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Abstract. Classical palaeoenvironmental reconstruction models often incorporate biological ideas and commonly assume that 10 

the taxa comprising a fossil assemblage exhibit unimodal response functions of the environmental variable of interest. In 

contrast, machine-learning approaches do not rely upon any biological assumptions, but instead need training with large data-

sets to extract some understanding of the relationships between biological assemblages and their environment. To explore the 

relative merits of these two approaches, we have developed a two-layered machine-learning reconstruction model MEMLM 

(Multi Ensemble Machine Learning Model). The first layer applies three different ensemble machine-learning models (random 15 

forests, extra random trees, and lightGBM), trained on the modern taxon assemblage and associated environmental data to 

make reconstructions based on the three different models, while the second layer uses multiple linear regression to integrate 

these three reconstructions into a consensus reconstruction. We considered three versions of the model: 1) a standard version 

of MEMLM, which uses only taxon abundance data, 2) MEMLMe, which uses only dimensionally reduced assemblage 

information, using a natural language-processing model (GloVe) to detect associations between taxa across the training data-20 

set, and 3) MEMLMc which incorporates both raw taxon abundance and dimensionally reduced summary (GloVe) data. We 

trained these MEMLM model variants with three high quality diatom and pollen training sets and compared their reconstruction 

performance with three weighted averaging (WA) approaches (WA-Cla, classical deshrinking; WA-Inv, inverse deshrinking; 

and WA-PLS, partial least squares). In general, the MEMLM approaches, even when trained on only dimensionally reduced 

assemblage data, performed substantially better than the WA approaches in the larger trainng sets, as judged by cross-25 

validatory prediction error. When applied to fossil data, MEMLM variants sometimes generated qualitatively different 

palaeoenvironmental reconstructions from each other and from reconstructions based on WA approaches. We applied a 

statistical significance test to all the reconstructions. This successfully identified each incidence where the reconstruction is 

not robust with respect to the model choice. We found that machine-learning approaches could outperform classical 

approaches, but could sometimes fail badly in the reconstruction, despite showing high performance under cross-validation, 30 

likely indicating problems when extrapolation occurs. We found that the classical approaches are generally more robust, 

although they could also generate reconstructions which have modest statistical significance, and therefore may be unreliable. 

Given these conclusions, we consider that cross-validation is not a sufficient measure of transfer-function performance, and 
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we recommend that the results of statistical significance tests are provided alongside the down-core reconstructions based on 

fossil assemblages.  35 

 

1 INTRODUCTION 

The distribution and abundance of taxa are interrelated with the environment (Ovaskainen et al., 2017). By considering 

environmental variability across space instead of through time, the palaeoenvironment can be reconstructed by applying 

modern taxon-environment relationships to the fossil record (e.g. Battarbee et al., 2005; Cleator et al., 2020; Turner et al., 40 

2020). 

With the development of palaeoecological research, large training data-sets for environmental reconstruction have been 

compiled in recent years. (e.g. Harrison, 2019a; Bush et al., 2021). Data assimilation has long been a focus of Earth science 

and ecology, and the integration of larger data-sets provides more comprehensive training information (e.g. Christin et al., 

2019; de la Houssaye et al., 2019; Bush et al., 2021). For large data-sets, machine-learning methods have strong advantages 45 

and may be appropriate to extract the non-linear relationships between taxon compositional information and the environment, 

and to integrate a variety of sources of data (e.g. Helama et al., 2009; Aguirre-Gutierrez et al., 2021; Wei et al., 2021b). 

In recent years, machine learning has been applied to a wide range of applications in palaeoecology (Hais et al., 2015; Jordan 

et al., 2016). Wei et al. (2021b) reconstructed palaeoclimate using five different machine-learning methods based on digital 

leaf physiognomic data and integrated the predictions by averaging. Hais et al. (2015) predicted the Pleistocene biota 50 

distributions in palaeoclimate using machine learning. Huang et al. (2020) used one series of palaeoclimate sequences to 

predict the climate in another period. These studies show that machine learning has strong versatility and effectiveness, and 

suggest it could be more widely applied. 

Machine-learning approaches are not based upon any biological assumptions, which may weaken their performance relative 

to mathematically simpler classical approaches that do. For instance, weighted averaging (WA) approaches are based upon the 55 

simple but realistic assumption that taxa have a unimodal response to the environmental variable of interest (ter Braak and 

Barendregt, 1986). The absence of any such prior understanding is likely to place additional demands on the minimum adequate 

size of a modern training set. Moreover, it may weaken the ability of machine learning to operate under extrapolation, critically 

important when applying any reconstruction approach to past taxon assemblages that lack modern analogues.  To address these 

questions, we have developed the Multi Ensemble Machine Learning Model (MEMLM) to apply in a systematic comparison 60 

with classical WA reconstruction approaches. 

The benefit of machine learning lies in its robust data mining and information extraction capabilities, especially when applied 

to large data-sets. Data mining involves discovering patterns, trends, and correlations hidden within extensive data-sets. 

Information extraction, on the other hand, focuses on extracting insights from unstructured data, typically relying on Natural 

Language Processing and encoding techniques to understand and analyse relationships within unstructured data. An associated 65 
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problem is that when a sample size is limited, machine learning is more likely to learn the noise component and generate 

prediction errors due to over-fitting (Yeom et al., 2018; Syam and Kaul, 2021). This suggests that an ensemble-learning 

method, which integrates models with potentially different biases, may improve the prediction performance (Wei et al., 2021b). 

Ensemble learning was developed to address these issues (Zhou, 2012) and is the motivation for the ensemble learning 

approach we present, namely the Multi Ensemble Machine Learning Model (MEMLM). 70 

We build MEMLM from three different machine-learning ensemble models of random forests, extra random trees, and 

lightGBM. We then combine these three models into a single consensus model which we treat as our ‘best’ machine-learning 

approach. Classical studies have integrated different ecological approaches by calculating the mean of their predictions 

(Norberg et al., 2019). An arithmetic mean gives equal weight to each model, even though the models may have different 

advantages in different applications (Schulte and Hinckley, 1985; Zhou, 2012).  In MEMLM, we weight each model according 75 

to its predictive power under cross-validation. 

