
No detectable influence of the carbonate ion effect on changes in
stable carbon isotope ratios (δ13C) of shallow dwelling planktic
foraminifera over the past 160 kyr
Peter Köhler1 and Stefan Mulitza2

1Alfred-Wegener-Institut Helmholtz-Zentrum für Polar-und Meeresforschung (AWI), Bremerhaven, Germany
2MARUM — Center for Marine Environmental Sciences and Faculty of Geosciences, University of Bremen, Germany

Correspondence: Peter Köhler (peter.koehler@awi.de)

Version: February 14, 2024

Abstract. Laboratory experiments showed that the isotopic fractionation of δ13C and of δ18O during calcite formation of

planktic foraminifera are species-specific functions of oceanic
:::::::
ambient CO2−

3 -concentration. This effect became known as the

carbonate ion effect (CIE), whose role during
::
for

:
the interpretation of marine sediment data will be investigated here in an

in-depth analysis of the 13C cycle. For that effort we compiled
::::::::::
constructed new 160 kyr-long mono-specific stacks of changes

in both δ13C and δ18O from either the planktic foraminifera G.
:::::::::::::
Globigerinoides

:
ruber (rub) or T.

::::::::
Trilobatus sacculifer (sac)5

from 112 and 40 non-polar marine records
:::::
marine

:::::::
records

:::::
from

:::
the

:::::
wider

::::::
tropics

::::::::
(latitudes

::::::
below

::::
38◦), respectively. Both

mono-specific time series ∆(δ13Crub) and ∆(δ13Csac) are very similar to each other and a linear regression through a scatter

plot of both data sets has a slope of ∼0.99 — although the laboratory-based CIE for both species differ by nearly a factor of

two, implying that they should record distinctly different changes in δ13C, if we accept that the carbonate ion concentration

changes on glacial/interglacial timescales. For a deeper understanding
:
of
:::

the
::::

13C
:::::
cycle we use the global carbon cycle model10

BICYCLE-SE to calculate how surface ocean CO2−
3 should have varied over time in order to be able to calculate the potential

corrections which would follow the laboratory-based CIE
:::::
offsets

::::::
which

::::::
would

::
by

:::::::
caused

::
by

:::
the

::::
CIE

:::::::::
quantified

::
in
:::::::

culture

::::::::::
experiments. Our simulations are forced with atmospheric reconstructions of CO2 and δ13CO2 derived from ice cores to obtain

a carbon cycle which should at least at the surface ocean be as close as possible to expected conditions and which agrees in the

deep ocean in
:::::
largely

::::::
agrees

::::
with the carbon isotope

:::
ratio

:
of dissolved inorganic carbon (DIC), δ13CDIC, with reconstruction15

::
as

:::::::::::
reconstructed from benthic foraminifera. We find

:::
We

:::
find

:
that both ∆(δ13Crub) and ∆(δ13Csac) agree better with changes

in simulated δ13CDIC when ignoring the CIE than those time series which where corrected for the CIE. The combination

of data- and model-based evidence for the lack of a role for the CIE in ∆(δ13Crub) and ∆(δ13Csac) suggests to us that the

CIE as measured in laboratory experiments is not directly transferable to the interpretation of marine sediments records. We

hypothesise that both foraminifera species can optimise their light environments via vertical motion and therefore calcify20

under nearly stable CO2−
3 concentration. The much smaller CIE-to-glacial/interglacial-signal-ratio in

::::::::::
foraminifera δ18O, when

compared to δ13C, prevents us to draw robust conclusions on the role of the CIE on δ18O as recorded in the hard shells of both

species. However, theory proposes that the CIE in δ13C and δ18O depends both on the pH in the surrounding water, suggesting
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that the CIE should be detectable in neither or both of the isotopes. Whether this lack of role of the CIE in the interpretation of

planktic paleo data is a general feature, or restricted to the two species investigated here, needs to be checked with further data25

from other planktic foraminiferal species.

1 Introduction

:::
For

:
a
::::::::::::
reconstruction

::
of

::::
past

:::::::
changes

::
in

:::
the

:::::
ocean

:::
and

:::
the

::::::
carbon

:::::
cycle

::::::
various

::::::::
variables

:::
are

::::::::
measured

::
on

::::::::::
microfossils

::::::::
obtained

::::
from

::::::
marine

:::::::
sediment

::::::
cores.

::::::
Among

:::
the

::::
most

::::::
widley

::::
used

:::
are

:::
the

:::::
stable

::::::
carbon

:::
and

::::::
oxygen

::::::
isotope

::::::
ratios,

::::
δ13C

:::
and

:::::
δ18O,

:::::
from

::::
hard

:::::
shells

::
of

:::::::
planktic

:::
and

:::::::
benthic

:::::::::::
foraminifera.

:::::
Since

:::
the

::::::::::
publication

::
of

:::
the

::::
first

:::::
stable

::::::
isotope

::::
time

:::::
series

:::::::::::::::
(Emiliani, 1955)30

:
a
::::
vast

:::::::
number

::
of

:::
of

::::::
stable

::::::
isotope

:::::::
records

:::
has

:::::
been

:::::::::
published

:::
and

:::
to

::
a

::::
large

::::
part

:::::::::
compiled

::
in

::::
the

:::::
World

:::::
Atlas

:::
of

::::
late

:::::::::
Quaternary

::::::::::::
Foraminiferal

:::::::
Oxygen

:::
and

:::::::
Carbon

::::::
Isotope

::::::
Ratios

::::::::::::::::::
(Mulitza et al., 2022).

::::
One

:::
of

:::
the

::::::::::
fundamental

::::::::
problems

:::::
with

::
the

::::::::::::
interpretation

::
of

:::::::::::
foraminiferal

:::::::
isotope

:::::
ratios

::
is

::::
how

:::
and

::::
why

::::
was

::
a

:::::
stable

::::::
isotope

::::::
signal

::::::
altered

::
on

:::
its

::::
way

::::
from

::::
the

:::
sea

::::
water

::
to
:::
the

::::
shell

:::
of

:::::
living

:::::::::::
foraminifera.

:::
Are

::::
there

::::
vital

::::
and

::::
other

::::::
effects

::::::::
necessary

::
to

::
be

::::::::::
considered

::::
when

::::::::::
interpreting

:::
the

:::::
paleo

::::::
records

:::::::::::::::::::::::::::::::::::::::::::::::
(e.g. Bijma et al., 1999; Zeebe et al., 2008; Kimoto, 2015)

:
?35

The carbonate ion effect (CIE) describes that
::
is

:::
one

:::
of

:::::
these

:::::::::
potentially

:::::::::
important

::::::
effects

::::
that

:::::
might

::::
alter

::::
the

:::::::
isotopic

:::::
signal.

::::
The

::::
CIE

::::::
implies

::::
that both δ13C and δ18O measured in hard shells of marine organisms undergo isotopic fractionation

during calcite formation with the amplitude of the fractionation, among other factors, being a function of the carbonate ion

concentration ([CO2−
3 ]) of the surrounding seawater (Spero et al., 1997). The CIE has been found to be species-specific (Spero

et al., 1999), ranging from −4.7 to −13.0×10−3 ‰ per µmol kg−1 of [CO2−
3 ] for δ13C and between −1.4 and −4.5×10−3 ‰40

per µmol kg−1 of [CO2−
3 ] for δ18O in four planktic foraminifera. The CIE for δ13C has been explained for O.

::::::::
Orbulina

universa, a spinose, symbiont bearing species, by the pH-related distribution of dissolved inorganic carbon (DIC) into its three

species CO2, CO2−
3 , and HCO−3 (Wolf-Gladrow et al., 1999; Zeebe et al., 1999). The CIE on δ18O is also explained by the

CO2−
3 -related varying pH (Zeebe, 1999).

:::::
These

:::::::
theories,

:::::::
however,

:::::
were

:::::
unable

::
to
::::
base

:::
the

:::
full

::::::::::
amplitudes

:::::
found

::
in

::::::::::
experiments

:::::
solely

::
on

::::
this

::::::
effect. The CIE is maybe the most prominent isotopic fractionation effect which asks for consideration

:::
has

::
to45

::
be

:::::::::
considered

:
when interpreting the paleo records, but others, e.g vital effects and dependency on light, temperature, pressure

and shell size, have been put forward (e.g. Spero and Williams, 1988, 1989; Spero et al., 1991; Spero, 1992; Spero and Lea,

1993; Oppo and Fairbanks, 1989). The CIE is found to play a minor role when comparing late Holocene deep ocean δ13C in

benthic foraminifera with δ13C of DIC (δ13CDIC) (Schmittner et al., 2017) being responsible for −2.4× 10−3
::::::::::
−2.6× 10−3 ‰

per µmol kg−1 of [CO2−
3 ] disturbance in the recorded signal. In a recent study focusing on the benthic species C.

::::::::::
Cibicidoides50

wuellerstorfi −3.0× 10−3 ‰ per µmol kg−1 of [CO2−
3 ] have been obtained for the late Holocene (Nederbragt, 2023). Both

studies also found in addition to the CIE that δ13Cbenthic was also partly controlled by other variables, mainly pressure (water

depth) and temperature.

The CIE in planktic foraminifera is one of the reasons why the interpretation of the whole δ13C cycle over glacial/interglacial

timescales is still challenging. The data compilation of Oliver et al. (2010) covering the last 150 kyr of δ13C in planktic and55

benthic foraminifera contained large uncertainties and did not consider potentially necessary corrections such as the CIE in
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the final interpretation.
:::
was

:
a
::::

step
::
in
:::
the

::::::::
direction

::
of

::::::::::
basin-wide

::::::
splines

::::::
finding

::::
large

::::::::::
uncertainty

::::::::
attributed

::
to

:::
the

::::::::
estimate

::
of

:::::::
δ13CDIC:::::

from
:::::::
planktic

::::::
species.

:
Since benthic compilations are less affected by the CIE, they should, however, robustly con-

strain deep ocean changes in δ13CDIC. A more recent compilation of benthic δ13C was given in Lisiecki (2014). Furthermore,

δ13C of atmospheric CO2 (δ13CO2) is now available over the last 155 kyr (Eggleston et al., 2016a) from ice cores. Missing in60

our understanding are so far tied
:::
tight

:
constraints on change in surface ocean δ13CDIC, but in principle these

:::
this information

should be recorded in the hard shells of planktic foraminifera, even if hidden under the CIE.

We therefore here aim to construct the first
:
a robust time series of orbital changes in surface ocean δ13CDIC based on

planktic foraminifera data. We compile
:::::::
compiled

:
δ13C data from the World Atlas of late Quaternary Foraminiferal Oxygen

and Carbon Isotope Ratios (Mulitza et al., 2022) covering
:::::
largely

:::::
based

:::
on

::::::::::::::::::
Mulitza et al. (2022)

:::::::
covering

::
up

::
to
:

the last 16065

kyr, in which data went through a rigorous quality control before entry and all applied age models have been revised to a most

recent standard. .
:
In order to be able to apply any species-specific CIE corrections we compile mono-specific stacks using

::::::
isotope

::::::
records

:::
on

:
the widely abundant shallow-dwelling planktic foraminifera species

:::::::::::::
Globigerinoides

:::::
ruber

:
(G. ruber (

::
or

rub) and
:::::::::
Trilobatus

::::::::
sacculifer (T. sacculifer (sac)

::
or

::::
sac)

:::
into

::::::
stacks. Due to their spatial distribution (Fraile et al., 2008) this

species selection leads effectively to the construction of ∆(δ13Crub) and ∆(δ13Csac) stacks fed by
::::
based

:::
on sediment core70

data from the latitudes smaller than 40◦, potentially informing us about mean changes of δ13CDIC in the non-polar ocean on

orbital timescales
:
in
:::

the
:::::::

surface
::
of

:::
the

:::::
wider

:::::::
tropical

::::::
ocean. Accompanied stacks of ∆(δ18Orub) and ∆(δ18Osac) from the

same cores will add further information on the CIE in δ18O.

:
A
::::

first
:::::::
surface

:::::
ocean

:
δ13C

::::
stack

:::::
based

:::
on

::::
data

:::::
from

::
T.

::::::::
sacculifer

:::::::
obtained

::::
from

::::
five

::::::::
equatorial

:::::::
Atlantic

:::::::
records

:::
has

:::::
been

:::::::::
constructed

:::
by

::::::::::::::::::::::
Curry and Crowley (1987)

::::::
without

:::
any

:::::::::
knowledge

:::
on

:::
the

::::
CIE.

:::::::::::
Furthermore,

::::::::::::::::
Spero et al. (1999)

::::
used

:::
data

:::::
from75

::
G.

:::::
ruber

:::
and

::
T.

:::::::::
sacculifer

::::
from

::
a
::::::
single

::::
core

::
in

:::
the

::::::
Indian

::::::
Ocean

::::
and

:::
the

::::::::
lab-based

::::
size

:::
of

::::
their

:::::::::::::
species-specific

::::
CIE

:::
to

:::::::::
deconvolve

::::::
surface

::::::
ocean [

:::::
CO2−

3 ].
:::
We

:::::
here

:::
will

::::
use

:::
our

::::
new

::::::::::::
mono-specific

:
δ13C

::::::
stacks,

:::::
which

:::::
have

:::
due

::
to

:::
the

::::::::::
underlying

::::::
number

::
of

:::::::
records

:
a
:::::
much

::::::
higher

::::::::::::::::
signal-to-noise-ratio

::
to
::::
test

:::
the

:::::::::
robustness

::
of

::::
their

:::::::
findings.

:

In the following we will investigate the connection of δ13C in atmosphere and ocean in closer detail in order to improve

our understanding of the 13C cycle. For this effort, we will first
:::
The

:::::::::
remainder

::
of

:::
the

::::::
article

::
is

:::::::::
structured

::
as

:::::::
follows.

::::
We80

:::
first

:::::::
(section

::::
2.1)

:
describe the construction of our mono-specific δ13C anomaly stacks ∆(δ13Crub) and ∆(δ13Csac) (and of

the accompanied δ18O anomalies)and what we know about atmospheric and deep ocean .
::::::

Some
::::::::
published

:::::::
benthic

:
δ13C

(section 2.1). Having two mono-specific stacks of surface ocean enables us to address the CIE initially solely based on data.

:::
data

:::
are

::::
also

::::::
needed

:::
for

::::
our

::::::::::::
understanding

:::::::
(section

::::
2.2). For a deeper interpretation the global isotope enabled carbon cycle

model BICYCLE-SE (Köhler and Munhoven, 2020), which has been proven to simulate glacial/interglacial (G/IG) changes85

in the carbon cycle reasonably well, is used. The
:::::
model

::
is
::::::

briefly
:::::::::

described
::
in

:::::::
section

:::
2.1

::::::::
including

::
a

:::::::::
completely

:::::::
revised

parametrisation of the 13C cyclein BICYCLE-SE is completely revised for this study
:
.
:::
We

::::
then

::::
first

:::::::
discuss (section 2.1)

:::
3.1)

:::::
what

:::
we

::::::
already

:::::
know

:::::
from

:::
data

:::
on

:::
the

:
δ13C

::::
cycle

::::
and

:::
the

::::
role

:::
the

::::
CIE

:::::
might

::::
play. We then analyse

:
in

:::::::
section

:::
3.1

:::
the

::::::::
simulated δ13C

::::
cycle

:
in our model simulations (section 3.1).

