveinbjörnsdottir, A.E., Jouzel, J., and Bond,
284	G.: Evidence for general instability of past climate from a 250-kyr ice-core record,
285	Nature, 364, 218–220, https://doi.org/10.1038/364218a0, 1993.
286	Denniston, R.F., Asmerom, Y., Polyak, V., Dorale, J.A., Carpenter, S.J., Trodick, C., Hoye,
287	B., and González, L.A.: Synchronous millennial-scale climatic changes in the Great
288	Basin and the North Atlantic during the last interglacial. Geology 35, 619-622, 2007.
289	Fleitmann, D., Cheng, H., Badertscher, S., Edwards, R.L., Mudelsee, M., Göktürk, O.M.,
290	Fankhauser, A., Pickering, R., Raible, C.C., Matter, A., Kramers, J., and Tüysüz, O.:
291	Timing and climatic impact of Greenland interstadials recorded in stalagmites from
292	northern Turkey, Geophys. Res. Lett., 36, 2009.
293	Fletcher, W.F., Sánchez Goñi, M.F., Allen, J.R.M., Cheddadi, R., Combourieu-Nebout, N.,
294	Huntley, B., Lawson, I., Londeix, L., Magri, D., Margari, V., Müller, U.C., Naughton,
295	F., Novenko, E., Roucoux, K., Tzedakis, P.C.: Millennial-scale variability during the
296	last glacial in vegetation records from Europe, Quat. Sci. Rev., 29, 2839-2864,
297	https://doi.org/10.1016/j.quascirev.2009.11.015, 2010.

298 299 300	 Flückiger, J., Knutti, R., White, J.W.C., and Renssen, H.: Modeled seasonality of glacial abrupt climate events, Clim. Dyn., 31, 633–645, https://doi.org/10.1007/s00382-008-0373-y, 2008. 								
301	Grigg, L.D., and Whitlock, C.: Patterns and causes of millennial-scale climate change in the								
302 303	Pacific Northwest during Marine Isotope Stages 2 and 3, Quat. Sci. Rev., 21, 2067-2083, 2002.								
304	Grimm, E.C., Watts, W.A., Jacobson, G.L., Hansen, B.C.S., Almquist, H., and Dieffenbacher-								
305 306	Krall, A.C.: Evidence for warm wet Heinrich events in Florida, Quat. Sci. Rev., 25, 2197-2211, 2006.								
307	Grygar, T., Kadlec, J., Pruner, P., Swann, G., Bezdicka, P., Hradil, D., Lang, K., Novotna, K.,								
308	and Oberhänsli, H.: Paleoenvironmental record in Lake Baikal sediments:								
309	environmental changes in the last 160 ky, Palaeogeogr. Palaeoclimatol. Palaeoecol.,								
310	237, 240-254, 2006.								
311	Guiot, J., de Beaulieu, J. L., Cheddadi, R., David, F., Ponel, P., and Reille, M.: The climate in								
312	Western Europe during the last Glacial/Interglacial cycle derived from pollen and insect								
313	remains, Palaeogeogr., Palaeoclimatol., Palaeoecol., 103, 73-93,								
314	https://doi.org/10.1016/0031-0182(93)90053-L, 1993.								
315	Jiménez-Moreno, G., Anderson, R.S., Desprat, S., Grigg, L.D., Grimm, E.C., Heusser, L.E.,								
316	Jacobs, B.F., López-Martínez, C., Whitlock, C.L., and Willard, D.A.:Millennial-scale								
317	variability during the last glacial in vegetation records from North America, Quat. Sci.								
318	Rev., 29, 2865-2881, https://doi.org/10.1016/j.quascirev.2009.12.013, 2010.								
319	Harrison, S.P., and Sánchez Goñi, M.F.: Global patterns of vegetation response to millennial-								
320	scale variability during the last glacial: A synthesis. Quat. Sci. Rev., 29, 2957-2980,								
321	2010.								
322	Huber, C., Leuenberger, M., Spahni, R., Flückiger, J., Schwander, J., Stocker, T.F., Johnsen,								
323	S., Landais, A., and Jouzel, J.: Isotope calibrated Greenland temperature record over								
324	Marine Iso- tope Stage 3 and its relation to CH4, Earth Planet. Sci. Lett., 243, 504–519,								
325	2006.								