Most classical models give equal weight to different taxa, which may reduce their prediction potential and smooth the 

reconstruction (e.g. Brooks and Birks, 2001; Heiri et al., 2003; Battarbee et al., 2005; Wei et al., 2021a). In WA-PLS (TWA-

PLS), tolerance down-weighting can be applied to assign weights to each taxon in reconstructing the environment that depends 

upon the breadth of the taxon’s environmental niche (Liu et al., 2020). Bayesian approaches such as BUMPER (Holden et al., 80 

2017) are built on classical assumptions and are highly constrained by taxa with low environmental tolerances, especially when 

characterised with high confidence. In machine-learning ensemble models, each taxon has a different predicted contribution 

which is used to weight its contribution to the ensemble.  

We develop three versions of MEMLM; the standard version which only considers raw taxon abundance data; MEMLMe, 

which only uses dimensionally reduced assemblage data; and MEMLMc, which uses both. The motivation for the dimensional 85 

reduction is to explore whether considering known associations between taxa can improve the palaeoenvironmental 

reconstructions. For this, we use the natural language processing model GloVe (Pennington et al., 2014), which calculates the 

relationships between co-occurring words in the same sentence. GloVe is a form of dimension reduction which assigns vectors 

(also called embedding) to each word according to the word connection relationships, so that each sentence can be represented 

as a superposition of the word embeddings within that sentence. In taxon assemblages, there are analogous co-occurrence 90 

relationships between taxa which we hypothesise convey information on their ecological functioning. We therefore use GloVe 

to generate embedding vectors by considering the frequency of co-occurring taxon pairs across the training set. We then 

concatenate the embedding vectors of each sample to represent the assemblage.  

In summary, there are several aspects to the question of whether machine-learning algorithms can improve upon classical 

reconstruction methods. Our strategy to address these has three components 95 

1) There are many ensemble machine-learning algorithms, and there is no reason to prefer any of these a priori. To 

address this, we apply three widely used approaches of random forests, extra random trees, and lightGBM. We 

combine these into a single consensus reconstruction to simplify comparisons and provide the ‘best possible’ 

reconstruction. 
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2) Natural language-processing models are a widely used dimensional reduction approaches in machine learning, 100 

and we apply one such method, GloVE, to supplement ensemble machine learning trained on raw count data. We 

explore whether this approach can usefully encode assemblage information to either i) improve the 

reconstructions based only on raw count data - unlikely given that dimension reduction does not provide 

additional information, but not ruling out the possibility that data transformation can assist the learning or ii) 

replace the raw count data, increasing numerical efficiency and potentially providing information on ecological 105 

functioning. 

3) It is not sufficient that a reconstruction approach performs well on a training set. It must also be statistically 

robust when applied to independent core data, which likely lies outside the high-dimensional space of the training 

set. We cannot assume that machine learning and classical approaches perform equally well under extrapolation. 

Therefore, we do not only apply conventional tests of cross-validated RMSEP, regression slope and R2, derived 110 

solely from the training set, but we also consider the statistical significance of core reconstructions, applying the 

technique of Telford and Birks (2011) 

2 MATERIALS AND METHODS 

We apply MEMLM to high quality pollen and diatom training sets to generate down-core reconstructions. We calculate 

training set cross-validation metrics and we quantify the statistical significance and robustness of the core reconstructions. We 115 

compare these performance metrics with those of classical WA approaches to evaluate whether, and under what circumstances, 

machine-learning approaches might be able to outperform classical WA-based reconstruction approaches.  

 

2.1. MEMLM 

MEMLM combines a series of modules (Figure 1). In this section, we introduce the functions of each module and the data 120 

processing approach. There are three model variants (MEMLM, MEMLMe, and MEMLMc), each of which takes different 

inputs (Figure 1), which is the only difference in their construction. The scientific motivation for the three variants is to explore 

i) whether machine-learning decision trees can extract all useful information (MEMLM), or, if not, ii) whether GloVe can 

improve this (MEMLMc) and iii) whether GloVe alone is sufficient to encode assemblage data (MEMLMe). Each variant is 

built using the same three machine-learning approaches (random forests, extra random trees, and lightGBM), which are 125 

combined into a single consensus reconstruction model for each. 
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Figure 1: Multi Ensemble Machine Learning Model (MEMLM) model framework. MEMLM has a modular building block 

architecture so that components can be easily changed.  Raw num and Col num are the number of rows and columns in the input 

matrix; dim is the number of dimensions. 130 

2.1.1. First layer 

The input data comprise environmental data together with either the taxon abundance matrix, the assemblage embedding 

matrix, or both matrices (see section 2.2.3 for a description of the embedding algorithm).  

We apply three ensemble machine-learning models to derive the mapping between taxon composition information and 

environmental factors: 135 

(1) Random forests (RF) is an ensemble machine-learning model composed of multiple decision trees. The overall model 

framework is determined based on the predictive power of each decision tree applied to the training data-set under 

bootstrapping. Individual decision trees with better predictive performance are allocated higher weights, and the ‘forest’ 

integrates the weighted result from each tree (Liaw and Wiener, 2002).  

(2) Extra Random Tree (ERT) is similar to RF, except that it uses the entire data-set rather than a bootstrapped subset (Geurts 140 

et al., 2006). 
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(3) LightGBM is based on the Gradient Boosting Decision Tree. This also integrates decision trees, but LightGBM differs by 

applying ‘gradient boosting’ to add new trees, building each new model on the residuals of the previous model to improve the 

prediction. It has the ability to merge sparse data-sets to increase computational efficiency (Friedman, 2001; Ke et al., 2017). 

