

1 **Supplementary Material**

2

3 **Supplementary Figure S1:** (top) 65°N July insolation, (bottom) austral spring to summer (September to
4 November) insolation. The contours indicate absolute values of the mean insolation, and colours indicate
5 anomalies from 21 ka.

6

7

8 **Supplementary Figure S2:** Results from a North Atlantic meltwater experiment performed with
9 LOVECLIM under 40ka boundary conditions and with an atmospheric CO₂ concentration fixed at 195
10 ppm (Margari et al., 2020). Freshwater is added into the North Atlantic (50–60°N). The freshwater flux
11 is increased linearly to 0.2 Sv during the first 400 years, decreased linearly to zero during the next 400
12 years, and remains at zero thereafter.

13

14

15 **Supplementary Figure S3:** Results from a deglaciation experiment with MIROC (red lines), where a
 16 uniform freshwater flux of 0.1 Sv is added into the North Atlantic (50–70°N) during 18–17 ka. Black lines
 17 represent the standard deglaciation experiment with MIROC.

18

19

20 **Supplementary Figure S4:** Relationship between the equilibrium climate sensitivity (ECS) and global
 21 mean surface air temperature (SAT) changes for the LGM. The circles indicate PMIP4 deglaciation (this
 22 study), and crosses and diamonds indicate LGM simulations from PMIP3 and PMIP4 (summarised in
 23 Kageyama et al., 2021), respectively.