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Abstract. Laboratory experiments showed that the isotopic fractionation of δ13C and of δ18O during calcite formation of plank-

tic foraminifera are species-specific functions of ambient CO2−
3 -concentration. This effect became known as the carbonate ion

effect (CIE), whose role for the interpretation of marine sediment data will be investigated here in an in-depth analysis of the
13C cycle. For that effort we constructed new 160 kyr-long mono-specific stacks of changes in both δ13C and δ18O from either

the planktic foraminifera Globigerinoides ruber (rub) or Trilobatus sacculifer (sac) from 112 and 40 marine records from the5

wider tropics (latitudes below 38◦), respectively. Both mono-specific time series ∆(δ13Crub) and ∆(δ13Csac) are very similar

to each other and a linear regression through a scatter plot of both data sets has a slope of ∼0.99 — although the laboratory-

based CIE for both species differ by nearly a factor of two, implying that they should record distinctly different changes in

δ13C, if we accept that the carbonate ion concentration changes on glacial/interglacial timescales. For a deeper understanding

of the 13C cycle we use the global carbon cycle model BICYCLE-SE to calculate how surface ocean CO2−
3 should have varied10

over time in order to be able to calculate the potential offsets which would by caused by the CIE quantified in culture exper-

iments. Our simulations are forced with atmospheric reconstructions of CO2 and δ13CO2 derived from ice cores to obtain a

carbon cycle which should at least at the surface ocean be as close as possible to expected conditions and which in the deep

ocean largely agrees with the carbon isotope ratio of dissolved inorganic carbon (DIC), δ13CDIC, as reconstructed from benthic

foraminifera. We find that both ∆(δ13Crub) and ∆(δ13Csac) agree better with changes in simulated δ13CDIC when ignoring15

the CIE than those time series which where corrected for the CIE. The combination of data- and model-based evidence for

the lack of a role for the CIE in ∆(δ13Crub) and ∆(δ13Csac) suggests that the CIE as measured in laboratory experiments is

not directly transferable to the interpretation of marine sediments records. The much smaller CIE-to-glacial/interglacial-signal-

ratio in foraminifera δ18O, when compared to δ13C, prevents us to draw robust conclusions on the role of the CIE on δ18O as

recorded in the hard shells of both species. However, theory proposes that the CIE in δ13C and δ18O depends both on the pH20

in the surrounding water, suggesting that the CIE should be detectable in neither or both of the isotopes. Whether this lack of

role of the CIE in the interpretation of planktic paleo data is a general feature, or restricted to the two species investigated here,

needs to be checked with further data from other planktic foraminiferal species.
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1 Introduction

For a reconstruction of past changes in the ocean and the carbon cycle various variables are measured on microfossils obtained25

from marine sediment cores. Among the most widley used are the stable carbon and oxygen isotope ratios, δ13C and δ18O,

from hard shells of planktic and benthic foraminifera. Since the publication of the first stable isotope time series (Emiliani,

1955) a vast number of of stable isotope records has been published and to a large part compiled in the World Atlas of late

Quaternary Foraminiferal Oxygen and Carbon Isotope Ratios (Mulitza et al., 2022). One of the fundamental problems with the

interpretation of foraminiferal isotope ratios is how and why was a stable isotope signal altered on its way from the sea water to30

the shell of living foraminifera. Are there vital and other effects necessary to be considered when interpreting the paleo records

(e.g. Bijma et al., 1999; Zeebe et al., 2008; Kimoto, 2015)?

The carbonate ion effect (CIE) is one of these potentially important effects that might alter the isotopic signal. The CIE

implies that both δ13C and δ18O measured in hard shells of marine organisms undergo isotopic fractionation during calcite

formation with the amplitude of the fractionation, among other factors, being a function of the carbonate ion concentration35

([CO2−
3 ]) of the surrounding seawater (Spero et al., 1997). The CIE has been found to be species-specific (Spero et al., 1999),

ranging from −4.7 to −13.0× 10−3 ‰ per µmol kg−1 of [CO2−
3 ] for δ13C and between −1.4 and −4.5× 10−3 ‰ per

µmol kg−1 of [CO2−
3 ] for δ18O in four planktic foraminifera. The CIE for δ13C has been explained for Orbulina universa,

a spinose, symbiont bearing species, by the pH-related distribution of dissolved inorganic carbon (DIC) into its three species

CO2, CO2−
3 , and HCO−3 (Wolf-Gladrow et al., 1999; Zeebe et al., 1999). The CIE on δ18O is also explained by the CO2−

3 -40

related varying pH (Zeebe, 1999). These theories, however, were unable to base the full amplitudes found in experiments solely

on this effect. The CIE is maybe the most prominent isotopic fractionation effect which has to be considered when interpreting

the paleo records, but others, e.g vital effects and dependency on light, temperature, pressure and shell size, have been put

forward (e.g. Spero and Williams, 1988, 1989; Spero et al., 1991; Spero, 1992; Spero and Lea, 1993; Oppo and Fairbanks,

1989). The CIE is found to play a minor role when comparing late Holocene deep ocean δ13C in benthic foraminifera with45

δ13C of DIC (δ13CDIC) (Schmittner et al., 2017) being responsible for −2.6×10−3 ‰ per µmol kg−1 of [CO2−
3 ] disturbance in

the recorded signal. In a recent study focusing on the benthic species Cibicidoides wuellerstorfi −3.0×10−3 ‰ per µmol kg−1

of [CO2−
3 ] have been obtained for the late Holocene (Nederbragt, 2023). Both studies also found in addition to the CIE that

δ13Cbenthic was also partly controlled by other variables, mainly pressure (water depth) and temperature.

The CIE in planktic foraminifera is one of the reasons why the interpretation of the whole δ13C cycle over glacial/interglacial50

timescales is still challenging. In a compilation of foraminiferal δ13C measurements covering the past 150 kyrs, Oliver et al.

(2010) find relatively large disagreements between different planktic δ13C records within a region, compared to benthic records,

consistent with large uncertainty attributed to the estimation of δ13CDIC from planktic species. Since benthic compilations are

less affected by the CIE, they should, however, robustly constrain deep ocean changes in δ13CDIC. A more recent compilation

of benthic δ13C was given in Lisiecki (2014). Furthermore, δ13C of atmospheric CO2 (δ13CO2) is now available over the last55

155 kyr (Eggleston et al., 2016a) from ice cores. Missing in our understanding are so far tight constraints on change in surface
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ocean δ13CDIC, but in principle this information should be recorded in the hard shells of planktic foraminifera, even if hidden

under the CIE.

We therefore here aim to construct a robust time series of orbital changes in surface ocean δ13CDIC based on planktic

foraminifera data. We compiled δ13C data largely based on Mulitza et al. (2022) covering up to the last 160 kyr. In order to be60

able to apply any species-specific CIE corrections we compile mono-specific isotope records on the widely abundant shallow-

dwelling planktic foraminifera species Globigerinoides ruber (G. ruber or rub) and Trilobatus sacculifer (T. sacculifer or sac)

into stacks. Due to their spatial distribution (Fraile et al., 2008) this species selection leads effectively to the construction of

∆(δ13Crub) and ∆(δ13Csac) stacks based on sediment core data from the latitudes smaller than 40◦, potentially informing

us about mean changes of δ13CDIC on orbital timescales in the surface of the wider tropical ocean. Accompanied stacks of65

∆(δ18Orub) and ∆(δ18Osac) from the same cores will add further information on the CIE in δ18O.

A first surface ocean δ13C stack based on data from T. sacculifer obtained from five equatorial Atlantic records has been

constructed by Curry and Crowley (1987) without any knowledge on the CIE. Furthermore, Spero et al. (1999) used data

from G. ruber and T. sacculifer from a single core in the Indian Ocean and the lab-based size of their species-specific CIE

to deconvolve surface ocean [CO2−
3 ]. We here will use our new mono-specific δ13C stacks, which have due to the underlying70

number of records a much higher signal-to-noise-ratio to test the robustness of their findings.