2.1.2 Second layer (consensus reconstruction) 145 

It is possible to improve prediction performance by integrating the prediction of multiple models into a consensus 

reconstruction (Yeom et al., 2018; Syam and Kaul, 2021). Averaging is widely used to integrate the output prediction of 

multiple models. However, the integration weight of each model is the same under averaging. MEMLM applies multiple linear 

regression to allocate an integration weight to each model rather than attaching each model with the same weight. The 

consensus reconstruction is derived as follows. The three upstream models are applied to reconstruct the training data-set and 150 

we then build a multiple linear regression model to fit the reconstructed values to the actual value in the training set. To fit the 

multiple linear regression model, we apply internal 5-fold cross-validation for each model separately and use the predictions 

from this cross-validation to fit regression weights. We then treat the consensus model as a single encapsulated model and 

perform 5-fold cross-validation, each time using  80% of the training set. The total validation computation therefore comprises 

five internal cross-validations and one regression fit. This approach is designed to avoid the risk of over-fitting while reducing 155 

the impact of low-performance models on the consensus reconstruction. In an exploratory analysis applied to the NIMBIOS 

data-set, building models for each of 18 environment attributes demonstrated that the multiple linear regression approach 

reduced the root mean square error of prediction (RMSEP) relative to the individual reconstructions by an average of 8% 

(Table A1). A consensus reconstruction based on the mean of the three ensemble approaches also improved predictive power 

but reduced the cross-validated RMSEP errors relative to the individual reconstructions by an average of 5%. We note that 160 

while the consensus approach reduces RMSEP by typically 8%, we show in Section 3.1 and Table 1 that such improvements 

are modest relative to the improvements from the machine learning itself. Weights of the linear models of MEMLM, 

MEMLMe, and MEMLMc based on the three training sets are provided in Table A2. 

 

2.1.3 Embedding 165 

The GloVe algorithm (Pennington et al., 2014) is a very widely used linguistic dimensional reduction approach. It uses co-

occurrences of words in phrases to characterise numerically their meaning. In formal terms, GloVe is a row-column bilinear 

model of the form 𝑟! + 𝑐" + 𝑅! × 𝐶#, fitted by weighted least-squares to the log-transformed co-occurrence matrix derived 

from the primary data. GloVe is thereby very close to unconstrained ordination models used in ecology except perhaps for the 

transformation to co-occurrences (ter Braak, 1988,ter Braak and te Beest, 2022). GloVe is trained on assemblages to map taxa 170 

onto vectors in feature space, so that the assemblages can be described as linear combinations of the features. 
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It may be helpful to describe the motivation for this particular row-column model. In GloVe, words are represented as vectors 

in high dimensional space, where each dimension captures an aspect of meaning so that in this space words that have similar 

meanings are located near to each other. To illustrate, in word vector space, we would expect the difference vectors 𝒒𝒖𝒆𝒆𝒏 −

𝒌𝒊𝒏𝒈 and 𝒈𝒊𝒓𝒍 − 𝒃𝒐𝒚 to be similar, as they both reflect only a change of gender, with other dimensions of meaning (species, 175 

age, social status etc) constant. Embedding reduces the dimensionality of a vocabulary from tens of thousands of words to 

hundreds of similar meaning dimensions, known as features. 

In ecology, co-existence among taxa can reflect characteristics of the environment (Ovaskainen et al., 2017). We hypothesise 

that taxa within an assemblage have relationships that are analogous to words within a phrase, so that in the feature space of 

ecological ‘meaning’ the vectorial representation of a taxon describes its ecological function. We apply GloVe to ecological 180 

assemblages. Instead of analysing co-occurrences of words within phrases, we analyse co-occurrences of taxa within 

assemblages. The objective is to extract ecological information by associating taxa with their ecosystem functioning. 

The GloVe algorithm is fully detailed in Pennington et al. (2014), and here we introduce the underlying philosophy and 

illustrate it in the context of ecological functioning. Consider 𝑃!# the conditional probability that taxon j appears in the same 

assemblage as taxon i: 185 

𝑃!# = 𝑃(𝑗|𝑖) = 𝑋!# 𝑋!⁄ 																																																																																																																																																																																				(1) 

where 𝑋!# is the number of assemblages which contain both taxa i and j, and 𝑋! is the number of assemblages containing taxon 

i. This probability does not necessarily indicate the strength of the relationship. Consider, for instance, that a high value may 

simply reflect that taxon j is common and therefore provides little information about the environment. 

To determine associative relationships, GloVe considers the ratio 𝑃!" 𝑃#"⁄  where taxon k is some probe taxon used to 190 

differentiate the ecological functioning of i and j. If taxon k has a strong association with taxon i but not with taxon j then  

𝑃!" 𝑃#" ≫ 1⁄ . However, if all three taxa are either commonly found together or have no relationship (i.e. low but random co-

occurrence) between each other, 𝑃!" 𝑃#"~1⁄ , indicating that taxon k provides very little information to help distinguish the 

ecological functions of i and j. The value of 𝑃!" 𝑃#"⁄  can therefore inform us about the direction of difference vector 𝑖 − 𝑗. For 

application to MEMLMc, the feature matrices are provided together with the raw taxon count data to provide richer training 195 

data for the ensemble-learning algorithms.  

2.2. Assemblage data 

For model training purposes we use two large pollen data-sets, SMPDSV1 (Harrison, 2019a) and NIMBIOS (Bush et al., 

2021), and the smaller diatom SWAP data-set (Stevenson et al., 1991). The SMPDSV1 (Harrison, 2019) and SWAP (Stevenson 

et al., 1991) data-sets record the percentage of each taxon in each sample, whereas the NIMBIOS data-set uses integer counts. 200 

When constructing the co-occurrence matrix, whether the data are integer counts or percentages, we sum that data during co-

occurrence. To demonstrate the palaeoenvironment reconstructions of each model, we apply i) SWAP to reconstruct lake-
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water  pH from diatoms in a core from The Round Loch of Glenhead (RLGH)  (Allott et al., 1992, Jones et al., 1989), ii) 

SMPDSV1 to reconstruct mean temperature of the coldest month (MTCO) from pollen in the Villarquemado core (Harrison, 

2019a, Harrison, 2019b), and iii) NIMBIOS to reconstruct the mean annual temperature (MAT) from pollen in the Consuelo 205 

(Urrego et al., 2010) and Llaviucu (Steinitz-Kannan et al., 1983, Colinvaux et al., 1988) cores. 

