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Abstract. Classical palaeoenvironmental reconstruction models often incorporate biological ideas and commonly assume that 10 

the taxa comprising a fossil assemblage exhibit unimodal response functions of the environmental variable of interest. In 

contrast, machine learning approaches do not rely upon any biological assumptions, but instead need training with large data-

sets to extract some understanding of the relationships between biological assemblages and their environment. We have 

developed a two-layered machine learning reconstruction model MEMLM (Multi Ensemble Machine Learning Model). The 

first layer applies three different ensemble machine learning models of random forests, extra random trees and lightGBM, 15 

trained on the modern taxon assemblage and associated environmental data to make reconstructions based on the three different 

models, while the second layer uses multiple linear regression to integrate these three reconstructions into a consensus 

reconstruction. We consider three versions of the model: 1) A standard version of MEMLM, which uses only taxon abundance 

data, 2) MEMLMe, which uses embedded assemblage information, using a natural language processing model (GLOVE) to 

detect associations between taxa across the training data-set and 3) MEMLMc which incorporates both taxon abundance and 20 

assemblage data. We train these MEMLM model variants with three high quality diatom and pollen training sets and compare 

their reconstruction performance with three weighted averaging (WA) approaches of WA-Cla (classical deshrinking), WA-

Inv (inverse deshrinking) and WA-PLS (partial least squares). In general, the MEMLM approaches, even when trained on only 

embedded assemblage data, perform substantially better than the WA approaches under cross-validation in the larger data-

sets. However, when applied to fossil data, MEMLM and WA approaches sometimes generate qualitatively different 25 

palaeoenvironmental reconstructions. We applied a statistical significance test to all the reconstructions. This successfully 

identified each incidence where the reconstruction is not robust with respect to the model choice. We find that machine learning 

approaches can outperform classical approaches, but can sometimes catastrophically fail, despite showing high performance 

under cross-validation, likely indicating problems when extrapolation occurs. We find that the classical approaches are 

generally more robust, although they can also generate reconstructions which have modest statistical significance, and 30 

therefore may be unreliable. We conclude that cross-validation is not a sufficient measure of transfer-function performance, 

and we recommend that the results of statistical significance tests are provided alongside the down-core reconstructions based 

on fossil assemblages.  
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1 INTRODUCTION 35 

The distribution and abundance of taxa are interrelated with the environment (Ovaskainen et al., 2017). By using the concept 

of space instead time, the palaeoenvironment can be reconstructed by applying modern taxon-environment relationships to the 

fossil record (e.g. Battarbee et al., 2005; Cleator et al., 2020; Turner et al., 2020). 

With the development of palaeoecological research, large training data-sets for environmental reconstruction have emerged in 

recent years. (e.g. Harrison 2019; Bush et al., 2021). Data assimilation has long been a focus of Earth science and ecology, 40 

and the integration of larger data-sets will provide more comprehensive training information (e.g. Christin et al., 2019; 

Houssaye et al., 2019; Bush et al., 2020). For large data-sets, machine learning methods have strong advantages and may be 

appropriate to extract the non-linear relationships between taxon compositional information and the environment, and to 

integrate a variety of sources of data (e,g, Helama et al., 2009; Aguirre-Gutierrez et al., 2021; Wei et al., 2021b). 

In recent years, machine learning has been applied to a wide range of applications in palaeoecology (Hais et al., 2015; Jordan 45 

et al., 2016). Wei et al., (2021b) reconstructed palaeoclimate using five different machine learning methods based on digital 

leaf physiognomic data and integrated the predictions by averaging. Hais et al., (2015) predicted the Pleistocene biota 

distributions in palaeoclimate using machine learning. Huang et al., (2020) used one series of palaeoclimate sequences to 

predict the climate in another period. These studies show that machine learning has strong versatility and effectiveness, and 

suggest it should be more widely applied. 50 

However, machine learning approaches do not make any biological assumptions, which may weaken their performance relative 

to mathematically simpler classical approaches that do. For instance, weighted averaging (WA) approaches apply the simple 

but informative assumption that taxa have a unimodal response to the environmental variable of interest (ter Braak and 

Barendregt, 1986). The absence of any such prior understanding is likely to place additional demands on the minimum adequate 

size of a modern training set. Moreover, it may weaken the ability of machine learning to operate under extrapolation, critically 55 

important when applying any reconstruction approach to past taxon assemblages that lack modern analogues.  To address these 

questions, we have developed the Multi Ensemble Machine Learning Model (MEMLM) to apply in a systematic comparison 

with classical WA reconstruction approaches. 

The benefit of machine learning is that it has strong data mining and information extraction ability. An associated problem, 

however, is that when a sample size is limited, machine learning is more likely to learn the noise component and generate 60 

prediction errors due to over-fitting (Yeom et al., 2018; Syam and Kaul 2021). This suggests that an ensemble learning method, 

which integrates models with potentially different biases, may reduce over-fitting errors (Legendre et al., 1997) and improve 

the prediction performance (Wei et al., 2021b). This is the motivation for the ensemble learning approach we present, namely 

the Multi Ensemble Machine Learning Model (MEMLM). 

https://doi.org/10.5194/cp-2023-69
Preprint. Discussion started: 27 September 2023
c© Author(s) 2023. CC BY 4.0 License.



 

3 
 

Classical studies have integrated different reconstruction approaches by calculating the mean of their predictions (Norberg et 65 

al., 2019). An arithmetic mean does not attribute weights to each model, even though the models may have different advantages 

in different applications (Schulte and Hinckley 1985; Zhou 2012). Similarly, most classical models do not consider different 

weights for different taxa, which may reduce their prediction potential and smooth the reconstruction (e.g. Brooks and Birks 

2001; Heiri et al., 2003; Battarbee et al., 2005; Wei et al., 2021a). Tolerance downweighted WA-PLS (TWA-PLS) makes it 

possible to assign different weights to each taxon in reconstructing the environment (Liu et al., 2020), while Bayesian 70 

approaches such as BUMPER (Holden et al., 2017) are built on classical assumptions and are highly constrained by taxa with 

low environmental tolerances, especially when characterised with high confidence.  

In MEMLM, we apply both taxon weights and model weights. The first calculation layer applies three different machine 

learning ensemble models of random forests, extra random trees and lightGBM, trained on modern taxon assemblage and 

environmental data. In these ensemble models, each taxon has a different predicted contribution which is used to weight its 75 

contribution to the ensemble. The three reconstructions are then integrated into a consensus reconstruction using a weak 

learning algorithm which weights each model according to its predictive power under cross-validation. 

We develop three versions of MEMLM; the standard version which only considers raw taxon abundance data; MEMLMe 

includes encoded assemblage information; and MEMLMc includes both. The motivation for the more complex versions is to 

explore whether considering known associations between taxa can improve the palaeoenvironmental reconstructions. For this, 80 

we use the natural language processing (NLP) model GLOVE (Pennington et al., 2014), which calculates the relationships 

between co-occurring words in the same sentence. GLOVE is a form of dimension reduction which assigns vectors (also called 

embedding) to each word according to the word connection relationships, so that each sentence can be represented as a 

superposition of the word embeddings within that sentence. In environmental assemblages, there are analogous co-occurrence 

relationships between taxa which we hypothesise convey information on their ecological functioning. We therefore use 85 

GLOVE to generate the embedding vectors of different taxa in different samples based on assemblage information and then 

to integrate the embeddings within each sample to represent the assemblage.   

