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Abstract. The East Asian monsoon region with the summer precipitation regime and the Mediterranean climate region with 

the winter precipitation regime show opposite dry/wet changes since the Last Glacial Maximum (LGM). Therefore, different  

10 precipitation regimes bring about the opposing changes in dry/wet states between Eastern and Central Asia (EA and CA). Based 

on a comprehensive study of modern observational datasets, ensemble simulations of eight climate models from the 

Paleoclimate Model Intercomparison Project phase 3 (PMIP3), and a compilation of 42 proxy records from EA and CA, here 

we assess the relationship of seasonal precipitation signals involving rain and heat periods and the difference and linkage in 

dry/wet states from EA and CA. At short-term timescales, empirical orthogonal function (EOF) analysis results of mean 

annual  

15 precipitation show the spatial diversity of overall precipitation pattern in EA and CA. However, EOF results of summer and 

winter precipitation indicate the similarity between EA and the east of CA, suggesting that seasonal signals of precipitation 

affected by the Asian monsoon, westerlies, ENSO, NAO, and PDO are the primary factor causing the linkage in dry/wet 

states.  

At long-term timescales, reconstructed dry/wet states from proxy records since the LGM reveal parallel evolutionary feature 

in EA and the east of  

CA as well. A visual inspection from PMIP3 multi-model simulations in summer and winter shows that the insolation in  

20 different seasons control the intensity of westerlies and summer monsoon and further influence the summer and winter 

precipitation in EA and CA since the LGM. Overall, we suggest, in addition to the traditional difference caused by different 

precipitation regimes, that dry/wet states in EA and CA universally have inter-regional connections affected by seasonal 

signals of precipitation at multiple time scales.  

1 Introduction  

25 As typical midlatitude climatic regions, Eastern and Central Asia (EA and CA) are commonly featured with vigorous circulations 

and are dominated by two atmospheric systems, namely midlatitude westerlies and Asian monsoon (Li, 1990; Zhang and Lin, 

1992; Chen et al., 2008; Nagashima et al., 2011). These two regions are generally characterized by opposite climate and 
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environment changes, embodied in water resources, vegetation cover and ecosystems, which gives rise to their different 

response to climate change (Sorg et al., 2012; Zhang and Feng, 2018). CA, where precipitation is scarce throughout  

30 the year, is the largest arid region in the mid-latitudes dominated by westerlies (Chen et al., 2009; Huang et al., 2015a). On the 

contrary, affected by the Asian summer monsoon that carries water vapor from the Pacific and Indian Ocean, the monsoon-

dominated EA receives more precipitation (Wang et al., 2017). These contrasting climate regimes have attracted much 

research interest.  

Over the past few years, there have been many comparative studies for dry/wet changes in EA and CA on a range of time 

scales, e.g., orbital, millennial, interdecadal timescales and annual timescales. Early works suggested that the climate change 

mode of  

35 ‘cold-wet’ or ‘warm-dry’ occurred in northwestern China during the last glacial/interglacial cycle, which is different from the 

‘cold-dry’ or ‘warm-wet’ modes of the monsoon climate (Li, 1990; Han and Qu, 1992; Han et al., 1993). In monsoonal EA, a 

strengthened summer monsoon and humid climate usually occur in the early and mid Holocene, and a weakened summer 

monsoon and drier climate prevailed during the late Holocene (Dykoski et al., 2005; Chen et al., 2015). Based on the 

integration of paleoclimate records, modern meteorological observation data and paleoclimate simulations, Chen et al. (2008, 

2009, 2019)  

40 revealed that the ‘westerlies-dominated climatic regime’ in arid CA presents dry early Holocene, wetter mid-Holocene, and 

moderately wet late Holocene, which is out-of-phase or anti-phased with dry/wet states in the monsoon-dominated regions. 

However, paleoclimate records in some regions of CA indicate an asynchronous climate history, in contradiction with dry/wet 

changes caused by the westerlies (An et al., 2006; Zhao et al., 2015; Wang et al., 2018). More recent studies proposed that the 

persistent weakening of the East Asian summer monsoon since 1958 causes an increasing contribution of the  

45 monsoonal water vapor transport, thereby enhancing summer precipitation in arid CA on the annual timescale (Chen et al., 2021a; 

Chen et al., 2021b). Therefore, further research is needed to explain dry/wet changes in different regions and explore the 

difference and linkage in climate change modes from EA and CA at multiple time scales.  

The seasonal signals of precipitation, derived from the simultaneity of rain and heat periods, is an important climate 

phenomenon on seasonal to orbital time scales. It involves enhanced precipitation at a seasonal scale during northern 

hemisphere summer and during warm period on long- 

50 term timescales. Reduced precipitation occurs during northern hemisphere winter and during long-term cold periods. This study 

aims to focus on the transitional zone in the arid and semi-arid region of eastern CA where the westerlies and the monsoon 

interact with the summer precipitation regime being similar as in the monsoon-dominated EA. Utilizing modern observations, 
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paleoclimate proxies, and model simulations, we conducted a comprehensive analysis of changes in dry/wet states in EA and 

CA since annual to millennial time scales based on seasonal signals of precipitation.   