326	Huntley, B., Watts, W.A., Allen, J.R.M., Zolitschka, B.: Palaeoclimate, chronology and								
327	vegetation history of the Weichselian Lateglacial: comparative analysis of data from								
328	three cores at Lago Grande di Monticchio, southern Italy, Quat. Sci. Rev., 18: 945-960,								
329	https://doi.org/10.1016/S0277-3791(99)00007-4, 1999.								
330	Kindler, P., Guillevic, M., Baumgartner, M., Schwander, J., Landais, A., and Leuenberger, M.:								
331	Temperature reconstruction from 10 to 120 kyr b2k from the NGRIP ice core, Clim.								
332	Past, 10, 887-902, https://doi.org/10.5194/cp-10-887-2014, 2014.								
333	Liu, M., Prentice, I.C., ter Braak, C.J.F, and Harrison, S.P.: An improved statistical approach								
334	for reconstructing past climates from biotic assemblages, Proc. Royal Soc., Math. A,								
335	476, 20200346, 20200346, https://doi.org/10.1098/rspa.2020.0346, 2020.								
336	Liu, M., Shen, Y., González-Sampériz, P., Gil-Romera, G., ter Braak, C.J.F. Prentice, I.C., and								
337	Harrison, S.P.: Holocene climates of the Iberian Peninsula, Clim. Past 19, 803-834,								
338	https://doi.org/10.5194/cp-19-803-2023, 2023.								
339	Malmierca-Vallet, I., Sime, L.C., and the D-O community members: Dansgaard-Oeschger								
340	events in climate models: review and baseline Marine Isotope Stage 3 (MIS3) protocol,								
341	Clim. Past, 19, 915–942, https://doi.org/10.5194/cp-19-915-2023, 2023.								
342	Menviel, L., Timmermann, A., Friedrich, T., and England, M. H.: Hindcasting the continuum								
343	of Dansgaard-Oeschger variability: mechanisms, patterns and timing, Clim. Past 10,								
344	63–77, 2014.								
345	Menviel, L.C., Skinner, L.C., Tarasov, L., and Tzedakis, P.C.: An ice-climate oscillatory								
346	framework for Dansgaard-Oeschger cycles, Nat. Rev. Earth Environ., 1, 677-693,								
347	https://doi.org/10.1038/s43017-020-00106-y, 2020.								
348	Pini, R., Furlanetto, G., Vallé, F., Badino, F., Wick, L., Anselmetti, F.S., Bertuletti, P., Fusi, N.,								
349	Morlock, M.A., Delmonte, B., Harrison, S.P., Maggi, V., Ravazzi, C.: Linking North								
350	Atlantic and Alpine Last Glacial Maximum climates via a high-resolution pollen-based								
351	subarctic forest steppe record, Quat. Sci. Rev., 294, 107759,								
352	https://doi.org/10.1016/j.quascirev.2022.107759, 2022.								