We apply MEMLM to high quality pollen and diatom training sets to generate down-core reconstructions. We calculate 

training set cross-validation metrics and we quantify the statistical significance and robustness of the core reconstructions. We 

compare these performance metrics with those of classical WA approaches to evaluate whether, and under what circumstances, 90 

machine learning approaches might be able to outperform classical reconstruction approaches. 

2 MATERIALS AND METHODS 

We apply MEMLM to high quality pollen and diatom training sets to generate down-core reconstructions. We calculate 

training set cross-validation metrics and we quantify the statistical significance and robustness of the core reconstructions. We 

compare these performance metrics with those of classical WA approaches to evaluate whether, and under what circumstances, 95 

machine learning approaches might be able to outperform classical reconstruction approaches.  
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2.1. MEMLM 

MEMLM combines a series of modules (Figure 1). In this section, we introduce the functions of each module and the data 

processing routes.  100 

 

Figure 1: Multi Ensemble Machine Learning Model (MEMLM) model framework. MEMLM has a modular building block 

architecture so that components can be easily changed.  Raw num and Col num are the number of rows and columns in input matrix; 

dim is the number of dimensions. 

2.1.1. First layer 105 

The input data comprise environmental data together with either the taxon abundance matrix, the assemblage embedding 

matrix, or both matrices (see section 2.2.3 for a description of the embedding algorithm to develop the assemblage matrix).  

We apply three ensemble machine learning models to derive the mapping between taxon composition information and 

environmental factors: 
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(1) Random forests (RF) is an ensemble machine learning model composed of multiple decision trees. The overall model 110 

framework is determined based on the predictive power of each decision tree applied to the training data-set under 

bootstrapping. Individual decision trees with better predictive performance are allocated higher weights, and the ‘forest’ 

integrates the weighted result from each tree (Liaw and Wiener 2002).  

(2) Extra Random Tree (ET) is similar to RF, except that it uses the entire data-set rather than a bootstrapped subset (Geurts 

et al., 2006). 115 

(3) LightGBM is based on the Gradient Boosting Decision Tree. This also integrates decision trees, but LightGBM differs by 

applying ‘gradient boosting’ to add new trees, building each new model on the residuals of the previous model to improve the 

prediction. It has the ability to merge sparse data sets to increase computational efficiency (Friedman 2001; Ke et al., 2017). 

2.1.2 Second layer (consensus reconstruction) 

It is possible to improve prediction performance by integrating the prediction of multiple models into a consensus 120 

reconstruction (Yeom et al., 2017; Syam and Kaul 2021). Averaging is widely used to integrate the output prediction of 

multiple models. However, the integration weight of each model is the same under averaging. MEMLM applies multiple linear 

regression to allocate an integration weight to each model rather than attaching each model with the same weight. The 

consensus reconstruction is derived as follows. First, the three upstream models are applied to reconstruct the training data-set 

under five-fold cross-validation. We then build a multiple linear regression model to fit the reconstructed values to the actual 125 

value in the training set. This approach is designed to avoid the risk of over-fitting while reducing the impact of low-

performance models on the consensus reconstruction. Exploratory analysis applied to the NIMBIOS data-set, building models 

for each of 18 environment attributes, demonstrated that the multiple linear regression approach reduced the root mean squared 

error of prediction (RMSEP) relative to the individual reconstructions by an average of 8% (Table A1). A consensus 

reconstruction based on the mean of the three ensemble approaches also improved predictive power but reduced the RMSEP 130 

errors relative to the individual reconstructions by an average of 5%. 

2.1.3 Embedding 

The GLOVE algorithm (Pennington et al., 2014) is a very widely used linguistic dimensional reduction approach. It uses co-

occurrences of words in phrases to characterise numerically their meaning. Words are represented as vectors in high 

dimensional space, where each dimension captures an aspect of meaning so that in this space words that have similar meanings 135 

are located near to each other. To illustrate, in word vector space, we would expect the difference vectors 𝒒𝒖𝒆𝒆𝒏 − 𝒌𝒊𝒏𝒈 and 

𝒈𝒊𝒓𝒍 − 𝒃𝒐𝒚 to be similar, as they both reflect only a change of gender, with other dimensions of meaning (species, age, social 

status etc) constant. Embedding reduces the dimensionality of a vocabulary from tens of thousands of words to hundreds of 

meaning dimensions, known as features. 

In ecology, co-existence among taxa can reflect characteristics of the environment (Legendre et al., 1997; Ovaskainen et al., 140 

2017). We hypothesise that taxa within an assemblage have relationships that are analogous to words within a phrase, so that 
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in the feature space of ecological ‘meaning’ the vectorial representation of a taxon describes its ecological function. We apply 

GLOVE to ecological assemblages.  Instead of analysing co-occurrences of words within phrases, we analyse co-occurrences 

of taxa within assemblages. The objective is to extract ecological information by associating taxa with their ecosystem 

functioning. 145 

The GLOVE algorithm is fully detailed in Pennington et al (2014), and here we introduce the underlying philosophy and 

illustrate it in the context of ecological functioning. Consider 𝑃!" the probability that taxon j appears in the same assemblage 

as taxon i: 

𝑃!" = 𝑃(𝑗|𝑖) = 𝑋!" 𝑋!⁄ 																																																																																																																																																																																				(1) 

where 𝑋!" is the number of assemblages which contain both taxa i and j, and 𝑋! is the number of assemblages containing taxon 150 

i. This probability does not necessarily indicate the strength of the relationship. Consider, for instance, that a high value may 

simply reflect that taxon j is common and therefore provides little information about the environment. 

To determine associative relationships, GLOVE considers the ratio  𝑃!# 𝑃"#⁄  where taxon k is some probe taxon used to 

differentiate the ecological functioning of i and j. If taxon k has a strong association with taxon i but not with taxon j then  

𝑃!# 𝑃"# ≫ 1⁄ . However, if all three taxa are either commonly found together or have no relationship (i.e. low but random co-155 

occurrence) between each other, 𝑃!# 𝑃"#~1⁄ , indicating that taxon k provides very little information to help distinguish the 

ecological functions of i and j. The value of 𝑃!# 𝑃"#⁄  can therefore inform us about the direction of difference vector 𝑖 − 𝑗. 

GLOVE is trained on assemblages to map taxa onto vectors in feature space, so that the assemblages can be described as linear 

combinations of the features. For application to MEMLMc, the feature matrices are provided together with the raw taxon count 

data to provide richer training data for the ensemble learning algorithms.  160 

2.2. Assemblage data 

For model training purposes we apply two large pollen data-sets, SMPDSV1 (Harrison, 2019) and NIMBIOS (Bush et al., 

2020), and the diatom SWAP data-set (Stevenson et al., 1991). In order to demonstrate the palaeoenvironment reconstructions 

of each model, we apply i) SWAP to reconstruct lake-water  pH from diatoms in a core from The Round Loch of Glenhead 

(RLGH)  (Allott et al., 1992, Jones et al., 1989), ii) SMPDSV1 to reconstruct mean temperature of the coldest month (MTCO) 165 

from pollen in the Villarquemado core (Harrison, 2019), and iii) NIMBIOS to reconstruct the mean average temperature 

(MAT) from pollen in the Consuelo (Urrego et al., 2010) and Llaviucu (Kannan et al., 1983, Colinvaux et al., 1988) cores. 

2.2.1. Training data-sets 

SWAP: The SWAP training set (Stevenson et al., 1991) was developed as part of an international scientific effort directed at 

establishing and understanding the impacts of acid rain on freshwaters.  It includes relative abundance data for 277 diatom 170 
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taxa from 167 modern samples with clear identification criteria standards (Birks et al., 1990). We apply these data to 

reconstruct lake-water pH. 