:::::
results.

:
This enables us to evaluate

::::::
(section

::::
3.2)

:
if our stacks

∆(δ13Crub) and ∆(δ13Csac) are good representations of changes in δ13CDIC in the non-polar
::::
wider

:::::::
tropical

:
surface ocean90
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Figure 1. Location of the 127 sediment cores from which data have been compiled for this study. In 87 cores data from the planktic species

G. ruber and in 18 cores data from T. sacculifer have been included, while 22 cores provided mono-specific data from both species.

or if corrections such as the CIE need to be applied(section 3.2). Finally, we briefly discuss the CIE in δ18Orub and δ18Osac

(section 3.3), before we come to our conclusions (section 4).

2
:::::::
Methods

3 Data on changes

2.1 Constructing new mono-specific stacks from planktic foraminifera95

Data source and age modelling: To construct time series of low-latitude δ13C variations through the past 160 kyr, we selected

112 and 40 δ13C records of the shallow-dwelling planktic foraminifera G. ruber and T. sacculifer, respectively,
:::::::::::::
predominantely

from the World Atlas of late Quaternary Foraminiferal Oxygen and Carbon Isotope Ratios (Mulitza et al., 2022). Since the

publication of the 2022 version of the World Atlas various other records have been added to this repository. From these newly

added records six are actually containend in our data selection here. A list of the sediment cores from which data are
::::::
isotope100

::::::
records contributing to our stacks with relevant meta data, references to the original publications and data sources is compiled

:::::::
provided

:
in Table S1. In three sediment cores time series from both G. ruber white and G. ruber pink contribute to our G.

ruber stacks, while data from 22 cores contain mono-specific data from both G. ruber and T. sacculifer. All combined our data

selection is based on material from 127 sediment cores. The core sites cover a latitudinal range from 37.6◦N to 36.7◦S for G.

ruber and of 32.8◦N to 31.3◦S for T. sacculifer in all major ocean basins (Figure 1), although the contributions from individual105

cores (and therefore the latitudinal range) changed over time (Figure 2c). Our age models are based on either radiocarbon ages
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Figure 2. Stacks of anomalies in (a
::
,e) δ18O and (b

:
,f) δ13C from the planktic species G. ruber and T. sacculifer across the last 160 kyr. Mean

anomalies (±1 SE) are calculated with respect to the mean of 21–19 kyr BP (blue vertical band). Data are
:::::
largely

:
based on Mulitza et al.

(2022). (c
:
,g) Latitudinal distribution of cores contributing to the stack (mean and full range) and (d

:
,h) stack count. Either data from all cores

for each species are compiled (left
::

a–d) or (right
:::
e–h) from a reduced core selection, in which contributing cores cover both Termination 1 and

2 (T1+T2).

or oxygen isotope stratigraphy or a combination of both methods. To calibrate radiocarbon ages, we first subtracted a simulated

local reservoir age from the nearest grid-box of the modelling experiments conducted for Marine20 (Butzin et al., 2020;

Heaton et al., 2020) and then calibrated the corrected radiocarbon age with the IntCal20 calibration curve (Reimer et al., 2020).

For core sections with insufficient radiocarbon coverage or outside the radiocarbon dating range ages were added through110

the visual alignment with the software PaleoDataView (Langner and Mulitza, 2019) using the isotope stacks by Lisiecki and

Raymo (2005) and Lisiecki and Stern (2016) . In an
::::
using

:::
the

::::::::
software

:::::::::::::
PaleoDataView

:::::::::::::::::::::::
(Langner and Mulitza, 2019)

:
.
::
In

:
a
:
few

5



cases age models were derived by visual alignment with the oxygen isotope records of well-dated nearby cores. The details of

the age model construction are available in the netCDF files of the age models in the corresponding PaleoDataView collection

(Köhler and Mulitza, 2023). A continuous age model was then constructed with the age modelling software BACON (Blaauw115

and Christen, 2011). For each record we produced an ensemble of 1000 time series by combing 1000 BACON-generated age

models with 1000 down-core δ13C and δ18O series by adding a random value within the typical analytical 1σ-uncertainty of

0.05% and 0.07‰ to each down-core δ13C and δ18O value, respectively. The resulting 1000 δ13C and δ18O time series were

then interpolated to a time step of 1 kyr to calculate the mean and the standard deviation of the time series ensembles. The

averaging of the individual ensemble members then led to a considerable smoothing of the final time series.120

Stacking of down-core isotope records: Sediment cores covering the Anthropocene clearly show that the of G. ruberand

T. sacculifershells (δ13Crub, δ13Csac) faithfully reflects changes in δ13CDIC (Al-Rousan et al., 2004; Black et al., 2011), albeit

with a notable offset. This offset is influenced by the CIE (e.g. Spero et al., 1997), light intensity (e.g. Spero et al., 1991) and

the size of the foraminiferal shells (e.g. Oppo and Fairbanks, 1989). Although the size class used for stable isotope measure-

ments can vary considerably among records, it is common practice to use a fairly constant size down-core to minimise size-125

related effects on both oxygen and carbon isotope ratios
::::::::::::::::::::::::::
(e.g. Oppo and Fairbanks, 1989). To provide a common baseline, we

corrected all single isotope records by their individual mean values for the period from 21 to 19 kyr BP marked as Last Glacial

Maximum (LGM) in various plots. To produce final isotope stacks, we averaged all corrected time series and calculated the

standard error (SE) of the means at 1 kyr intervals. The final mono-specific stacks of both δ18O and δ13C anomalies based on

either G. ruber or
:::
and T. sacculifer are plotted in Figure 2a,b. The oxygen isotope stacks are here also shown to give a clear130

reference for G/IG changes, δ18O has its maxima during peak glacial times and its minima during peak interglacials. In sec-

tion 3.3 we will come back to these data to discuss the CIE in δ18Orub and δ18Osac. We compiled two sets of data compilations,

one to which all records contributed
::
To

:::
test

::
to

:::::
what

:::::
extent

:::
the

::::
data

::::::::::
distribution

::::::
affects

:::
the

::::::
stacks,

:::
we

::::::::
generated

::::
two

:::::::
versions

::
of

::::::
stacks,

:::
one

:::::
based

::
on

:::
all

::::::
records

:
(Figure 2a–d) , and another, in which only those records have compiled which covered both

Terminations 1 and 2
::
an

::::::::
alternative

::::::
based

::::
only

::
on

:::::::
records

:::::
which

:::::::
contain

::::
both

:::::::::::
Terminations (T1+T2, Figure 2e–h). The stack135

counts (Figure 2d,h) shows that the different compilations
::::
show

:::
that

:::
the

::::
two

:::::::
versions

:
differ mainly in the younger half, they

are identical beyond 85 kyr BP. The latitudinal ranges in the young half are slightly smaller for the compilations T1+T2 than

when all cores are compiled, but the mean latitudes of all cores are throughout the covered time window of the last 160 kyr

in all cases (for both species and for both compilations) close to the equator (Figure 2d,g). This stationarity
::::::::::
consistency in the

mean latitude suggests that the incoming light which varied in its annual mean values between ∼420 W m−2 at the equator140

and ∼330 W m−2 around latitudes of 40◦ (Laskar et al., 2004) should only marginally affect the isotopic fractionation (e.g.

Spero et al., 1991).

2.2 Benthic δ13C

Focus of this study is the δ13C of the surface ocean. However, for a rough comparison of δ13C changes in the deep ocean

we rely on the published δ13C stack compiled
::::::::::
constructed from six deep Pacific core as contained in Lisiecki (2014). The six145

cores are all ODP cores (677, 846, 849, 1123, 1143, 1208) from between 2700 and 3500 m water depth, located between 42◦S
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Figure 3. Carbon cycle time series of the last 160 kyr, including the Penultimate and Last Glacial Maximum (PGM, LGM) and Ter-

minations 1 and 2 (T1, T2). Spline of atmospheric CO2 (a) and δ13CO2 (b) based on data from various ice cores (grey, ±1σ around

the mean, (Köhler et al., 2017a; Eggleston et al., 2016a)) and highly resolved recent data from the “horizontal ice core” approach

in Taylor Glacier (yellow, (Menking et al., 2022b)
::::::::::::::::::::::::::::::::::::

(Bauska et al., 2016, 2018; Menking et al., 2022b)). (c) ∆(δ13Crub) and ∆(δ13Csac)

based on the planktic foraminiferia G. ruberor T. sac., respectively, averaging signals in the non-polar
::::
wider

:::::::
tropical

:
surface ocean

(this study, based on Mulitza et al., 2022)
:::::::::::::::::::::::::::::::::::
(this study, largely based on Mulitza et al., 2022). (d) Deep ocean δ13C from benthic foraminifera

stacked from 6
::
six

:
Pacific cores (Lisiecki, 2014).

and 36◦N. The deep Pacific δ13C stack should cover the most depleted end member of the marine δ13C cycle (Figure 3d) and

should give us some indication how δ13C in deep ocean is performing in our simulations. More details on the stack are found

in Lisiecki (2014).
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2.3 Overview on cycle changes over the last 160 kyr150

Reconstructed changes in the late Quaternary carbon cycle are still not completely understood. The ice cores give us a

precise picture of atmospheric (Bereiter et al., 2015; Köhler et al., 2017a) (Fig. 3a), which in the meantime has also been met

reasonably well with various different carbon cycle models (e.g. Menviel et al., 2012; Ganopolski and Brovkin, 2017; Köhler and Munhoven, 2020)

. These findings suggest, that the main processes responsible for the observed changes on orbital timescales might indeed have

been identified, although improvements in details are certainly necessary.155

The corresponding atmospheric , now available over the last 155 kyr (Eggleston et al., 2016a), however, is in all its features

still waiting for a process-based interpretation (Figure 3b). Since helps to pinpoint on processes responsible for changes,

any simulation that is able to explain one without the other might need to be interpreted with caution. Models suggest that

especially physical and biological processes in the Southern Ocean processes robustly influence , while the impact of the

Atlantic meridional overturning circulation (AMOC) on seems to be model-dependent (Menviel et al., 2015). Consequently,160

the abrupt drop in at the onset of Termination 1 (T1) (Smith et al., 1999; Schmitt et al., 2012) is nowadays understood to be

caused by marine processes, while subsequent changes during T1 and its recovery during the Holocene to LGM-like values

were potentially related to a mixture of oceanic and terrestrial processes (Köhler et al., 2005; Bauska et al., 2016).

Two surprising and largely unexplained features stand out in the 155 kyr record. First, there exist a long-term trend by

+0.45 from the Penultimate and the Last Glacial Maximum (PGM and LGM). When first discovered (Schneider et al., 2013)165

it has been hypothesised that changes in the isotopic composition of solid Earth fluxes or of their intensities or long-term

peat build-up might be responsible for them. Second, a 0.5 deep and nearly 20 kyr long minima centred around 58 kyr BP

happened, rather uncorrelated with changes. Eggleston et al. (2016a) hypothesise that the minima might have been partially

caused by a change in ocean stratification between Marine Isotope Stage (MIS) 4 and MIS 3, allowing for a different amount

of isotopically light carbon being stored in the deep ocean. Recently, high resolution data of from Taylor Glacier covering170

74 to 59.5 kyr BP including MIS 4 and the drop into the minimum have been published (Menking et al., 2022b) showing

more variability and between 66 and 60 kyr BP with –1 a twice as large change as previously contained in the smoothed

record of Eggleston et al. (2016a). Menking et al. (2022b) also performed first model simulations in order to understand which

processes might be responsible for the reconstructed changes in the carbon cycle. However, to our knowledge none of the ideas

put forward in Schneider et al. (2013) for the long-term trend in have so far been convincingly and successfully verified with175

carbon cycle model simulation. Furthermore, 400–500 kyr variability related to slow eccentricity changes found in marine

Plio-Pleistocene (Russon et al., 2010; Wang et al., 2014; Paillard, 2017) might be superimposed on faster variations, making

a process-based understanding of observed changes in even more challenging.

Our new mono-specific stacks from the non-polar surface ocean of ∆(δ13Crub) and ∆(δ13Csac) without any corrections

(Figure 3c) contain a G/IG rise of 0.25 across T1, but of only 0.15 across T2, while atmospheric at the same time rose by180

0.1 (T2), or stayed constant (T1) (Figure 3b), showing local minima during terminations in both records. Deep ocean benthic

(Figure 3d) is here approximated by a stack from six deep Pacific cores (Lisiecki, 2014), that contains a G/IG rise of 0.45 across

both T1 and T2. This value is on the upper end of the 95% confidence interval of compilations of marine changes across T1
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(Peterson et al., 2014; Peterson and Lisiecki, 2018) which suggest to represent global ocean wide changes. The marine time

series, both from surface and deep ocean, also contain wide and deep minima around 60 kyr BP, similarly to the smoothed185

atmospheric data of Eggleston et al. (2016a), but different to the higher resolved Taylor Glacier of Menking et al. (2022b)

. Furthermore, all marine data, similarly as the atmospheric , contain a long-term rise from PGM to LGM (about +0.33 in

the non-polar surface ocean, +0.18 in the deep Pacific, Figure 3) potentially connected with eccentricity related long-term

variability of 400-to-500 kyr (Pälike et al., 2006; Ma et al., 2011; Wang et al., 2014), that have been found in various parts of

the Cenozoic.190

Scatter plot of our new stacks (a) ∆(δ13Crub) versus ∆(δ13Csac) and (b) ∆(δ18Orub) versus ∆(δ18Osac). Data stacks

without corrections for the CIE are plotted. The time series are restricted to data of last 150 kyr to allow comparison later-on

with simulation results which were based on the only 155 kyr long atmospheric record. Linear regressions using only the mean

values and when using also uncertainties in both x and y are performed.