13

353	Prentice, I. C., Villegas-Diaz, R. and Harrison, S. P.: Accounting for atmospheric carbon
354	dioxide variations in pollen-based reconstruction of past hydroclimates, Glob. Planet.
355	Change, 211, 103790, doi:10.1016/j.gloplacha.2022.103790, 2022.
356	Prud'homme, C., Fischer, P., Jöris, O., Gromov, S., Vinnepand, M., Hatté, C., Vonhof, H.,
357	Moine, O., Vött, A., and Fitzsimmons, K. E.: Millennial-timescale quantitative
358	estimates of climate dynamics in central Europe from earthworm calcite granules in
359	loess deposits, Commun. Earth Environ., 3, 1-14, https://doi.org/10.1038/s43247-022-
360	00595-3, 2022.
361	Sánchez Goñi, M.F., and Harrison, S.P.: Millennial-scale climate variability and vegetation
362	changes during the Last Glacial: Concepts and terminology, Quat. Sci. Rev., 29, 2823-
363	2827, 2010.
364	Sánchez Goñi, M.F., Desprat, S., Daniau, AL., Bassinot, F., Polanco-Martínez, J.M., Harrison,
365	S.P., Allen, J.R.P., Anderson, R.S., Behling, H., Bonnefille, R., Burjachs, F., Carrión,
366	J.S., Cheddadi, R., Clark, J.S., Combourieu-Nebout, N., Courtney-Mustaphi, C.,
367	Debusk, G.H., Dupont, L.M., Finch, J., Fletcher, W.J., Giardini, M., González, C.,
368	Gosling, W.D., Grigg, L.D., Grimm, E.C., Hayashi, R., Helmens, K., Heusser, L.E.,
369	Hill, T., Hope, G., Huntley, B., Igarashi, Y., Irino, T., Jacobs, B.F., Jiménez-Moreno, G.,
370	Kawai, S., Kershaw, P., Kumon, F., Lawson, I., Ledru, MP., Lézine, AM., Liew, P
371	M., Magri, D., Marchant, R., Margari, V., Mayle, F., McKenzie, M., Moss, P., Müller,
372	S., Müller, U.C., Naughton, F., Newnham, R.M., Oba, T., Pérez-Obiol, R., Pini, R.,
373	Ravazzi, C., Roucoux, K.H., Rucina, S., Scott, L., Takahara, H., Tzedakis, P.C., Urrego,
374	D.H., Van Geel, B., Valencia, B.G., Vandergoes, M.J., Vincens , A., Whitlock, C.L.,
375	Willard, D. A., and Yamamoto, M.: The ACER pollen and charcoal database: a global
376	resource to document vegetation and fire response to abrupt climate changes of the last
377	glacial period, Earth Syst. Sci. Data 9: 679-695, 2017.
378	Sinopoli, G., Peyron, O., Masi, A., Holtvoeth, J., Francke, A., Wagner, B., and Sadori, L.:
379	Pollen-based temperature and precipitation changes in the Ohrid Basin (western
380	Balkans) between 160 and 70 ka, Clim. Past, 15, 53-71, https://doi.org/10.5194/cp-15-
381	53-2019, 2019.
382	Stockhecke, M., Timmermann, A., Kipfer, R., Haug, G.H., Kwiecien, O., Friedrich, T.,

383 Menviel, L., Litt, T., Pickarski, N., and Anselmetti, F.S.: Millennial to orbital-scale

14

variations of drought intensity in the Eastern Mediterranean, Quat. Sci. Rev., 133, 77-384 385 95, 2016. 386 Újvári, G., Bernasconi, S. M., Stevens, T., Kele, S., Páll-Gergely, B., Surányi, G., and Demény, A.: Stadial-Interstadial Temperature and Aridity Variations in East Central Europe 387 Preceding the Last Glacial Maximum, Paleoceanog. Paleoclim., 36, e2020PA004170, 388 389 https://doi.org/10.1029/2020PA004170, 2021. 390 Van Meerbeeck, C.J., Renssen, H., Roche, D.M., Wohlfarth, B., Bohncke, S.J.P., Bos, J.A.A., 391 Engels, S., Helmens, K.F., Sánchez-Goñi, M.F., Svensson, A., and Vandenberghe, J.: 392 The nature of MIS 3 stadial-interstadial transitions in Europe: New insights from 393 30, model-data comparisons, Quat. Sci. Rev., 3618-3637, 394 https://doi.org/10.1016/j.quascirev.2011.08.002, 2011. 395 Villegas-Diaz, R., and Harrison, S.P.: The SPECIAL Modern Pollen Data Set for Climate 396 Reconstructions, 2 (SMPDSv2). University of version Reading. 397 Dataset. https://doi.org/10.17864/1947.000389, 2022. 398 Voelker, A.H.: Global distribution of centennial-scale records for Marine Isotope Stage (MIS) 399 3: a database, Quat. Sci. Rev., 21, 1185-1212, 2002. Wei, D., González-Sampériz, P., Gil-Romera, G., Harrison, S.P., and Prentice, I.C.: Seasonal 400 401 temperature and moisture changes in interior semi-arid Spain from the last interglacial 402 to the Late Holocene, Quat. Res., 101, 143-155, https://doi.org/10.1017/qua.2020.108, 403 2021. Wolff, E. W., Chappellaz, J., Blunier, T., Rasmussen, S. O. and Svensson, A.: Millennial-scale 404 405 variability during the last glacial: The ice core record, Quat. Sci. Rev., 29(21), 2828-406 2838, doi:10.1016/j.quascirev.2009.10.013, 2010. 407 Zander, P.D., Böhl, D., Sirocko, F., Auderset, A., Haug, G., and Martínez-García, A.: Reconstruction of warm season temperatures in central Europe during the past 60,000 408 409 years from lacustrine GDGTs, EGUsphere [preprint], https://doi.org/10.5194/egusphere-2023-1960, 2023. 410