2.2.1. Training data-sets 

SWAP: The SWAP training set (Stevenson et al., 1991) was developed as part of an international scientific effort directed at 

establishing and understanding the impacts of acid rain on freshwaters.  It includes relative abundance data for 277 diatom 

taxa from 167 modern samples with clear identification criteria standards (Birks et al., 1990). We apply these data to 210 

reconstruct lake-water pH. 

The NIMBIOS data-set (Bush et al. 2020), includes samples from 636 neotropical locations with various habitat types. There 

are 533 pollen types (some taxa can only be identified to family level), ranging from soil samples to mud-water interface 

samples from lakes. We use it to reconstruct mean annual temperature (MAT). 

The SMPDSv1 data-set was developed as an environmental calibration data-set to provide training data for palaeoclimate 215 

reconstructions (Harrison, 2019a). SMPDSv1 contains the relative abundancies of the 247 most important pollen taxa in 6458 

terrestrial samples from Europe, northern Africa, the Middle East, and Eurasia, compiled from multiple different published 

sources. We use it to reconstruct mean temperature of the coldest month (MTCO). 

2.2.2. Core data-sets 

We apply the SWAP training set to the RLGH and RLGH3 core data-sets. RLGH is a fossil diatom data-set from The Round 220 

Loch of Glenhead, Scotland, taken to explore anthropogenic acidification (Allott et al., 1992). The data-set includes the relative 

abundances of 41 diatom taxa in 20 samples which span the industrial era. RLGH3 was sampled to explore natural acidification 

driven by weathering and soil development during the Holocene (Jones et al., 1989). This data-set includes abundances for 

225 diatom taxa in 101 samples. 

We apply the NIMBIOS training set to the Consuelo and Llaviucu core data-sets. The core from Lake Consuelo, Bolivia, is an 225 

8.8 m sediment sequence, which records the long-term evolution of cloud forest in response to environmental changes over 

the last 46,300 years (Urrego et al., 2010). Lake Llaviucu is a temperature-sensitive lake in the Ecuadorian Andes (Steinitz-

Kannan et al., 1983; Colinvaux et al., 1988). It lies behind a moraine in the system dated by Clapperton (1987) within the last 

glaciation (35,000 yr B.P.). At nearly 37 degrees S latitude, the lake is perched on the eastern face of the Cordillera Occidental 

and has been lifted 2,200 m since deglaciation. It shows the possibility of significant cooling of tropical latitude rain-forest 230 

near San Juan Bosco (Colinvaux et al., 1997). 

We apply the SMPDSv1 training set to the Villarquemado core data-set (Harrison 2019, Wei et al 2021a), a pollen record from 

the western Mediterranean Basin spanning the interval from the last part of MIS-6 to the late Holocene. The fossil pollen data 
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were assigned to the subset of pollen taxa recognised in the modern SMPDSv1 data-set. There are 104 taxa represented in the 

final taxon list based on the 361 core samples. 235 

2.3. Model parameters, performance, and validation metrics 

2.3.1. Model parameters 

We build the GloVe model using the PyTorch deep learning frame (Paszke et al., 2019), which provides a set of tools and 

interfaces to implement, train, and deploy deep-learning models.  In embedding training, we set the number of epochs (training 

loops) to 1,000 and the number of embedding dimensions to 256. For the first layer, we build an ensemble of 1,000 decision 240 

trees with parallel computing. MEMLM has an external interface so that these parameters can be easily changed for any third-

party application. 

We originally developed the GloVe analysis using the pre-packaged software ‘glove-python’ 

[https://github.com/maciejkula/glove-python] but subsequently re-wrote the GloVe algorithm from first principles. Cross-

validation and down-core reconstructions from the two algorithms were not materially different and so the statistical 245 

significance testing, which is highly expensive computationally, requiring one month of parallel computing, was not repeated. 

2.3.2. The prediction importance indicator for taxon weighting 

The MEMLM models are ensembles based on the results of multiple decision trees. Each time a decision tree forks, the 

algorithm explores different ways to integrate each taxon’s abundance to increase predictive power. The algorithm works 

through an internal cross-validation analysis to determine whether each predictor reduces the prediction errors in each decision 250 

tree, and then summarises the results across all decision trees. The approach ascribes an importance index to each taxon which 

is normalised to a total of 1 across all taxa and provides a measure of that taxon’s predictive power. The ten most important 

taxa for each of the three machine-learning models are listed in Table A3. These are used in the inference of taxon importance 

for environmental reconstruction. 

2.3.3. Uncertainty quantification 255 

Uncertainty quantification is provided for all machine-learning reconstructions using IBM's UQ360 package (IBM 2024). 

UQ360 utilizes meta-models to estimate the uncertainty bounds of the preserved models, providing upper and lower limits on 

prediction errors. Specifically, it employs additional decision-tree models to capture and re-estimate the prediction errors of 

the source models. 

2.3.4. Cross-validation 260 

The predictive powers of the MEMLM variants are compared with classical WA models (ter Braak and Barendregt, 1986) and 

WA-PLS (ter Braak and Juggins, 1993). We take RMSEP, regression slope, and R2 score as performance evaluation indicators, 
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using the scikit-learn package (Pedregosa et al., 2011). We use five-fold cross-validation. We perform each cross-validation 

five times with random shuffling allowing us to provide mean estimates for all validation metrics along with their standard 

deviations, which we provide for RMSEP. We note that spatial correlation and pseudo-replication within a training set can 265 

lead to overstated cross-validated performance statistics. These problems can be minimised by, for instance, removing sites 

that are geographically close and environmentally similar (Liu et al., 2020). However, we include all training-set sites in cross-

validation, noting that our objective is to compare the relative performances of different approaches applied to the same training 

sets. 