In the following we will investigate the connection of δ13C in atmosphere and ocean in closer detail in order to improve

our understanding of the 13C cycle. The remainder of the article is structured as follows. We first (section 2.1) describe the

construction of our mono-specific δ13C anomaly stacks ∆(δ13Crub) and ∆(δ13Csac) (and of the accompanied δ18O anoma-

lies). Some published benthic δ13C data are also needed for our understanding (section 2.2). For a deeper interpretation the75

global isotope enabled carbon cycle model BICYCLE-SE (Köhler and Munhoven, 2020), which has been proven to simulate

glacial/interglacial (G/IG) changes in the carbon cycle reasonably well, is used. The model is briefly described in section 2.3

including a completely revised parametrisation of the 13C cycle. We then first discuss (section 3.1) what we already know from

data on the δ13C cycle and the role the CIE might play. We then analyse in section 3.2 the simulated δ13C cycle in our model

results. This enables us to evaluate (section 3.3) if our stacks ∆(δ13Crub) and ∆(δ13Csac) are good representations of changes80

in δ13CDIC in the wider tropical surface ocean or if corrections such as the CIE need to be applied. Finally, we briefly discuss

the CIE in δ18Orub and δ18Osac (section 3.4), before we come to our conclusions (section 4).

2 Methods

2.1 Constructing new mono-specific stacks from planktic foraminifera

Data source and age modelling: To construct time series of low-latitude δ13C variations through the past 160 kyr, we selected85

112 and 40 δ13C records of the shallow-dwelling planktic foraminifera G. ruber and T. sacculifer, respectively, predominantely

from the World Atlas of late Quaternary Foraminiferal Oxygen and Carbon Isotope Ratios (Mulitza et al., 2022). A list of the

isotope records contributing to our stacks with relevant meta data, references to the original publications and data sources is

provided in Table S1. In three sediment cores time series from both G. ruber white and G. ruber pink contribute to our G.
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Figure 1. Location of the 127 sediment cores from which data have been compiled for this study. In 87 cores data from the planktic species

G. ruber and in 18 cores data from T. sacculifer have been included, while 22 cores provided mono-specific data from both species.

ruber stacks, while data from 22 cores contain mono-specific data from both G. ruber and T. sacculifer. All combined our data90

selection is based on material from 127 sediment cores. The core sites cover a latitudinal range from 37.6◦N to 36.7◦S for G.

ruber and of 32.8◦N to 31.3◦S for T. sacculifer in all major ocean basins (Figure 1), although the contributions from individual

cores (and therefore the latitudinal range) changed over time (Figure 2c). Our age models are based on either radiocarbon

ages or oxygen isotope stratigraphy or a combination of both methods. To calibrate radiocarbon ages, we first subtracted a

simulated local reservoir age from the nearest grid-box of the modelling experiments conducted for Marine20 (Butzin et al.,95

2020; Heaton et al., 2020) and then calibrated the corrected radiocarbon age with the IntCal20 calibration curve (Reimer

et al., 2020). For core sections with insufficient radiocarbon coverage or outside the radiocarbon dating range ages were added

through the visual alignment with the isotope stacks by Lisiecki and Raymo (2005) and Lisiecki and Stern (2016) using the

software PaleoDataView (Langner and Mulitza, 2019). In a few cases age models were derived by visual alignment with the

oxygen isotope records of well-dated nearby cores. The details of the age model construction are available in the netCDF100

files of the age models in the corresponding PaleoDataView collection (Köhler and Mulitza, 2023). A continuous age model

was then constructed with the age modelling software BACON (Blaauw and Christen, 2011). For each record we produced an

ensemble of 1000 time series by combing 1000 BACON-generated age models with 1000 down-core δ13C and δ18O series by

adding a random value within the typical analytical 1σ-uncertainty of 0.05% and 0.07‰ to each down-core δ13C and δ18O

value, respectively. The resulting 1000 δ13C and δ18O time series were then interpolated to a time step of 1 kyr to calculate the105

mean and the standard deviation of the time series ensembles. The averaging of the individual ensemble members then led to

a considerable smoothing of the final time series.
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Figure 2. Stacks of anomalies in (a,e) δ18O and (b,f) δ13C from the planktic species G. ruber and T. sacculifer across the last 160 kyr. Mean

anomalies (±1 SE) are calculated with respect to the mean of 21–19 kyr BP (blue vertical band). Data are largely based on Mulitza et al.

(2022). (c,g) Latitudinal distribution of cores contributing to the stack (mean and full range) and (d,h) stack count. Either data from all cores

for each species are compiled (a–d) or (e–h) from a reduced core selection, in which contributing cores cover both Termination 1 and 2

(T1+T2).

Stacking of down-core isotope records: Although the size class used for stable isotope measurements can vary considerably

among records, it is common practice to use a fairly constant size down-core to minimise size-related effects on both oxygen

and carbon isotope ratios (e.g. Oppo and Fairbanks, 1989). To provide a common baseline, we corrected all single isotope110

records by their individual mean values for the period from 21 to 19 kyr BP marked as Last Glacial Maximum (LGM) in

various plots. To produce final isotope stacks, we averaged all corrected time series and calculated the standard error (SE)

of the means at 1 kyr intervals. The final mono-specific stacks of both δ18O and δ13C anomalies based on G. ruber and T.
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sacculifer are plotted in Figure 2a,b. The oxygen isotope stacks are here also shown to give a clear reference for G/IG changes,

δ18O has its maxima during peak glacial times and its minima during peak interglacials. In section 3.4 we will come back to115

these data to discuss the CIE in δ18Orub and δ18Osac. To test to what extent the data distribution affects the stacks, we generated

two versions of stacks, one based on all records (Figure 2a–d) and an alternative based only on records which contain both

Terminations (T1+T2, Figure 2e–h). The stack counts (Figure 2d,h) show that the two versions differ mainly in the younger

half, they are identical beyond 85 kyr BP. The latitudinal ranges in the young half are slightly smaller for the compilations

T1+T2 than when all cores are compiled, but the mean latitudes of all cores are throughout the covered time window of the120

last 160 kyr in all cases (for both species and for both compilations) close to the equator (Figure 2d,g). This consistency in the

mean latitude suggests that the incoming light which varied in its annual mean values between ∼420 W m−2 at the equator

and ∼330 W m−2 around latitudes of 40◦ (Laskar et al., 2004) should only marginally affect the isotopic fractionation (e.g.

Spero et al., 1991).

2.2 Benthic δ13C125

Focus of this study is the δ13C of the surface ocean. However, for a rough comparison of δ13C changes in the deep ocean we

rely on the published δ13C stack constructed from six deep Pacific core as contained in Lisiecki (2014). The six cores are all

ODP cores (677, 846, 849, 1123, 1143, 1208) from between 2700 and 3500 m water depth, located between 42◦S and 36◦N.

The deep Pacific δ13C stack should cover the most depleted end member of the marine δ13C cycle (Figure 3d) and should

give some indication how δ13C in deep ocean is performing in our simulations. More details on the stack are found in Lisiecki130

(2014).