15

412 Figures and Tables

Figure 1: Map showing the locations of sites (a)from the Abrupt Climate Changes and
Environmental Responses (ACER) database (Sánchez Goñi et al., 2017) covering the interval
between 50 ka and 30 ka used for the reconstructions and (b) sites in version 2 of the SPECIAL
Modern Pollen Data Set (SMPDSv2: Villegas-Diaz and Harrison, 2022) used to derive the
transfer functions for these climate reconstructions.

16

420 Figure 2: Flow chart showing the reconstruction methodology.

17

- 425 Figure 3: Scatter plot of the change in mean temperature of the coldest month (Δ MTCO) versus
- 426 the change in mean temperature of the warmest month (ΔMTWA) during individual
 427 Dansgaard-Oeschger (D-O) events at individual sites. The points are colour-coded to indicate
- 428 whether the sites are from the northern extratropics (NET, north of 23.5°N), the tropics (TROP,
- 429 between 23.5°N and 23.5°S) or southern extratropics (SET, south of 23.5°S).

430

18

- 432 Figure 4: Scatter plot of the change in plant-available moisture ($\Delta \alpha$) versus the change in mean
- temperature of the warmest month (ΔMTWA) during individual Dansgaard-Oeschger (D-O) 433 events at individual sites. The points are colour-coded to indicate whether the sites are from
- 434
- the northern extratropics (NET, north of 23.5°N), the tropics (TROP, between 23.5°N and 435
- 23.5°S) or southern extratropics (SET, south of 23.5°S). 436

19

- 439 Figure 5: Maps showing the median change of site-based reconstructions for Dansgaard-
- 440 Oeschger (D-O) events.

441

20

443 Table 1: Details of the 73 sites from the Abrupt Climate Changes and Environmental Responses (ACER) database (Sánchez Goñi et al., 2017) covering the interval between 50 ka and 30 ka 444 445 used for the climate reconstructions. n_{due} is the number of D-O events that should be found based on the time interval covered by the record. n_{miss} is the number of D-O events that were 446 447 not identified. nmiss low res is the number of D-O events missed because of low resolution of part of the record. Six of the D-O events out of the 210 that should have been registered were not 448 449 identified, of which 5 are because of low resolution. Reconstructions based on samples where the D-O signal was not identified were not used in subsequent analyses. Some of the 73 sites 450 (indicated by / in n_{due}, n_{miss} and n_{miss} low res) provide records for parts of the 50-30ka interval but 451 452 not for the intervals of the D-O events.

Site name	Latitude	Longitude	Elevation (m)	Site type	n_due	n_miss	n_miss_ low_res
Abric Roman	41.53	1.68	350	TERR	/	/	/
Azzano Decimo	45.88	12.72	10	TERR	8	0	0
Caledonia Fen	-37.33	146.73	1280	TERR	/	/	/
Cambara do Sul	-29.05	-50.10	1040	TERR	/	/	/
Camel Lake	30.26	-85.01	20	TERR	3	1	1
Carp Lake	45.91	-120.88	720	TERR	8	0	0
Colnia	-23.87	-46.71	900	TERR	/	/	/
Core Trident 163 31B	-3.61	-83.96	-3210	MARI	1	0	0
Fargher Lake	45.88	-122.58	200	TERR	8	0	0
Framoos	47.98	9.88	662	TERR	/	/	/
Fundo Nueva	-41.28	-73.83	66	TERR	/	/	/
Fuquene	5.45	-73.46	2540	TERR	7	1	1
GeoB3104	-3.67	-37.72	-767	MARI	/	/	/
Hay Lake	34.00	-109.43	2780	TERR	6	1	1
Ioannina	39.75	20.85	470	TERR	8	0	0
Joe Lake	66.77	-157.22	183	TERR	/	/	/
Kalaloch - DIGI	47.61	-124.37	19	TERR	8	0	0