For evaluation of the classical models we use the rioja package in R (Juggins, 2017) with default settings. As WA-PLS 270 

performance is sensitive to the number of components; we accept a higher PLS component only if it exhibits a 5% improvement 

in RMSEP on the previous component (Birks, 1998) and we present results for the higher component. 

2.3.5. Statistical significance of reconstructions 

While cross-validation is a useful measure of predictive power which implicitly guards against over-fitting (Yates at al., 2023), 

it is likely to over-estimate predictive power in practice as fossil assemblages may lie outside the high dimensional space of 275 

the modern training assemblages, for instance by lacking close modern analogues. Telford and Birks (2011) developed an 

easily applied method for testing the robustness of a reconstruction of a specific sequence. The approach is to create an 

ensemble of transfer functions using the same biological assemblage as the training set, but with randomised values of the 

environmental variable, and calculating the proporion of variance in the fossil data explained by a single reconstruction. If the 

reconstructed variable is found to explain more of the variance than 95% of the random reconstructions, then the reconstruction 280 

is deemed to be statistically significant. We apply this approach with the palaeoSig package in R (Telford and Trachsel, 2015) 

to all core reconstructions as an indicator of their robustness. 

2.4. Computing hardware  

In this study, the computing CPU is Intel Core i7-4710MQ; the model is supported by the scikit-learn package (Pedregosa et 

al., 2011), a powerful machine-learning Python package which incorporates the most widely used machine-learning algorithms 285 

and related data processing and validation functions. MEMLM supports parallel computing: with more CPU cores, the 

computing time will decrease significantly. The computational time taken for five-fold cross-validation of the MEMLMc 

model is 138 seconds (SWAP), 406 seconds (NIMBIOS), and 2834 seconds (SMPDsV1). 

3 RESULTS 

3.1. Cross-validation 290 

Table 1 compares the cross-validated RMSEP for the three training sets and the six reconstruction approaches (see Figure A1 

for regression visualization of predicted values against observed values). Regression slope and R2 score are also provided.  All 
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validation data are the means of five separate cross-validation exercises, which are also used to provide a percentage error 

estimate for RMSEP (in brackets). WA-PLS is found to be the best performing classical approach in all three training sets as 

evaluated by RMSEP, but in each case it is outperformed by MEMLM, which reduces RMSEP by 6% (SWAP, 167 training 295 

samples, 277 taxa), 22% (NIMBIOS, 636 training samples, 533 taxa), and 50% (SMPDSv1, 6548 samples, 257 taxa). The 

benefits of machine-learning approaches clearly increase with increasing training-set size.  

MEMLMe is trained only on embedded assemblage data from GloVe. The approach does not work well for the SWAP training 

set, but it significantly improves upon WA approaches when using the larger NIMBIOS and SMPDVs1 training sets, 

suggesting that when the training set is large enough, embedding is able to extract most of the predictive power of the 300 

assemblages. However, MEMLMe is consistently the worst performing MEMLM variant (albeit generally better than the WA 

approaches), and so we do not use it in the reconstructions. 

We performed additional cross-validation tests on MEMLMe to confirm that the embedding approach can encode useful 

information, noting that with an embedding dimension of 256 (comparable to the number of taxa in the training sets) we are 

not applying the approach under significant dimensional reduction. To explore this, we applied a range of embedding 305 

dimensions to the MEMLMe model of the richest data-set, namely the 533-taxon NIMBIOS data-set (Figure A2a). This 

sensitivity analysis demonstrates that 30 dimensions are sufficient for MEMLMe to outperform WA-PLS (RMSEP 2.914°C) 

in this training set. Figure A2b illustrates the learning power of increased training, with RMSEP increasing by around 0.4°C 

as the number of training epochs is reduced from the 1,000 we used to 40.  

MEMLMc uses both the taxon abundance and the embedding matrices. These additional data do not significantly affect the 310 

predictive performance relative to MEMLM under cross-validation, suggesting that conventional ensemble machine-learning 

approaches are sufficient to encode adequately the assemblage information in training sets comprising a few hundred taxa. 

However, we retain this model for down-core reconstructions to explore whether the addition of embedding information can 

affect reconstructions in a way that is not captured by RMSEP. 

 315 

 

 

    MEMLM MEMLMe MEMLMc WA-Inv WA-Cla 
WA-

PLS(best) 

RMSEP               

SWAP pH 0.290 (3.7%) 0.331 (3.1%) 0.296 (2.8%) 0.308 (1.1%) 0.317 (1.0%) 0.308 (1.1%) 

NIMBIOS MAT/ °C 2.254 (1.6%) 2.221 (1.2%) 2.094 (1.4%) 3.176 (0.5%) 3.587 (0.6%) 2.923 (0.6%) 

SMPDSv1 MTCO/ °C 2.353 (0.5%) 2.779 (0.9%) 2.478 (0.6%) 5.310 (0.1%) 6.672 (0.1%) 4.979 (0.2%) 

Slope 
       

SWAP pH 0.984 1.002 0.999 1.029 0.899 1.030 

NIMBIOS MAT/ °C 0.996 0.998 0.999 1.005 0.750 0.996 

SMPDSv1 MTCO/ °C 0.997 0.997 0.997 1.000 0.629 0.996 
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R2 score 
    

   

SWAP pH 0.858 0.815 0.852 0.840 0.831 0.840 

NIMBIOS MAT/ °C 0.856 0.860 0.876 0.714 0.635 0.758 

SMPDSv1 MTCO/ °C 0.926 0.897 0.918 0.624 0.407 0.670 

MAT mean annual temperature; MTCO mean temperature of the coldest month 

 

Table 1. Cross-validated root mean square error of prediction (RMSEP), regression slope, and R2 score for the three training 320 

sets. All data are the means of five cross-validation exercises, which are also used to provide uncertainty estimates for RMSEP 

(error for RMSEP in brackets, expressed as a percentage of RMSEP). MEMLM uses the abundance matrix. MEMLMe uses 

the assemblage embedding matrix. MEMLMc uses the combined abundance and embedding matrices.  WA-Cla is weighted 

averaging with a classical deshrinking regression, WA-Inv is weighted averaging with an inverse deshrinking regession (Birks 

et al., 1990). WA-PLS is the ‘best’ model (see section 2.2.3), see Table A4 for other components. Bold highlights the model 325 

with the lowest RMSEP or highest R2 score.  