The NIMBIOS data-set (Bush et al 2020), includes samples from 636 neotropical locations with various habitat types. There 

are 533 pollen types (some taxa can only be identified to family level), ranging from soil samples to mud-water interface 

samples from lakes. We use it to reconstruct mean annual temperature (MAT). 175 

The SMPDSv1 data set was developed as an environmental calibration data-set to provide training data for palaeoclimate 

reconstructions (Harrison, 2019). SMPDSv1 contains the relative abundancies of the 247 most important pollen taxa in 6458 

terrestrial samples from Europe, northern Africa, the Middle East, and Eurasia, compiled from multiple different published 

sources. We use it to reconstruct mean temperature of the coldest month (MTCO). 

2.2.2. Core data-sets 180 

We apply the SWAP training set to the RLGH and RLGH3 core data-sets. RLGH is a fossil diatom data-set from The Round 

Loch of Glenhead, Scotland, taken to explore anthropogenic acidification (Allott et al., 1992). The data-set includes the relative 

abundances of 41 diatom taxa in 20 samples which span the industrial era. RLGH3 was sampled to explore natural acidification 

driven by weathering and soil development during the Holocene (Jones et al., 1989). This data-set includes abundances for 

225 diatom taxa in 101 samples. 185 

We apply the NIMBIOS training set to the Consuelo and Llaviucu core data-sets. The core from Lake Consuelo, Bolivia, is an 

8.8 m sediment sequence, which records the long-term evolution of cloud forest in response to environmental changes over 

the last 46,300 years (Urrego et al., 2010). 

Lake Llaviucu is a temperature-sensitive lake in the Ecuadorian Andes (Kannan et al., 1983; Colinvaux et al., 1988). It lies 

behind a moraine in the system dated by Clapperton (1987) within the last glaciation (35,000 yr B.P.). At nearly 37 degrees S 190 

latitude, the lake is perched on the eastern face of the Cordillera Occidental and has been lifted 2,200 m since the glacial age. 

It shows the possibility of significant cooling of tropical latitude rain-forest near San Juan Bosco (Colinvaux et al., 1997). 

We apply the SMPDSv1 training set to the Villarquemado core data-set (Wei et al 2021a), a pollen record from the western 

Mediterranean Basin spanning the interval from the last part of MIS-6 to the late Holocene. The fossil pollen data were assigned 

to the subset of pollen taxa recognized in the modern SMPDSv1 data-set. There are 104 taxa represented in the final taxon list 195 

based on the 361 core samples. 

2.3. Performance and validation metrics 

2.3.1. Model parameters 

We build the GLOVE model under the PyTorch deep learning frame for efficient matrix computation and error gradient 

feedback (Paszke et al., 2019). In embedding training, we set the number of epochs (training loops) to 1000 and the number 200 
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of embedding dimensions to 256. For first layer, we build an ensemble of 1000 decision trees number with parallel computing. 

MEMLM has an external interface so that these parameters can be easily changed for third party application. 

We note that we originally developed the GLOVE analysis using the pre-packaged software ‘glove-python’ 

[https://github.com/maciejkula/glove-python] but we subsequently re-wrote the GLOVE algorithm from first principles. 

Cross-validation and down-core reconstructions from the two algorithms were not materially different and so the statistical 205 

significance testing, which is highly expensive computationally, requiring one month of parallel computing, was not repeated. 

2.3.2. The prediction importance indicator 

The MEMLM models are ensembles based on the results of multiple decision trees. Each time a decision tree forks, the 

algorithm will explore how to integrate each taxon’s abundance values to have more predictive power. The algorithm works 

through an internal cross-validation analysis to determine whether each predictor reduces the prediction errors in each decision 210 

tree, and then summarizes the results across all decision trees. The approach ascribes an importance index to each taxon which 

is normalised to total 1 across all taxa and provides a measure of that taxon’s predictive power. The ten most important taxa 

for each upstream model are detailed in Tables A2. These are used in the inference of taxon importance for climate 

reconstruction. 

2.3.3. Cross-validation 215 

The predictive powers of the MEMLM variants are compared with classical WA models (ter Braak and Barendregt 1986) and 

WA-PLS (ter Braak and Juggins 1993). We take RMSEP and R2 score as evaluation indicators, using the scikit-learn package 

(Pedregosa et al., 2012). We use five-fold cross validation in this study. 

For evaluation of the classical models we use the rioja package in R (Juggins 2017) with default settings. As WA-PLS 

performance is sensitive to the number of components; we accept a higher PLS component only if it exhibits a 5% improvement 220 

on the previous component (Birks 1998) and we present results for that component. 

2.3.4. Statistical significance of reconstructions 

While cross-validation is a useful measure of predictive power, which implicitly tests a model for over-fitting (Yates at al. 

2023), it is likely to over-estimate predictive power in practice as fossil assemblages may lie outside the high dimensional 

space of the modern training assemblages, for instance by lacking close modern analogues. Telford and Birks (2011) developed 225 

an easily applied method for testing the robustness of a reconstruction of a specific site. The approach is to create an ensemble 

of transfer functions using the same biological assemblage as the training set, but with randomised values of the environmental 

variable. If the reconstructed variable is found to explain more of the variance than 95% of the random reconstructions, then 

the reconstruction is deemed to be statistically significant. We apply this approach with the palaeoSig package in R (Telford 

and Birks, 2015) to all core reconstructions as an indicator of their robustness. 230 
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2.4. Computing hardware  

In this study, the computing CPU is Intel Core i7-4710MQ; the model is supported by the scikit-learn package (Pedregosa et 

al., 2012). MEMLM supports parallel computing: with more CPU cores, the computing time will decrease significantly.  

3 RESULTS 

3.1. Cross-validation 235 

Table 1 compares the cross-validated RMSEP for the three training sets and the five reconstruction approaches (See Figure 

A1 for regression visualization of predicted values against observed values). WA-PLS was found to be the best performing 

classical approach in all three training sets as evaluated by RMSEP, but in each case it was outperformed by MEMLM, which 

reduced RMSEP by 6% (SWAP, 167 training samples, 277 taxa), 22% (NIMBIOS, 636 training samples, 533 taxa) and 50% 

(SMPDSv1, 6548 samples, 257 taxa). The additional learning power with increasing training-set size is evident.  240 

MEMLMe is trained only on embedded assemblage data from GLOVE. The approach does not work well for the SWAP 

training set, but it significantly improves upon WA approaches when using the larger NIMBIOS and SMPDVs1 training sets, 

suggesting that when the training set is large enough, embedding is able to extract most of the predictive power of the 

assemblages. However, MEMLMe consistently under- performs relative to MEMLM and MEMLMc, and so we do not use it 

in the reconstructions. 245 

We performed additional cross-validation tests on MEMLMe to confirm that the embedding approach does indeed encode 

useful information, noting that with an embedding dimension of 256 (comparable to the number of taxa in the training sets) 

we are not applying the approach under significant dimensional reduction. We applied a progressively increasing embedding 

dimension applied to an MEMLMe model of MAT using the 533-taxon NIMBIOS data-set (Figure A1b). This sensitivity 

demonstrates that only about  30-dimensions are required for MEMLMe to outperform WA-PLS (RMSEP 2.914°C), so that 250 

that dimension reduction by more than an order of magnitude retains sufficient information to build a useful model. Increasing 

the embedding dimension towards 256 unsurprisingly progressively improves RMSEP further by encoding additional 

assemblage information. Figure A2b illustrates the learning power of increased training, with RMSEP decreasing by around 

0.4°C as the number of training epochs is increased from 40 to 1000.  