2.3 The carbon cycle model BICYCLE-SE

2.3.1 Brief model description

At the core of BICYCLE — the Box model of the Isotopic Carbon cYCLE — sits an ocean (O) with 10 boxes and a terrestrial

biosphere consisting of seven boxes (B) together with a one box atmosphere (A), in which the concentration of carbon (as135

DIC in the ocean, as pCO2 in the atmosphere, as organic carbon in the biosphere) and both of the isotopes δ13C and ∆14C

are traced (Köhler et al., 2005). Furthermore, in the ocean alkalinity, PO3−
4 as macro-nutrient and O2 is represented. From

the two variables of the marine carbonate system (DIC and alkalinity) all other variables (CO2, HCO−3 , CO2−
3 and pH) are

calculated according to Zeebe and Wolf-Gladrow (2001) with updates of the dissociation constants pK1 and pK2 (Mojica Prieto

and Millero, 2002). The ten ocean boxes distinguish 100 m deep equatorial (or wider tropical) surface waters in Atlantic and140

Indo-Pacific from 1000 m deep surface ocean boxes in the high latitudes (North Atlantic, Southern Ocean, North Pacific). In

the model, wider tropical boxes range from 40◦S to 40◦N in the Indo-Pacific and to 50◦N in the Atlantic, rather similar to the

latitudinal coverage of the sediment cores from which ∆(δ13Crub) and ∆(δ13Csac) have been constructed. Deep ocean boxes

represent all waters below 1 km in the three basin Atlantic, Southern Ocean, Indo-Pacific. In the equatorial regions the waters
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Figure 3. Carbon cycle time series of the last 160 kyr, including the Penultimate and Last Glacial Maximum (PGM, LGM) and Terminations

1 and 2 (T1, T2). Spline of atmospheric CO2 (a) and δ13CO2 (b) based on data from various ice cores (grey, ±1σ around the mean, (Köhler

et al., 2017a; Eggleston et al., 2016a)) and highly resolved recent data from the “horizontal ice core” approach in Taylor Glacier (yellow,

(Bauska et al., 2016, 2018; Menking et al., 2022b)). (c) ∆(δ13Crub) and ∆(δ13Csac) averaging signals in the wider tropical surface ocean

(this study, largely based on Mulitza et al., 2022). (d) Deep ocean δ13C from benthic foraminifera stacked from six Pacific cores (Lisiecki,

2014).

between 100 and 1000 m water depth are described by intermediate boxes. The terrestrial biosphere (Köhler and Fischer, 2004)145

distinguishes C3 and C4 photosynthesis of grasses and trees, and soil carbon with different turnover times of up to 1000 years.

The model extension towards the version BICYCLE-SE used here, that can take care of solid Earth processes, is sketched in

Figure 4. The main improvement documented in detail in Köhler and Munhoven (2020) is the implementation of a sediment

module, that captures early diagenesis in a 8 cm deep sedimentary mixed layer (M), under which numerous historical layers are

implemented. In effect, we now simulate the subsystem of the global carbon cycle consisting of atmopshere, ocean, terrestrial150

biosphere and sedimentary mixed layer (AOBM) within BICYLE-SE. In each of the three ocean basins (Atlantic; Southern
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δ13CV = -5‰

δ13Crock = +2‰

!(C4-CO2) = -5‰ 
!(C3-CO2) = -19‰

!(Corg-DIC) = -24.5 to -30.5‰ PRE, 
f(SST), -1.5 ‰/K 

!A   O = -2.3 to -2.4‰, small f(SST)
!O   A = -10.2 to -12.4 ‰, f(SST)

!(CaCO3-DIC) = 0‰ 
!(corals-DIC) = -2‰

-OA

BICYCLE-SE
Solid Earth

-B

BICYCLE

V

V

C S

Si-W

Ca-W P

P

A

Figure 4. Sketch of the Box model of the isotopic carbon cycle, version solid Earth (BICYCLE-SE), modified from Köhler and Munhoven

(2020). V: outgassing of CO2 from volcanoes on land potentially and temporally overlain by land ice and from hot spot island volcanoes (and

mid ocean ridges, not shown) influenced by changing sea level; C: shallow water carbonate deposition due to coral reef growth; Si-W: silicate

weathering and Ca-W: carbonate weathering with different sources of C, but both delivering HCO−
3 -ions into the ocean; P: PO3−

4 riverine

input and sedimentary burial; S: CaCO3 sedimentation and dissolution. A-B: atmosphere-biosphere exchange of CO2; A-O: atmosphere-

ocean exchange of CO2. The cyan-coloured broken circles mimic the two overturning cell in the Atlantic and Indo-Pacific Ocean. The

isotopic fractionation ε during exchange processes, or the prescribed δ13C of external fluxes are given, summarising the parametrisation of

the 13C cycle within the model.

Ocean, Indo-Pacific) the pressure-dependent carbonate system is calculated for every 100 m water depth and depending on

the over- or undersaturation of the carbonate-ion concentration CaCO3 is either accumulated or dissolved. Parametrisation and

realisation of the sedimentary processes directly follows Munhoven and François (1996) and Munhoven (1997). The carbon

isotopes in the sedimentary mixed layer are only followed in aggregated boxes (one for each of the three ocean basin).155

Equipping BICYCLE with a process-based sediment module enables the revised model version BICYCLE-SE to address

questions related to changes in solid Earth carbon fluxes in detail and on long-term. Roughly speaking the following processes

are considered: 1) CO2 outgassing from volcanoes on land, hot spot island volcanoes and mid ocean ridge (MOR) hydrothermal

activity is realised as partly being dependent on changing sea level. 2) Coral reef growth is a known shallow water carbonate

sink, that is to some extent also following sea level rise. 3) Weathering of silicate or carbonate rocks on land, consuming160

different amounts of atmospheric CO2, and both leading to bicarbonate fluxes into the ocean. These solid Earth processes are

not directly coupled to each other. Their implementation into the model might therefore lead to temporal offsets in various

variables, to which the sediment module might react in a carbonate compensation feedback. Further details on the model and

the time-dependent forcing are found in Köhler and Munhoven (2020). Part of this brief model description has been taken from

Köhler (2020).165
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2.3.2 Complete formulation of the 13C cycle in BICYCLE-SE

The following isotopic fractionations are now considered in the BICYCLE-SE model. For this study the whole δ13C cycle has

been revised. While isotopic fractionations are given here in the ε(A−B)-notation (in ‰) they are implemented after Zeebe and

Wolf-Gladrow (2001) in the model as fractionation factors α(A−B). Both are related after

ε(A−B) = 1000 · (α(A−B) − 1). (1)170

Furthermore, α(A−B) is related to δ13C in reservoirs A and B after

α(A−B) =
δ13CA + 1000

δ13CB + 1000
. (2)

There is no convention if the initial or final reservoir is given as A or B here, however here A is always the final and B the initial

reservoir of the fractionation process. In some cases a specific process instead of two reservoirs is mentioned in the subscript,

e.g. ε(a→o) and ε(o→a) for the atmosphere-ocean gas exchange, for which not only the two different reservoirs, but also the175

direction of the flux plays a role for the size of the isotopic fractionation. In that case the quantified fractionation implies an

isotopic depletion connected with the related process for ε < 0‰.

Air-sea gas exchange: Using the measurements from Zhang et al. (1995) we formulate, following in most parts Marchal

et al. (1998), for the isotopic fractionation during gas exchange to be consisting of contributions from equilibrium

(αeq) and kinetic (αk) fractionation (αtotal = αeq ·αk). For the atmosphere-to-ocean CO2 flux a temperature-dependent180

equilibrium fractionation of εeqa→o = εeq(aq−g) = −1.31 + 0.0049 ·TC between dissolved (aq) and gaseous (g) CO2 and

a εka→o = −1.08‰ is used. Note, εka→o differs by –0.2‰ from εko→a = −0.88‰ for the ocean-to-atmosphere flux, a

necessary correction already given in Zhang et al. (1995), but to our knowledge only rarely applied. For the reverse

ocean-to-atmosphere flux we use the equilibrium fractionation αeq
o→a = αeq

(aq−DIC) =
∑
i fiα(aq−i) with fi being the

relative shares of CO2, HCO−3 and CO2−
3 on DIC in the representative ocean box. Furthermore, from the available185

measurements in Zhang et al. (1995) we derive: α(aq−HCO−
3 ) =

α(aq−g)

α
(HCO

−
3 −g)

, α(aq−CO2−
3 ) =

α(aq−g)

α
(CO

2−
3 −g)

and α(aq−CO2) =

1 using ε(CO2−
3 −g)

= 7.22−0.052 ·TC and ε(HCO−
3 −g)

= 10.78−0.114 ·TC with TC being the sea surface temperature

in ◦C.