Before we start with deeper model-based interpretation of the cycle, we have a closer look on our new isotope stacks. If195

the CIE plays a role for how the isotopes of the surface ocean are recorded in the foraminifera shells on orbital timescales

then the two mono-specific time series in both and should differ, since the size of the CIE as detected from laboratory

experiments in both species differs by nearly a factor of two, −0.0089 and −0.0047 change in per of CO2−
3 for G. ruberand

T. sacculifer, respectively, and of −0.0022 and −0.0014 change in per of CO2−
3 for G. ruberand T. sacculifer, respectively

(Spero et al., 1999). At first glance (Figure 2a,b) the time series are remarkable similar. A more quantitative evaluation is200

obtained by calculating the linear regression from scatter plots, when results based on one species are plotted against those of the

other. Doing so (Figure 6) reveals for that on average changes are identically recorded in both species. In other words, the linear

slope of ∆(δ13Crub) against ∆(δ13Csac) is 0.98 (r2 = 0.95) or 0.99±0.03 (r2 = 0.95) when considering the uncertainties of

our stack during regression. For the agreement is only slightly worse, the regression slope of δ18Orub against δ18Osac is

0.96 (r2 = 0.96) or 0.98±0.01 (r2 = 0.96) with uncertainties. Since ∆(δ13Crub) and ∆(δ13Csac) are on average recording205

virtually the same changes it is difficult to image how the species-specific CIE can play a role here. Due to the small amplitudes

of the CIE in it is yet inconclusive if the CIE plays a role for ∆(δ18Orub) versus ∆(δ18Osac).

3 The carbon cycle model BICYCLE-SE

2.1
:::

The
::::::
carbon

:::::
cycle

::::::
model

::::::::::::
BICYCLE-SE

2.2 Brief model description210

2.1.1
::::
Brief

::::::
model

::::::::::
description

At the core of BICYCLE — the Box model of the Isotopic Carbon cYCLE — sits a ten boxes large
::
an ocean (O)

:::
with

:::
10

:::::
boxes

and a terrestrial biosphere consisting of seven boxes (B) together with a one box atmosphere (A), in which the concentration

of carbon (as DIC in the ocean, as pCO2 in the atmosphere, as organic carbon in the biosphere) and both of the isotopes δ13C
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and ∆14C are traced (Köhler et al., 2005). Furthermore, in the ocean alkalinity, PO3−
4 as macro-nutrient and O2 is represented.215

From the two variables of the marine carbonate system (DIC and alkalinity) all other variables (CO2, HCO−3 , CO2−
3 and pH)

are calculated according to Zeebe and Wolf-Gladrow (2001) with updates of the dissociation constants pK1 and pK2 (Mojica

Prieto and Millero, 2002). The ten ocean boxes distinguish 100 m deep equatorial (or non-polar
::::
wider

:::::::
tropical) surface waters

in Atlantic and Indo-Pacific from 1000 m deep surface ocean boxes in the high latitudes (North Atlantic, Southern Ocean,

North Pacific). Here, non-polar
:
In

:::
the

::::::
model,

::::::
wider

::::::
tropical

:
boxes range from 40◦S to 40◦N in the Indo-Pacific and to 50◦N220

in the Atlantic, rather similar to the latitudinal coverage of the sediment cores from which ∆(δ13Crub) and ∆(δ13Csac) have

been compiled
:::::::::
constructed. Deep ocean boxes contain

::::::::
represent all waters below 1 km in the three basin Atlantic, Southern

Ocean, Indo-Pacific. In the equatorial regions the waters between 100 and 1000 m water depth are described by intermediate

boxes. The terrestrial biosphere (Köhler and Fischer, 2004) distinguishes C3 and C4 photosynthesis of grasses and trees, and

soil carbon with different turnover times of up to 1000 years.225

The model extension towards the version BICYCLE-SE used here, that can take care of solid Earth processes, is sketched in

Figure 4. The main improvement documented in detail in Köhler and Munhoven (2020) is the implementation of a sediment

module, that captures early diagenesis in a 8 cm deep sedimentary mixed layer (M), under which numerous historical layers

are implemented. In effect, we now simulate the AOBM subsystem of the global carbon cycle
::::::::
consisting

::
of

:::::::::::
atmopshere,

:::::
ocean,

:::::::::
terrestrial

::::::::
biosphere

::::
and

::::::::::
sedimentary

::::::
mixed

:::::
layer

::::::::
(AOBM)

:
within BICYLE-SE. In each of the three ocean basins230

(Atlantic; Southern Ocean, Indo-Pacific) the pressure-dependent carbonate system is calculated for every 100 m water depth

and depending on the over- or undersaturation of the carbonate-ion concentration CaCO3 is either accumulated or dissolved.

Parametrisation and realisation of the sedimentary processes directly follows Munhoven and François (1996) and Munhoven

(1997). The carbon isotopes in the sedimentary mixed layer are only followed in aggregated boxes (one for each of the three

ocean basin).235

Equipping BICYCLE with a process-based sediment module enables the revised model version BICYCLE-SE to address

questions related to changes in solid Earth carbon fluxes in detail and on long-term. Roughly speaking the following processes

are considered: 1) CO2 outgassing from volcanoes on land, hot spot island volcanoes and mid ocean ridge (MOR) hydrothermal

activity is realised as partly being dependent on changing sea level. 2) Coral reef growth is a known shallow water carbonate

sink, that is to some extent also following sea level rise. 3) Weathering of silicate or carbonate rocks on land, consuming240

different amounts of atmospheric CO2, and both leading to bicarbonate fluxes into the ocean. These solid Earth processes are

not directly coupled to each other. Their implementation into the model might therefore lead to temporal offsets in various

variables, to which the sediment module might react in a carbonate compensation feedback. Further details on the model and

the time-dependent forcing are found in Köhler and Munhoven (2020).
:::
Part

::
of

:::
this

:::::
brief

:::::
model

:::::::::
description

:::
has

:::::
been

::::
taken

:::::
from

:::::::::::
Köhler (2020)

:
.245
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δ13CV = -5‰

δ13Crock = +2‰

!(C4-CO2) = -5‰ 
!(C3-CO2) = -19‰

!(Corg-DIC) = -24.5 to -30.5‰ PRE, 
f(SST), -1.5 ‰/K 

!A   O = -2.3 to -2.4‰, small f(SST)
!O   A = -10.2 to -12.4 ‰, f(SST)

!(CaCO3-DIC) = 0‰ 
!(corals-DIC) = -2‰

-OA

BICYCLE-SE
Solid Earth

-B

BICYCLE

V

V

C S

Si-W

Ca-W P

P

A

Figure 4. Sketch of the Box model of the isotopic carbon cycle, version solid Earth (BICYCLE-SE), modified from Köhler and Munhoven

(2020). V: outgassing of CO2 from volcanoes on land potentially and temporally overlain by land ice and from hot spot island volcanoes

(and mid ocean ridges, not shown) influenced by changing sea level; C: shallow water carbonate deposition due to coral reef growth; Si-W:

silicate weathering and Ca-W: carbonate weathering with different sources of C, but both delivering HCO−
3 -ions into the ocean; P: PO3−

4

riverine input and sedimentary burial; S: CaCO3 sedimentation and dissolution. A2B
:::
A-B: atmosphere-biosphere exchange of CO2; A2O

:::
A-O:

atmosphere-ocean exchange of CO2. The cyan-coloured broken circles mimic the two overturning cell in the Atlantic and Indo-Pacific Ocean.

The isotopic fractionation ε during exchange processes, or the prescribed δ13C of external fluxes are given, summarising the parametrisation

of the 13C cycle within the model.

2.2 Complete formulation of the cycle in BICYCLE-SE

2.1.1
::::::::
Complete

:::::::::::
formulation

::
of

:::
the

:

13C
:::::
cycle

::
in

:::::::::::::
BICYCLE-SE

The following isotopic fractionations are now considered in the BICYCLE-SE model. For this study the whole δ13C cycle has

been revised. While isotopic fractionations are given here in the ε(A−B)-notation (in ‰) they are implemented after Zeebe and

Wolf-Gladrow (2001) in the model as factors
:::::::::::
fractionation

::::::
factors

:::::::
α(A−B).::::

Both
:::
are

::::::
related

::::
after

:
250

αε(A−B) =
ε(A−B)

1000
+ 11000 · (α(A−B) − 1).

::::::::::::::::
(1)

defined as
::::::::::
Furthermore,

:::::::
α(A−B) ::

is
::::::
related

::
to

::::
δ13C

::
in

:::::::::
reservoirs

::
A

:::
and

::
B

::::
after

α(A−B) =
δ13CA + 1000

δ13CB + 1000
. (2)

There is no convention if the initial or final reservoir is given as A or B here, however here A is always the final and B the

initial reservoir of the fractionation process. In some cases a specific process instead of two reservoirs is mentioned in the255
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subscript, e.g. ε(a2o) and ε(o2a) ::::::
ε(a→o) :::

and
::::::
ε(o→a) for the atmosphere-ocean gas exchange, for which not only the two different

reservoirs, but also the direction of the flux plays a role for the size of the isotopic fractionation. In that case the quantified

fractionation implies an isotopic depletion connected with the related process for ε < 0‰.

Air-sea gas exchange: Using the measurements from Zhang et al. (1995) we formulate, following in most parts Marchal et al.

(1998), for the isotopic fractionation during gas exchange to be consisting of contributions from equilibrium (αeq) and260

kinetic (αk) fractionation (αtotal = αeq·αk). For the atmosphere-to-ocean CO2 flux a temperature-dependent equilibrium

fractionation of εeqa2o = εeq(aq−g) = −1.31 + 0.0049 ·TC ::::::::::::::::::::::::::::::::
εeqa→o = εeq(aq−g) = −1.31 + 0.0049 ·TC between dissolved (aq)

and gaseous (g) CO2 and a εka2o = −1.08
::::::::::::
εka→o = −1.08‰ is used. Note, εka2o::::

εka→o:
differs by –0.2‰ from εko2a = −0.88

::::::::::::
εko→a = −0.88‰

for the ocean-to-atmosphere flux, a necessary correction already given in Zhang et al. (1995), but to our knowledge only

rarely applied. For the reverse ocean-to-atmosphere flux we use the equilibrium fractionationαeq
o2a = αeq

(aq−DIC) =
∑
i fiα(aq−i)265

:::::::::::::::::::::::::::::
αeq
o→a = αeq

(aq−DIC) =
∑
i fiα(aq−i) with fi being the relative shares of CO2, HCO−3 and CO2−

3 on DIC in the repre-

sentative ocean box. Furthermore, from the available measurements in Zhang et al. (1995) we derive: α(aq−HCO−
3 ) =

α(aq−g)

α
(HCO

−
3 −g)

,α(aq−CO2−
3 ) =

α(aq−g)

α
(CO

2−
3 −g)

andα(aq−CO2) = 1 using ε(CO2−
3 −g)

= 7.22−0.052·TC and ε(HCO−
3 −g)

= 10.78−
0.114 ·TC with TC being the sea surface temperature in ◦C.

Marine biology: The pre-industrial
:::
The

::::::::::
preindustrial

:
marine export production of organic carbon at 100 m water depth is set270

to 10 PgC/yr (which
::
in

:::
the

::::::
model can increase in glacial periods due to iron fertilisation in the Southern Ocean

::
up

::
to

::
13

:::::::
PgC/yr,

:::::
Figure

::::
S1d) with a fixed molar rain ratio of organic C:CaCO3 of 10:1. Existing data on fractionation during

marine organic matter production (marine photosynthesis) are rather weak in determining if and how it depends on CO2

(Young et al., 2013; Brandenburg et al., 2022; Liu et al., 2022). Furthermore, as discussed in Brandenburg et al. (2022)

some species might contain so-called carbon concentrating mechanisms and use not CO2, but HCO−3 as source of their275

carbon, in which case a completely different isotopic fractionation during marine photosynthesis (ε(Corg−DIC)) would

follow. We base our initial formulation of ε(Corg−DIC) in scenario SEi0 on the data compilation of δ13CPOC in Verwega

et al. (2021) who found a dependency on latitude. Using average preindustrial δ13CDIC of +2.5‰ (Schmittner et al.,

2013) as starting values and the δ13CPOC in Verwega et al. (2021) of –22, –24, –28‰ for low, high northern, and high

southern latitudes, respectively, and approximating ε(Corg−DIC) ≈ δ13CPOC - δ13CDIC, we come up with the following280

isotopic fractionation ε(Corg−DIC) of −24.5,−26.5, and −30.5‰ accordingly(scenario SEi0). This approximation is

motivated by the high uncertainties in δ13CPOC as documented in Verwega et al. (2021).

The breadth
:::::
spread

:
in δ13CPOC in the data of Verwega et al. (2021) is huge, ranging from −15 to −35‰. Furthermore,

they confirmed the finding of earlier studies (Young et al., 2013; Lorrain et al., 2020) that δ13CPOC becomes much

more depleted over time than what is explainable by the 13C Suess effect (Keeling, 1979). In details, between 1960 and285

2010 δ13CPOC decreased by about 3± 4‰. The Suess Effect shows a decrease in atmospheric δ13CO2 of about 1.5‰

during that time (Rubino et al., 2013) and it is known that in the ocean the Suess Effect is decreasing with depth (Eide

et al., 2017). In
::
At

:
the same time, global mean temperature rose by about 0.8 K (Rohde and Hausfather, 2020). This

shift in δ13CPOC is probably caused by a shift in the composition of the phytoplankton communities. We therefore use
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the numbers above
:::::
values

::::::
derived

:::
in

:::
the

:::::::
previous

:::::::::
paragraph

::::
from

::::::::::::::::::
Verwega et al. (2021) as our preindustrial parameter290

values of ε(Corg−DIC) to which we add a temperature-dependent part of −1.5‰ for any K the sea surface temperature

in the relevant surface ocean box disagrees from its preindustrial value(standard scenario SEi). The assumed value fits in

the range of recent temperature-dependent δ13CPOC found in Verwega et al. (2021) and has been obtained by tuning to

simulate δ13CO2 at preindustrial times to be similar to its values at LGM, as seen in the ice core data (Figure 3b). This

leads to ε(Corg−DIC) at LGM of −19.3,−20.4,−24.4‰ for low, high northern, or high southern latitudes, respectively.295

Data are also rather uncertain for the isotopic fractionation during the formation of CaCO3. We assume, in agreement

with Buitenhuis et al. (2019), that 65% of the CaCO3 exported in the abyss consists of aragonite and 35% of cal-

cite. Calcite is either produced by coccolithophores or planktic foraminifera. Some coccolithophore species suggest

an enrichment, others a depletion in δ13C in their shells with respect to δ13CDIC in the surrounding water (Ziveri

et al., 2003). For planktic foraminifera the CIE is the dominant
:::
one

::
of

:::::::
various

:::::::
possible

::::::::
processes

::
of

:
isotopic fraction-300

ation hypothesised to occur during hard shell formation (e.g. Spero et al., 1997, 1999; Russell and Spero, 2000). It is

:::::::::::::::::::::::::::::::::::::::::::
(Bijma et al., 1999; Zeebe et al., 2008; Kimoto, 2015)

:
.
:::::::
Isotopic

:::::::::::
fractionation

::::::
factors

:::
are

:
in comparison to ε(Corg−DIC)

rather small and
::
in

:::
the

::::
case

::
of

:::
the

::::
CIE species-specific

::::::::::::::::
(Spero et al., 1999). We therefore choose in the model to set the

fractionation during calcite production to be neutral with respect to 13C, thus ε(cal−DIC) = 0‰, but we will consider

the CIE in post-processing when comparing simulations with reconstructions. For simplicity and due to missing further305

evidence for fractionation during aragonite production ε(ara−DIC) was also kept at 0‰.