MEMLMc uses both the taxon abundance and the embedding matrices. These additional data do not significantly affect the 255 

predictive performance relative to MEMLM under-cross validation, suggesting that conventional ensemble machine learning 

approaches are sufficient to encode adequately the assemblage information in training sets comprising a few hundred taxa. 

However, we retain this model for down-core reconstructions to explore whether the addition of embedding information can 

affect reconstructions in a way that is not captured by RMSEP. 

 260 
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  MEMLM MEMLMe MEMLMc WA-Cla WA-Inv WA-PLS (best) 
 

RMSEP 
       

SWAP pH 0.289 0.376 0.294 0.307 0.313 0.299 

NIMBIOS MAT/ °C 2.203 2.193 2.092 3.194 3.577 2.914 

SMPDSv1 MTCO/ °C 2.360 2.827 2.449 5.315 6.674 4.964 

R2 score 
       

SWAP pH 0.837 0.670 0.831 0.795 0.837 0.822 

NIMBIOS MAT/ °C 0.841 0.846 0.861 0.585 0.711 0.683 

SMPDSv1 MTCO/ °C 0.920 0.881 0.913 0.397 0.624 0.518 

 

Table 1. Cross-validated RMSEP and R2 score for the three training sets. MEMLM uses the abundance matrix. MEMLMe 

uses the assemblage embedding matrix. MEMLMc uses the spliced abundance and embedding matrices.  WA-Cla is weighted 

averaging with a classical deshrinking regression, WA-Inv is weighted averaging with an inverse deshrinking regession (Birks 

et al. 1990). WA-PLS is the ‘best’ model (see 2.2.3), see Table A3 for other components. Bold highlights the model with the 265 

lowest RMSEP or highest R2 score.  

3.2. Environmental reconstructions and comparisons 

For each core we compare the reconstructions from the models with lowest RMSEP, being the MEMLM and MEMLMc 

machine learning approaches and WA-PLS, the best classical approach (section 2.3.3), which is PLS component 1 for SWAP 

and PLS component 2 for NIMBIOS and SMPDSV1. In each reconstruction we additionally provide the statistical significance 270 

test results (Telford and Birks, 2011). A reconstruction is considered significant when that reconstruction explains more of the 

variance than 95% of 1000 randomised reconstructions, which apply the same training assemblage but with randomized 

environmental characteristics. 

3.2.1. pH reconstructions from RLGH using the SWAP training set 

MEMLM and WA-PLS1 show similar trends of acidification, with pH declining from around 5.2 at about 1870 to around 4.8 275 

at about 1980. MEMLMc shows a similar trend but understates the degree of acidification relative to the other approaches. All 

three reconstructions are statistically significant, and with high explained variance, though WA-PLS1 explains more variance 

(58%) than MEMLM (46%) or MEMLMc (52%.). The variance explained by the first principal component of the fossil core 
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assemblages is 62%, indicating that the reconstructed pH explains most of the dominant part of the variance in the fossil diatom 

assemblages (Figure 2). 280 

 
Figure 2: a) pH reconstruction for the RLGH core. b, c & d) statistical significance of MEMLM, MEMLMc and WA-PLS1 
reconstructions, respectively.  

3.2.2. pH reconstruction from RLGH3 using SWAP 

All three methods provide reconstructions that show similar trends of lake-water pH, with gradual acidification in the early 285 

record from around 5.6 to 5.2 pH, attributed to the development of organic soils (Jones et al., 1989) and then a rapid post-

industrial acidification from around 5.2. to 4.8 pH. The three reconstructions also exhibit similar variability, previously 

attributed to loss of tree cover and peat erosion (Jones et al., 1989), further suggesting reconstruction robustness. Moreover, 

all three reconstructions are statistically significant, explaining between 23% and 27% of the core variance, which compares 

to 32% variance explained by the first principal component of the fossil assemblages (Figure 3). 290 
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Figure 3: a) pH reconstruction for the RLGH3 core. b, c & d) statistical significance of MEMLM, MEMLMc and WA-PLS1 
reconstructions, respectively. 

3.2.3. MAT reconstruction from Consuelo using the NIMBIOS training set 295 

All three methods display similar trends, most notably reconstructing about a 4°C warming from the Last Glacial Maximum 

at 21,000 BP to the start of the Holocene at 11,000 BP. The MEMLM approaches are more variable in general, although 

variability is largely synchronous between the three reconstruction approaches and may be associated with Dansgaard-

Oeschger (D/O) events (Bond et al. 1993; Blunier &and Brook 2001). At 8000 BP, WA-PLS2 displays a 10°C cooling 

excursion which is not apparent in the MEMLM reconstructions. Although a cooling event at 8.2ka is well known, the cooling 300 

reconstructed by WA-PLS2 cooling is excessive. All three methods are statistically significant and explain core assemblage 

variance of between 27% and 29%, compared to 32% explained by the first principal component (Figure 4). 
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Figure 4: a) MAT reconstruction for the Consuelo core. b, c & d) statistical significance of MEMLM, MEMLMc and WA.PLS2 
reconstructions, respectively. 305 

3.2.4. MAT reconstruction from Llaviucu by the NIMBIOS training set 

All three methods display similar overall trends with mid-Holocene warming, but each display different centennial variability, 

which for the MEMLMc reconstruction is clearly unrealistic for the Holocene, with temperature excursions as large as 8°C. 

Neither of the MEMLM approaches are statistically significant at the 95% confidence level, so neither can be accepted as 

robust. The WA-PLS2 reconstruction is statistically significant, although it only explains 13% of the core assemblage variance 310 

compared to the 28% explained by the first principal component of the core data (Figure 5). 
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Figure 5: a) MAT reconstruction for the Llaviucu core. b, c & d) statistical significance of MEMLM, MEMLMc and WA-PLS2 
reconstructions, respectively. 315 

3.2.6. Reconstruction for core Villarquemado using the SMPDSV1 training set 

All three approaches generate noisy reconstructions with high variability that is inconsistent. It is difficult to discern any 

meaningful trends. None of the reconstructions, including WA-PLS2, are statistically significant. The low (17%) variance 

associated with the first principal component suggests that the fossil assemblages are responding to multiple environmental 

factors with responses that are too complex to be captured by a single explanatory environmental variable (Figure 6). 320 
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Figure 6: a) MTCO reconstruction for the Villarquemado core. b, c & d) statistical significance of MEMLM, MEMLMc and WA-
PLS2 reconstructions, respectively. 

4 Discussion and conclusions 

We have developed three variants of a multi-model ensemble machine learning algorithm, MEMLM. These each train three 325 

separate ensemble machine learning algorithms (random forests, extremely random trees and lightGBM) and combine them 

into a consensus reconstruction using a weak learner approach based on multiple regression. The three approaches only differ 

in their input data. The simpler MEMLM takes only taxon abundance data. MEMLMe, built only upon the GLOVE embedding 

matrix, does not perform as well as MEMLM. However, MEMLMe was found to be a useful reconstruction model, at least 

when applied to the larger NIMBIOS and SMPDSV1 training sets, and the embedding was able to usefully summarise taxon 330 

assemblages with fewer than 50 dimensions. The additional complexity of MEMLMc, which uses both taxon count and 

embedding, did not significantly affect the predictive performance relative to MEMLM under cross-validation, suggesting that 

conventional ensemble machine learning approaches are sufficient to encode adequately ecological information in the 

relatively small data-sets used in these palaeoclimate reconstructions. We note that the real power of embedding (dimension 

reduction) approaches in ecology is likely to be in their applications to much larger data-sets, when ecological relationships 335 

between 10,000’s of taxa and their environment are being considered. 