Kamiyoshi Basin (KY01)	35.10	135.59	335	TERR	1	0	0
Kashiru Bog	-3.47	29.57	2240	TERR	8	1	1
Kenbuchi Basin	44.05	142.38	135	TERR	/	/	/
Khoe	51.34	142.14	15	TERR	/	/	/
Kohuora	-36.95	174.87	5	TERR	/	/	/
Kurota Lowland	35.52	135.88	20	TERR	/	/	/
KW31	3.52	5.57	-1181	MARI	/	/	/
La Laguna	4.92	-74.03	2900	TERR	2	0	0
Lac du Bouchet - DIGI	44.83	3.82	1200	TERR	/	/	/
Lagaccione	42.57	11.80	355	TERR	/	/	/
Laguna Bella Vista	-13.62	-61.55	600	TERR	/	/	/
Laguna Chaplin	-14.47	-61.07	600	TERR	/	/	/
Lake Billyakh	65.28	126.78	340	TERR	8	0	0
Lake Biwa (BIW95-4)	35.25	136.05	84	TERR	/	/	/
Lake Consuelo (CON1)	-13.95	-68.99	1360	TERR	/	/	/
Lake Malawi	-11.22	34.42	470	TERR	/	/	/
Lake Masoko	-9.33	33.75	840	TERR	2	0	0
Lake Nojiri	36.83	138.22	657	TERR	8	0	0
Lake Tulane	29.83	-81.95	36	TERR	/	/	/
Lake Wangoom LW87 core	-38.35	142.60	100	TERR	8	0	0
Lake Xinias	39.05	22.27	500	TERR	/	/	/
Les Echets G - DIGI	45.90	4.93	267	TERR	8	0	0
Little Lake	44.16	-123.58	217	TERR	5	0	0
Lynchs Crater	-17.37	145.70	760	TERR	8	0	0
MD01-2421	36.02	141.77	-2224	MARI	/	/	/
MD03-2622 Cariaco Basin	10.71	-65.17	-877	MARI	/	/	/
MD04-2845	45.35	-5.22	-4100	MARI	8	0	0

MD84-629	32.07	34.35	-745	MARI	8	0	0
MD95-2039	40.58	-10.35	-3381	MARI	8	0	0
MD95-2042	37.80	-10.17	-3148	MARI	/	/	/
MD95-2043	36.14	-2.62	-1841	MARI	8	0	0
MD99-2331	41.15	-9.68	-2110	MARI	8	0	0
Megali Limni	39.10	26.32	323	TERR	/	/	/
Mfabeni Peatland	-28.15	32.52	11	TERR	/	/	/
Nakafurano	43.37	142.43	173	TERR	/	/	/
Native Companion Lagoon	-27.68	153.41	20	TERR	/	/	/
Navarrs	39.10	-0.68	225	TERR	3	1	0
ODP 1233 C	-41.00	-74.45	-838	MARI	/	/	/
ODP 820	-16.63	146.30	-280	MARI	/	/	/
ODP site 976	36.20	-4.30	-1108	MARI	8	0	0
ODP1019	41.66	-124.91	989	MARI	8	0	0
ODP1078C	-11.92	13.40	-426	MARI	/	/	/
ODP893A	34.28	-120.03	-577	MARI	8	0	0
Potato Lake	34.45	-111.33	2222	TERR	4	0	0
Rice Lake (Rice Lake 81)	40.30	-123.22	1100	TERR	/	/	/
Siberia	-17.09	-64.72	2920	TERR	2	0	0
Stracciacappa	42.13	12.32	220	TERR	/	/	/
Tagua Tagua - DIGI	-34.50	-71.16	200	TERR	6	0	0
Taiquemo	-42.17	-73.60	170	TERR	/	/	/
Toushe Basin	23.82	120.88	650	TERR	/	/	/
Tswaing Crater	-25.40	28.08	1100	TERR	/	/	/
Tyrrendara Swamp	-38.20	141.76	13	TERR	/	/	/
Valle di Castiglione	41.90	12.76	44	TERR	/	/	/
W8709-13 PC	42.11	-125.75	-2712	MARI	8	0	0
W8709-8 PC	42.26	-127.68	-3111	MARI	8	1	1