::::
More

:::::::
general,

:::
we

::::
keep

::::::::::::::::
ε(CaCO3−DIC) = 0‰.

:

The shallow water sink of carbonate in corals is assumed to have a δ13C that follows after an isotopic fraction of

ε(corals−DIC) = −2‰ from the δ13C of the DIC in the surface waters. This value is based on a combination of recent

data, paleo data from the Great Barrier reef and insights from simulations (Linsley et al., 2019; Felis et al., 2022).310

Terrestrial biosphere: On land
:
, isotopic fractionation is only assumed to occur during photosynthesis with ε(C3−CO2) =

−19‰ and ε(C4−CO2) = −5‰ for C3 (all woody plants and some grasses) and C4 (some other grasses) photosynthesis,

respectively (Vogel, 1993; Lloyd and Farquhar, 1994).

External fluxes to the AOBM subsystem: The volcanic CO2 outgassing flux is assumed to have a fixed δ13C signature

(δ13CV) of −5.0‰, the typical mean value for volcanic outgassing (e.g. Deines, 2002; Roth and Joos, 2012), but note315

its uncertainty of about
:::
that

:::
the

:::::::::
uncertainty

::
is
:
±3‰ around it.

From the two weathering fluxes based on either silicate or carbonate rocks, only the latter has a contribution which bring

new carbon into the system. Here, 50% of the carbon that as bicarbonate — the weathering product — is entering the

ocean with a δ13C signature (δ13Crock) of +2‰ — identical to the most likely δ13C values in carbonate rocks build

during the Phanerozoic (Bachan et al., 2017). The carbon for the other half of the carbonate weathering flux and for all320

of the silicate weathering flux is assumed to come from CO2 in the soil environment. We therefore assume that this CO2
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might be dominated by soil respiration fluxes and therefore a δ13C signature that corresponds to the mean value of the

two soil carbon boxes is assumed here.

To balance the inflow of 13C via volcanism and weathering the model has been tuned for long-term stable mean δ13C

values in the AOBM subsystem by the following sink: About 6% of the organic carbon, that is exported from the surface325

boxes into the abyss is assumed to be lost in the sediment. Note, that this number has been tuned with the previous

version of the 13C cycle in operation (Köhler and Munhoven, 2020), but has not been revised thereafter.

In summary, the new parametrisation of the cycle has been implemented as follows: (1) The overall philosophy here is

to keep the main carbon cycle untouched, but consider only changes the stable isotope. For this reason, the previously tuned

value of organic matter flux into the sediment of about 6% is kept as is, since the strength of this carbon sink also changes330

the overall C cycle including atmospheric . (2) Equations for isotopic fractionation during gas exchange are revised from the

literature. (3) Fractionation during marine photosynthesis was completely revised and follows in its latitudinal dependency

Verwega et al. (2021), is most uncertain and very likely has a temperature-dependency due to species shifts. The size of this

temperature-dependency ε(Corg−DIC) was tuned to dynamics in atmospheric during the last 20 ka. (4) Fractionation during

calcite formation is species-specific and roughly neutral. The CIE is therefore only considered in post-processing. (5) All other335

parameter values, namely fractionation during terrestrial photosynthesis or during coral reef growth, of volcanic and of

weathered carbonate rock are also rather uncertainties. However, their chosen parameter values correspond to the means of the

reconstructions, and are kept fixed. One might also take alternative approaches by giving more room to uncertainties in other

parameter values, or by also reconsidering changes in the main carbon cycle, and not only in the cycle.

Overview of simulation scenarios. Name Description SEi standard run for BICYCLE-SE with updated cycleSEi0 as SEi, but340

no temperature-dependent contribution to ε(Corg−DIC)C1 as SEi, but atmospheric are prescribed from data (Eggleston et al., 2016a)

C1CO2 as SEi, but atmospheric records (, ) are prescribed from data (Eggleston et al., 2016a; Köhler et al., 2017a)

2.2 Simulation Setup and Scenarios

2.1.1
:::::::::
Simulation

::::::
Setup

:::
and

:::::::::
Scenarios

The BICYCLE-SE model simulates the global carbon cycle as function of changing time-dependent physical boundary con-345

ditions (forcing), which are nearly identical to the simulations published in Köhler and Munhoven (2020) and which are also

in detail described in that study. Briefly, ocean circulation is prescribed from modern data of the WOCE experiment, while

its main temporal changes are restricted to: (a) the Atlantic Meridional Overturning Circulation (AMOC)
::::::
AMOC, which is

reduced from modern/interglacial 16 Sv to 10 Sv during glacial periods
::::::
(Figure

::::
S1b); (b) Southern Ocean (SO) vertical deep

mixing is a function of SO sea surface temperature
::::::
(Figure

::::
S1c). Ocean and land temperature are prescribed from reconstruc-350

tions
::::::
(Figure

:::::
S1e), ocean salinity is varied as function of prescribed sea level

::::::
(Figure

::::
S1a). Additionally, aeolian iron input in

the SO is assumed to follow dust fluxes measured in Antarctic ice cores, which might change marine biology in the SO from an

iron-limited to an iron-unlimited regime, increasing glacial export production of organic matter to the deep ocean
::::::
(Figure

::::
S1d).

The standard scenario SEi used here is — apart from the revised δ13C cycle — nearly identical to the scenario SE in Köhler
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Table 1.
::::::::
Overview

:
of
:::::::::

simulation
:::::::
scenarios.

:

::::
Name

:

::::::::
Description

:

:::
SEi

::::::
standard

:::
run

::
for

:::::::::::
BICYCLE-SE

::::
with

::::::
updated

:

13C
:::::
cycle

::::
SEi0

:
as
::::

SEi,
:::
but

::::::
without

:::::::::::::::::
temperature-dependent

:::::::::
contribution

::
to

:::::::::
ε(Corg−DIC)

::
C1

:

:
as
::::

SEi,
:::
but

:::::::::
atmospheric δ13CO2::

is
::::::::
prescribed

::::
from

:::
data

::::::::::::::::::
(Eggleston et al., 2016a)

::::::
C1CO2

:
as
::::

SEi,
:::
but

:::::::::
atmospheric

::::::
records

:
(δ13CO2:

, CO2)
:::
are

::::::::
prescribed

::::
from

:::
data

:::::::::::::::::::::::::::::::::
(Eggleston et al., 2016a; Köhler et al., 2017a)

and Munhoven (2020). The only difference is that in the application here we revised the applied equatorial SST
::
sea

:::::::
surface355

::::::::::
temperature

:::::
(SST). It has been based in previous applications on changes in planktic δ18O in only one ODP record. Now we

use the SST stack from Barth et al. (2018), which is based on a compilation of SST from 15 non-polar sediment cores. The

new equatorial SST forcing is now based on more data, is temporally higher resolved and contains a smaller G/IG amplitude

than before. This leads to only minor changes in atmospheric CO2 of less than 5 ppm, but is important for the 13C cycle, and

its temperature-dependencies (isotopic fractionation during atmosphere-ocean gas exchange and during carbon uptake by the360

marine biology). Simulations are started from interglacial conditions around 210 kyr BP. Scenario SEi0 is only performed to

illustrate how the implementation of the temperature-dependency in ε(Corg−DIC) improve the simulated 13C cycle, illustrated

by plotting atmospheric δ13CO2 against data in Figure 5b.

Simulated changes in the atmospheric record are already in scenario SEi not too far away from the reconstructions, especially

in CO2 (Figure 5a). However, to bring the carbon cycle in atmosphere and surface ocean as close as possible to the reconstruc-365

tions we perform additional simulations in which the atmospheric δ13CO2 alone (scenario C1) or together with atmospheric

CO2 (scenario C1CO2) is forced by the reconstructions. Here, we use the data splines as plotted in Figure 3a,b (Eggleston

et al., 2016a; Köhler et al., 2017a) and ignore the higher resolved data from Taylor Glacier (Menking et al., 2022b), since

these more abrupt changes in δ13CO2 are
:::::
either

:::::
during

:::
the

::::
last

::
50

:::
kyr

:::
to

:
a
:::::
large

:::::
extent

:::::::
covered

::
in

:::
the

::::::::
dynamics

::
of

:::
the

::::::
spline

::::::::::::::::::::::
(Bauska et al., 2016, 2018)

::
or

::::::
around

::
70

:::
kyr

:::
BP

::::::::::::::::::::
(Menking et al., 2022b) probably not recorded in our marine sediment records.370

This implies that internally calculated fluxes are overwritten by changes that are necessary
::
to keep the simulated atmospheric

carbon variables identical to the reconstructions. This approach is typically applied in

This approach is typically applied in CO2 concentration-driven present day or future ocean carbon cycle simulations (e.g. Hauck et al., 2020). It has already been used in BICYCLE-SE for 14C to obtain radiocarbon in the surface ocean as close to the data as possible during the construction of the most recent marine radiocarbon calibration curve Marine20 (Heaton et al., 2020) and subsequent studies (Köhler et al., 2022). However, since atmospheric CO2 and δ13CO2 are normally prognostic variables of the model and their calculated changes should be derived out of the model’s differential equations followed by a proper integration scheme, this approach slightly violates the mass conservation. It nevertheless guarantees that simulated surface ocean variables of the carbon cycle are within the model realm as consistent as possible with the atmospheric reconstructions.

::
An

::::::::
overview

::
of

:::
the

:::::::
applied

:::::::::
simulation

::::::::
scenarios

:
is
::::::::
compiled

::
in
:::::
Table

::
1.
:

2.2
::::

Data
:::::::
analysis

:::::
Linear

:::::::::
regression

::::
was

:::::::::
performed

::::
with

:::
the

::::::::
software

::::::::
MATLAB

::::::::::::::::::::::::
(The MathWorks Inc., 2023)

:
.
:::
The

:::::::::::
uncertainties

::
of

::::
the

:::
fits

:::
are375

:::::::::::
approximated

::
by

::::::::::::::::::::
root-mean-square-errors

:::::::::
calculated

::::
after

::::::::::::::::::::
s=

√
1
n

∑n
i=1(yi− fi)2,

::::
with

::
fi:::::

being
:::
the

:::::::::
calculated

:::::
values

::::::::
according
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Figure 5. Simulation results of atmospheric variables showing reasonable good agreement with
:::
and

:::::::::
comparison

::
to

::::
data

:::::
splines

:::
for

:
(a)

:::::::::
atmospheric CO2, and necessary improvements in (b)

:::::::::
atmospheric δ13CO2 during parameter tuning of ε(Corg−DIC). See Table 1

::::::
Results

for details of
::::::
scenario

:::
SEi

::::::::
(standard)

::::
and

::::
SEi0

:::
are

::::::
shown.

::::
The

::::
latter

::::::
differs

::::
from

:
the different scenarios

::::::
standard

:::
run

:::
by

::
a

:::
lack

:::
of

::::::::::::::::::
temperature-dependency

::
in

:::::::::
ε(Corg−DIC).

::
to

:::
the

:::::
linear

:::::::::
regression

:::::::::
equations.

::
In

:::::
cases

:::
in

:::::
which

:::
the

:::::::::::
uncertainties

:::
in

::::
both

::::::::
variables

::::::
should

:::
be

:::::::::
considered

:::
we

:::::
used

:::
the

:::::::
function

::::::::
“linfitxy”,

:::::::
version

::::::
1.2.0.0

:::::::::::::::
(Browaeys, 2023).

::::
The

:::::::::
frequency

:::::::
analysis

::::
was

:::::::::
performed

:::::
using

::
R

:::::::::::::::::
(R Core Team, 2023)

:
,

::::::::
including

::
the

::::::::
function

:::::
“coh”

::::
from

:::
the

:::::::::
R-package

::::::::
seewave,

::::::
version

:::::
2.2.3,

:::::::::
calculating

::::::::::
coherence.

3
::::::
Results

::::
and

:::::::::
Discussion

:
380

3.1
::::::::
Overview

::
on

:

13C
:::::
cycle

:::::::
changes

::::
over

::::
the

:::
last

::::
160

:::
kyr

:::::::::::
Reconstructed

:::::::
changes

::
in
:::
the

::::
late

:::::::::
Quaternary

::::::
carbon

:::::
cycle

:::
are

:::
still

::::
not

:::::::::
completely

::::::::::
understood.

:::
The

:::
ice

:::::
cores

::::
give

::
us

::
a

::::::
precise

::::::
picture

::
of

::::::::::
atmospheric CO2 concentration-driven present day or future ocean carbon cycle simulations (e.g. Hauck et al., 2020)

. It has already been used in BICYCLE-SE for
::::::::::::::::::::::::::::::::::
(Bereiter et al., 2015; Köhler et al., 2017a)

::::::
(Figure

::::
3a),

:::::
which

::
in

:::
the

:::::::::
meantime

:::
has

:::
also

::::
been

::::
met

:::::::::
reasonably

::::
well

::::
with

::::::
various

:::::::
different

::::::
carbon

::::
cycle

:::::::
models

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g. Menviel et al., 2012; Ganopolski and Brovkin, 2017; Khatiwala et al., 2019; Köhler and Munhoven, 2020)385

:
.
:::::
These

:::::::
findings

:::::::
suggest,

:::
that

:::
the

:::::
main

::::::::
processes

:::::::::
responsible

:::
for

:::
the

::::::::
observed

:::::::
changes

::
on

::::::
orbital

:::::::::
timescales

:::::
might

::::::
indeed

::::
have

::::
been

::::::::
identified,

::::::::
although

::::::
results

::
are

:::
to

::::
some

::::::
extent

::::::::::::::
model-dependent

:::
and

::::::::::::
improvements

::
in

::::::
details

:::
are

::::::::
certainly

::::::::
necessary.

:

:::
The

::::::::::::
corresponding

::::::::::
atmospheric

:
δ13CO2:

,
::::
now

:::::::
available

::::
over

:::
the

::::
last

:::
155

:::
kyr

:::::::::::::::::::::
(Eggleston et al., 2016a),

::::::::
however,

::
is

::
in

::
all

:::
its

::::::
features

::::
still

::::::
waiting

:::
for

::
a
::::::::::::
process-based

:::::::::::
interpretation

::::::
(Figure

::::
3b).

:::::
Since

:
δ13CO2 to obtain radiocarbon in the surface ocean

as close to the data as possible during the construction of the most recent marine radiocarbon calibration curve Marine20390
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(Heaton et al., 2020) and subsequent studies (Köhler et al., 2022). However, since atmospheric
:::::
helps

::
to

:::::::
pinpoint

:::
on

::::::::
processes

:::::::::
responsible

:::
for

:
CO2 :::::::

changes,
:::
any

::::::::::
simulation

:::
that

::
is

::::
able

::
to

:::::::
explain

:::
one

:::::::
without

:::
the

:::::
other

:::::
might

:::::
need

::
to

::
be

::::::::::
interpreted

::::
with

::::::
caution.