55  2 Materials and methods  

2.1 Study area  

In this study, we divide the boundaries of CA and EA mainly according to the modern Asian summer monsoon limit defined 

by Chen et al. (2008, 2019). CA is the largest arid and semi-arid area in the mid-latitude hinterland of the Eurasian continent, 

extending from the Caspian Sea in the west to the western Hexi Corridor in the east, comprising the central Asian countries, 

NW China, and southern Mongolian Plateau (Fig. 1). Considering that the strength and trajectory of monsoon circulation is a 

major control of moisture in EA, the regional scope of EA for this study is defined as the Chinese monsoon region in the east 

and south of the modern Asian summer monsoon limit in Chin (Fig. 1). We calculated the precipitation difference between the 

summer (April to September) and winter (October to March) half year between  

1971 and 2020, and defined the region greater than 0 mm as an area of simultaneous rain and heat periods. Therefore, we  

65 define the simultaneous region of rain and heat periods in CA as the east of CA (Fig. 1). The seasonality perspective implies that 

different precipitation regimes could affect the difference and linkage in climate change modes from EA and CA at the multi-

time scale. Taking seasonal signals as the dividing criteria, the core region of CA is characterized by a wet cold-season 

climate, whereas EA and the east of CA are characterized by a wet warm-season climate (Fig. 1).   

  

70  Figure 1. Overview map showing the paleoclimate record sites selected in this study from EA and CA, the difference between summer and  

winter precipitation over 1965-2014 (shade), and the dominant circulation systems, including the westerlies, Asian winter monsoon and 

East Asian summer monsoon. The modern Asian summer monsoon limit (red solid line) is summarized by Chen et al. (2008, 2019). The 

brown solid line represents the range of CA, the core region of CA, the east of CA, and EA as defined in this study.  
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75  2.2 Modern observation and analytical methods  

The monthly high-resolution (0.5°×0.5°) land precipitation data (referred to as CRU TS4.06) are selected from a Climatic 

Research Unit (CRU) updated gridded climate dataset from the University of East Anglia (van der Schrier et al., 2013; Harris 

et al., 2014; Barichivich et al., 2021). The CRU monthly climate archives are obtained from the auspices of the World  

Meteorological Organization (WMO) and the US National Oceanographic and Atmospheric Administration (NOAA,  

80 via its National Climatic Data Center, NCDC). The Global Reanalysis 1 datasets include monthly mean geopotential height, zonal 

wind, and meridional wind and is collected from the National Centers for Environmental Prediction/National Center for 

Atmospheric Research (NCEP/NCAR) (Kalnay et al., 1996). The reanalysis datasets have a horizontal resolution of 2.5° in 

latitude and longitude and a vertical resolution of 17 pressure levels from 1000 to 10 hPa. The high-resolution monthly 

averaged data for the vertical integral water vapor from the European Centre for Medium-Range Weather Forecasts (ECMWF; 

reanalysis v5 (ERA5)), intending to be used as a meteorological forcing dataset for land surface and hydrological models, is  

used in this study. This dataset covers the period from 1979 to the present with a spatial resolution of 0.25° in latitude and 

longitude and a single level integrated from the surface to the top of the atmosphere (Hersbach et al., 2020).   

We used the National Center for Environmental Information (NCEI) Pacific Decadal Oscillation (PDO) index based on  

NOAA’s extended reconstruction of SSTs (ERSST Version 5) to analyze long-lived El Niño-like pattern of Pacific climate  

90 variability  (Zhang  et  al.  1997;  Mantua  and  Hare,  2002).  The  data  can  be  obtained  at  

https://www.ncei.noaa.gov/pub/data/cmb/ersst/v5/index/ersst.v5.pdo.dat. The Niño 3.4 index is the most commonly used 

index to define El Niño and La Niña events. We selected the Niño 3.4 of area-averaged SST from 5°S-5°N and 170-120°W  

 using  the  HadISST1  dataset  (Rayner  et  al.,  2003).  The  data  can  be  obtained  at  

https://psl.noaa.gov/gcos_wgsp/Timeseries/Nino34/. Positive values of the North Atlantic Oscillation (NAO) index are  

95 typically associated with stronger midlatitude westerlies and increased water vapor content from the North Atlantic. We used the 

Hurrell NAO index (station-based) to investigate the impact of NAO on midlatitude westerlies (Hurrell, 1995; Hurrell and 

Deser, 2009). The data can be obtained at https://climatedataguide.ucar.edu/sites/default/files/202210/nao_station_monthly.txt.   