The MEMLM approaches were both found to perform better than classical weighted averaging approaches under cross 

validation. In the case of the smallest SWAP data-set the advantages were modest, but in the largest SMPDSV1 data-set 

RMSEP errors were reduced by a factor of two relative to the best performing classical WA approach. These improvements 
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in performance clearly validate the potential benefits of strong data mining abilities of machine learning to create a more 340 

complete description of a data-set, suggesting these techniques have the potential to improve upon classical reconstruction 

approaches. 

When applied to core reconstructions, MEMLM approaches were found to generate considerably more variability than the 

WA-PLS reconstructions. While some elements of this additional variability might be realistic, especially considering that 

WA-PLS approaches are known to bias reconstructions towards the centre of their training data (Liu et al., 2020), the variability 345 

was not always found to be coherent between different reconstruction approaches and the magnitude of MEMLM variability 

was in some cases implausibly high, for example by suggesting Holocene variability of up to 8°C in the Ecuadorian Llaviucu 

core. 

We performed significance testing on all core reconstructions and found that five of the fifteen reconstructions were not 

statistically significant and therefore should not be considered robust. Both MEMLM and MEMLMc approaches failed on the 350 

Llavuicu core, confirming our suspicion that the unrealistic variability was an artefact even though the overall trends of the 

reconstruction were consistent with the robust WA-PLS2 reconstruction. All three approaches failed the statistical robustness 

test at Villarquemado, which is sensitive to multiple environmental factors and has responses which appear too complex to be 

captured by a single explanatory variable. 

In summary, while MEMLM can generate useful reconstructions, it should always be used in conjunction with statistical 355 

significance testing to ensure the reconstructions are robust and potentially realistic and reliable. The additional complexities 

of providing assemblage information to MEMLMc did not reduce RMSEP or spurious variability and nor did it improve 

statistical significance. However, MEMLMe demonstrated that embedding is useful as it can summarise ecological 

assemblages using significantly fewer dimensions. Its benefits may be felt more clearly in applications to much larger data-

sets and in applications beyond palaeoenvironmental reconstructions. The poor performance of MEMLM in some 360 

reconstructions may be due to extrapolation due to poor or no analogue fossil assemblages. Even though all models were 

applied under the same extrapolation, the WA-PLS2 reconstructions were found to be more reliable than MEMLM, although 

WA-PLS2 also failed to generate robust reconstructions at Villarquemado. We infer that that the use of simpler WA models, 

which include a major biological assumption (unimodal environmental response) can be more powerful than the use of brute-

force learning, despite reductions in RMSEP. We reiterate our recommendation that all reconstructions using any approach, 365 

should be accompanied with statistical significance testing. Seemingly useful models may fail when applied under 

extrapolation or when the assemblage variance is only weakly dependent on the reconstructed environmental variable.  
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Appendices A 

 
 
Figure A1: Regression visualization of predicted values against observed values in three training sets. MEMLM uses the abundance 395 
matrix. MEMLMe uses the assemblage embedding matrix. Component number of WA-PLS was selected for each training set as the 
lowest component that showed a 5% improvement over the previous component (Table A3). WA-Cla is weighted averaging with a 
classical deshrinking regression, WA-Inv is weighted averaging with an inverse deshrinking regression (Birks et al. 1990). WA-
PLS’s components selected based on method described in 2.3.3, see Table S3 for full results. 
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 400 

Figure A2: MEMLMe prediction performance under different GLOVE hyper-parameter settings. a) Fix epoch = 1000, set 
embedding dimensions from 8 to 256; b) Fix embedding dimensions = 256, set epoch from 40 to 1000. The model is developed from 
the NIMBIOS set and trained upon MAT. 

Table A1: RMSEP and R2 values (based on cross-validation) of the 18 environment elements prediction of MEMLMc in the 
NIMBIOS data-set.  Mean is average of the prediction of the three downstream models. RF presents the random forest values; ET 405 
presents the extended random tree results. Bold highlights the model with the best prediction performance. 

  Elements RF ET lightGBM MEMLMc Mean 
RMSEP Precipitation of the warmest quarter 138.17 131.513 133.124 125.531 129.042 

 Isothermality 3.065 2.793 3.09 2.778 2.838 

 Annual precipitation 483.099 442.623 479.217 430.291 445.813 

 Mean temperature coldest quarter 23.162 21.228 23.061 21.023 21.387 

 Maximum temperature warmest month 25.104 22.343 24.01 21.181 22.421 

 Minimum temperature coldest month 26.66 24.15 26.226 23.734 24.369 

 Mean temperature warmest quarter 22.898 21.435 22.655 20.727 21.316 

 Precipitation of the coldest quarter 157.458 135.741 151.69 129.674 139.075 

 Precipitation of the driest month 28.907 25.898 27.892 23.898 25.723 
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 Temperature seasonality 227.1 203.536 221.23 203.281 207.248 

 Precipitation of the wettest month 64.759 60.669 64.387 58.822 60.572 

 Temperature annual range 22.179 20.917 22.101 20.524 20.83 

 Mean temperature wettest quarter 18.312 16.515 18.722 16.094 16.865 

 Precipitation of the wettest quarter 171.418 161.823 173.802 157.769 162.204 

 Precipitation seasonality 11.581 10.858 11.506 10.635 10.852 

 Mean diurnal temperature range 13.139 11.684 12.968 11.258 11.855 

 Mean temperature driest quarter 23.754 22.225 23.556 21.989 22.198 

 Precipitation of the driest quarter 96.455 85.831 92.351 79.657 85.539 
R2 score Precipitation of the warmest quarter 0.656 0.688 0.68 0.716 0.7 

 Isothermality 0.862 0.886 0.86 0.887 0.882 

 Annual precipitation 0.81 0.841 0.813 0.85 0.838 

 Mean temperature coldest quarter 0.862 0.884 0.863 0.886 0.882 

 Maximum temperature warmest month 0.771 0.819 0.79 0.837 0.817 

 Minimum temperature coldest month 0.887 0.907 0.89 0.91 0.905 

 Mean temperature warmest quarter 0.85 0.868 0.853 0.877 0.87 

 Precipitation of the coldest quarter 0.845 0.885 0.856 0.895 0.879 

 Precipitation of the driest month 0.821 0.857 0.834 0.878 0.859 

 Temperature seasonality 0.835 0.868 0.844 0.868 0.863 

 Precipitation of the wettest month 0.752 0.782 0.755 0.795 0.783 

 Temperature annual range 0.848 0.865 0.85 0.87 0.866 

 Mean temperature wettest quarter 0.822 0.855 0.814 0.862 0.849 

 Precipitation of the wettest quarter 0.761 0.787 0.755 0.798 0.786 

 Precipitation seasonality 0.773 0.8 0.776 0.809 0.801 

 Mean diurnal temperature range 0.803 0.845 0.809 0.856 0.84 

 Mean temperature driest quarter 0.87 0.887 0.873 0.889 0.887 
  Precipitation of the driest quarter 0.806 0.846 0.822 0.868 0.847 
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Table A2: The top 10 important taxa for the environmental reconstructions in the SWAP, NIMBIOS and SMPDSv1 training sets 
sorted by the random forests results.  410 