:::::::
Models

::::::
suggest

::::
that

:::::::::
especially

:::::::
physical

:::
and

:::::::::
biological

::::::::
processes

::
in

:::
the

::::::::
Southern

::::::
Ocean

::::::::
processes

:::::::
robustly

::::::::
influence

δ13CO2:
,
:::::
while

:::
the

:::::
impact

::
of
:::
the

:::::::
Atlantic

:::::::::
meridional

::::::::::
overturning

:::::::::
circulation

::::::::
(AMOC)

::
on

:
δ13CO2:::::

seems
::
to

::
be

:::::::::::::::
model-dependent

:::::::::::::::::
(Menviel et al., 2015)

:
.
::::::::::::
Consequently,

::
the

::::::
abrupt

::::
drop

::
in δ13CO2 :

at
:::
the

:::::
onset

::
of

::::::::::
Termination

:
1
::::
(T1)

:::::::::::::::::::::::::::::::::
(Smith et al., 1999; Schmitt et al., 2012)395

:
is
:::::::::
nowadays

:::::::::
understood

::
to

::
be

::::::
caused

:::
by

:::::
marine

:::::::::
processes,

:::::
while

:::::::::
subsequent

:
δ13CO2:::::::

changes
:::::
during

:::
T1

:::
and

:::
its

:::::::
recovery

::::::
during

::
the

::::::::
Holocene

::
to
:::::::::
LGM-like

:::::
values

:::::
were

:::::::::
potentially

:::::
related

::
to

::
a

::::::
mixture

::
of

:::::::
oceanic

:::
and

::::::::
terrestrial

::::::::
processes

:::::::::::::::::::::::::::::::::
(Köhler et al., 2005; Bauska et al., 2016)

:
.

:::
Two

::::::
largely

:::::::::::
unexplained

::::::
features

:::::
stand

:::
out

::
in

:::
the

:::
155

:::
kyr δ13CO2::::::

record.
::::
First,

:::::
there

::::
exist

:
a
:::::::::
long-term

::::
trend

::
by

:::::
+0.45‰

:::::
from

::
the

:::::::::::
Penultimate

:::
and

:::
the

::::
Last

:::::::
Glacial

:::::::::
Maximum

:::::
(PGM

::::
and

::::::
LGM).

:::::
When

::::
first

:::::::::
discovered

::::::::::::::::::::
(Schneider et al., 2013)

:
it
:::
has

:::::
been400

::::::::::
hypothesised

::::
that

:::::::
changes

::
in

:::
the

:::::::
isotopic

:::::::::::
composition

::
of

:::::
solid

:::::
Earth

:::::
fluxes

::
or

:::
of

::::
their

:::::::::
intensities

::
or

::::::::
long-term

::::
peat

::::::::
build-up

:::::
might

::
be

::::::::::
responsible

:::
for

:::::
them.

:::::::
Second,

::
a
:::
0.5‰

:::::
deep

:::
and

::::::
nearly

:::
20

:::
kyr

::::
long

:::::::
minima

::::::
centred

:::::::
around

::
58

::::
kyr

:::
BP

:::::::::
happened,

:::::
rather

::::::::::
uncorrelated

::::
with

:
CO2::::::::

changes.
::::::::::::::::::::
Eggleston et al. (2016a)

:::::::::
hypothesise

::::
that

:::
the δ13CO2:::::::

minima
:::::
might

::::
have

:::::
been

:::::::
partially

:::::
caused

:::
by

:
a
::::::
change

::
in

:::::
ocean

:::::::::::
stratification

:::::::
between

::::::
Marine

::::::
Isotope

:::::
Stage

::::::
(MIS)

:
4
:::
and

::::
MIS

::
3,
::::::::
allowing

:::
for

:
a
:::::::
different

:::::::
amount

::
of

:::::::::
isotopically

::::
light

::::::
carbon

:::::
being

:::::
stored

::
in
:::
the

:::::
deep

:::::
ocean.

::::::::
Recently,

::::
high

::::::::
resolution

::::
data

::
of

:
δ13CO2::::

from
::::::
Taylor

::::::
Glacier

::::::::
covering405

::
74

::
to

:::::
59.5

:::
kyr

:::
BP

::::::::
including

:::::
MIS

:
4
::::

and
:::
the

:::::
drop

:::
into

::::
the δ13CO2 ::::::::

minimum
:::::
have

::::
been

:::::::::
published

::::::::::::::::::::
(Menking et al., 2022b)

:::::::
showing

:::::
more

:::::::::
variability

:::
and

::::::::
between

:::
66

:
and

::
60

::::
kyr

:::
BP

::::
with

:::
–1‰

::
a
:::::
twice

:::
as

::::
large

:::::::
change

::
as
::::::::::

previously
::::::::
contained

:::
in

::
the

:::::::::
smoothed

::::::
record

::
of

::::::::::::::::::::
Eggleston et al. (2016a)

:
.
:::::::::::::::::::
Menking et al. (2022b)

::::
also

:::::::::
performed

:::
first

::::::
model

::::::::::
simulations

::
in
:::::

order
:::

to

:::::::::
understand

:::::
which

::::::::
processes

:::::
might

:::
be

:::::::::
responsible

:::
for

:::
the

:::::::::::
reconstructed

:::::::
changes

::
in

:::
the

:::::
carbon

:::::
cycle.

:::::::::
However,

::
to

:::
our

:::::::::
knowledge

::::
none

::
of

:::
the

:::::
ideas

:::
put

:::::::
forward

::
in

:::::::::::::::::::
Schneider et al. (2013)

:::
for

:::
the

::::::::
long-term

:::::
trend

::
in

:
δ13CO2 are normally prognostic variables410

of the model
:::
have

:::
so

:::
far

:::::
been

:::::::::::
convincingly

::::
and

::::::::::
successfully

:::::::
verified

::::
with

:::::::
carbon

:::::
cycle

::::::
model

:::::::::
simulation.

::::::::::::
Furthermore,

:::::::
400–500

:::
kyr

:::::::::
variability

::
in δ13C

::::::
related

::
to

::::
slow

:::::::::
eccentricity

:::::::
changes

:::::
found

:::::::::
throughout

:::
the

::::::::
Cenozoic

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g. Pälike et al., 2006; Russon et al., 2010; Ma et al., 2011; Wang et al., 2014; Paillard, 2017)

:::::
might

::
be

::::::::::::
superimposed

::
on

:::::
faster

:::::::::
variations,

::::::
making

::
a
:::::::::::
process-based

::::::::::::
understanding

::
of

::::::::
observed

:::::::
changes

::
in

:
δ13CO2::::

even
:::::
more

::::::::::
challenging.

::::::::
Sediment

::::
cores

::::::::
covering

:::
the

::::::::::::
Anthropocene

::::::
clearly

:::::
show

:::
that

:::
the

:
δ13C

::
of

:::
G.

:::::
ruber and their calculated changes should be415

derived out of
:
T.

::::::::
sacculifer

:::::
shells

::::::::
(δ13Crub,

:::::::
δ13Csac)

::::::::
faithfully

:::::::
reflects

::::::
changes

:::
in

:::::::
δ13CDIC::::::

caused
:::
by the model’s differential

equations followed by a proper integration scheme, this approach slightly violates the mass conservation. It nevertheless

guarantees that simulated surface ocean variables of the carbon cycleare within the model realm as consistent as possible with

the atmospheric reconstructions.
::::
δ13C

:::::
Suess

::::::
Effect

:::::::::::::::::::::::::::::::::::
(Al-Rousan et al., 2004; Black et al., 2011)

:
,
:::::
albeit

::::
with

:
a
:::::::

notable
::::::
offset.

::::
This

:::::
offset

:::::
might

::
be

:::::::::
influenced

:::
by

:::
the

::::
CIE

:::::::::::::::::::
(e.g. Spero et al., 1997),

:::::
light

:::::::
intensity

::::::::::::::::::::
(e.g. Spero et al., 1991)

:::
and

:::
the

:::
size

:::
of

:::
the420

:::::::::::
foraminiferal

:::::
shells

:::::::::::::::::::::::::::
(e.g. Oppo and Fairbanks, 1989).

::::
Our

::::
new

::::::::::::
mono-specific

::::::
stacks

::::
from

::::
the

:::::
wider

:::::::
tropical

::::::
surface

::::::
ocean

::
of

::::::::::
∆(δ13Crub)

::::
and

::::::::::
∆(δ13Csac):::::::

(Figure
:::
3c)

:::::::
contain

:
a
:::::
G/IG

::::
rise

::
of

::::
0.25‰

::::::
across

:::
T1,

::::
but

::
of

::::
only

::::
0.15‰

::::::
across

::::
T2,

:::::
while

::::::::::
atmospheric δ13CO2 ::

at
:::
the

::::
same

:::::
time

::::
rose

::
by

:::
0.1‰

:::::
(T2),

::
or

::::::
stayed

:::::::
constant

::::
(T1)

:::::::
(Figure

:::
3b),

::::::::
showing

::::
local

:::::::
minima

::::::
during

::::::::::
terminations

::
in

:::::
both

:::::::
records.

:::::
Deep

:::::
ocean

:::::::
benthic δ13C

:::::::
(Figure

:::
3d)

::
is
:::::

here
:::::::::::
approximated

:::
by

::
a

::::
stack

:::::
from

:::
six

:::::
deep

::::::
Pacific

::::
cores

::::::::::::::
(Lisiecki, 2014),

::::
that

:::::::
contains

:
a
:::::
G/IG

::::
rise

::
of

::::
0.45‰

:::::
across

:::::
both

::
T1

::::
and

:::
T2.

::::
This

:::::
value

::
is

:::
on

:::
the

:::::
upper

:::
end

::
of

:::
the

:::::
95%425

17



-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

0.4

(
1

3
C

ru
b
)

(o
/ o

o
)

-0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0.0 0.1 0.2 0.3 0.4

(
13

Csac) (
o
/oo)

13
C data, no CIE

(a)

150 kyr

t = 1 kyr

based on mean values:

y=0.05+0.98x, r
2

= 0.95, s = 0.04

considering uncertainties :

y=(0.042 0.004)+(0.992 0.030)x, r
2
=0.95 -1.8

-1.6

-1.4

-1.2

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

(
1

8
O

ru
b
)

(o
/ o

o
)

-1.8 -1.6 -1.4 -1.2 -1.0 -0.8 -0.6 -0.4 -0.2 0.0

(
18

Osac) (
o
/oo)

18
O data, no CIE

(b)

150 kyr

t = 1 kyr

based on mean values:

y=0.01+0.96x, r
2

= 0.96, s = 0.09

considering uncertainties :

y=(-0.001 0.005)+(0.981 0.010)x, r
2
=0.96

Figure 6.
:::::
Scatter

::::
plot

::
of

:::
our

:::
new

:::::
stacks

:::
(a)

:::::::::
∆(δ13Crub)

:::::
versus

::::::::::
∆(δ13Csac) :::

and
::
(b)

::::::::::
∆(δ18Orub)

:::::
versus

::::::::::
∆(δ18Osac).

::::
Data

:::::
stacks

::::::
without

::::::::
corrections

:::
for

::
the

::::
CIE

::
are

::::::
plotted.

:::
The

::::
time

:::::
series

::
are

:::::::
restricted

::
to
::::
data

::
of

:::
last

:::
150

:::
kyr

::
to

::::
allow

:::::::::
comparison

::::::
later-on

::::
with

::::::::
simulation

:::::
results

::::
which

::::
were

:::::
based

::
on

:::
the

:::
only

::::
155

::
kyr

::::
long

:::::::::
atmospheric

:
δ13CO2 :::::

record.
:::::
Linear

:::::::::
regressions

::::
using

::::
only

::
the

:::::
mean

:::::
values

:::
and

::::
when

::::
using

::::
also

:::::::::
uncertainties

::
in

::::
both

:
x
:::
and

:
y
:::
are

::::::::
performed.

::::
The

:::::::::::::::::
root-mean-square-error

::
is

::::::
depicted

::
by

::
s.
:

:::::::::
confidence

::::::
interval

:::
of

:::::::::::
compilations

::
of
:::::::

marine
:
δ13C

:::::::
changes

::::::
across

:::
T1

::::::::::::::::::::::::::::::::::::::::::
(Peterson et al., 2014; Peterson and Lisiecki, 2018)

:::::
which

::::::
suggest

::
to
::::::::
represent

::::::
global

:::::
ocean

::::
wide

::::::::
changes.

:::
The

::::::
marine

::::
time

::::::
series,

::::
both

::::
from

::::::
surface

::::
and

::::
deep

::::::
ocean,

:::
also

:::::::
contain

::::
wide

:::
and

:::::
deep

::::::
minima

::::::
around

:::
60

:::
kyr

:::
BP,

::::::::
similarly

::
to

:::
the

::::::::
smoothed

:::::::::::
atmospheric δ13CO2::::

data
:::
of

:::::::::::::::::::
Eggleston et al. (2016a)

:
,
:::
but

:::::::
different

::
to

:::
the

:::::
higher

::::::::
resolved

:::::
Taylor

:::::::
Glacier δ13CO2:::

of
::::::::::::::::::
Menking et al. (2022b)

:
.
:::::::::::
Furthermore,

::
all

::::::
marine

:
δ13C

::::
data,

::::::::
similarly

::
as

:::
the

::::::::::
atmospheric

:
δ13CO2,

:::::::
contain

:
a
:::::::::
long-term

:::
rise

:::::
from

:::::
PGM

::
to

:::::
LGM

:::::
(about

::::::
+0.33‰

::
in

:::
the

:::::
wider

:::::::
tropical

::::::
surface

::::::
ocean,430

:::::
+0.18‰

::
in

:::
the

::::
deep

::::::
Pacific,

::::::
Figure

:::
3),

:::::
which

:::::
might

:::
be

:::::::::
potentially

::::::::
connected

::::
with

:::
the

::::::::::
400-to-500

:::
kyr

:::::::::
variability.

4 Results and Discussion

:::::
Before

:::
we

:::::
start

::::
with

::::::
deeper

:::::::::::
model-based

:::::::::::
interpretation

::
of

::::
the 13C

::::::
cycle,

:::
we

::::
have

::
a

:::::
closer

::::
look

:::
on

:::
our

::::
new

:::::::
isotope

::::::
stacks.

:::
The

::::
size

:::
of

:::
the

::::
CIE

::
as

::::::::
detected

::::
from

:::::::::
laboratory

:::::::::::
experiments

::
in
:::::

both
::::::
species

::::::
differs

:::
by

::::::
nearly

::
a

:::::
factor

:::
of

::::
two,

::::::::
−0.0089

:::
and

::::::::
−0.0047

:
‰

::::::
change

::
in

:
δ13C

:::
per

:
µmol kg−1

:::
of

:
[
:::::
CO2−

3 ]
::
for

:::
G.