Marine biology: The preindustrial marine export production of organic carbon at 100 m water depth is set to 10 PgC/yr

(which in the model can increase in glacial periods due to iron fertilisation in the Southern Ocean up to 13 PgC/yr, Fig-190

ure S1d) with a fixed molar rain ratio of organic C:CaCO3 of 10:1. Existing data on fractionation during marine organic

matter production (marine photosynthesis) are rather weak in determining if and how it depends on CO2 (Young et al.,

2013; Brandenburg et al., 2022; Liu et al., 2022). Furthermore, as discussed in Brandenburg et al. (2022) some species

might contain so-called carbon concentrating mechanisms and use not CO2, but HCO−3 as source of their carbon, in

which case a completely different isotopic fractionation during marine photosynthesis (ε(Corg−DIC)) would follow. We195

base our initial formulation of ε(Corg−DIC) on the data compilation of δ13CPOC in Verwega et al. (2021) who found
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a dependency on latitude. Using average preindustrial δ13CDIC of +2.5‰ (Schmittner et al., 2013) as starting values

and the δ13CPOC in Verwega et al. (2021) of –22, –24, –28‰ for low, high northern, and high southern latitudes, re-

spectively, and approximating ε(Corg−DIC) ≈ δ13CPOC - δ13CDIC, we come up with the following isotopic fractionation

ε(Corg−DIC) of −24.5,−26.5, and −30.5‰ accordingly. This approximation is motivated by the high uncertainties in200

δ13CPOC as documented in Verwega et al. (2021).

The spread in δ13CPOC in the data of Verwega et al. (2021) is huge, ranging from −15 to −35‰. Furthermore, they

confirmed the finding of earlier studies (Young et al., 2013; Lorrain et al., 2020) that δ13CPOC becomes much more

depleted over time than what is explainable by the 13C Suess effect (Keeling, 1979). In details, between 1960 and 2010

δ13CPOC decreased by about 3± 4‰. The Suess Effect shows a decrease in atmospheric δ13CO2 of about 1.5‰ during205

that time (Rubino et al., 2013) and it is known that in the ocean the Suess Effect is decreasing with depth (Eide et al.,

2017). At the same time, global mean temperature rose by about 0.8 K (Rohde and Hausfather, 2020). This shift in

δ13CPOC is probably caused by a shift in the composition of the phytoplankton communities. We therefore use the

values derived in the previous paragraph from Verwega et al. (2021) as our preindustrial parameter values of ε(Corg−DIC)

to which we add a temperature-dependent part of −1.5‰ for any K the sea surface temperature in the relevant surface210

ocean box disagrees from its preindustrial value. The assumed value fits in the range of recent temperature-dependent

δ13CPOC found in Verwega et al. (2021) and has been obtained by tuning to simulate δ13CO2 at preindustrial times

to be similar to its values at LGM, as seen in the ice core data (Figure 3b). This leads to ε(Corg−DIC) at LGM of

−19.3,−20.4,−24.4‰ for low, high northern, or high southern latitudes, respectively.

Data are also rather uncertain for the isotopic fractionation during the formation of CaCO3. We assume, in agreement215

with Buitenhuis et al. (2019), that 65% of the CaCO3 exported in the abyss consists of aragonite and 35% of calcite.

Calcite is either produced by coccolithophores or planktic foraminifera. Some coccolithophore species suggest an enrich-

ment, others a depletion in δ13C in their shells with respect to δ13CDIC in the surrounding water (Ziveri et al., 2003). For

planktic foraminifera the CIE is one of various possible processes of isotopic fractionation hypothesised to occur during

hard shell formation (Bijma et al., 1999; Zeebe et al., 2008; Kimoto, 2015). Isotopic fractionation factors are in compar-220

ison to ε(Corg−DIC) rather small and in the case of the CIE species-specific (Spero et al., 1999). We therefore choose in

the model to set the fractionation during calcite production to be neutral with respect to 13C, thus ε(cal−DIC) = 0‰, but

we will consider the CIE in post-processing when comparing simulations with reconstructions. For simplicity and due

to missing further evidence for fractionation during aragonite production ε(ara−DIC) was also kept at 0‰. More general,

we keep ε(CaCO3−DIC) = 0‰.225

The shallow water sink of carbonate in corals is assumed to have a δ13C that follows after an isotopic fraction of

ε(corals−DIC) = −2‰ from the δ13C of the DIC in the surface waters. This value is based on a combination of recent

data, paleo data from the Great Barrier reef and insights from simulations (Linsley et al., 2019; Felis et al., 2022).
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Terrestrial biosphere: On land, isotopic fractionation is only assumed to occur during photosynthesis with ε(C3−CO2) =

−19‰ and ε(C4−CO2) = −5‰ for C3 (all woody plants and some grasses) and C4 (some other grasses) photosynthesis,230

respectively (Vogel, 1993; Lloyd and Farquhar, 1994).

External fluxes to the AOBM subsystem: The volcanic CO2 outgassing flux is assumed to have a fixed δ13C signature

(δ13CV) of −5.0‰, the typical mean value for volcanic outgassing (e.g. Deines, 2002; Roth and Joos, 2012), but note

that the uncertainty is ±3‰.

From the two weathering fluxes based on either silicate or carbonate rocks, only the latter has a contribution which bring235

new carbon into the system. Here, 50% of the carbon that as bicarbonate — the weathering product — is entering the

ocean with a δ13C signature (δ13Crock) of +2‰ — identical to the most likely δ13C values in carbonate rocks build

during the Phanerozoic (Bachan et al., 2017). The carbon for the other half of the carbonate weathering flux and for all

of the silicate weathering flux is assumed to come from CO2 in the soil environment. We therefore assume that this CO2

might be dominated by soil respiration fluxes and therefore a δ13C signature that corresponds to the mean value of the240

two soil carbon boxes is assumed here.

To balance the inflow of 13C via volcanism and weathering the model has been tuned for long-term stable mean δ13C

values in the AOBM subsystem by the following sink: About 6% of the organic carbon, that is exported from the surface

boxes into the abyss is assumed to be lost in the sediment. Note, that this number has been tuned with the previous

version of the 13C cycle in operation (Köhler and Munhoven, 2020), but has not been revised thereafter.245

2.3.3 Simulation Setup and Scenarios

The BICYCLE-SE model simulates the global carbon cycle as function of changing time-dependent physical boundary con-

ditions (forcing), which are nearly identical to the simulations published in Köhler and Munhoven (2020) and which are also

in detail described in that study. Briefly, ocean circulation is prescribed from modern data of the WOCE experiment, while

its main temporal changes are restricted to: (a) the AMOC, which is reduced from modern/interglacial 16 Sv to 10 Sv during250

glacial periods (Figure S1b); (b) Southern Ocean (SO) vertical deep mixing is a function of SO sea surface temperature (Figure

S1c). Ocean and land temperature are prescribed from reconstructions (Figure S1e), ocean salinity is varied as function of pre-

scribed sea level (Figure S1a). Additionally, aeolian iron input in the SO is assumed to follow dust fluxes measured in Antarctic

ice cores, which might change marine biology in the SO from an iron-limited to an iron-unlimited regime, increasing glacial

export production of organic matter to the deep ocean (Figure S1d). The standard scenario SEi used here is — apart from the255

revised δ13C cycle — nearly identical to the scenario SE in Köhler and Munhoven (2020). The only difference is that in the

application here we revised the applied equatorial sea surface temperature (SST). It has been based in previous applications

on changes in planktic δ18O in only one ODP record. Now we use the SST stack from Barth et al. (2018), which is based on

a compilation of SST from 15 non-polar sediment cores. This leads to only minor changes in atmospheric CO2 of less than

5 ppm, but is important for the 13C cycle, and its temperature-dependencies (isotopic fractionation during atmosphere-ocean260

gas exchange and during carbon uptake by the marine biology). Simulations are started from interglacial conditions around 210
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Table 1. Overview of simulation scenarios.

Name Description

SEi standard run for BICYCLE-SE with updated 13C cycle

SEi0 as SEi, but without temperature-dependent contribution to ε(Corg−DIC)

C1 as SEi, but atmospheric δ13CO2 is prescribed from data (Eggleston et al., 2016a)

C1CO2 as SEi, but atmospheric records (δ13CO2, CO2) are prescribed from data (Eggleston et al., 2016a; Köhler et al., 2017a)
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Figure 5. Simulation results and comparison to data splines for (a) atmospheric CO2, and (b) atmospheric δ13CO2. Results for scenario SEi

(standard) and SEi0 are shown. The latter differs from the standard run by a lack of temperature-dependency in ε(Corg−DIC).

kyr BP. Scenario SEi0 is only performed to illustrate how the implementation of the temperature-dependency in ε(Corg−DIC)

improve the simulated 13C cycle, illustrated by plotting atmospheric δ13CO2 against data in Figure 5b.