Empirical orthogonal function (EOF) is a powerful method for dimensionality reduction and pattern extraction. EOF can  

100 decompose multidimensional climate data from different locations into spatial (EOF modes) and temporal functions (principal  

components). Therefore, to investigate the spatiotemporal variations of precipitation at the interannual timescale over EA and 

CA, the EOF analysis was applied to the CRU TS4.06 gridded precipitation data and ERA5 vertical integral water vapor. We 

focused on the first two leading modes that objectively account for the majority of dry/wet changes in EA and CA (Lorenz, 

1956).  

https://www.ncei.noaa.gov/pub/data/cmb/ersst/v5/index/ersst.v5.pdo.dat
https://www.ncei.noaa.gov/pub/data/cmb/ersst/v5/index/ersst.v5.pdo.dat
https://psl.noaa.gov/gcos_wgsp/Timeseries/Nino34/
https://psl.noaa.gov/gcos_wgsp/Timeseries/Nino34/
https://climatedataguide.ucar.edu/sites/default/files/2022-10/nao_station_monthly.txt
https://climatedataguide.ucar.edu/sites/default/files/2022-10/nao_station_monthly.txt
https://climatedataguide.ucar.edu/sites/default/files/2022-10/nao_station_monthly.txt
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2.3 Calculation of Monsoon and westerly wind indices  

105 The East Asian summer monsoon index (EASMI) is defined as the 850 hPa average summer meridional wind speed from June  

to August over (27°N~37°N, 110°E~120°E) encompassing the East Asian summer monsoon domain (Liu et al., 2014). The 

equation is as follows:  

EASMI = ⃗V⃗⃗⃗850⃗⃗⃗ (27°~37°N, 110°~120°E)                                                             (1) The westerly wind index (WWI) is 

defined as the zonal difference of the 500 hPa averaged geopotential height over  

110  (35°N~50°N, 70°E~110°E) (Li et al., 2008). The equation is as follows:  

WWI , 35°N) - , 50°N)]                                            (2)  

where H is the 500 hPa average height geopotential, γ is the number of longitudes taken along the latitude circle with a 

spacing of 2.5°.  

The East Asian winter monsoon index (EAWMI) is defined as the difference between the 300 hPa averaged zonal wind speed  

115  from December to February over (27.5°~37.5°N, 110°~170°E) and (50°~60°N, 80°~140°E) (Jhun and Lee, 2004). The  

equation is as follows:  

EAWMI = ⃗U⃗⃗⃗⃗300⃗⃗⃗ (27.5°~37.5°N, 110°~170°E)-⃗U⃗⃗⃗⃗300⃗⃗⃗ (50°~60°N, 80°~140°E)                                 (3) The 

calculation of EASMI, WWI, and EAWMI all rely on the NCEP Reanalysis 1 dataset.  

2.4 Regional paleoclimatic proxy data  

120 Here we compiled various paleoclimate records to reconstruct long-term climate variability and primarily  

paid close attention to paleo-precipitation and moisture changes since the LGM. We set three criteria to collect all the 

published proxy records from EA and CA in our study. Firstly, the records should be located primarily in the intersection 

encompassing the simultaneous region of rain and heat periods in EA and CA, which is in favour of investigating the 

difference and linkage in climate change modes from EA and CA. Accordingly, some typical records climatologically 

influenced by midlatitude  

125 westerlies and East Asian summer monsoon in core regions of CA and EA were selected for comparative analysis. Secondly,  

the proxies should be clearly indicative of changes in effective moisture or precipitation which have been confirmed by the 

original investigators. Third, the record length should cover most of the period since the LGM without documented 

depositional hiatuses. Fourth, the fluctuation and variation of proxy records should be predominantly forced by climate 

change, rather than human activities (Manoj et al., 2020; Chen et al., 2021c, 2022). Following the above criteria, a total of 42 

proxy records from  
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130 lakes, peats, loess, and stalagmites since the LGM were compiled for EA and CA (Fig. 1), enabling us to comprehensively  

review the LGM moisture evolution of the region. To avoid the effect of chronological anomalies, this study usually selects 

paleoclimate records with at least five chronological. In light of seasonal signals of precipitation, 35 records are from the 

summer precipitation region, and seven records are from the winter precipitation region. Differences in geographic location, 

hydrological setting, depositional proxies used, and sensitivities prevented linear comparisons between individual records 

(Chen et al., 2008), so ordered humidity classes are specified to investigate dry/wet states in this study. We divided the LGM 

into four time points: LGM (22-19 cal ka BP), early Holocene (EH, 11.7-8.2 cal ka BP), mid Holocene (MH, 8.2-4.2 cal ka 

BP), late Holocene (LH, 4.2-0 cal ka BP). Dry/wet conditions were coded on the basis of effective moisture in the original 

literature: wet, dry, moderately wet, and moderately dry respectively, which indicates the period of wetter, dryer and moderate 

status at that particular site during the LGM (Fig. 4). Detailed information about these selected proxy records is presented in 

Table S1.  