  Taxon RF ET LightGBM 
SWAP EU047A 0.505 0.139 0.033 

 AC013A 0.072 0.182 0.028 

 EU048A 0.061 0.064 0.02 

 TA003A 0.048 0.043 0.017 

 PE002A 0.031 0.013 0.027 

 CM048A 0.023 0.006 0.029 

 BR001A 0.022 0.012 0.032 

 TA004A 0.018 0.02 0.017 

 NA140A 0.012 0.007 0.01 
 CM017A 0.011 0.01 0.019 

NIMBIOS Alnus 0.263 0.096 0.045 

 Poaceae 0.146 0.161 0.124 

 Plantago 0.118 0.039 0.006 

 MoracUrtic 0.105 0.02 0.068 

 Bursera 0.049 0.016 0.008 

 Myrtaceae 0.024 0.007 0.016 

 Ericaceae 0.022 0.042 0.021 

 Hedyosmum 0.015 0.03 0.035 

 Asteraceae 0.013 0.083 0.056 
 Cyperaceae 0.013 0.02 0.068 

SMPDSv1 Picea 0.339 0.038 0.029 

 Fagus 0.169 0.016 0.012 

 
Betula 
Chamaebetula. 0.103 0.22 0.008 

 Betula 0.042 0.077 0.041 

 Alnus Alnobetula 0.039 0.017 0.007 

 Larix 0.03 0.03 0.009 

 Quercus deciduous 0.028 0.017 0.03 

 Olea 0.027 0.072 0.013 

 Oxyria Rumex 0.017 0.009 0.019 
  Poaceae 0.014 0.0144 0.028 
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Table A3: RMSEP (based on cross-validation) of the first five components in WA-PLS of the three training sets.  Bold highlights the 
‘best’ component, noting that we accept a higher PLS component only if it exhibits a 5% improvement on the previous component 415 
(Birks 1998).  

Dataset Feature 
WA-PLS 

Comp01 Comp02 Comp03 Comp04 Comp05 

NIMBIOS MAT 31.971  29.136  30.224  31.712  33.557  

SMPDSv1  MTCO 5.304  4.964  4.854  4.842  4.876  

SWAP pH 0.307  0.299  0.313  0.325  0.344  

https://doi.org/10.5194/cp-2023-69
Preprint. Discussion started: 27 September 2023
c© Author(s) 2023. CC BY 4.0 License.



 

23 
 

References 

Aguirre-Gutiérrez, J., Rifai, S., Shenkin, A., Oliveras, I., Bentley, L. P., Svátek, M., Girardin, C. A. J., Both, S., Riutta, 

T., Berenguer, E., Kissling, W. D., Bauman, D., Raab, N., Moore, S., Farfan-Rios, W., Figueiredo, A. E. S., Reis, S. M., 420 

Ndong, J. E., Ondo, F. E., N’ssi Bengone, N., Mihindou, V., Moraes de Seixas, M. M., Adu-Bredu, S., Abernethy, K., 

Asner, G. P., Barlow, J., Burslem, D. F. R. P., Coomes, D. A., Cernusak, L. A., Dargie, G. C., Enquist, B. J., Ewers, R. 

M., Ferreira, J., Jeffery, K. J., Joly, C. A., Lewis, S. L., Marimon-Junior, B. H., Martin, R. E., Morandi, P. S., Phillips, 

O. L., Quesada, C. A., Salinas, N., Schwantes Marimon, B., Silman, M., Teh, Y. A., White, L. J. T., and Malhi, Y.: 

Pantropical modelling of canopy functional traits using Sentinel-2 remote sensing data, Remote Sens Environ, 252, 425 

112122, doi:10.1016/j.rse.2020.112122, 2021. 

Allott, T. E. H., Harriman, R., and Battarbee, R. W.: Reversibility of lake acidification at the Round Loch of Glenhead, 

Galloway, Scotland, Environmental Pollution, 77, 219–225, doi:10.1016/0269-7491(92)90080-T 1992, 1992. 

Bannar-Martin, K. H., Kremer, C. T., Ernest, S. K. M., Leibold, M. A., Auge, H., Chase, J., Declerck, S. A. J., 

Eisenhauer, N., Harpole, S., Hillebrand, H., Isbell, F., Koffel, T., Larsen, S., Narwani, A., Petermann, J. S., Roscher, 430 

C., Cabral, J. S., and Supp, S. R.: Integrating community assembly and biodiversity to better understand ecosystem 

function: the Community Assembly and the Functioning of Ecosystems (CAFE) approach, Ecol Lett, 21, 167–180, 

doi:10.1111/ele.12895, 2018. 

Battarbee, R. W., Stevenson, A. C., Rippey, B., Fletcher, C., Natkanski, J., Wik, M., and Flower, R. J.: Causes of Lake 

Acidification in Galloway, South-West Scotland: A Palaeoecological Evaluation of the Relative Roles of Atmospheric 435 

Contamination and Catchment Change for Two Acidified Sites with Non-Afforested Catchments, J Ecol, 77, 651–672, 

doi:10.2307/2260976, 1989. 

Battarbee, R. W., Monteith, D. T., Juggins, S., Evans, C. D., Jenkins, A., and Simpson, G. L.: Reconstructing pre-

acidification pH for an acidified Scottish loch: A comparison of palaeolimnological and modelling approaches, Environ 

Pollut, 137, 135–149, doi:10.1016/j.envpol.2004.12.021, 2005. 440 

Birks, H. J. B, ter Braak C.J.F, Line J.M., Juggins S. and Stevenson A.C. Diatoms and pH reconstruction Phil. Trans. 

R. Soc. Lond. B, 327, 263–278, doi:10.1098/rstb.1990.0062, 1990. 

Birks, H., Birks, H.: D.G. Frey and E.S. Deevey: Review 1: Numerical tools in palaeolimnology – Progress, 

potentialities, and problems, Journal of Paleolimnology, 20, 307–332. doi:10.1023/A:1008038808690, 1998. 

Birks, H. j. b., Braak, C. j. f. Ter, Line, J. M., Juggins, S., Stevenson, A. C., Battarbee, R. W., Mason, B. J., Renberg, 445 

I., and Talling, J. F.: Diatoms and pH reconstruction, Philosophical Transactions of the Royal Society of London. B, 

Biological Sciences, 327, 263–278, doi:10.1098/rstb.1990.0062, 1990. 

Blunier, T. and Brook, E. J.: Timing of Millennial-Scale Climate Change in Antarctica and Greenland During the Last 

Glacial Period, Science, 291, 109–112, doi:10.1126/science.291.5501.109, 2001. 

https://doi.org/10.5194/cp-2023-69
Preprint. Discussion started: 27 September 2023
c© Author(s) 2023. CC BY 4.0 License.



 

24 
 

Bond, G., Broecker, W., Johnsen, S., McManus, J., Labeyrie, L., Jouzel, J., and Bonani, G.: Correlations between 450 

climate records from North Atlantic sediments and Greenland ice, Nature, 365, 143–147, doi:10.1038/365143a0, 1993. 

ter Braak. C. J. F. and Juggins, S.: Weighted averaging partial least squares regression (WA-PLS): an improved 

method for reconstructing environmental variables from species assemblages, Hydrobiologia 269, 485–502, 

doi:10.1007/BF00028046, 1993. 

ter Braak, C. J. F. and Barendregt, L. G.: Weighted averaging of species indicator values: Its efficiency in 455 

environmental calibration, Math Biosci, 78, 57–72, doi:10.1016/0025-5564(86)90031-3, 1986. 