Simulated changes in the atmospheric record are already in scenario SEi not too far away from the reconstructions, especially

in CO2 (Figure 5a). However, to bring the carbon cycle in atmosphere and surface ocean as close as possible to the reconstruc-265

tions we perform additional simulations in which the atmospheric δ13CO2 alone (scenario C1) or together with atmospheric

CO2 (scenario C1CO2) is forced by the reconstructions. Here, we use the data splines as plotted in Figure 3a,b (Eggleston

et al., 2016a; Köhler et al., 2017a) and ignore the higher resolved data from Taylor Glacier since these more abrupt changes in

δ13CO2 are either during the last 50 kyr to a large extent covered in the dynamics of the spline (Bauska et al., 2016, 2018) or

around 70 kyr BP (Menking et al., 2022b) probably not recorded in our marine sediment records. This implies that internally270

calculated fluxes are overwritten by changes that are necessary to keep the simulated atmospheric carbon variables identical to

the reconstructions. This approach is typically applied in CO2 concentration-driven present day or future ocean carbon cycle
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simulations (e.g. Hauck et al., 2020). It has already been used in BICYCLE-SE for 14C to obtain radiocarbon in the surface

ocean as close to the data as possible during the construction of the most recent marine radiocarbon calibration curve Marine20

(Heaton et al., 2020) and subsequent studies (Köhler et al., 2022). However, since atmospheric CO2 and δ13CO2 are normally275

prognostic variables of the model and their calculated changes should be derived out of the model’s differential equations

followed by a proper integration scheme, this approach slightly violates the mass conservation. It nevertheless guarantees that

simulated surface ocean variables of the carbon cycle are within the model realm as consistent as possible with the atmospheric

reconstructions. An overview of the applied simulation scenarios is compiled in Table 1.

2.4 Data analysis280

Linear regression was performed with the software MATLAB (The MathWorks Inc., 2023). The uncertainties of the fits are

approximated by root-mean-square-errors calculated after s=
√

1
n

∑n
i=1(yi− fi)2, with fi being the calculated values ac-

cording to the linear regression equations. In cases in which the uncertainties in both variables should be considered we used

the function “linfitxy”, version 1.2.0.0 (Browaeys, 2023). The frequency analysis was performed using R (R Core Team, 2023),

including the function “coh” from the R-package seewave, version 2.2.3, calculating coherence.285

3 Results and Discussion

3.1 Overview on 13C cycle changes over the last 160 kyr

Reconstructed changes in the late Quaternary carbon cycle are still not completely understood. The ice cores give us a precise

picture of atmospheric CO2 (Bereiter et al., 2015; Köhler et al., 2017a) (Figure 3a), which in the meantime has also been

met reasonably well with various different carbon cycle models (e.g. Menviel et al., 2012; Ganopolski and Brovkin, 2017;290

Khatiwala et al., 2019; Köhler and Munhoven, 2020). These findings suggest, that the main processes responsible for the

observed changes on orbital timescales might indeed have been identified, although results are to some extent model-dependent

and improvements in details are certainly necessary.

The corresponding atmospheric δ13CO2, now available over the last 155 kyr (Eggleston et al., 2016a), however, is in all its

features still waiting for a process-based interpretation (Figure 3b). Since δ13CO2 helps to pinpoint on processes responsible295

for CO2 changes, any simulation that is able to explain one without the other might need to be interpreted with caution. Models

suggest that especially physical and biological processes in the Southern Ocean processes robustly influence δ13CO2, while the

impact of the Atlantic meridional overturning circulation (AMOC) on δ13CO2 seems to be model-dependent (Menviel et al.,

2015). Consequently, the abrupt drop in δ13CO2 at the onset of Termination 1 (T1) (Smith et al., 1999; Schmitt et al., 2012) is

nowadays understood to be caused by marine processes, while subsequent δ13CO2 changes during T1 and its recovery during300

the Holocene to LGM-like values were potentially related to a mixture of oceanic and terrestrial processes (Köhler et al., 2005;

Bauska et al., 2016).
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Two largely unexplained features stand out in the 155 kyr δ13CO2 record. First, there exist a long-term trend by +0.45‰

from the Penultimate and the Last Glacial Maximum (PGM and LGM). When first discovered (Schneider et al., 2013) it has

been hypothesised that changes in the isotopic composition of solid Earth fluxes or of their intensities or long-term peat build-305

up might be responsible for them. Second, a 0.5‰ deep and nearly 20 kyr long minima centred around 58 kyr BP happened,

rather uncorrelated with CO2 changes. Eggleston et al. (2016a) hypothesise that the δ13CO2 minima might have been partially

caused by a change in ocean stratification between Marine Isotope Stage (MIS) 4 and MIS 3, allowing for a different amount of

isotopically light carbon being stored in the deep ocean. Recently, high resolution data of δ13CO2 from Taylor Glacier covering

74 to 59.5 kyr BP including MIS 4 and the drop into the δ13CO2 minimum have been published (Menking et al., 2022b) showing310

more variability and between 66 and 60 kyr BP with –1‰ a twice as large change as previously contained in the smoothed

record of Eggleston et al. (2016a). Menking et al. (2022b) also performed first model simulations in order to understand which

processes might be responsible for the reconstructed changes in the carbon cycle. However, to our knowledge none of the

ideas put forward in Schneider et al. (2013) for the long-term trend in δ13CO2 have so far been convincingly and successfully

verified with carbon cycle model simulation. Furthermore, 400–500 kyr variability in δ13C related to slow eccentricity changes315

found throughout the Cenozoic (e.g. Pälike et al., 2006; Russon et al., 2010; Ma et al., 2011; Wang et al., 2014; Paillard, 2017)

might be superimposed on faster variations, making a process-based understanding of observed changes in δ13CO2 even more

challenging.

Sediment cores covering the Anthropocene clearly show that the δ13C of G. ruber and T. sacculifer shells (δ13Crub, δ13Csac)

faithfully reflects changes in δ13CDIC caused by the δ13C Suess Effect (Al-Rousan et al., 2004; Black et al., 2011), albeit with320

a notable offset. This offset might be influenced by the CIE (e.g. Spero et al., 1997), light intensity (e.g. Spero et al., 1991)

and the size of the foraminiferal shells (e.g. Oppo and Fairbanks, 1989). Our new mono-specific stacks from the wider tropical

surface ocean of ∆(δ13Crub) and ∆(δ13Csac) (Figure 3c) contain a G/IG rise of 0.25‰ across T1, but of only 0.15‰ across

T2, while atmospheric δ13CO2 at the same time rose by 0.1‰ (T2), or stayed constant (T1) (Figure 3b), showing local minima

during terminations in both records. Deep ocean benthic δ13C (Figure 3d) is here approximated by a stack from six deep Pacific325

cores (Lisiecki, 2014), that contains a G/IG rise of 0.45‰ across both T1 and T2. This value is on the upper end of the 95%

confidence interval of compilations of marine δ13C changes across T1 (Peterson et al., 2014; Peterson and Lisiecki, 2018)

which suggest to represent global ocean wide changes. The marine time series, both from surface and deep ocean, also contain

wide and deep minima around 60 kyr BP, similarly to the smoothed atmospheric δ13CO2 data of Eggleston et al. (2016a), but

different to the higher resolved Taylor Glacier δ13CO2 of Menking et al. (2022b). Furthermore, all marine δ13C data, similarly330

as the atmospheric δ13CO2, contain a long-term rise from PGM to LGM (about +0.33‰ in the wider tropical surface ocean,

+0.18‰ in the deep Pacific, Figure 3), which might be potentially connected with the 400-to-500 kyr variability.

Before we start with deeper model-based interpretation of the 13C cycle, we have a closer look on our new isotope stacks.