:::::
ruber

:::
and

::
T.

:::::::::
sacculifer,

:::::::::::
respectively,

:::
and

:::
of

::::::::
−0.0022435

:::
and

::::::::
−0.0014 ‰

:::::::
change

::
in δ18O

:::
per µmol kg−1

:::
of [

:::::
CO2−

3 ]
:::
for

::
G.

:::::
ruber

:::
and

::
T.

::::::::
sacculifer

:
,
::::::::::
respectively

::::::::::::::::
(Spero et al., 1999)

:
.

::::::::
Therefore,

::
if
:::
the

::::
CIE

:::::
plays

:
a
::::
role

:::
for

::::
how

:::
the

:::::::
isotopes

::
of

:::
the

:::::::
surface

:::::
ocean

:::
are

:::::::
recorded

:::
in

:::
the

::::::::::
foraminifera

:::::
shells

:::
on

::::::
orbital

::::::::
timescales

::::
then

:::
the

::::
two

::::::::::::
mono-specific

::::
time

:::::
series

::
in

::::
both

:
δ13C

:::
and

:
δ18O

::::::
should

:::::
differ.

:::
At

::::
first

:::::
glance

:::::::
(Figure

:::::
2a,b)

:::
the

::::
time

:::::
series

:::
are

::::::::::
remarkable

::::::
similar.

::
A
:::::

more
::::::::::

quantitative
:::::::::

evaluation
:::

is
:::::::
obtained

:::
by

::::::::::
calculating

:::
the

:::::
linear

:::::::::
regression

:::::
from

::::::
scatter
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::::
plots,

:::::
when

::::::
results

:::::
based

:::
on

::::
one

::::::
species

:::
are

::::::
plotted

::::::
against

:::::
those

:::
of

:::
the

:::::
other.

:::::
Doing

:::
so

::::::
(Figure

:::
6)

::::::
reveals

:::
for δ13C

::::
that

:::
on440

::::::
average

:::::::
changes

:::
are

:::::::::
identically

::::::::
recorded

::
in

::::
both

:::::::
species.

::
In

:::::
other

::::::
words,

:::
the

:::::
linear

:::::
slope

::
of

::::::::::
∆(δ13Crub)

:::::::
against

::::::::::
∆(δ13Csac)

:
is
::::
0.98

::::::::::::::::::::
(r2 = 0.95,s= 0.04‰)

::
or

::::::::::
0.99±0.03

::::::::::
(r2 = 0.95)

:::::
when

:::::::::
considering

::::
the

::::::::::
uncertainties

:::
of

:::
our

:::::
stack

:::::
during

::::::::::
regression.

:::
For δ18O

:::
the

:::::::::
agreement

::
is

::::
only

::::::
slightly

::::::
worse,

:::
the

::::::::
regression

:::::
slope

::
of

:::::::
δ18Orub:::::::

against
::::::
δ18Osac::

is
::::
0.96

::::::::::::::::::::
(r2 = 0.96,s= 0.09‰)

::
or

:::::::::
0.98±0.01

::::::::::
(r2 = 0.96)

::::
with

:::::::::::
uncertainties.

:::::
Since

:::::::::::
∆(δ13Crub)

:::
and

::::::::::
∆(δ13Csac):::

are
:::
on

::::::
average

:::::::::
recording

:::::::
virtually

:::
the

:::::
same

::::::
changes

::
it
::
is

:::::::
difficult

::
to

::::::
image

::::
how

:::
the

:::::::::::::
species-specific

::::
CIE

:::
can

::::
play

::
a

:::
role

:::::
here.

::::
Due

::
to

:::
the

:::::
small

:::::::::
amplitudes

:::
of

:::
the

::::
CIE

::
in445

δ18O
::
it

::
is

::
yet

:::::::::::
inconclusive

::
if

:::
the

:::
CIE

:::::
plays

::
a

:::
role

:::
for

::::::::::
∆(δ18Orub)

::::::
versus

:::::::::::
∆(δ18Osac).

3.1
::::::::
Simulated

:
δ13C

:::::
cycle

:::::
using

:::
the

:::::::::::::
BICYCLE-SE

::::::
model

General dynamics of the global carbon cycle in the BICYCLE-SE model have been analysed in detail in Köhler and Munhoven

(2020). We here focus on the revised δ13C cycle, but see how atmospheric CO2 in scenario SEi meets the ice core data in

Figure 5a. Note, that some analysis of δ13C in the precursor model BICYCLE without solid Earth contributions have been450

described in Köhler et al. (2010),
::::
who

:::::::
showed

::::
that

:::
the

::::::
model

::::::
misses

::::::::
variations

::
in

:
δ13C

::::::
related

::
to

:::::::::::
periodicities

::::::
longer

::::
than

::::::
100-kyr.

3.2 Simulated cycle using the BICYCLE-SE model

Atmospheric δ13CO2 (Eggleston et al., 2016a) is met by the results from scenario SEi only roughly, including some millennial-

scale variations around 50–30 kyr BP and the transition from LGM to pre-industrial
::::::::::
preindustrial, shows some deficit the second455

half of T1 and in the Holocene (Figure 5b). The PGM-to-LGM trend of 0.45‰ and the minimum around 60 kyr BP are both

largely unexplained in this simulation. The attribution of changes in δ13CO2 to individual processes in the ocean and land

carbon cycle has been done before for the precursor model BICYCLE (Köhler et al., 2005, 2010), and is not repeated here,

since the misfit to the data indicates some fundamental shortcomings.

More interesting is how
::::
How

:
simulated changes in atmospheric δ13CO2 compares

:::::::
compare

:
to simulated changes in various460

marine δ13CDIC time series (
::
is

:::::
shown

:::
for

:::::::
scenario

:::
SEi

::
in

:
Figure 7)

::
a,b. Both global mean surface δ13CDIC and non-polar

:::::
wider

::::::
tropical

:
surface δ13CDIC show clear similarities with atmospheric δ13CO2. Here, non-polar surface values are

::::::::::::
area-weighted

:::::::
averages

::::::::
covering

:::::
either

:::
the

::::::
global

:::::
ocean

:::
or

:
the mean from the two equatorial ocean boxes

::
in

::::
case

::
of

::::
the

:::::
wider

::::::
tropics,

which spatially cover a similar area than
::
as the sediment cores used for our new stacks ∆(δ13Crub) and ∆(δ13Csac). During

glacial times and the onset of deglaciations the dynamics in global mean surface δ13CDIC ::::
(cyan

::::
line

::
in

::::::
Figure

:::
7a)

:
are in465

close agreement with δ13CO2 in the atmosphere
:::::
(black

::::::
broken

:::
line

::
in

::::::
Figure

:::
7a), while for the later part of the deglaciations

and the interglacials the dynamics in non-polar
:::::
wider

:::::::
tropical surface δ13CDIC :::::::

(magenta
::::

line
::
in
::::::

Figure
::::

7a)
:
fits better to

δ13CO2 in the atmosphere. This difference is probably explained by the dynamics in the polar oceans. During glacial times,

the Southern Ocean is highly stratified with little vertical exchange between surface and deep ocean. This stratification breaks

down during the terminations and in interglacials allowing faster exchange of tracers between surface and deep ocean leading470

in the polar oceans to smaller surface-to-deep gradients in δ13CDIC. In other words, the lower deep ocean δ13CDIC values have

a larger impact on polar surface δ13CDIC during interglacials than during glacials leading to a divergence between δ13CDIC
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Figure 7. Simulated surface and deeper ocean δ13C time series from scenario SEi (a, b) and scenarios C1 and C1CO2 (c, d) compared

with reconstructions. (a,c) Simulated δ13CDIC in the global mean surface and in the non-polar
::::
wider

::::::
tropical

:
surface ocean together with

simulated atmospheric δ13CO2 (right y-axis) are plotted together with our new stacks from the non-polar
::::
wider

:::::::
tropical surface ocean,

∆(δ13Crub) and ∆(δ13Csac) shifted by +2.65‰ to meet simulated surface δ13CDIC at LGM. In (b,d) simulated δ13CDIC for the deep

Indo-Pacific (I-Pac), the mean deep ocean and the mean global ocean are plotted together with δ13C from benthic foraminifera stacked from

six cores in the deep Pacific (dPac) (Lisiecki, 2014). In (c,d) the scenarios C1 (closed lines) and C1CO2 (broken lines) are plotted together.

Most of the time the differences between both are so small that lines are indistinguishable.

in the global mean surface and the non-polar
:::::
wider

::::::
tropical

:
surface ocean. The scatter plots between atmospheric δ13CO2 and

either global mean surface or non-polar
::::
wider

:::::::
tropical

:
surface ocean δ13CDIC show that the latter has the higher correlation

(Figure S1
::
S2, r2 = 0.82 vs. r2 = 0.59, all regression results are complied in Table ??).

:
).

:::::::::::
Furthermore,

:::::::::
frequency

:::::::
analysis475

::::::
showed

::::
that

:::
the

::::::::
coherence

::::::::
between

::::::::::
atmospheric δ13CO2:::

and
:::::
wider

:::::::
tropical

::::::
surface

::::::
ocean

:::::::
δ13CDIC::

is
::
in
:::::::::::
periodicities

::::::
slower
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:::
than

:::
20

:::
kyr

::::::
higher

::::
than

::::::::
between

::::::::::
atmospheric

:
δ13CO2::::

and
:::::
global

:::::
mean

:::::::
surface

:::::
ocean

::::::::
δ13CDIC:::::::

(Figure
::::
S3a).

:
This implies,

that simulations which agree in atmospheric δ13CO2 with reconstructions (which will be achieved later-on in scenarios C1

and C1CO2) should contain a very likely realisation of δ13CDIC in the non-polar surface oceanbeing a perfect target for

comparison
::::
wider

:::::::
tropical

::::::
surface

::::::
ocean.

::
A

:::::::::
comparison

:::
of

::::
these

::::::::
simulated

::::
time

:::::
series

:
with our new mono-specific δ13C stacks480

:::::
should

::::::::
therefore

::::::
enable

::
us

:::
to

::::::
address

::
if
::::
and

::::
how δ13C

::::
has

::::
been

::::::::
modified

::::::
during

::::
hard

::::
shell

:::::::::
formation. For scenario SEi the

misfit in simulated non-polar
::::
wider

:::::::
tropical surface ocean δ13CDIC and the new δ13C reconstructions (Figure 7a) is large, but

it is yet unclear if this discrepancy can be explained by the CIE or by other processes.

Linear regression result between various variables. Analysed time series are 150 kyr long with time step between 100 yr and

1 kyr. When needed lower resolved time series are interpolated before analysis. More details are given in the corresponding485

scatter plots. In column “source” either the simulation scenario or “data” is mentioned with the following data references: 1:

this study; 2: Lisiecki and Stern (2016); 3: Lisiecki (2014). Column “Fig.” states the label of the figure with the corresponding

scatter plot.

Source x y slope r2 Fig. data1 ∆(δ13Csac) ∆(δ13Crub) 0.98 0.95 6adata1 ∆(δ13Csac) ∆(δ13Crub) 0.99±0.03 0.95 6aC1CO2

non-polar surface ocean δ13CDIC + CIEsac non-polar surface ocean δ13CDIC + CIErub 1.26 0.95 S6a490

data1 ∆(δ18Osac) ∆(δ18Orub) 0.96 0.96 6bdata1 ∆(δ18Osac) ∆(δ18Orub) 0.98±0.01 0.96 6bdata2+C1CO2 mean ocean

δ18O + CIEsac mean ocean δ18O + CIErub 0.97 1.00 S6b

data1+SEi non-polar surface ocean δ13CDIC ∆(δ13Crub) - 0.00 S2adata1+SEi non-polar surface ocean δ13CDIC ∆(δ13Csac)

- 0.00 S2b data1+C1 non-polar surface ocean δ13CDIC ∆(δ13Crub) 0.92 0.78 S2c data1+C1 non-polar surface ocean δ13CDIC

∆(δ13Csac) 0.92 0.78 S2d data1+C1CO2 non-polar surface ocean δ13CDIC ∆(δ13Crub) 0.92 0.77 S2e data1+C1CO2 non-polar495

surface ocean δ13CDIC ∆(δ13Csac) 0.92 0.76 S2f data1+C1CO2 non-polar surface ocean δ13CDIC + CIErub ∆(δ13Crub) 0.45

0.54 S5a data1+C1CO2 non-polar surface ocean δ13CDIC + CIEsac ∆(δ13Csac) 0.65 0.67 S5b data3+SEi deep Indo-Pacific

δ13CDIC deep Pacific δ13Cbenthic 0.50 0.49 S3adata3+C1 deep Indo-Pacific δ13CDIC deep Pacific δ13Cbenthic 0.45 0.78 S3b

data3+C1CO2 deep Indo-Pacific δ13CDIC deep Pacific δ13Cbenthic 0.47 0.77 S3c SEi atm. δ13CO2 global mean surface ocean

δ13CDIC 0.83 0.59 S1a SEi atm. δ13CO2 non-polar surface ocean δ13CDIC 0.66 0.82 S1b C1 atm. δ13CO2 global mean surface500

ocean δ13CDIC 1.11 0.78 S1c C1 atm. δ13CO2 non-polar surface ocean δ13CDIC 0.95 0.89 S1d C1CO2 atm. δ13CO2 global

mean surface ocean δ13CDIC 0.95 0.76 S1e C1CO2 atm. δ13CO2 non-polar surface ocean δ13CDIC 0.95 0.88 S1f C1 atm.

CO2 global mean surface ocean CO2−
3 0.59 0.96 S4a C1 atm. CO2 non-polar surface ocean CO2−

3 0.61 0.96 S4b C1CO2 atm.

CO2 global mean surface ocean CO2−
3 0.63 0.93 S4c C1CO2 atm. CO2 non-polar surface ocean CO2−

3 0.65 0.93 S4d

To understand how representative the reconstructed δ13C stack from benthic foraminifera in six deep Pacific cores (Lisiecki,505

2014) might be we compare it with various different simulated time series: δ13CDIC in the deep Indo-Pacific, in the mean deep

ocean, or in the mean ocean (Figure 7b). Here, deep ocean results from the model refers to ocean boxes that contain waters

deeper than 1 km. As expected the deep Indo-Pacific contains the end-member of the δ13C cycle with the most depleted values.