Brook, B. W., Sodhi, N. S., and Bradshaw, C. J. A.: Synergies among extinction drivers under global change, Trends 

Ecol Evol, 23, 453-460, doi:10.1016/j.tree.2008.03.011, 2008. 

Brooks, S. J. and Birks, H. J. B.: Chironomid-inferred air temperatures from Lateglacial and Holocene sites in north-

west Europe: progress and problems, Quat Sci Rev, 20, 1723–1741, doi:10.1016/S0277-3791(01)00038-5, 2001. 460 

Bush, M. B., Correa-Metrio, A., van Woesik, R., Collins, A., Hanselman, J., Martinez, P., and McMichael, C. N. H.: 

Modern pollen assemblages of the Neotropics, J Biogeogr, 48, 231–241, doi:10.1111/jbi.13960, 2021. 

Christin, S, Hervet, É, Lecomte, N: Applications for deep learning in ecology, Methods Ecol Evol, 10, 1632–1644, 

doi:10.1111/2041-210X.13256, 2019. 

Clapperton. C. M: Maximum extent of the late Wisconsin glaciation in the Ecuadorian Andes Quaternary of South 465 

America and Antarctic Peninsula, Balkema, Rotterdam, 165–180, doi: ISBN 9781003079323, 1987 

Cleator, S. F., Harrison, S. P., Nichols, N. K., Colin Prentice, I., and Roulstone, I.: A new multivariable benchmark for 

Last Glacial Maximum climate simulations, Clim Past, 16, 699–712, doi:10.5194/cp-16-699-2020, 2020. 

Colinvaux, P. A., Olson, K., and Liu, K. B.: Late-glacial and holocene pollen diagrams from two endorheic lakes of the 

inte-andean plateau of ecuador, Rev Palaeobot Palynol, 55, 83–99, doi:10.1016/0034-6667(88)90055-3, 1988. 470 

Colinvaux, P. A., Bush, M. B., Steinitz-Kannan, M., and Miller, M. C.: Glacial and Postglacial Pollen Records from the 

Ecuadorian Andes and Amazon, Quat Res, 48, 69–78, doi:10.1006/qres.1997.1908, 1997. 

Dormann, C. F., Calabrese, J. M., Guillera-Arroita, G., Matechou, E., Bahn, V., Bartoń, K., Beale, C. M., Ciuti, S., 

Elith, J., Gerstner, K., Guelat, J., Keil, P., Lahoz-Monfort, J. J., Pollock, L. J., Reineking, B., Roberts, D. R., Schröder, 

B., Thuiller, W., Warton, D. I., Wintle, B. A., Wood, S. N., Wüest, R. O., and Hartig, F.: Model averaging in ecology: a 475 

review of Bayesian, information-theoretic, and tactical approaches for predictive inference, Ecol Monogr, 88, 485–504, 

doi:10.1002/ecm.1309, 2018. 

Féret, J. B., Berger, K., de Boissieu, F., and Malenovský, Z.: PROSPECT-PRO for estimating content of nitrogen-

containing leaf proteins and other carbon-based constituents, Remote Sens Environ, 252, doi:10.1016/j.rse.2020.112173, 

2021. 480 

Geurts, P., Ernst, D., and Wehenkel, L.: Extremely randomized trees, Mach Learn, 63, 3–42, doi:10.1007/s10994-006-

6226-1, 2006.  

https://doi.org/10.5194/cp-2023-69
Preprint. Discussion started: 27 September 2023
c© Author(s) 2023. CC BY 4.0 License.



 

25 
 

Friedman J.H.: Greedy function approximation: A gradient boosting machine, Ann. Statist, 29(5), 1189–1232, 

doi:10.1214/aos/1013203451, 2011. 

Harrison, S. P: Modern pollen data for climate reconstructions, version 1 (SMPDS), University of Reading, doi: 485 

10.17864/1947.194, 2019. 

Harrison, S.P., González-Sampériz, P., Gil-Romera, G.: Fossil pollen data for climate reconstructions from El Cañizar 

de Villarquemado, University of Reading, doi: 10.17864/1947.219, 2019. 

Harrison, S.P.: Climate reconstructions for the SMPDSv1 modern pollen data set. doi: 10.5281/zenodo.3605003, 2020. 

Hais, M., Komprdová, K., Ermakov, N., and Chytrý, M.: Modelling the Last Glacial Maximum environments for a 490 

refugium of Pleistocene biota in the Russian Altai Mountains, Siberia, Palaeogeogr Palaeoclimatol Palaeoecol, 438, 

135–145, doi:10.1016/j.palaeo.2015.07.037, 2015. 

Heiri, O., Lotter, A. F., Hausmann, S., and Kienast, F.: A chironomid-based Holocene summer air temperature 

reconstruction from the Swiss Alps, Holocene, 13, 477–484, doi:10.1191/0959683603hl640ft, 2003. 

Helama, S., Makarenko, N. G., Karimova, L. M., Kruglun, O. A., Timonen, M., Holopainen, J., Meriläinen, J., and 495 

Eronen, M.: Dendroclimatic transfer functions revisited: Little Ice Age and Medieval Warm Period summer 

temperatures reconstructed using artificial neural networks and linear algorithms, Ann Geophys, 27, 1097–1111, 

doi:10.5194/angeo-27-1097-2009, 2009. 

Holden, P. B., Birks, H. J. B., Brooks, S. J., Bush, M. B., Hwang, G. M., Matthews-Bird, F., Valencia, B. G., and Van 

Woesik, R.: BUMPER v1.0: A Bayesian user-friendly model for palaeo-environmental reconstruction, Geosci Model 500 

Dev, 10, 483–498, doi:10.5194/gmd-10-483-2017, 2017. 

Huang, Y., Yang, L. and Fu, Z.: Reconstructing coupled time series in climate systems using three kinds of machine-

learning methods, Earth Syst Dynam, 11, 835–853, doi:10.5194/esd-11-835-2020, 2020. 

V.J. Jones, A.C. Stevenson, R.W: Battarbee, Acidification of lakes in Galloway, south-west Scotland: a diatom and 

pollen study of the post-glacial history of the Round Loch of Glenhead, J Ecol., 77, 1-22, doi:10.2307/2260912, 1989. 505 

Houssaye, B. D. La, Flaming, P. L., Nixon, Q., and Acton, G. D.: Machine Learning and Deep Learning Applications 

for International Ocean Discovery Program Geoscience Research, in: SMU Data Science Review, 2(3), 9, 

https://scholar.smu.edu/datasciencereview/vol2/iss3/9, 2019. 

Jordan, G. J., Harrison, P. A., Worth, J. R. P., Williamson, G. J., and Kirkpatrick, J. B.: Palaeoendemic plants provide 

evidence for persistence of open, well-watered vegetation since the Cretaceous, Glob Ecol Biogeogr, 25, 127–140, 510 

doi:10.1111/geb.12389, 2016. 

Juggins, S: Rioja: analysis of Quaternary science data, CRAN [code], R package version (0.9–15.1), 

https://github.com/nsj3/rioja, 2017. 

Steinitz-Kannan M., Colinvaux P.A., Kannan R.: Limnological Studies in Ecuador 1. A survey of chemical and physical 

properties of Ecuadorian lakes, Arch Hydrobiol, Suppl., 65, 61-105, 1983. 515 

https://doi.org/10.5194/cp-2023-69
Preprint. Discussion started: 27 September 2023
c© Author(s) 2023. CC BY 4.0 License.