2.5 Paleoclimatic simulations  

135 The Paleoclimate Modelling Intercomparison Project (PMIP) was launched to coordinate and encourage the systematic study  

of General Circulation Models (GCMs) and to understand the mechanisms of climate change and the role of climate feedback 

(Joussaume et al., 1999) (Table 1). Eight coupled GCMs covering the LGM or MH from the PMIP3 database were selected to 

analyze the mechanisms of climate change in this study (Table 2), including bcc-csm1-1, CNRM-CM5, CCSM4, CSIRO-

Mk3- 

6-0, GISS-E2-R, MIROC-ESM, FGOALS-s2, and MRI-CGCM3. The output data of the PMIP3 in the LGM and MH are  

140 available at htQTPs://esgf-node.llnl.gov/search/esgf-llnl/. By interpolating various climate variables on the common  

1°×1° grid and then sorting the values of model simulations from minimum to maximum, we extracted the median value of 

all PMIP3 models used in this paper to evaluate the PMIP3 model simulations and acquire the scientific model simulation 

value.  

Table 1. Boundary conditions and forcing for PMIP3-CMIP5 models at the LGM and MH.  

https://esgf-node.llnl.gov/search/esgf-llnl/
https://esgf-node.llnl.gov/search/esgf-llnl/
https://esgf-node.llnl.gov/search/esgf-llnl/
https://esgf-node.llnl.gov/search/esgf-llnl/
https://esgf-node.llnl.gov/search/esgf-llnl/
https://esgf-node.llnl.gov/search/esgf-llnl/
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Period  Eccentricity  Obliquity (°)  Longitude of perihelion (°)  CO2 (ppm)  CH4 (ppb)  N2O (ppb)   Ice sheet  Vegetation  

LGM  0.018994  22.949  114.425  185  350  200   Peltier (2004), 21 ka  Present day  

MH  0.018682  24.105  0.87  280  650  270   Peltier (2004), 0 ka  Present day  

Table 2. Basic information about climate models from PMIP3-CMIP5 used in this study.     

Model  Institute  Resolutions   
Variables*  References  

bcc-csm1-1  
Beijing Climate Center, China Meteorological  

Administration, China  
64×128 (17)  

 
ua, va, zg, hus, psl, 

pr, tas  Randall et al. (2007)  

CNRM-CM5  
Centre National de Recherches Météorologiques,  

France  
128×256 (17)  

 
ua, va, zg, hus, psl, 

pr, tas  

Voldoire et al.  

(2013)  

CCSM4  National Center for Atmospheric Research, USA  288×192 (17)  

 
ua, va, zg, hus, psl, 

pr, tas  Gent et al. (2011)  

CSIRO-Mk3-6-0  

Australian Commonwealth Scientific and Industrial  

Research Organization Marine and Atmospheric  

Research in collaboration with the Queensland Climate  

Change Centre of Excellence, Australia  

96×192 (18)  

 

ua, va, zg, hus, psl, 

pr, tas  

Rotstayn et al.  

(2010)  

GISS-E2-R  NASA Goddard Institute for Space Studies, USA  144×90 (17)  

 
ua, va, zg, hus, psl, 

pr, tas  

Schmidt et al.  

(2014)  

MIROC-ESM  
Japan Agency for Marine-Earth Science and  

Technology, Japan  
128×64 (35)  

 
ua, va, zg, hus, psl, 

pr, tas  

Watanabe et al.  

(2011)  

FGOALS-s2  LASG-CEES. China  108×128 (17)  

 
ua, va, zg, hus, psl, 

pr, tas  

Briegleb et a1.  

(2004)  

MRI-CGCM3  Meteorological Research Institute, Japan  320×160 (23)  

 
ua, va, zg, hus, psl, 

pr, tas  

Yukimoto et al.  

(2012)  

*: ua means eastward_wind; va means northward wind; zg geopotential Height; hus near-surface relative humidity; psl means sea surface pressure; pr means 

precipitation;  

tas means near-surface temperature.  1 

3 Results  2 

3.1 Seasonal signals at short-term timescales  3 

To obtain the spatial distribution characteristics of the precipitation anomalies in EA and CA under the context of seasonal 4 

signals, we conducted an EOF analysis on the precipitation standardized anomaly field over 1971-2020. Figure S1a-d shows  5 
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the spatial distribution and time series of EOF decomposition of mean annual precipitation. The center of negative values is 6 

in the core region of CA mainly belonging to the winter precipitation regime, while the positive values are in the south and 7 

north of EA located in summer precipitation regions (Fig. S1a). This opposite distribution indicates that the difference in the 8 

mean annual precipitation exists between EA and CA. Additionally, the first mode exhibits interdecadal and interannual 9 

changes  10 

155 according to the PC1 (Fig. S1b). The second mode indicates that the center of positive values is in the north of EA, and the  11 

center of negative values is in the north of CA, also displaying the spatial diversity of mean annual precipitation in EA and 12 

CA (Fig. S1c).  13 

In order to further explore the contribution of seasonal signals of precipitation to dry/wet conditions in EA and CA, we 14 

conducted  15 

EOF analysis on spring, summer, autumn, and winter precipitation data. The variance contribution rate of the first mode in  16 