The mean deep ocean δ13CDIC is offset by 0.2–0.4‰ towards more positive values and shows larger G/IG amplitudes than

δ13CDIC in the deep Indo-Pacific. The mean ocean is again 0.2–0.4‰ more positive in δ13CDIC than the mean deep ocean510

with again smaller G/IG amplitudes of 0.53‰ across T1. This number compares δ13CDIC in the last 6 ka with the mean at the
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LGM (23–19 ky BP) similarly as in Peterson et al. (2014) who proposed a mean ocean rise in δ13C by 0.34±0.19‰. However,

be aware that in Peterson et al. (2014) the CIE in benthic foraminifera as deduced in Schmittner et al. (2017) is ignored
:::
not

:::::::
included. This suggests that the reconstructions are potentially recording a smaller G/IG change in δ13C than how δ13CDIC in

the deep ocean might have changed.515

The simulated deep ocean is in our simulation results known to be linearly related to simulated atmospheric as analysed

in Köhler et al. (2010). However, the model misses variations in related to periodicities longer than 100-kyr being one main

reason for the model/data misfit. This shortcoming is also responsible why when using real world data not deep ocean , but the

gradient between the two end members North Atlantic and Pacific needs to taken to match atmospheric (Lisiecki, 2010).

Above
::::
When

:::::::::
discussing

::::::
results

::
of

:::::::
scenario

::::
SEi

::::::
(Figure

:::
7a) we have shown that once changes in the atmospheric δ13CO2 are520

met by the simulations the model then also should give a reasonable answer for how δ13CDIC in the non-polar
::::
wider

:::::::
tropical

surface ocean might have looked like. Furthermore, the close agreement of simulated and reconstructed
:::::::::
atmospheric

:
CO2

::::::
(Figure

:::
5a) suggests that the assumed carbon cycle changes in our approach might be one possible realisation that is not too far

away from the truth
:::
real

:::::
world

:::::::
changes. However, the misfit between simulation results from scenario SEi and reconstruction in

the δ13C cycle — linear regressions between simulations and reconstructions found no correlation at all (Figure S2a
:::::::::
r2 ≤ 0.02,525

:::::
Figure

::::
S4a,b) — is not easily fixed. To improve our results we force in the following the model with the atmospheric records

(scenario C1: only using δ13CO2; scenario C1CO2: using both δ13CO2 and CO2) to have conditions in the surface ocean as

close to reconstructions as possible. Doing so leads to even tighter correlations between simulated atmospheric δ13CO2 and

simulated δ13CDIC in the surface ocean than what we obtained for scenario SEi, the r2-correlations between these variables are

in scenarios C1 and C1CO2 with prescribed atmospheric δ13CO2 ≥0.76
::::
0.77 and ≥0.88 for global mean surface δ13CDIC and530

non-polar
:::::
wider

:::::::
tropical surface δ13CDIC, respectively (Figure S1).

:::
S2).

::::::
Again,

:::
the

:::::::::
coherence

::
is

:::::
higher

:::::::
between

:::::::::::
atmospheric

δ13CO2::::
and

:::
the

:::::
wider

:::::::
tropical

::::::
surface

:::::
ocean

::::::::
δ13CDIC::::

than
:::::::
between

::::::::::
atmospheric

:
δ13CO2::::

and
:::
the

:::::
global

:::::
mean

::::::
surface

::::::
ocean

:::::::
δ13CDIC::::::

(Figure
:::::
S3b). Furthermore, in both scenarios the changes in simulated δ13CDIC in the non-polar

::::
wider

:::::::
tropical surface

ocean agree remarkably well (r2 between 0.76 and 0.78, Figure S2c–f
:::::
S4c–f) with changes in our new stacks ∆(δ13Crub) and

∆(δ13Csac) without consideration of the CIE (Figure 7c), at least on the orbital timescales.
:::
This

:::::
effect

::
is

::::
also

::::
seen

::
by

:::
the

::::
rise535

::
in

::::::::
coherence

:::::::
between

::::::::
simulated

:::::
wider

:::::::
tropical

::::::
surface

::::::::
δ13CDIC:::

and
::::
both

:::
our

::::::
stacks

::::
from

:::
less

::::
than

:::
0.1

::::::::
(scenario

::::
SEi)

::
to

::::::
higher

:::
than

::::
0.7

::::::::
(scenario

:::::::
C1CO2)

::
in

:::
the

::::::
41-kyr

::::
and

:::::::
100-kyr

:::::
bands

:::::::
(Figure

::::::
S3c,d),

:::::
while

:::
in

:::
the

:::::::::
precession

:::::
bands

::::
(19,

:::::::
23-kyr)

:::
the

::::::::
coherence

::::::
stayed

:::::
below

::::
0.6. Some more abrupt changes contained in the simulations are not recorded in the reconstructions,

probably because bioturbation in the surface sediments together with the stacking procedure prevents our marine record
::::::
prevent

:::
our

::::::
marine

::::::
records from successfully resolving millennial-scale features.

:::::
Thus,

:::
our

::::::
forcing

::
of

:::::::::::
atmospheric

:::::
carbon

:::::::
records

::::
with540

:::
data

::::::::
therefore

:::::::
seemed

::
to

::
be

:
a
:::::::::
promising

::::::::
approach

::
to

:::::
obtain

:::::::::
simulated

::::::
surface

:::::
ocean

::
in

:::::::::
agreement

::::
with

:::::::::::::
reconstructions

:::
for

:::
the

::::
slow

::::::::
frequency

:::::
bands

:::::::
(41-kyr

:::
and

::::::::
beyond),

:::::
while

:
it
:::::
seems

::
to
::::
fail

::
for

:::::::::
precession

::::
and

:::::
faster

:::::::
changes.

:::::
When

::::::
forcing

:::::::::::
atmospheric

δ13CO2:::
by

::::
data

::
the

:::::::::::::::::::
temperature-dependent

:::::::
isotopic

:::::::::::
fractionation

:::::
during

::::::
marine

:::::::::::::
photosynthesis

::
in

::::::::::
ε(Corg−DIC) :

is
::::
only

:::
of

:::::
minor

:::::::::
importance

:::
for

:::
the

::::::::
simulated

:::::::
surface

:::::
ocean

::::::::
δ13CDIC.

::
If
::::
this

:::::
effect

::
is

::::::::
switched

::
off

:::
the

::::::::
δ13CDIC::

in
:::

the
::::::

wider
::::::
tropical

:::::::
surface

:::::
ocean

:::::
differs

::
in
:::::::
general

::
by

::::
less

::::
than

::::
0.05‰

::::
from

:::
the

::::::
values

::
in

:::::::
scenario

:::
C1.

:
545
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Furthermore, deep ocean δ13CDIC is on orbital time scale now also in better agreement with the data (Figure 7d), — the

r2 of a linear regression between simulated deep Indo-Pacific δ13CDIC and reconstructed deep Pacific rises from 0.59
::::
0.49

for scenario SEi to 0.77 and above for the scenarios forced by atmospheric carbon records (Figure S3
::
S5), although the rise

in mean ocean δ13CDIC during T1 has now been increased to 0.59‰.
::::::::::
Considering

:
a
::::
CIE

::
of

:::::::::::
−2.6× 10−3

:
‰

:::
per

:
µmol kg−1

::
of [

:::::
CO2−

3 ]
::::::::::
disturbance

:::
for

:::::::::
epi-benthic

:::::::::::
foraminifera

:::::::::::::::::::::
(Schmittner et al., 2017)

::::::::
simulated

::::::::
variations

::
in
:::::

deep
:::::
ocean

:
[
:::::
CO2−

3 ]
::
of550

::::
+20 µmol kg−1

::::::::::::::::::::::::::
(Köhler and Munhoven, 2020)

::::
would

::::::::
translate

::
to

:
a
::::::::::
comparably

:::::
small

::::::::
reduction

::
in
:::::
deep

::::::
Pacific

::::::
benthic

:::::
δ13C

::
of

::
up

::
to
:::::

0.05‰.
:::::
While

::::
the

:::::
timing

:::
of

:::::::
changes

::
in

::::
deep

:::::
ocean

:
[
:::::
CO2−

3 ]
:::
with

:::::::
highest

:::::
values

::::::
during

:::
the

:::::::::::
deglaciation

::
is

::::::
crucial

::
to

:::::
assess

::::
how

::::
such

:
a
::::::
benthic

::::
CIE

::::::
would

:::::
reduce

:::
the

:::::::
exisiting

::::::::::
data/model

::::::::
mismatch

:
a
:::::
more

:::::::
thorough

::::::::::
assessment

::
of

:::
the

::::::
benthic

::::
CIE

:::::
would

::::::
require

:::
the

:::::::::::::
comprehensive

::::::::::
compilation

::
of

::::::
benthic

:::::
δ13C

::::
time

:::::
series

::
in

:::::::
different

:::::
ocean

::::::
basins,

::::::
which

:
is
:::::::
beyond

:::
the

:::::
scope

::
of

:::
this

:::::
study.

:::::
Note

:::
that

:::
the

::::::::::::
approximated

::::::::
amplitude

::
of

::::
this

::::::
benthic

::::
CIE

::
is

::::
close

::
to

:::
the

:::::::::::
measurement

:::::
error

::
of

::::::
benthic

:::::
δ13C.

:
555

3.2 The importance of the carbonate ion effect for non-polar
:::::
wider

:::::::
tropical

:
surface ocean δ13C

Although the initial analysis of our results when forced with atmospheric records already suggests only a minor, if any, role for

the CIE in the interpretation of stacked mono-specific δ13C on orbital timescales, in the following we make a more quantitative

assessment. The CIE has not yet been implemented in the 13C cycle of the model, but is only investigated here in post-

processing. The carbonate ion concentration of either globally mean surface or non-polar
::::
wider

:::::::
tropical mean surface waters560

in our simulations are tightly anti-correlated to atmospheric CO2 (r2 ≥ 0.93, Figure S4),
:::
S6),

:
which is a consequence of

the marine carbonate system (Zeebe and Wolf-Gladrow, 2001). Interestingly, both
::::
Both scenarios C1 and C1CO2 lead to

rather similar results here, which suggests that the CO2 forcing in scenario C1CO2 and its violation of mass conservation,

is perturbing the carbon cycle only slightly. To be as close as possible to the reconstructions we nevertheless continue in

the following by using results from scenario C1CO2,
:::
but

::::::
results

:::::
differ

:::::
only

:::::::
slightly

:::::
when

:::::
based

::
in

::::::::
scenario

:::
C1,

::::
thus

::::
our565

:::::::::
conclusions

:::
are

:::::::::::
independent

::::
from

:::
this

::::::
choice.

Thus, CO2−
3 in non-polar

::::
wider

:::::::
tropical

:
surface ocean in the simulation typically falls from maximum glacial values of

∼320 µmol kg−1 to interglacial minimum of ∼250 µmol kg−1 across both Terminations 1 and 2 (Figure 8a). This translates

into a potential CIE of about 0.62‰ (Figure 8b) for G. ruber when we use the slope of m= −0.0089 ‰ per µmol kg−1change

in [CO2−
3 ], and of 0.33‰ for T. sacculifer (slope of m= −0.0047 ‰ per µmol kg−1change in [CO2−

3 ] (Spero et al., 1999).570

The y-axis intercepts of the complete regressions for the CIE is determined in order to have maximum agreement between

reconstructions and simulations during the LGM.
::::
When

::::::::::
comparing

:::
the

:::::::
potential

::::
CIE

::
to

:::
the

:::::::::
simulated

::::::::::::::::::
LGM-to-preindustrial

:::::
(PRE)

:::::::::
amplitude

::
of

::::
only

::::
0.16‰

::
in
::::::

wider
::::::
tropical

:::::::
surface

::::::
waters

::::::
(Figure

:::
8c)

:::
the

:::::::::::
CIE-to-G/IG

:::::
ratios

:::
are

::::::::
between

:
a
:::::
factor

:::
of

:
2
::::
and

:
4
::::
and

::::
CIE

::::::
signals

::::::
should

::::::
clearly

:::::
stand

:::
out

::
in

:::
the

:::::
paleo

:::::::
records.

:
If we add this CIE to our simulated mean equatorial

surface ocean δ13CDIC (Figure 8c) we end up with time series, which should compare well with the mono-species stacks of575

∆(δ13Crub) and ∆(δ13Csac) (Figure 8d). Unfortunately
:::::::
However, this is not the case. The r2 in the linear regressions between

CIE-corrected δ13CDIC in non-polar
:::::
wider

::::::
tropical

:
surface waters and reconstructions is reduced to 0.55

:::
0.54

:
(G. ruber) and

0.67
::::
0.68 (T. sacculifer), while it had been ≥0.76 without CIE correction (Figures S2, 5).

::
S4,

::::
S7).

::::::
When

:::::::
plotting

:::::
results

:::
as

:::::::::::
hypothetically

::::::::
recorded

::
in

::::
both

::::::
species

::::::
against

::::
each

:::::
other

:::
we

:::::
obtain

::
a

::::
slope

::
of

::::
1.26

:::::::
(Figure

::::
S8a).

::::
The

:::::
slope

:::::::
between

::::
both

::::
time
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:::::
series

::::::
without

:::
the

::::
CIE

:::
was

::::::
∼0.99

::::::
(Figure

::::
6a).

:::
The

::::::::::::
consideration

::
of

:::
the

:::
CIE

:::
did

::::
not

:::
lead

::
to
::::
time

:::::
series

::::::
which

:::::
agree

:::::
better

::::
with580

::::
each

:::::
other. Thus, we conclude that both species G. ruber and T. sacculifer are already good recorders of changes in δ13CDIC

in non-polar
:::::
wider

::::::
tropical

:
surface ocean waters on orbital timescales, albeit with notable offsets in individual records.

:
.

3.3 Carbonate ion effect in δ18O

The focus of this study is on stable carbon isotope δ13C. However, during the construction of our mono-specific non-polar

:::::
wider

::::::
tropical

:
stacks of ∆(δ13Crub) and ∆(δ13Csac) the corresponding stacks of ∆(δ18Orub) and ∆(δ18Osac) are easily-585

generated by-products initially used to cross-check the applied age models. However, these δ18O data give us the possibility

to also have a closer look on the role of the CIE in the recording of oxygen isotopes in foraminiferal shells. For that effort

we need a background time series of δ18O which represents the signals when not modified by the CIE. Such a mean δ18O in

the non-polar
:::::
wider

:::::::
tropical surface ocean should record the same sea-level related variations than the average global ocean,

but might differ in the recorded temperature effect, if the change in average non-polar
::::
wider

:::::::
tropical

:
sea surface temperature590

differed from the mean ocean temperature (MOT) change. Pöppelmeier et al. (2023) showed that the LGM-to-preindustrial

times (PRE)
:::::::::::
LGM-to-PRE change in MOT derived from the model-based interpretation of noble gas reconstructions in ice

cores is 2.1± 0.7 K. The reconstructed rise in MOT is slightly higher when ignoring the effect of past saturation changes on

noble gases (Shackleton et al., 2023). The data assimilation effort on LGM temperature changes by Tierney et al. (2020) is

broadly in agreement with the MOT change of Pöppelmeier et al. (2023) and proposes that the tropical (30◦S to 30◦N) sea595

surface was around 2.6 K colder at LGM than at PRE, agreeing within the uncertainties with the MOT change. To a first

order we therefore assume that the planktic foraminiera
::::::::::
foraminifera

:
should record the same temperature effect in δ18O as

contained in the mean ocean. Thus, the global ocean δ18O calculated from stacking benthic time series (Lisiecki and Stern,

2016) represents the CIE-free background against which we compare our new ∆(δ18Orub) and ∆(δ18Osac) stacks.