3.2. Environmental reconstructions and comparisons 

For each core we compare the reconstructions from the models with lowest RMSEP, being the MEMLM and MEMLMc 

machine-learning approaches and the best classical approach (section 2.3.3), which is WA-PLS using one component for 

SWAP and WA-PLS using two components for NIMBIOS and SMPDSV1. In the Appendix, Figures A3 to A7 illustrate 330 

scatterplot matrices of all six reconstruction approaches, and Figures A8 to A12 compare reconstructions for all six models 

through time. In each reconstruction we additionally provide the statistical significance test results (Telford and Birks, 2011). 

A reconstruction is considered significant when that reconstruction explains more of the variance than 95% of 1,000 

randomised reconstructions, based on the same training assemblage but with randomised environmental values. 

3.2.1. pH reconstructions from RLGH using the SWAP training set 335 

MEMLM and WA-PLS1 show similar trends of acidification, with pH declining from around 5.2 at about 1870 to around 4.8 

at about 1980 (see Figure 2). MEMLMc shows a similar trend but with reduced acidification relative to the other approaches. 

All three reconstructions are statistically significant, and with high explained variance, though WA-PLS1 explains more 

variance (58%) than MEMLM (46%) or MEMLMc (52%.). The variance explained by the first principal component of the 

fossil core assemblages is 62%, indicating that the reconstructed pH explains most of the dominant part of the variance in the 340 

fossil diatom assemblages.  
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Figure 2: a) pH reconstruction for the RLGH core. b, c & d) statistical significance testing of MEMLM, MEMLMc, and WA-PLS1 345 
reconstructions, respectively. MEMLM uncertainties are calculated using IBM UQ360 (section 2.3.3). These compare with cross-
validated RMSEP errors of 0.292 (MEMLM), 0.294 (MEMLMc), and 0.308 (WA-PLS1) pH units.   

3.2.2. pH reconstruction from RLGH3 using the SWAP training set 

All three methods provide reconstructions that show similar trends of lake-water pH, with gradual acidification in the early 

record from around 5.6 to 5.2 pH, attributed to the development of organic soils (Jones et al., 1989) and then a rapid post-350 

industrial acidification from around 5.2. to 4.8 pH. The three reconstructions also exhibit similar variability, previously 

attributed to loss of tree cover and peat erosion (Jones et al., 1989), further suggesting reconstruction robustness. Moreover, 

all three reconstructions are statistically significant, explaining between 23% and 27% of the core variance, which compares 

to 32% variance explained by the first principal component of the fossil assemblages (Figure 3). 

(a) 
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355 

 

 

Figure 3: a) pH reconstruction for the RLGH3 core. b, c & d) statistical significance testing of MEMLM, MEMLMc, and WA-PLS1 
reconstructions, respectively. MEMLM uncertainties are calculated using IBM UQ360 (section 2.3.3). These compare with cross-
validated RMSEP errors of 0.292 (MEMLM), 0.294 (MEMLMc), and 0.308 (WA-PLS1) pH units.   360 

3.2.3. MAT reconstruction from Consuelo using the NIMBIOS training set 

All three methods display similar trends, most notably reconstructing about a 4°C warming from the Last Glacial Maximum 

at 21,000 BP to the start of the Holocene at 11,000 BP. The MEMLM approaches are more variable in general, although 

variability is largely synchronous between the three reconstruction approaches and may be associated with Dansgaard-

Oeschger (D/O) events (Bond et al., 1993; Blunier and Brook, 2001). At 8000 BP, WA-PLS2 displays a 10°C cooling excursion 365 

which is not apparent in the MEMLM reconstructions. Although a cooling event at 8.2ka is well known, the cooling 

reconstructed by WA-PLS2 seems excessive. All three methods are statistically significant and explain core assemblage 

variance of between 27% and 29%, compared to 32% explained by the first principal component (Figure 4). 

(a) 



15 
 

 

 370 
 

 
Figure 4: a) MAT reconstruction for the Consuelo core. b, c & d) statistical significance testing of MEMLM, MEMLMc, and 
WA.PLS2 reconstructions, respectively. MEMLM uncertainties are calculated using IBM UQ360 (section 2.3.3). These compare 
with cross-validated RMSEP errors of 2.254 (MEMLM), 2.094 (MEMLMc), and 4.979 (WA-PLS2) °C.   375 

3.2.4. MAT reconstruction from Llaviucu using the NIMBIOS training set 

All three methods display similar overall trends with mid-Holocene warming, but each display different centennial variability, 

which for the MEMLMc reconstruction is clearly unrealistic for the Holocene, with temperature excursions as large as 8°C. 

Neither of the MEMLM approaches are statistically significant at the 95% confidence level, so neither can be accepted as 

robust. The WA-PLS2 reconstruction is statistically significant, although it only explains 13% of the core-assemblage variance 380 

compared to the 28% explained by the first principal component of the core data (Figure 5). 