160 precipitation of four seasons is shown in Fig. 2. The first mode of spring and autumn precipitation does not show obvious  17 

distribution characteristics, and the contribution rate is relatively uniform, indicating that spring and autumn precipitation 18 

have no special precipitation contribution to EA and CA (Fig. 2a and c). In relation to summer precipitation, centers of 19 

positive values are mainly distributed in the north of EA and the east of CA, while the negative values are mainly distributed 20 

in the core regions of CA and in central EA (Fig. 2b). But similar EOF results between CA and south of EA do not exist in 21 

winter precipitation.  22 

165 This spatial distribution indicates that summer precipitation mainly affects dry/wet conditions in north of EA and the east of CA 23 

belonging to the regions of simultaneous rain and heat periods, which is in contrast to the core region of CA. In relation to 24 

winter precipitation, the center of the positive value is located in the core region of CA and north of EA, showing the 25 

significant contribution of winter precipitation to CA (Fig. 2d). It is worth noting that a certain degree of similarities exists in 26 

both summer and winter precipitation of EA and CA, indicating the impact of seasonal precipitation on the linkage of 27 

dry/wet conditions in EA  28 

170 and CA at short-term timescales.  29 
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  30 
Figure 2. The first EOF modes of precipitation in spring (March, April, and May, MAM) (a), summer (June, July, and August, JJA) (b), 31 

autumn (September, October, and November, SON) (c), and winter (December, January, and February, DJF) (d) in EA and CA over 1971-32 

2020.  33 

175 Existing studies emphasized the role of water vapor sources in affecting interannual to interdecadal variability of precipitation 34 

(Chen and Huang, 2012; Huang et al., 2015a; Peng and Zhou, 2017; Wei et al., 2017). Therefore, by analyzing the EOF 35 

results of water vapor content in the whole layer, this study investigates the general characteristics of the spatial distribution 36 

of water vapor in EA and CA and discusses the mechanisms controlling seasonal signals on dry/wet conditions in EA and CA 37 

at short-term timescales. The EOF1 of the mean annual water vapor shows that the core region of CA is dominated by 38 

positive values, while both 39 

180 EA and the east of CA have negative values (Fig. 3a). The same spatial distribution mode is also reflected in  40 

the EOF1 of water vapor difference between summer and winter half-year. To summarize, the water vapor in EA and CA 41 

shows a dipole out-of-phase pattern between the simultaneous region of rain and heat periods and the non-simultaneous 42 

region of rain and heat periods (Fig. 3b). This implies that the content and source of water vapor are the important reason 43 

why dry/wet states in the east of CA is linked to that in EA by seasonal signals of precipitation.  44 
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185    45 

Figure 3. a, the EOF1 modes of annual mean integral water vapor in EA and CA over 1979-2018; b, the EOF1 modes of integral water 46 

vapor difference between summer and winter in EA and CA over 1979-2018.  47 

3.2 Spatiotemporal variation of dry/wet conditions and seasonal signals on long timescales  48 

In the last decade, many paleoclimate records with a relatively high resolution, reliable chronology, and robust proxies  49 

190 have been published to discuss the long-term timescale climate evolution in EA and CA. Forty-two moisture records from  50 

individual sites are used to illustrate the spatiotemporal pattern of dry/wet conditions during the LGM, EH, MH, and LH in 51 

EA and CA (Fig. 4). During the LGM, most regions in EA and CA are in moderately dry condition (Fig. 4a). However, 52 

moderately wet and wet conditions partly exist in the east of CA. According to the model simulation, Yu et al. (2000) 53 

concluded that the low temperature in the cold period causes decreasing evaporation, with the enhanced westerlies driven by 54 

expanding land ice sheets, forming the high  55 

195 lake levels in western China and the low lake levels in eastern China during the LGM. During the early Holocene (EH), CA was  56 

dominated by a dry climate, while EA was moderately wet (Fig. 4b). At the same time, there were many records in the east of 57 

CA showing similar dry/wet changes than in EA. During the MH, wet conditions mainly occur in the core region of CA 58 
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gradually turning into moderately wet and even dry conditions in the east of CA, while the EA remains moderately wet (Fig. 59 

4c). By the late Holocene (LH), the EA is characterized by dry conditions, while CA is wet (Fig. 4d). In particular, the dry 60 

condition during the  61 

200 LGM and the wet climate during the EH and MH also reflect another meaning of seasonal signals derived from the simultaneity  62 

of rain and heat periods at long-term timescales, namely the “dry-cold” pattern and “wet-warm” pattern.  63 

  64 
Figure 4. Spatio-temporal characteristics of dry/wet conditions from 42 records since the LGM, based on the confirmation of original 65 

investigators during the LGM, early Holocene (EH), mid Holocene (MH), and late Holocene (LH). Records with an incomplete stage are 66 

shown by a gray dot. Four summarized levels of dry/wet conditions: wet, moderately wet, moderately dry, and dry.  67 