From the simulated LGM-to-PRE change in mean non-polar
::::
wider

:::::::
tropical surface ocean CO2−

3 of about −70µmol kg−1600

(Figure 8e) and the laboratory-based amplitudes of the CIE (–0.0022 and –0.0014‰ change in δ18O per µmol kg−1 for G.

ruber and T. sacculifer, respectively (Spero et al., 1999)), we derived that ∆(δ18Orub) and ∆(δ18Osac) should record the

changes since the LGM by +0.15 and +0.10 ‰ differently than how δ18O in the surface waters truly changed (Figure 8f).

Compared to the G/IG amplitude in mean ocean δ18O of –1.65‰ (Figure 8g) these potential CIEs represent corrections of

–9% and –6%, a difference by 3% which might be difficult to detect in the paleo records. A linear regression through a scatter605

plat of δ18O + CIErub versus δ18O + CIEsac has a slope of 0.97 (r2 = 1.00, Figure S6b
::::
S8b), which is indistinguishable from

the slope obtained from regression through the data stacks (Figure 6b), while the slope when considering the CIE should move

to unity (indicating that both species were recording the same signal underneath the CIE) if the effect plays an important role

during data interpretation. The evidences for or against the CIE in δ18O from both data and models are therefore inconclusive.

The relative size of the potential CIE on δ13C is much larger. The same ∆() would lead to 0.62 and 0.33 changes in δ13Crub610

and δ13Csac, respectively (Figure 8b). When compare to the simulated LGM-to-PRE amplitude of only 0.16 in non-polar

surface waters (Figure 8g) the CIE-to-G/IG ratios are between a factor of 2 and 4 and CIE signals should clearly stand out in

the paleo records.
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Figure 8. Calculating the suggested carbonate ion effects (CIE) on G. ruber and T. sacculifer. Left: effects on δ13C; Right: effects on δ18O.

(a,e) surface ocean [CO2−
3 ]; (b,f) potential CIE using slopes from Spero et al. (1999) (c,g) surface ocean conditions when ignoring the CIE

or (d,h) when considering the CIE. Mean anomalies (±1 SE) of the isotope stacks are calculated with respect to the mean of 21–19 kyr

BP (blue vertical band). Simulations use the results from scenario C1CO2. Different surface ocean areas are distinghuished: North Atlantic

(NAtl, north of 50◦N), equatorial Atlantic (EqAtl, 40◦S–50◦N), Southern Ocean (SO, south of 40◦S), equatorial Indo-Pacific (EqIPac, 40◦S–

40◦N), North Pacific (NPac, north of 40◦N). The mean non-polar
::::
wider

::::::
tropical

:
ocean in the model is the mean from the equatorial boxes

(eq-mean).
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4 Conclusions

The CIE for δ13C and δ18O recorded in planktic foraminifera was first identified in laboratory experiments (Spero et al.,615

1997, 1999), and it was, based on theory, suggested for both isotopes that the underlying processes are directly related to the

pH in the surrounding sea water during hard shell formation (Zeebe et al., 1999; Zeebe, 1999). In the here relevant range of

::::::::
However,

::::
these

:::::::::
theoretical

:::::::
studies

::::
were

:::::::
already

:::::
unable

:::
to

::::::
confirm

:::
the

::::
full

:::::
range

::
of

:::
the

::::
CIE

::
as

:::::::::
contained

::
in

:::
the

:::::::::::
experiments.

::::::::::
Furthermore,

:::::::::
according

::
to
:::::::::::::::::

Bijma et al. (1999)
:
it
::
is

:::::::::
impossible

:::
to

:::::::::
determine

:
if
:
pH around 8.0 a linear relation between pH

and [CO2−
3 ] exists (Zeebe and Wolf-Gladrow, 2001).

:
or

:
[
::::
CO2−

3 ]
:
is

::::::::::
responsible

:::
for

:::
the

::::::::
observed

:::::::::::
fractionation

::::::
effects.

:
If this620

theoretical understanding is correct we would expect to see the CIE in neither or both isotopes in the our mono-specific

stacks. Thus, although the interpretation of δ18O with respect to the CIE is, due to the signal-to-noise ratio, uncertain we

argue, based on the clear evidence of a lack of the CIE in the recording of δ13C in G. ruber and T. sacculifer, that there is

probably also no significant CIE contained in the δ18O time series of both species.
::::
This

::::::
finding

:::::
argues

:::::::
against

:::
the

:::::::::
suggestion

::
of

:::::::::::::::
Spero et al. (1999)

:
,
:::
that

:::
the

::::
CIE

:::
and

:
δ13C

::::
time

:::::
series

::::
from

:::
G.

::::
ruber

:::
and

::
T.

::::::::
sacculifer

::::
might

:::
be

::::
used

::
to

::::::::
calculate

:
a
::::::
record

::
of625

::::::
surface

:::::
ocean [

:::::
CO2−

3 ].
:::::::::::
Furthermore,

:::
we

::::::
suggest

::
to

:::
use

::::
our

:::
new

:::::
stack

::
of

::::::::::
∆(δ13Crub)

::
as

::::::::::::
representative

::
of

::::::::
δ13CDIC ::

in
:::
the

:::::
wider

::::::
tropical

::::::
surface

::::::
ocean.

:

A possible explanation
::::::
Various

:::::::
possible

:::::::::::
explanations for a lack of a CIE on orbital timescales might be

::::
exist.

:::::
First,

::
it

:::::
might

::
be

:::
that

:::
the

:::::::
isotopic

:::::::::::
fractionation

:::::
during

::::
hard

:::::
shell

::::::::
formation

::
in

:::
G.

::::
ruber

:::
and

::
T.

::::::::
sacculifer

:
is

:::::
rather

:::::::::
insensitive

::
to

:
[
:::::
CO2−

3 ]
::
in

:::
the

::::
range

:::
of

::::::
interest

::::::::
(250–320 µmol kg−1

::
).

::::
Such

::
an

:::::::::::
insensitivity

:::
has

::::
been

::::::::
suggested

:::
for

:::::
other

::::::
species

::::::::::::::::
(Bijma et al., 1999),

:::
but

::::
due630

::
to

:
a
::::
lack

::
of

::::::::
published

::::
data

:::
—

:::
the

:::::
slopes

::
of

:::
the

::::
CIE

::
in

:::
G.

:::::
ruber

:::
and

::
T.

::::::::
sacculifer

::::
were

::::
only

::::::::::
summarized

::
in

::::::::::::::::
Spero et al. (1999)

:
,
::::
while

::::::::::
underlying

::::::::::
experiments

::::
have

:::::
never

::::
been

:::::::::
published

::
in

:::
the

:::::::::::
peer-reviewed

::::::::
literature

:::
—

:
it
::::::
cannot

:::
be

:::::::
properly

:::::::
checked

:::
for

::
the

::::
two

::::::
species

::::::::::
investigated

:::::
here.

:::::::
Second,

:::
not

:::
the

::::
CIE,

:::
but

:::::::::::
alternatively

:::
the

:::::::::::
incorporation

::
of

:::::::
respired

:
CO2::::::::

(depleted
:::
in δ13C

:
)

:::::
during

:::::
shell

::::::::
formation

:::::
might

:::
be

:::::::::
responsible

:::
for

:::
the

::::::::
observed

::::::
isotope

::::
data

::
in

:::::::::
laboratory

::::::::::
experiments

:::::::::
performed

::::
with

::::::::
Orbulina

:::::::
universa

:::
and

:::::::::::
Globigerina

:::::::
bulloides

::::::::::::::::
(Bijma et al., 1999).

::::
This

:::::::
process

:::::
might

::::
also

::::
play

:
a
::::
role

::
in

::
G.

:::::
ruber

:::
and

::
T.

::::::::
sacculifer

:
,
:::
but635

:::::
would

::::
only

::::::
explain

::::::::
observed

:::::
effects

::
in
:
δ13C,

:::
but

:::
not

::
in

:
δ18O.

::::::::
However,

:::::
since

:::
our

:::::
stacks

:::
are

::::::::::
inconclusive

::::
with

::::::
respect

::
to

:::
the

::::
CIE

:::
and δ18O,

::::
they

:::::
might

:::
be

::
of

::::::::
relevance

::::
here.

::
A
:::::
third

:::::::::
explanation

::::::
might

::
be

:
related to homeostasis. In symbiont-bearing planktic

foraminifera, such as G. ruber and T. sacculifer, the pH at the shell surface critically depends on photosynthesis and hence light

levels and symbiont density (Jørgensen et al., 1985). In order to facilitate calcification, G. ruber and T. sacculifer may actively

influence the pH at the shell surface by seeking specific (optimum) light levels through vertical migration, thereby keeping640

the CIE constant over time.
::::::
Planktic

:::::::::::
foraminifera

:::
are

::::::
known

:::
to

:::::
move

::::::::
vertically

::
in
::::

the
:::::
water

:::::::
column

::::::::::::::::
(e.g. Kimoto, 2015)

:
.

Vertical migration to optimise both nutrient uptake and light has been proposed to play an important role in phytoplankton by

modelling (Wirtz et al., 2022), an effect which recently has been supported by field data (Zheng et al., 2023). We speculate

similar behaviour could occur in the two planktic foraminifera species.

It is too early to able able to generalise our finding that on orbital timescales the CIE plays no role for the interpretation645

of signals in planktic foraminifera in paleo records. For that effort more mono-specific stacks are necessary, preferable from

conceptually different foraminifera species without symbionts or spines, as these might potentially show a different behaviour
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with respect to light (and pH) optimisation. However, our findings might suggest that previous studies on planktic δ13C, which

ignored the CIE (e.g. Lynch-Stieglitz et al., 2019; Lund et al., 2019) might not be biased.

Our carbon cycle simulations confirm that atmospheric δ13CO2 and mean surface ocean δ13CDIC are tightly related to650

each other, highlighting the importance of air-sea gas exchange for carbon isotopes. This is not entirely new and has already

been discussed before (e.g. Lynch-Stieglitz et al., 2019; Shao et al., 2021; Pinho et al., 2023). However, the 13C cycle is

more complex than stated previously (Lynch-Stieglitz et al., 2019; Hu et al., 2020; Pinho et al., 2023) which suggest that one

might calculate a mean surface ocean δ13CDIC as function of atmospheric δ13CO2 and a temperature-dependent fractionation

during gas exchange. We here assumed, based on modern data from Verwega et al. (2021), that species composition and655

therefore isotopic fractionation during marine photosynthesis might also be temperature-dependent having an important impact

on surface ocean δ13CDIC. Furthermore, our simulation results show that δ13CDIC in polar and non-polar
::::
wider

:::::::
tropical surface

ocean have a different and time-dependent relation to atmospheric δ13CO2.

Finally, since our simulations were forced by atmospheric carbon records we are unable to identify specific processes being

responsible for the simulated changes in the 13C cycle. Recent climate simulations (Yun et al., 2023) emphazise the importance660

of the 405 kyr eccentricity cycle in tropcial
::::::
tropical

:
hydroclimate. It therefore seems reasonable that the missing long-term

variability in δ13C in our setup might indeed be connected to weathering fluxes as proposed before (e.g. Schneider et al., 2013;

Wang et al., 2014), something which needs to be tested in more detail in future carbon cycle simulation studies.

Code and data availability. PaleoDataView, used for data processing (Langner and Mulitza, 2019), is available at https://www.marum.de/Dr.-

stefan-mulitza/PaleoDataView.html (last access 16 Nov 2023). In Table S1 meta data on the data selction are contained, which includes665

references to the original publications. The reference list based on citations in the Supplements (Table S1) is separately attached to the end

of the main text. Most of the data from the planktic foraminifera G. ruber and T. sacculifer are already contained in the World Atlas of late

Quaternary Foraminiferal Oxygen and Carbon Isotope Ratios (Mulitza et al., 2021; Mulitza et al., 2022). The data sets not yet contained

in the World Atlas are Duplessy (1982); CLIMAP Project Members (1994); Meinecke (1999) and from three theses (Zahn-Knoll, 1986;

Slowey, 1990; Romahn, 2014), from which data have been manually extraced from Tables within the theses. Simulation results and the data670

contributing to our data compilation including raw data, the Bacon settings and a netCDF file of the PaleoDataView Collection are available

from PANGAEA (Köhler and Mulitza, 2023). Data for atmospheric CO2 and δ13CO2 are found in Eggleston et al. (2016b); Köhler et al.

(2017b); Menking et al. (2022a). The stack of deep Pacific benthic δ13C is contained in Köhler (2022).
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Scatter plots between atmospheric and surface ocean δ13CDIC (left: global mean; right: non-polar only) for scenarios SEi

(a,b), C1 (c,d), C1CO2 (e,f) during the last 150 kyr of the simulations (δt= 100 yr).

Scatter plots between 150 kyr simulated δ13CDIC in three different scenarios (a,b: SEi, c,d: C1; e,f: C1CO2) and our new

mono-specific stacks (left) ∆(δ13Crub) and (right) ∆(δ13Csac) with δt= 100 yr.1180

Scatter plots between 150 kyr simulated δ13CDIC in the deep Indo-Pacific in three different scenarios (a: SEi, b: C1; c:

C1CO2) and a stack of deep Pacific δ13Cbenthic from Lisiecki (2014) (L2014) with δt= 100 yr.

Scatter plots between atmospheric and surface ocean (left: global mean; right: non-polar only) in scenarios (top) C1 and

(bottom) C1CO2 for the last 150 kyr of the simulations (δt= 100 yr).

Scatter plots between 150 kyr simulated δ13CDIC in scenario C1CO2 corrected by a hypothetic CIE against our new1185

mono-specific stacks (a) ∆(δ13Crub) and (b) ∆(δ13Csac) with δt= 100 yr.

Scatter plot of how isotope data should be recorded in planktic foraminifera if surface ocean data are corrected for the

CIE. (a) Potential ∆(δ13Crub) (non-polar surface ocean δ13CDIC + CIE for G. ruber) versus potential ∆(δ13Csac) (non-polar

surface ocean δ13CDIC + CIE for T. sacculifer) based on 150 kyr of simulation results of scenario C1CO2 and CIE-corrections

as calculated in Figure 8a–d. (b) Potential ∆(δ18Orub) (mean ocean + CIE for G. ruber) versus potential ∆(δ18Osac) (mean1190

ocean + CIE for T. sacculifer) based on global ocean as calculated in Lisiecki and Stern (2016) (L2016) and CIE-corrections

as calculated in Figure 8e–h. The analysis contains data from the last 150 kyr with δt of 100 yr and 500 yr for δ13C and ,

respectively.
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