 

26 
 

Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma, W., Ye, Q., and Liu, T.-Y.: LightGBM: A highly efficient gradient 

boosting decision tree, in: Advances in Neural Information Processing Systems, 30, 2017. 

Legendre, P., Galzin, R., and Harmelin-Vivien, M. L.: Relating behavior to habitat: solutions to the fourth-corner 

problem, Ecology, 78, 547–562, doi:10.1890/0012-9658(1997)078[0547:RBTHST]2.0.CO;2, 1997. 

Liaw, A., Wiener, M.: Classification and regression by randomForest, R news, 2(3), 18-22, 520 

http://www.stat.berkeley.edu/users/breiman/, 2002. 

Liu, M., Prentice, I. C., Ter Braak, C. J. F., and Harrison, S. P.: An improved statistical approach for reconstructing 

past climates from biotic assemblages, Proceedings of the Royal Society A, 476, doi:10.1098/rspa.2020.0346, 2020. 

Norberg, A., Abrego, N., Blanchet, F. G., Adler, F. R., Anderson, B. J., Anttila, J., Araújo, M. B., Dallas, T., Dunson, 

D., Elith, J., Foster, S. D., Fox, R., Franklin, J., Godsoe, W., Guisan, A., O’Hara, B., Hill, N. A., Holt, R. D., Hui, F. K. 525 

C., Husby, M., Kålås, J. A., Lehikoinen, A., Luoto, M., Mod, H. K., Newell, G., Renner, I., Roslin, T., Soininen, J., 

Thuiller, W., Vanhatalo, J., Warton, D., White, M., Zimmermann, N. E., Gravel, D., and Ovaskainen, O.: A 

comprehensive evaluation of predictive performance of 33 species distribution models at species and community levels, 

Ecol Monogr, 89, doi:10.1002/ecm.1370, 2019. 

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, 530 

R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., & Duchesnay, É.: Scikit-Learn: 

Machine Learning in Python. J. Mach. Learn. Res., 12, 2825–2830, 2011. 

Pennington, J., Socher, R., and Manning, C.: GloVe: Global Vectors for Word Representation, in: Proceedings of the 

2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), 1532–1543, doi:10.3115/v1/D14-

1162, 2014. 535 

Ovaskainen, O., Tikhonov, G., Norberg, A., Blanchet, F.G., Duan, L., Dunson, D., Roslin, T. & Abrego, N.: How to 

make more out of community data? A conceptual framework and its implementation as models and software, Ecol 

Lett, 20, 561-576, doi:10.1111/ele.12757. 2017, 2017. 

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L. 

and Desmaison, A., Andreas K., Edward Z. Y., Zachary D., Martin R., Alykhan T., Sasank C., Benoit S., Lu F., Junjie 540 

B. and Soumith C.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural 

information processing systems, 32, 8024-8035, arXiv:1912.01703, 2019. 

Rasmussen, S. O., Bigler, M., Blockley, S. P., Blunier, T., Buchardt, S. L., Clausen, H. B., Cvijanovic, I., Dahl-Jensen, 

D., Johnsen, S. J., Fischer, H., Gkinis, V., Guillevic, M., Hoek, W. Z., Lowe, J. J., Pedro, J. B., Popp, T., Seierstad, I. 

K., Steffensen, J. P., Svensson, A. M., Vallelonga, P., Vinther, B. M., Walker, M. J. C., Wheatley, J. J., and Winstrup, 545 

M.: A stratigraphic framework for abrupt climatic changes during the Last Glacial period based on three synchronized 

Greenland ice-core records: Refining and extending the INTIMATE event stratigraphy, Quat Sci Rev, 106, 14–28, 

doi:10.1016/j.quascirev.2014.09.007, 2014. 

https://doi.org/10.5194/cp-2023-69
Preprint. Discussion started: 27 September 2023
c© Author(s) 2023. CC BY 4.0 License.



 

27 
 

Telford, R. J. and Birks, H. J. B.: A novel method for assessing the statistical significance of quantitative reconstructions 

inferred from biotic assemblages, Quat Sci Rev, 30, 1272–1278, doi:10.1016/j.quascirev.2011.03.002, 2011. 550 

Telford, R. J.and Trachsel, M.: palaeoSig: Significance Tests for Palaeoenvironmental Reconstructions. R Package 

Version 1.1-3. Bergen: University of Bergen, 2015. 

Schulte, P.J. and Hinckley, T.M.: A Comparison of Pressure-Volume Curve Data-Analysis Techniques, J Exp Bot, 36, 

1590-1602, doi: 10.1093/jxb/36.10.1590, 1985. 

Stevenson, A.C, Juggins, S., Birks, H.J.B., Anderson, D.S., Anderson, N.J., Battarbee, R.W., Berge, F., Davis, R.B, 555 

Flower, R.J. & Haworth, E.Y, The Surface Waters Acidification Project Palaeolimnology Programme: Modern 

Diatom/Lake-Water Chemistry Data-Set, UCL Environmental Change Research Centre, doi:10.1098/rstb.1990.0056, 

1991. 

Syam, N. and Kaul, R.: Overfitting and Regularization in Machine Learning Models in Machine Learning and 

Artificial Intelligence in Marketing and Sales, Emerald Publishing Limited, Bingley, 65-84, doi: 10.1108/978-1-80043-560 

880-420211004, 2021 

Turner, M. G., Wei, D., Prentice, I. C., and Harrison, S. P.: The impact of methodological decisions on climate 

reconstructions using WA-PLS, Quat Res, 99, 341–356, doi:10.1017/qua.2020.44, 2020. 

Tylianakis, J. M., Didham, R. K., Bascompte, J., and Wardle, D. A.: Global change and species interactions in 

terrestrial ecosystems, Ecol Lett, 11, 1351-1363, doi:10.1111/j.1461-0248.2008.01250.x, 2008. 565 

Urrego, D. H., Bush, M. B., and Silman, M. R.: A long history of cloud and forest migration from Lake Consuelo, Peru, 

Quat Res, 73, 364–373, doi:10.1016/j.yqres.2009.10.005, 2010. 

Wei, D., González-Sampériz, P., Gil-Romera, G., Harrison, S. P., and Prentice, I. C.: Seasonal temperature and 

moisture changes in interior semi-arid Spain from the last interglacial to the Late Holocene, Quat Res, 101, 143–155, 

doi:10.1017/qua.2020.108, 2021a. 570 

Wei, G., Peng, C., Zhu, Q., Zhou, X., and Yang, B.: Application of machine learning methods for paleoclimatic 

reconstructions from leaf traits, International Journal of Climatology, 41, E3249–E3262, doi:10.1002/joc.6921, 2021b. 

Yates, L. A., Aandahl, Z., Richards, S. A., and Brook, B. W.: Cross validation for model selection: A review with 

examples from ecology, Ecol Monogr, 93, doi:10.1002/ecm.1557, 2023. 

Yeom, S., Giacomelli, I., Fredrikson, M. & Jha, S.: Privacy Risk in Machine Learning: Analyzing the Connection to 575 

Overfitting, 2018 IEEE 31st Computer Security Foundations Symposium (CSF), 268-282, doi:10.1109/CSF.2018.00027, 

2018. 

Zhou, Z.H.: Ensemble Methods: Foundations and Algorithms, 236, CRC Press, New York, ISBN 9780429151095, 2012. 

 

https://doi.org/10.5194/cp-2023-69
Preprint. Discussion started: 27 September 2023
c© Author(s) 2023. CC BY 4.0 License.