The size of the CIE as detected from laboratory experiments in both species differs by nearly a factor of two, −0.0089 and

−0.0047 ‰ change in δ13C per µmol kg−1 of [CO2−
3 ] for G. ruber and T. sacculifer, respectively, and of −0.0022 and335

−0.0014 ‰ change in δ18O per µmol kg−1 of [CO2−
3 ] for G. ruber and T. sacculifer, respectively (Spero et al., 1999).

Therefore, if the CIE plays a role for how the isotopes of the surface ocean are recorded in the foraminifera shells on orbital
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Figure 6. Scatter plot of our new stacks (a) ∆(δ13Crub) versus ∆(δ13Csac) and (b) ∆(δ18Orub) versus ∆(δ18Osac). Data stacks without

corrections for the CIE are plotted. The time series are restricted to data of last 150 kyr to allow comparison later-on with simulation results

which were based on the only 155 kyr long atmospheric δ13CO2 record. Linear regressions using only the mean values and when using also

uncertainties in both x and y are performed. The root-mean-square-error is depicted by s.

timescales then the two mono-specific time series in both δ13C and δ18O should differ. At first glance (Figure 2a,b) the time

series are remarkable similar. A more quantitative evaluation is obtained by calculating the linear regression from scatter

plots, when results based on one species are plotted against those of the other. Doing so (Figure 6) reveals for δ13C that on340

average changes are identically recorded in both species. In other words, the linear slope of ∆(δ13Crub) against ∆(δ13Csac)

is 0.98 (r2 = 0.95,s= 0.04‰) or 0.99±0.03 (r2 = 0.95) when considering the uncertainties of our stack during regression.

For δ18O the agreement is only slightly worse, the regression slope of δ18Orub against δ18Osac is 0.96 (r2 = 0.96,s= 0.09‰)

or 0.98±0.01 (r2 = 0.96) with uncertainties. Since ∆(δ13Crub) and ∆(δ13Csac) are on average recording virtually the same

changes it is difficult to image how the species-specific CIE can play a role here. Due to the small amplitudes of the CIE in345

δ18O it is yet inconclusive if the CIE plays a role for ∆(δ18Orub) versus ∆(δ18Osac).

3.2 Simulated δ13C cycle using the BICYCLE-SE model

General dynamics of the global carbon cycle in the BICYCLE-SE model have been analysed in detail in Köhler and Munhoven

(2020). We here focus on the revised δ13C cycle, but see how atmospheric CO2 in scenario SEi meets the ice core data in

Figure 5a. Note, that some analysis of δ13C in the precursor model BICYCLE without solid Earth contributions have been350
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Figure 7. Simulated surface and deeper ocean δ13C time series from scenario SEi (a, b) and scenarios C1 and C1CO2 (c, d) compared with

reconstructions. (a,c) Simulated δ13CDIC in the global mean surface and in the wider tropical surface ocean together with simulated atmo-

spheric δ13CO2 (right y-axis) are plotted together with our new stacks from the wider tropical surface ocean, ∆(δ13Crub) and ∆(δ13Csac)

shifted by +2.65‰ to meet simulated surface δ13CDIC at LGM. In (b,d) simulated δ13CDIC for the deep Indo-Pacific (I-Pac), the mean deep

ocean and the mean global ocean are plotted together with δ13C from benthic foraminifera stacked from six cores in the deep Pacific (dPac)

(Lisiecki, 2014). In (c,d) the scenarios C1 (closed lines) and C1CO2 (broken lines) are plotted together. Most of the time the differences

between both are so small that lines are indistinguishable.

described in Köhler et al. (2010), who showed that the model misses variations in δ13C related to periodicities longer than

100-kyr.

Atmospheric δ13CO2 (Eggleston et al., 2016a) is met by the results from scenario SEi only roughly, including some

millennial-scale variations around 50–30 kyr BP and the transition from LGM to preindustrial, shows some deficit the sec-
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ond half of T1 and in the Holocene (Figure 5b). The PGM-to-LGM trend of 0.45‰ and the minimum around 60 kyr BP are355

both largely unexplained in this simulation. The attribution of changes in δ13CO2 to individual processes in the ocean and land

carbon cycle has been done before for the precursor model BICYCLE (Köhler et al., 2005, 2010), and is not repeated here,

since the misfit to the data indicates some fundamental shortcomings.

How simulated changes in atmospheric δ13CO2 compare to simulated changes in various marine δ13CDIC time series is

shown for scenario SEi in Figure 7a,b. Both global mean surface δ13CDIC and wider tropical surface δ13CDIC show clear360

similarities with atmospheric δ13CO2. Here, surface values are area-weighted averages covering either the global ocean or

the two equatorial ocean boxes in case of the wider tropics, which spatially cover a similar area as the sediment cores used

for our new stacks ∆(δ13Crub) and ∆(δ13Csac). During glacial times and the onset of deglaciations the dynamics in global

mean surface δ13CDIC (cyan line in Figure 7a) are in close agreement with δ13CO2 in the atmosphere (black broken line in

Figure 7a), while for the later part of the deglaciations and the interglacials the dynamics in wider tropical surface δ13CDIC365

(magenta line in Figure 7a) fits better to δ13CO2 in the atmosphere. This difference is probably explained by the dynamics in

the polar oceans. During glacial times, the Southern Ocean is highly stratified with little vertical exchange between surface

and deep ocean. This stratification breaks down during the terminations and in interglacials allowing faster exchange of tracers

between surface and deep ocean leading in the polar oceans to smaller surface-to-deep gradients in δ13CDIC. In other words,

the lower deep ocean δ13CDIC values have a larger impact on polar surface δ13CDIC during interglacials than during glacials370

leading to a divergence between δ13CDIC in the global mean surface and the wider tropical surface ocean. The scatter plots

between atmospheric δ13CO2 and either global mean surface or wider tropical surface ocean δ13CDIC show that the latter

has the higher correlation (Figure S2, r2 = 0.82 vs. r2 = 0.59). Furthermore, frequency analysis showed that the coherence

between atmospheric δ13CO2 and wider tropical surface ocean δ13CDIC is in periodicities slower than 20 kyr higher than

between atmospheric δ13CO2 and global mean surface ocean δ13CDIC (Figure S3a). This implies, that simulations which agree375

in atmospheric δ13CO2 with reconstructions (which will be achieved later-on in scenarios C1 and C1CO2) should contain a

very likely realisation of δ13CDIC in the wider tropical surface ocean. A comparison of these simulated time series with our

new mono-specific δ13C stacks should therefore enable us to address if and how δ13C has been modified during hard shell

formation. For scenario SEi the misfit in simulated wider tropical surface ocean δ13CDIC and the new δ13C reconstructions

(Figure 7a) is large, but it is yet unclear if this discrepancy can be explained by the CIE or by other processes.380

To understand how representative the reconstructed δ13C stack from benthic foraminifera in six deep Pacific cores (Lisiecki,

2014) might be we compare it with various different simulated time series: δ13CDIC in the deep Indo-Pacific, in the mean deep

ocean, or in the mean ocean (Figure 7b). Here, deep ocean results from the model refers to ocean boxes that contain waters

deeper than 1 km. As expected the deep Indo-Pacific contains the end-member of the δ13C cycle with the most depleted values.

The mean deep ocean δ13CDIC is offset by 0.2–0.4‰ towards more positive values and shows larger G/IG amplitudes than385

δ13CDIC in the deep Indo-Pacific. The mean ocean is again 0.2–0.4‰ more positive in δ13CDIC than the mean deep ocean

with again smaller G/IG amplitudes of 0.53‰ across T1. This number compares δ13CDIC in the last 6 ka with the mean at the

LGM (23–19 ky BP) similarly as in Peterson et al. (2014) who proposed a mean ocean rise in δ13C by 0.34±0.19‰. However,

be aware that in Peterson et al. (2014) the CIE in benthic foraminifera as deduced in Schmittner et al. (2017) is not included.
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This suggests that the reconstructions are potentially recording a smaller G/IG change in δ13C than how δ13CDIC in the deep390

ocean might have changed.