In detail, we further performed a comparative analysis of the time series of typical proxy records in EA and CA (Fig. 5). The 68 

reconstructed precipitation records covering the past 22,600 years from Achit Nuur suggests wet conditions prevailing from 69 

22,600 to 13,200 cal BP (Fig. 5c). Pollen data from the Caspian Sea, controlled by the westerlies, entail that the terrestrial 70 

vegetation around the Caspian Sea changed from desert/desert steppe to dry shrubland/forest over the last ~12,000 years 71 

during the Holocene,  72 

210 revealing the continuous wetting process since the EH and the wettest LH (Fig. 5a). Meanwhile, results of climatically-sensitive  73 

magnetic properties from the Xinjiang loess demonstrate that the relatively wet conditions are generally formed after ~6,000 74 

cal BP, with the wettest climate occurring during the LH (Fig. 5b) (Chen et al., 2016). However, there are inconsistencies 75 

related to dry/wet changes at long-term timescales in the east of CA, which are different from core regions of CA but similar 76 

to EA. Herzschuh.  77 

(2006) analyzed 75 paleoclimatic records in CA and revealed that wet conditions occurred during the EH  78 

215 and MH, while the LGM was characterized by the dry climate (Fig. 5h), indicating the similarity with the monsoon climate  79 
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represented by the speleothem δ18O records from Dongge Cave and Hulu Cave (Fig. 5d). High precipitation in the EH and 80 

MH, indicated by δ18O records of ostracod shells from Qinghai Lake, shows that the climate in Qinghai Lake since the late 81 

glacial reflects the monsoon-dominated characteristic (Fig. 5e). The climate in Ulaan Nuur is wettest during the EH, humid 82 

during the MH and dry in the LH, embodying a typical characteristic of the East Asian summer monsoon (Fig. 5f). Based on  83 

220 the sediment cores from Lake Karakul and Lake Issyk-Kul, the EH and MH are characterized by wetter conditions in the region,  84 

and the lake level remained low during the LGM (Fig. 5g and j). Furthermore, the regional climate in western China, inferred 85 

from the speleothem oxygen-carbon isotope data from the Kesang Cave, suggests a close coupling with the Asian summer 86 

monsoon (Fig. 5i). The lake level and climate reconstructed results also showed that the “dry-cold” pattern triggered a 87 

substantial lowering of lake level in most of arid western China, challenging the view of “wet-cold” pattern and high lake 88 

levels during  89 

225 the LGM (Zhao et al., 2015).  90 
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 91 
Figure 5. A comparison of proxy variability recorded in EA and CA. a Pollen record from the Caspian Sea (Leroy et al., 2014); b 92 

XARM/SIRM in the LJW10 section of the Xinjiang Loess (Chen et al., 2016); c Reconstructed MAP (mean annual precipitation) from Achit 93 

Nuur (Sun et al., 2013); d speleothem δ18O values records from Dongge Cave and Hulu Cave (Yuan et al., 2004; Wang et al., 2001); e δ18O 94 

of ostracode shells from Qinghai Lake (Liu et al., 2007); f TOC (Total organic carbon) from Ulaan Nuur (Lee et al., 2013); g Mean 95 

effective moisture from monsoonal Central Asia (Herzschuh, 2006); h δ18O from Kesang Cave (Cheng et al., 2016); i δ18O from Lake 96 

Issyk-Kul (Ricketts et al., 2001); j Summer (red line) insolation at 30°N and winter (blue line) insolation at 50°N (Berger, 1978). Blue 97 

shadows indicate the wet period of paleoclimate proxies.  98 

4 Discussion  99 

4.1 Possible dynamics of seasonal signals on short timescales  100 

EOF analysis of precipitation and water vapor consistently indicates that a connection between EA and the east of CA exists  101 
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under the traditional differentiation between EA and the core region of CA. Considering that the east of CA is controlled 102 

bythe summer precipitation regime. Therefore, we propose that seasonal signals of precipitation contribute to the connection 103 

between EA and the east of CA.  104 

240    105 

Figure 6. The time series of the precipitation PC1 in summer, winter, WWI, EAWMI, and EASMI over 1971-2020.  106 

Generally, atmospheric circulation has important effects on the spatial distribution and the transportation of water vapor. In 107 

order to explore the influence of the modern air-sea circulation on the summer and winter precipitation, we analyzed the time 108 

series of the precipitation PC1, WWI, EAWMI, EASMI, NAO, PDO, and ENSO over 1971 to 2020 (Fig. 6 and 7).  109 

245 Comparing the winter precipitation PC1 with WWI and EAWMI (Fig. 6), the weakening of the westerlies and winter monsoons  110 

is usually accompanied by an increase in winter precipitation. However, there is not a significant relationship between PC1 of 111 

summer precipitation and EASMI. As shown in Figure. 7, summer PDO and ENSO are basically similar to winter PDO and 112 

