Preprints
https://doi.org/10.5194/cp-2023-86
https://doi.org/10.5194/cp-2023-86
04 Dec 2023
 | 04 Dec 2023
Status: a revised version of this preprint is currently under review for the journal CP.

Multi-model assessment of the deglacial climatic evolution at high southern latitudes

Takashi Obase, Laurie Menviel, Ayako Abe-Ouchi, Tristan Vadsaria, Ruza Ivanovic, Brooke Snoll, Sam Sherriff-Tadano, Paul Valdes, Lauren Gregoire, Marie-Luise Kapsch, Uwe Mikolajewicz, Nathaelle Bouttes, Didier Roche, Fanny Lhardy, Chengfei He, Bette Otto-Bliesner, Zhengyu Liu, and Wing-Le Chan

Abstract. The quaternary climate is characterised by glacial-interglacial cycles, with the most recent transition from the last glacial maximum to the present interglacial (the last deglaciation) occurring between ~ 21 and 9 ka. While the deglacial warming at southern high latitudes is mostly in phase with atmospheric CO2 concentrations, some proxy records have suggested that the onset of the warming occurred before the CO2 increase. In addition, southern high latitudes exhibit a cooling event in the middle of the deglaciation (15–13 ka) known as the Antarctic Cold Reversal (ACR). In this study, we analyse transient simulations of the last deglaciation performed by six different climate models as part of the 4th phase of the Paleoclimate Modelling Intercomparison Project (PMIP4) to understand the processes driving southern high latitude surface temperature changes. While proxy records from West Antarctica and the Pacific sector of the Southern Ocean suggest the presence of an early warming before 18 ka, only half the models show a significant warming (~1 °C or ~10 % of the total deglacial warming). All models simulate a major warming during Heinrich stadial 1 (HS1, 18–15 ka), greater than the early warming, in response to the CO2 increase. Moreover, simulations in which the AMOC weakens show a more significant warming during HS1 as a result. During the ACR, simulations with an abrupt increase in the AMOC exhibit a cooling in southern high latitudes, while those with a reduction in the AMOC in response to rapid meltwater exhibit warming. We find that all climate models simulate a southern high latitude cooling in response to an AMOC increase with a response timescale of several hundred years, suggesting the model’s sensitivity of AMOC to meltwater, and the meltwater forcing in the North Atlantic and Southern Ocean affect southern high latitudes temperature changes. Thus, further work needs to be carried out to understand the deglacial AMOC evolution with the uncertainties in meltwater history. Finally, we do not find substantial changes in simulated Southern Hemisphere westerlies nor in the Southern Ocean meridional circulation during deglaciation, suggesting the need to better understand the processes leading to changes in southern high latitude atmospheric and oceanic circulation as well as the processes leading to the deglacial atmospheric CO2 increase.

Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this preprint. The responsibility to include appropriate place names lies with the authors.
Takashi Obase, Laurie Menviel, Ayako Abe-Ouchi, Tristan Vadsaria, Ruza Ivanovic, Brooke Snoll, Sam Sherriff-Tadano, Paul Valdes, Lauren Gregoire, Marie-Luise Kapsch, Uwe Mikolajewicz, Nathaelle Bouttes, Didier Roche, Fanny Lhardy, Chengfei He, Bette Otto-Bliesner, Zhengyu Liu, and Wing-Le Chan

Status: final response (author comments only)

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse
  • RC1: 'Comment on cp-2023-86', Anonymous Referee #1, 08 Feb 2024
    • AC1: 'Reply on RC1', Takashi Obase, 07 Jun 2024
  • RC2: 'Comment on cp-2023-86', Anonymous Referee #2, 30 Mar 2024
    • AC2: 'Reply on RC2', Takashi Obase, 07 Jun 2024
Takashi Obase, Laurie Menviel, Ayako Abe-Ouchi, Tristan Vadsaria, Ruza Ivanovic, Brooke Snoll, Sam Sherriff-Tadano, Paul Valdes, Lauren Gregoire, Marie-Luise Kapsch, Uwe Mikolajewicz, Nathaelle Bouttes, Didier Roche, Fanny Lhardy, Chengfei He, Bette Otto-Bliesner, Zhengyu Liu, and Wing-Le Chan
Takashi Obase, Laurie Menviel, Ayako Abe-Ouchi, Tristan Vadsaria, Ruza Ivanovic, Brooke Snoll, Sam Sherriff-Tadano, Paul Valdes, Lauren Gregoire, Marie-Luise Kapsch, Uwe Mikolajewicz, Nathaelle Bouttes, Didier Roche, Fanny Lhardy, Chengfei He, Bette Otto-Bliesner, Zhengyu Liu, and Wing-Le Chan

Viewed

Total article views: 980 (including HTML, PDF, and XML)
HTML PDF XML Total Supplement BibTeX EndNote
764 177 39 980 140 43 41
  • HTML: 764
  • PDF: 177
  • XML: 39
  • Total: 980
  • Supplement: 140
  • BibTeX: 43
  • EndNote: 41
Views and downloads (calculated since 04 Dec 2023)
Cumulative views and downloads (calculated since 04 Dec 2023)

Viewed (geographical distribution)

Total article views: 980 (including HTML, PDF, and XML) Thereof 980 with geography defined and 0 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 

Cited

Latest update: 13 Dec 2024
Download
Short summary
This study analyses transient simulations of the last deglaciation performed by six climate models to understand the processes driving southern high latitude temperature changes. We find that atmospheric CO2 changes and AMOC changes are the primary drivers of the major warming and cooling during the middle stage of the deglaciation. The multi-model analysis highlights the model’s sensitivity of CO2, AMOC to meltwater, and the meltwater history on temperature changes in southern high latitudes.