When discussing results of scenario SEi (Figure 7a) we have shown that once changes in the atmospheric δ13CO2 are met

by the simulations the model then also should give a reasonable answer for how δ13CDIC in the wider tropical surface ocean

might have looked like. Furthermore, the close agreement of simulated and reconstructed atmospheric CO2 (Figure 5a) suggests

that the assumed carbon cycle changes in our approach might be one possible realisation that is not too far away from the real395

world changes. However, the misfit between simulation results from scenario SEi and reconstruction in the δ13C cycle — linear

regressions between simulations and reconstructions found no correlation at all (r2 ≤ 0.02, Figure S4a,b) — is not easily fixed.

To improve our results we force in the following the model with the atmospheric records (scenario C1: only using δ13CO2;

scenario C1CO2: using both δ13CO2 and CO2) to have conditions in the surface ocean as close to reconstructions as possible.

Doing so leads to even tighter correlations between simulated atmospheric δ13CO2 and simulated δ13CDIC in the surface400

ocean than what we obtained for scenario SEi, the r2-correlations between these variables are in scenarios C1 and C1CO2

with prescribed atmospheric δ13CO2 ≥0.77 and ≥0.88 for global mean surface δ13CDIC and wider tropical surface δ13CDIC,

respectively (Figure S2). Again, the coherence is higher between atmospheric δ13CO2 and the wider tropical surface ocean

δ13CDIC than between atmospheric δ13CO2 and the global mean surface ocean δ13CDIC (Figure S3b). Furthermore, in both

scenarios the changes in simulated δ13CDIC in the wider tropical surface ocean agree remarkably well (r2 between 0.76 and405

0.78, Figure S4c–f) with changes in our new stacks ∆(δ13Crub) and ∆(δ13Csac) without consideration of the CIE (Figure 7c),

at least on the orbital timescales. This effect is also seen by the rise in coherence between simulated wider tropical surface

δ13CDIC and both our stacks from less than 0.1 (scenario SEi) to higher than 0.7 (scenario C1CO2) in the 41-kyr and 100-kyr

bands (Figure S3c,d), while in the precession bands (19, 23-kyr) the coherence stayed below 0.6. Some more abrupt changes

contained in the simulations are not recorded in the reconstructions, probably because bioturbation in the surface sediments410

together with the stacking procedure prevent our marine records from successfully resolving millennial-scale features. Thus,

our forcing of atmospheric carbon records with data therefore seemed to be a promising approach to obtain simulated surface

ocean in agreement with reconstructions for the slow frequency bands (41-kyr and beyond), while it seems to fail for precession

and faster changes. When forcing atmospheric δ13CO2 by data the temperature-dependent isotopic fractionation during marine

photosynthesis in ε(Corg−DIC) is only of minor importance for the simulated surface ocean δ13CDIC. If this effect is switched415

off the δ13CDIC in the wider tropical surface ocean differs in general by less than 0.05‰ from the values in scenario C1.

Furthermore, deep ocean δ13CDIC is on orbital time scale now also in better agreement with the data (Figure 7d), the r2 of a

linear regression between simulated deep Indo-Pacific δ13CDIC and reconstructed deep Pacific rises from 0.49 for scenario SEi

to 0.77 and above for the scenarios forced by atmospheric carbon records (Figure S5), although the rise in mean ocean δ13CDIC

during T1 has now been increased to 0.59‰. Considering a CIE of −2.6× 10−3 ‰ per µmol kg−1 of [CO2−
3 ] disturbance420

for epi-benthic foraminifera (Schmittner et al., 2017) simulated variations in deep ocean [CO2−
3 ] of +20 µmol kg−1 (Köhler

and Munhoven, 2020) would translate to a comparably small reduction in deep Pacific benthic δ13C of up to 0.05‰. While

the timing of changes in deep ocean [CO2−
3 ] with highest values during the deglaciation is crucial to assess how such a

benthic CIE would reduce the exisiting data/model mismatch a more thorough assessment of the benthic CIE would require
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the comprehensive compilation of benthic δ13C time series in different ocean basins, which is beyond the scope of this study.425

Note that the approximated amplitude of this benthic CIE is close to the measurement error of benthic δ13C.

3.3 The importance of the carbonate ion effect for wider tropical surface ocean δ13C

Although the initial analysis of our results when forced with atmospheric records already suggests only a minor, if any, role for

the CIE in the interpretation of stacked mono-specific δ13C on orbital timescales, in the following we make a more quantitative

assessment. The CIE has not yet been implemented in the 13C cycle of the model, but is only investigated here in post-430

processing. The carbonate ion concentration of either globally mean surface or wider tropical mean surface waters in our

simulations are tightly anti-correlated to atmospheric CO2 (r2 ≥ 0.93, Figure S6), which is a consequence of the marine

carbonate system (Zeebe and Wolf-Gladrow, 2001). Both scenarios C1 and C1CO2 lead to rather similar results here, which

suggests that the CO2 forcing in scenario C1CO2 and its violation of mass conservation, is perturbing the carbon cycle only

slightly. To be as close as possible to the reconstructions we nevertheless continue in the following by using results from435

scenario C1CO2, but results differ only slightly when based in scenario C1, thus our conclusions are independent from this

choice.

Thus, CO2−
3 in wider tropical surface ocean in the simulation typically falls from maximum glacial values of ∼320 µmol kg−1

to interglacial minimum of ∼250 µmol kg−1 across both Terminations 1 and 2 (Figure 8a). This translates into a potential CIE

of about 0.62‰ (Figure 8b) for G. ruber when we use the slope of m= −0.0089 ‰ per µmol kg−1 change in [CO2−
3 ], and440

of 0.33‰ for T. sacculifer (slope of m= −0.0047 ‰ per µmol kg−1 change in [CO2−
3 ] (Spero et al., 1999). The y-axis inter-

cepts of the complete regressions for the CIE is determined in order to have maximum agreement between reconstructions and

simulations during the LGM. When comparing the potential CIE to the simulated LGM-to-preindustrial (PRE) amplitude of

only 0.16‰ in wider tropical surface waters (Figure 8c) the CIE-to-G/IG ratios are between a factor of 2 and 4 and CIE signals

should clearly stand out in the paleo records. If we add this CIE to our simulated mean equatorial surface ocean δ13CDIC (Fig-445

ure 8c) we end up with time series, which should compare well with the mono-species stacks of ∆(δ13Crub) and ∆(δ13Csac)

(Figure 8d). However, this is not the case. The r2 in the linear regressions between CIE-corrected δ13CDIC in wider tropical

surface waters and reconstructions is reduced to 0.54 (G. ruber) and 0.68 (T. sacculifer), while it had been ≥0.76 without CIE

correction (Figures S4, S7). When plotting results as hypothetically recorded in both species against each other we obtain a

slope of 1.26 (Figure S8a). The slope between both time series without the CIE was ∼0.99 (Figure 6a). The consideration of450

the CIE did not lead to time series which agree better with each other. Thus, we conclude that both species G. ruber and T.

sacculifer are already good recorders of changes in δ13CDIC in wider tropical surface ocean waters on orbital timescales.

3.4 Carbonate ion effect in δ18O

The focus of this study is on stable carbon isotope δ13C. However, during the construction of our mono-specific wider tropical

stacks of ∆(δ13Crub) and ∆(δ13Csac) the corresponding stacks of ∆(δ18Orub) and ∆(δ18Osac) are easily-generated by-455

products initially used to cross-check the applied age models. However, these δ18O data give us the possibility to also have

a closer look on the role of the CIE in the recording of oxygen isotopes in foraminiferal shells. For that effort we need a
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Figure 8. Calculating the suggested carbonate ion effects (CIE) on G. ruber and T. sacculifer. Left: effects on δ13C; Right: effects on δ18O.