ENSO. However, the markable discrepancy exists in the evolution of winter NAO and summer NAO. The NAO and ENSO 113 

indices represent interannual variation, whereas the PDO index has an interdecadal cycle. The NAO index and the winter 114 

precipitation PC1 have a positive correlation, suggesting that the North Atlantic may have certain effects on the winter 115 
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precipitation through the air-sea interaction. Positive values of the NAO index are usually accompanied by stronger 116 

midlatitude westerlies and increased water vapor content from the North Atlantic. The ENSO change, however, were related 117 

to the summer precipitation PC1. Winter and summer precipitation before 1980s showed a gradual increasing trend, while 118 

PDO values showed a gradual decreasing trend. On the contrary, PDO showed a positive phase when winter and summer 119 

precipitation enhanced at interdecadal timescales during 1980-2000. Since the 2000s, the development of winter and summer 120 

precipitation was not connected with PDO.   121 

255    122 

Figure 7. The time series of the precipitation PC1 in summer, winter, and annual mean, NAO, PDO, and ENSO over 1971-2020.  123 

A majority of relevant studies suggest that precipitation variations in CA are controlled by water vapor transported by the 124 

midlatitude westerlies, where the monsoonal water vapor source is hard to reach (Huang et al., 2015a; Guan et al., 2019). 125 

Abundant moisture is carried from the polar airmass, North Atlantic and the eastern Mediterranean Sea to CA and continues 126 

to diffuse  127 

260 eastward to reach the arid region of northwest China (Lioubimtseva, 2014). Meanwhile, several studies in recent years found that  128 
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the anti-phase pattern between the East Asian summer monsoon and the westerlies causes the seesaw phenomenon of 129 

precipitation variation in northwest China (the east of CA in this study) (Zhang et al., 2019; Wu et al., 2019). However, Chen 130 

et al. (2021a) proposed that the East Asian summer monsoon plays an important role in the interdecadal variability of 131 

summer precipitation in CA through the transportation of summer water vapor from the Indian and Pacific Oceans to the east 132 

of CA. Additionally, Huang et al. (2015b) stated that increased summer precipitation in the Tarim Basin, which belongs to the 133 

east of CA, is mainly related to a weakened Indian summer monsoon. In addition, the large-scale topography, such as the 134 

Qinghai Tibet Plateau, causes the westerlies to flow around the plateau rather than over it, which in turn influences the local 135 

transport of water vapor and results in local precipitation changes (Xie et al., 2014). Therefore, the atmospheric circulation 136 

and topographic factors bear on the transportation and content of water vapor at short-term timescales, which differentiates 137 

summer precipitation in the east of CA  138 

270 from that in the core region of CA, by linking it to EA.  139 

4.2 Possible dynamics of seasonal signals at long-term timescales  140 

Model simulations are a valid means to visually study mechanisms of paleoclimate change in EA and CA during the LGM 141 

and the MH. The results of paleoclimate simulations in this work may help to explain the differences and similarities in 142 

dry/wet conditions from EA and CA under the framework of seasonal signals at long-term timescales. During the LGM, 143 

lower summer insolation increases the  144 

275 meridional temperature difference and sea level pressure in the summer largely (Fig. 5j; 8a and c), leading to the strengthening  145 

of the westerlies (Fig. 9a) and further increasing precipitation in CA (Fig. 8e). However, summer precipitation in EA was 146 

weaker than in the MH during the LGM (Fig. 8e) due to the weakening of summer monsoon (Fig. 9c) under the influence of 147 

reduced summer insolation (Fig. 5j), which is consistent with dry/wet conditions reconstructed by paleoclimate records in EA 148 

(Fig. 5). Besides, although the westerlies weaken during LGM winters (Fig. 9b), the higher winter insolation contributes to 149 

the general warming in mid-latitudes 150 

280 (Fig. 5k; 8b), resulting in lower relative humidity in CA (Fig. 8d). According to climatological theory (Barry and Richard, 2009),  151 

a decrease in relative humidity entails an increase in saturated water vapor pressure, which ultimately leads to increasing 152 

precipitation. Therefore, winter precipitation during the LGM in CA is generally higher than during the MH (Fig. 8f). This 153 

relationship may help explaining the asynchrony of long-term dry/wet changes in EA and CA controlled by variations at a 154 

seasonal scale.  155 
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  156 
285  Figure 8. Summer differences of temperature (tem) (a), sea level pressure (psl) (c), and precipitation (pre) (e) for LGM-MH; and winter  157 

differences of temperature (b), relatively humid (hus) (d), and precipitation (f) for LGM-MH in EA and CA based on the PMIP3-CMIP5 158 

multi-model ensemble.  159 

Investigating the past climate is key to informing future climate change (Tierney et al., 2020). From the perspective of 160 

paleoclimatology, monsoon and westerlies vary greatly between LGM and MH, modulated by primary forces such as orbital  161 

290 insolation, greenhouse gas, and ice sheets (Oster et al., 2015; Bereiter et al., 2015; Sime et al., 2016). Paleoclimate records  162 

indicate wet conditions during the LGM and LH in CA and the MH wet in EA (Fig. 5). Specifically, dry/wet conditions in 163 