(a) 
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Figure 5: a) MAT reconstruction for the Llaviucu core. b, c & d) statistical significance testing of MEMLM, MEMLMc, and WA-385 
PLS2 reconstructions, respectively. MEMLM uncertainties are calculated using IBM UQ360 (section 2.3.3). These compare with 
cross-validated RMSEP errors of 2.254 (MEMLM), 2.094 (MEMLMc), and 4.979 (WA-PLS2) °C.   

3.2.6. MTCO reconstruction from Villarquemado using the SMPDSV1 training set 

All three approaches generate noisy reconstructions with high variability that is incoherent. It is difficult to discern any 

meaningful trends. None of the reconstructions, including WA-PLS2, are statistically significant. The low (17%) variance 390 

associated with the first principal component suggests that the fossil assemblages are responding to multiple environmental 

factors with responses that are too complex to be captured by a single explanatory environmental variable (Figure 6).  

(a) 
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 395 
 

Figure 6: a) MTCO reconstruction for the Villarquemado core. b, c & d) statistical significance testing of MEMLM, MEMLMc, and 
WA-PLS2 reconstructions, respectively. MEMLM uncertainties are calculated using IBM UQ360 (section 2.3.3). These compare 
with cross-validated RMSEP errors of 2.353 (MEMLM), 2.434 (MEMLMc), and 2.923 (WA-PLS2) °C.   

4 Discussion and conclusions 400 

We have developed three variants of a multi-model ensemble machine-learning algorithm, MEMLM. These each train three 

separate ensemble machine-learning algorithms (random forests, extremely random trees, and lightGBM) and combine them 

into a consensus reconstruction using multiple regression. The three approaches only differ in their input data. The simpler 

MEMLM takes only taxon abundance data. MEMLMe, built only upon the GloVe embedding matrix, does not perform as 

well as MEMLM. However, MEMLMe was found to be a useful reconstruction model, at least when applied to the larger 405 

NIMBIOS and SMPDSV1 training sets, and the embedding usefully summarises taxon assemblages with fewer than 50 

dimensions. Our motivation for retaining 256 embedding dimensions in MEMLMe is that the focus of GloVe is on extracting 

semantic meaning. In linguistics, typically 200 dimensions of meaning are needed to encode fully a language. While we have 

shown that far fewer dimensions are sufficient to build a good reconstruction model, demonstrating the explanatory power of 

the most important embedding dimensions, there are progressive improvements in performance as dimensional size increases 410 

(Fig. A2). This demonstrates that less important dimensions can provide useful explanatory information, and potentially 

additional understanding and interpretability. 

(a) 
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The additional complexity of MEMLMc, which uses both taxon count and embedding, did not significantly affect the 

predictive performance relative to MEMLM under cross-validation, suggesting that conventional ensemble machine-learning 

approaches are sufficient to encode adequately ecological information in the relatively small data-sets used in these 415 

palaeoclimate reconstructions. We note that the real power of embedding (dimension reduction) approaches is likely to be in 

their applications to much larger data-sets, when ecological relationships between 10,000s of taxa and their environment are 

being considered. 

We have focussed only on a comparison with weighted averaging approaches, which are the most widely used reconstruction 

technique, being simple to apply, well understood, and straightforward to interpret. The MEMLM approaches are found to 420 

perform better than classical weighted averaging approaches under cross-validation. In the case of the smallest SWAP data-

set the advantages are modest, but in the largest SMPDSV1 data-set RMSEP errors are reduced by a factor of two relative to 

the best performing classical WA approach. These improvements in performance clearly validate the potential benefits of 

strong data-mining abilities of machine learning, suggesting these techniques have the potential to improve upon classical 

reconstruction approaches.  425 

When applied to core reconstructions, MEMLM approaches generate considerably more variability than the WA-PLS 

reconstructions. While some elements of this additional variability might be realistic, especially considering that WA-PLS 

approaches are known to bias reconstructions towards the centre of their training data (Liu et al., 2020), the variability is not 

always coherent between different reconstruction approaches and the magnitude of MEMLM variability is in some cases 

implausibly high, for example by suggesting Holocene variability of up to 8°C in the Ecuadorian Llaviucu core. 430 

We performed significance testing on all core reconstructions and found that five of the fifteen reconstructions are not 

statistically significant and therefore are not considered robust. Both MEMLM and MEMLMc approaches fail on the Llavuicu 

core, confirming our suspicion that the unrealistic variability is an artefact. All three approaches fail the statistical robustness 

test at Villarquemado, which is sensitive to multiple environmental factors and has responses which appear too complex to be 

captured by a single explanatory variable. 435 

The shapes of the histograms of the proportion of variance explained in the RLGH and RLGH3 pH reconstructions based on 

diatom data and randomised modern SWAP training pH values in the significance testing are very different for WA-PLS1 and 

for MEMLM and MEMLMc (Figs. 2, 3). Such differences contrast with the more consistent histogram shape for the 

significance-test results for the other sequences where the reconstructions are based on pollen data (Figs. 4–6). Machine-

learning approaches generally fail badly when trained with randomised environmental data as the histograms are left-skewed 440 

and explain little down-core variance (Figs. 2–6). In contrast, the WA-PLS1 pH reconstructions (Figs. 2, 3) based on diatom 

data explain a substantial amount of the down-core variance even when the modern pH data are randomised (Figs. 2, 3). This 

may result from the short and dominant environmental gradient in the SWAP diatom–pH training data and the high inherent 

correlation and dominance of a relatively few abundant taxa within the modern and fossil diatom data. The pollen training 

data, however, used for the MAT or MTCO reconstructions of the other sequences (Figs. 4–6) are large (638 and 6,458 445 
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samples) and hence cover longer and more complex environmental gradients than the pH training data (167 samples). It is also 

likely that the pollen data, both modern and fossil, are influenced by multiple environmental factors, not only MAT or MTCO. 