(a,e) surface ocean [CO2−
3 ]; (b,f) potential CIE using slopes from Spero et al. (1999) (c,g) surface ocean conditions when ignoring the CIE

or (d,h) when considering the CIE. Mean anomalies (±1 SE) of the isotope stacks are calculated with respect to the mean of 21–19 kyr

BP (blue vertical band). Simulations use the results from scenario C1CO2. Different surface ocean areas are distinghuished: North Atlantic

(NAtl, north of 50◦N), equatorial Atlantic (EqAtl, 40◦S–50◦N), Southern Ocean (SO, south of 40◦S), equatorial Indo-Pacific (EqIPac, 40◦S–

40◦N), North Pacific (NPac, north of 40◦N). The mean wider tropical ocean in the model is the mean from the equatorial boxes (eq-mean).
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background time series of δ18O which represents the signals when not modified by the CIE. Such a mean δ18O in the wider

tropical surface ocean should record the same sea-level related variations than the average global ocean, but might differ in

the recorded temperature effect, if the change in average wider tropical sea surface temperature differed from the mean ocean460

temperature (MOT) change. Pöppelmeier et al. (2023) showed that the LGM-to-PRE change in MOT derived from the model-

based interpretation of noble gas reconstructions in ice cores is 2.1± 0.7 K. The reconstructed rise in MOT is slightly higher

when ignoring the effect of past saturation changes on noble gases (Shackleton et al., 2023). The data assimilation effort on

LGM temperature changes by Tierney et al. (2020) is broadly in agreement with the MOT change of Pöppelmeier et al. (2023)

and proposes that the tropical (30◦S to 30◦N) sea surface was around 2.6 K colder at LGM than at PRE, agreeing within the465

uncertainties with the MOT change. To a first order we therefore assume that the planktic foraminifera should record the same

temperature effect in δ18O as contained in the mean ocean. Thus, the global ocean δ18O calculated from stacking benthic time

series (Lisiecki and Stern, 2016) represents the CIE-free background against which we compare our new ∆(δ18Orub) and

∆(δ18Osac) stacks.

From the simulated LGM-to-PRE change in mean wider tropical surface ocean CO2−
3 of about −70µmol kg−1 (Figure 8e)470

and the laboratory-based amplitudes of the CIE (–0.0022 and –0.0014‰ change in δ18O per µmol kg−1 for G. ruber and T.

sacculifer, respectively (Spero et al., 1999)), we derived that ∆(δ18Orub) and ∆(δ18Osac) should record the changes since the

LGM by +0.15 and +0.10 ‰ differently than how δ18O in the surface waters truly changed (Figure 8f). Compared to the G/IG

amplitude in mean ocean δ18O of –1.65‰ (Figure 8g) these potential CIEs represent corrections of –9% and –6%, a difference

by 3% which might be difficult to detect in the paleo records. A linear regression through a scatter plat of δ18O + CIErub475

versus δ18O + CIEsac has a slope of 0.97 (r2 = 1.00, Figure S8b), which is indistinguishable from the slope obtained from

regression through the data stacks (Figure 6b), while the slope when considering the CIE should move to unity (indicating that

both species were recording the same signal underneath the CIE) if the effect plays an important role during data interpretation.

The evidences for or against the CIE in δ18O from both data and models are therefore inconclusive.

4 Conclusions480

The CIE for δ13C and δ18O recorded in planktic foraminifera was first identified in laboratory experiments (Spero et al.,

1997, 1999), and it was, based on theory, suggested for both isotopes that the underlying processes are directly related to the

pH in the surrounding sea water during hard shell formation (Zeebe et al., 1999; Zeebe, 1999). However, these theoretical

studies were already unable to confirm the full range of the CIE as contained in the experiments. Furthermore, according to

Bijma et al. (1999) it is impossible to determine if pH or [CO2−
3 ] is responsible for the observed fractionation effects. If this485

theoretical understanding is correct we would expect to see the CIE in neither or both isotopes in the our mono-specific stacks.

Thus, although the interpretation of δ18O with respect to the CIE is, due to the signal-to-noise ratio, uncertain we argue, based

on the clear evidence of a lack of the CIE in the recording of δ13C in G. ruber and T. sacculifer, that there is probably also

no significant CIE contained in the δ18O time series of both species. This finding argues against the suggestion of Spero et al.

(1999), that the CIE and δ13C time series from G. ruber and T. sacculifer might be used to calculate a record of surface ocean490
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[CO2−
3 ]. Furthermore, we suggest to use our new stack of ∆(δ13Crub) as representative of δ13CDIC in the wider tropical

surface ocean.

Various possible explanations for a lack of a CIE on orbital timescales exist. First, it might be that the isotopic fraction-

ation during hard shell formation in G. ruber and T. sacculifer is rather insensitive to [CO2−
3 ] in the range of interest (250–

320 µmol kg−1). Such an insensitivity has been suggested for other species (Bijma et al., 1999), but due to a lack of published495

data — the slopes of the CIE in G. ruber and T. sacculifer were only summarized in Spero et al. (1999), while underlying

experiments have never been published in the peer-reviewed literature — it cannot be properly checked for the two species

investigated here. Second, not the CIE, but alternatively the incorporation of respired CO2 (depleted in δ13C) during shell

formation might be responsible for the observed isotope data in laboratory experiments performed with Orbulina universa

and Globigerina bulloides (Bijma et al., 1999). This process might also play a role in G. ruber and T. sacculifer, but would500

only explain observed effects in δ13C, but not in δ18O. However, since our stacks are inconclusive with respect to the CIE

and δ18O, they might be of relevance here. A third explanation might be related to homeostasis. In symbiont-bearing planktic

foraminifera, such as G. ruber and T. sacculifer, the pH at the shell surface critically depends on photosynthesis and hence light

levels and symbiont density (Jørgensen et al., 1985). In order to facilitate calcification, G. ruber and T. sacculifer may actively

influence the pH at the shell surface by seeking specific (optimum) light levels through vertical migration, thereby keeping the505

CIE constant over time. Planktic foraminifera are known to move vertically in the water column (e.g. Kimoto, 2015). Vertical

migration to optimise both nutrient uptake and light has been proposed to play an important role in phytoplankton by modelling

(Wirtz et al., 2022), an effect which recently has been supported by field data (Zheng et al., 2023). We speculate similar be-

haviour could occur in the two planktic foraminifera species. Indeed, Jonkers and Kučera (2017) and Daëron and Gray (2023)

found that δ18O in various planktic foraminifera (including G. ruber and T. sacculifer) is best explained by also considering510

calcification in waters deeper than their expected living depth.

It is too early to able able to generalise our finding that on orbital timescales the CIE plays no role for the interpretation

of signals in planktic foraminifera in paleo records. For that effort more mono-specific stacks are necessary, preferable from

conceptually different foraminifera species without symbionts or spines, as these might potentially show a different behaviour

with respect to light (and pH) optimisation. However, our findings might suggest that previous studies on planktic δ13C, which515

ignored the CIE (e.g. Lynch-Stieglitz et al., 2019; Lund et al., 2019) might not be biased.

Our carbon cycle simulations confirm that atmospheric δ13CO2 and mean surface ocean δ13CDIC are tightly related to

each other, highlighting the importance of air-sea gas exchange for carbon isotopes. This is not entirely new and has already

been discussed before (e.g. Lynch-Stieglitz et al., 2019; Shao et al., 2021; Pinho et al., 2023). However, the 13C cycle is

more complex than stated previously (Lynch-Stieglitz et al., 2019; Hu et al., 2020; Pinho et al., 2023) which suggest that one520

might calculate a mean surface ocean δ13CDIC as function of atmospheric δ13CO2 and a temperature-dependent fractionation

during gas exchange. We here assumed, based on modern data from Verwega et al. (2021), that species composition and

therefore isotopic fractionation during marine photosynthesis might also be temperature-dependent having an important impact

on surface ocean δ13CDIC. Furthermore, our simulation results show that δ13CDIC in polar and wider tropical surface ocean

have a different and time-dependent relation to atmospheric δ13CO2.525
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Finally, since our simulations were forced by atmospheric carbon records we are unable to identify specific processes being

responsible for the simulated changes in the 13C cycle. Recent climate simulations (Yun et al., 2023) emphazise the importance

of the 405 kyr eccentricity cycle in tropical hydroclimate. It therefore seems reasonable that the missing long-term variability

in δ13C in our setup might indeed be connected to weathering fluxes as proposed before (e.g. Schneider et al., 2013; Wang

et al., 2014), something which needs to be tested in more detail in future carbon cycle simulation studies.530
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