CA, affected by the westerlies and characterized by wet climate states during the LGM and mid- and late-Holocene, is 164 

opposite to that in monsoon-dominated EA. However, the proxy records in CA similar to the monsoon evolution are located 165 

in the modern summer precipitation region (Figure. 5f-i). From the perspective of precipitation seasonality, there are two 166 

different precipitation  167 

295 regimes within CA. The core region of CA has a Mediterranean climate (winter precipitation regime), with a dry summer and  168 

seasonal precipitation from early winter to late spring (Fig. 1); whereas, in the east of CA, including northwest of China and 169 

west and south of Mongolia, the summer precipitation contributes more (summer precipitation regime; Fig. 1). Therefore, the 170 

summer precipitation regime may be a potential forcing factor for the linkage of paleoclimate reconstructions between EA 171 

and the east of CA, and the difference in precipitation regime may result in a divergent moisture history in EA and the core 172 

region  173 
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300 of CA.   174 

  175 
Figure 9. Summer differences of 200 hPa wind field (a) and 700 hPa wind field (c) for LGM-MH; and winter differences of 200 hPa wind 176 

field (b) and 700 hPa wind field (d) for LGM-MH in EA and CA based on the PMIP3-CMIP5 multi-model ensemble.  177 

In summary, our results support the notion that seasonal signals of precipitation derived from simultaneous rain and  178 

305 heat periods govern the difference and linkage of dry/wet changes in EA and CA on seasonal to orbital time scales. With global warming  179 

and continued increase in winter solar radiation, we suggest that the core region of CA could face a persistent reduction in 180 

precipitation in the future. Meanwhile, the decrease in summer solar radiation could lead to a strengthening and southward 181 

shift of the summer westerly jet stream over CA, potentially increasing summer precipitation in the east of CA, which is 182 

characterised by summer precipitation regimes. However, more quantitative analyses are required to understand how future 183 

interannual variations in  184 

310 atmospheric and oceanic circulation might control the seasonal precipitation signals that influence dry/wet changes in the east of  185 

CA. Some recent work also points out increasing summer precipitation in arid CA (Chen et al., 2021a; Ren et al., 2022).  186 

Meanwhile, the phenomenon of warmer and wetter climates coincides with the simultaneity of rain and heat periods (Hu and 187 

Han, 2022). Future work should focus on the fusion of multiple datasets and high-precision climate simulation designed to 188 

evaluate the mechanisms of climate change in the region.  189 

315  5 Conclusion  190 

The summer precipitation regime in EA and the east of CA and the winter precipitation regime in the core region of CA 191 

reveal seasonal signals of precipitation. Using the EOF method, this study analyzes the spatiotemporal variations of 192 

precipitation in EA and CA. Results reveal that seasonal signals derived from the simultaneity of rain and heat periods are 193 

important factors linking climate change modes in EA and CA at short timescales. A compilation of 42 proxy records with 194 

reliable  195 
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320 chronologies enable us to reassess the long-term dry/wet changes in EA and CA since the LGM. In core regions of CA, the dry/wet status is  196 

usually characterized by dry EH and wet LH. However, part of records in the east of CA with simultaneous rain and heat 197 

periods show the same dry/wet conditions as in EA, i.e., the dry condition during the LGM and the wet climate during the 198 

EH and MH. This also reflects another meaning of seasonal signals at long-term timescales, namely the “dry-cold” pattern 199 

and “wet-warm” pattern. Concurrently, paleoclimate records reflect seasonal signals triggered by the insolation at long 200 

timescales.  201 

325 The multi-model ensemble simulations of multiple climatic elements may help to explain the climate mechanism of differences and linkage  202 

in dry/wet status from EA and CA since the LGM. Results show that summer insolation influences the meridional 203 

temperature gradient and sea level pressure in the summer, changing the intensity of the westerly winds and summer 204 

monsoon and further controlling the summer precipitation in EA and the east of CA. Meanwhile, winter insolation 205 

contributes to the general warming in EA and the core region of CA, and in turn results in lower relative humidity, which 206 

ultimately increases winter  207 

330 precipitation during the LGM.   208 

In general, the seasonal signals of precipitation derived from the simultaneity and non-simultaneity of rain and heat periods 209 

on short-term timescales can also affect the dry/wet status on long-term timescales, but their influencing factors are different. 210 

Due to the influence of seasonal precipitation signals at multiple time scales, CA and EA controlled by the winter 211 

precipitation regime and the summer precipitation regime, respectively, show an anti-phase evolution of dry/wet changes. 212 

However, it is worth noting  213 

335 that in the east of CA with simultaneous rain and heat events, there is the same dry/wet evolution as in EA. Therefore, we believe that  214 

seasonal signals can provide important insight for analyzing the differences and linkages in climate change between CA and  215 

EA at multiple time scales.  216 
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