23

	Walker Lake	35.38	-111.71	2500	TERR	/	/	/
453								

24

455 Table 2. Leave-out cross-validation (with geographically and climatically close sites removed) using fxTWA-PLSv2 for mean temperature of the coldest month (MTCO), mean temperature 456 457 of the warmest month (MTWA) and plant-available water (α) with P-splines smoothed fx 458 estimation and bins of 0.02, 0.02 and 0.002, respectively. *n* is the number of components where 459 the last significant number of components is indicated in **bold**. Avg.bias is the average bias; RMSEP is the root-mean-square error of prediction; and Δ RMSEP is the per cent change of 460 461 RMSEP, which is $100 \times (RMSEP_n - RMSEP_{n-1})/RMSEP_{n-1}$; when n = 1, RMSEP₀ is the 462 RMSEP of the null model. p assesses whether using the current number of components is significantly different from using one component less. The degree of overall compression is 463 assessed by linear regression of the cross-validated reconstructions on to the climate 464 variable; b_1 and b_1 se are the slope and the standard error of the slope, respectively. The closer 465 466 the slope (b_1) is to 1, the less the compression.

	n	R^2	Avg.bias	RMSEP	ΔRMSEP	р	b_l	b ₁ .se
	1	0.72	-1.11	6.83	-45.45	0.001	0.83	0.00
	2	0.74	-1.21	6.68	-2.25	0.001	0.84	0.00
	3	0.75	-1.10	6.51	-2.48	0.001	0.85	0.00
) O	4	0.75	-1.10	6.54	0.53	1.000	0.85	0.00
MTC	5	0.75	-1.13	6.54	-0.07	0.188	0.85	0.00
	1	0.54	-0.33	3.89	-29.76	0.001	0.66	0.00
	2	0.58	-0.32	3.69	-5.10	0.001	0.71	0.00
Û	3	0.59	-0.33	3.68	-0.14	0.001	0.71	0.00
). N	4	0.59	-0.33	3.69	0.07	0.746	0.71	0.00
MTV	5	0.59	-0.33	3.67	-0.39	0.001	0.71	0.00
	1	0.62	-0.02	0.189	-37.73	0.001	0.66	0.00
	2	0.63	-0.022	0.188	-0.81	0.001	0.68	0.00
	3	0.63	-0.021	0.186	-0.87	0.001	0.68	0.00
	4	0.65	-0.02	0.182	-2.11	0.001	0.71	0.00
α	5	0.65	-0.02	0.182	0.11	1.000	0.71	0.00

25

Table 3: Maximum likelihood estimates of the relationship between the change in mean temperature of the coldest month (Δ MTCO) and the change in mean temperature of the warmest month (Δ MTWA) by latitudinal bands for the northern extratropics (NET, north of 23.5°N), tropics (TROP, between 23.5°N and 23.5°S) and southern extratropics (SET, south of 23.5°S). The intercepts were set to zero since both variables are changes. Coefficients in bold mean both the lower 95% and upper 95% estimates are above 0.

Region		Coefficient	Standard error	Lower 95%	Upper 95%
			(SE)		
NET	Slope	2.129	0.657	0.841	3.417
TROP	Slope	2.276	1.381	-0.431	4.983
SET	Slope	0.979	0.151	0.684	1.275

473

26

- Table 4: Maximum likelihood estimates of the relationship between the change in plantavailable water ($\Delta \alpha$) and the change in mean temperature of the warmest month (Δ MTWA) by latitudinal bands for the northern extratropics (NET, north of 23.5°N), tropics (TROP, between 23.5°N and 23.5°S) and southern extratropics (SET, south of 23.5°S). The intercepts were set to zero since both variables are changes. Coefficients in bold mean both the lower 95% and
- 480 upper 95% estimates are above 0.

]	Region		Coefficient	Standard error	Lower 95%	Upper 95%
				(SE)		
	NET	Slope	0.082	0.022	0.039	0.124
	TROP	Slope	0.075	0.026	0.024	0.127
	SET	Slope	0.031	0.003	0.025	0.037