In summary, while MEMLM can generate useful reconstructions, it should always be used in conjunction with statistical 

significance testing to confirm that the reconstructions are robust and potentially realistic and reliable. The additional 

complexities of incorporating embedding information in MEMLMc does not reduce RMSEP or spurious variability and neither 450 

does it improve statistical significance. However, MEMLMe demonstrates that embedding is useful as it can summarise 

ecological assemblages using significantly fewer dimensions. Its benefits may be clearer in applications with much larger data-

sets and in applications beyond palaeoenvironmental reconstructions. The poor performance of MEMLM in some 

reconstructions may be due to extrapolation due to no-analogue fossil assemblages. All models are applied under the same 

extrapolation. The WA-PLS2 reconstructions exhibit higher statistical significance than MEMLM, although WA-PLS2 also 455 

fails to generate robust reconstructions at Villarquemado. We infer that that the use of simpler WA models, which include a 

major biological assumption (unimodal environmental response) can be more powerful than the use of brute-force learning, 

despite reductions in RMSEP. We reiterate our recommendation that all reconstructions using any approach, should be 

accompanied with statistical significance testing. Seemingly useful models may fail when applied under extrapolation or when 

the assemblage variance is only weakly dependent on the reconstructed environmental variable.  460 
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Appendices A 

 

 

 
 490 
Figure A1: Scatterplots of observed values against predicted values in three training sets. MEMLM uses the abundance matrix. 
MEMLMe uses the assemblage embedding matrix. MEMLMc uses the abundance and the assemblage embedding matrices. 
Component number of WA-PLS was selected for each training set as the lowest component that showed a 5% improvement over 
the previous component (Table A4). WA-Cla is weighted averaging with a classical deshrinking regression, WA-Inv is weighted 
averaging with an inverse deshrinking regression (Birks et al. 1990). The number of WA-PLS components is selected based on the 495 
method described in 2.3.3, see Table S3 for full results. 
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Figure A2: MEMLMe prediction performance under different GloVe hyper-parameter settings. a) Fix epoch = 1,000, set embedding 
dimensions from 8 to 256; b) Fix embedding dimensions = 256, set epoch from 40 to 1,000. The model is developed from the NIMBIOS 
set and trained on mean annual temperature (MAT). 500 
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Figure A3:  Inter-regression of pH reconstructions for six different models for the Round Loch of Glenhead (RLGH) 

core. 
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Figure A4:  Inter-regression of pH reconstructions for six different models for the Round Loch of Glenhead 3 (RLGH3) 505 

core. 
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Figure A5:  Inter-regression of mean annual temperature (MAT) reconstructions for six different models for the 

Consuelo core. 510 
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Figure A6:  Inter-regression of mean annual temperature (MAT) reconstructions for six different models for the 

Llaviucu core. 

 515 
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Figure A8: pH reconstructions based on six models for the Round Loch of Glenhead (RLGH) core. 

 

 520 
Figure A9:  pH reconstruction based on six models for the Round Loch of Glenhead 3 (RLGH3) core.  

 
Figure A10:  Mean annual temperature (MAT) reconstruction based on six models for the Consuelo core. 
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Figure A11:  Mean annual temperature (MAT) reconstruction based on six models for the Llaviucu core. 525 

 
Figure A12:  Mean temperature of the coldest month (MTCO) based on six models for the Villarquemado core. 

 

 

 530 
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Table A1: Root mean square error of prediction (RMSEP) and R2 values (based on cross-validation) of the 18 environment elements 535 
prediction of MEMLMc in the NIMBIOS data-set.  Mean is average of the prediction of the three downstream models. RF presents 
the random forest values; ERT presents the extra random tree results. Bold highlights the model with the best prediction 
performance. 

  Elements RF ERT lightGBM MEMLMc Mean 
RMSEP Precipitation of the warmest quarter 138.17 131.513 133.124 125.531 129.042 

 Isothermality 3.065 2.793 3.09 2.778 2.838 

 Annual precipitation 483.099 442.623 479.217 430.291 445.813 

 Mean temperature coldest quarter 23.162 21.228 23.061 21.023 21.387 

 Maximum temperature warmest month 25.104 22.343 24.01 21.181 22.421 

 Minimum temperature coldest month 26.66 24.15 26.226 23.734 24.369 

 Mean temperature warmest quarter 22.898 21.435 22.655 20.727 21.316 

 Precipitation of the coldest quarter 157.458 135.741 151.69 129.674 139.075 

 Precipitation of the driest month 28.907 25.898 27.892 23.898 25.723 

 Temperature seasonality 227.1 203.536 221.23 203.281 207.248 

 Precipitation of the wettest month 64.759 60.669 64.387 58.822 60.572 

 Temperature annual range 22.179 20.917 22.101 20.524 20.83 

 Mean temperature wettest quarter 18.312 16.515 18.722 16.094 16.865 

 Precipitation of the wettest quarter 171.418 161.823 173.802 157.769 162.204 

 Precipitation seasonality 11.581 10.858 11.506 10.635 10.852 

 Mean diurnal temperature range 13.139 11.684 12.968 11.258 11.855 

 Mean temperature driest quarter 23.754 22.225 23.556 21.989 22.198 

 Precipitation of the driest quarter 96.455 85.831 92.351 79.657 85.539 
R2 score Precipitation of the warmest quarter 0.656 0.688 0.68 0.716 0.7 

 Isothermality 0.862 0.886 0.86 0.887 0.882 

 Annual precipitation 0.81 0.841 0.813 0.85 0.838 

 Mean temperature coldest quarter 0.862 0.884 0.863 0.886 0.882 

 Maximum temperature warmest month 0.771 0.819 0.79 0.837 0.817 

 Minimum temperature coldest month 0.887 0.907 0.89 0.91 0.905 

 Mean temperature warmest quarter 0.85 0.868 0.853 0.877 0.87 

 Precipitation of the coldest quarter 0.845 0.885 0.856 0.895 0.879 

 Precipitation of the driest month 0.821 0.857 0.834 0.878 0.859 

 Temperature seasonality 0.835 0.868 0.844 0.868 0.863 

 Precipitation of the wettest month 0.752 0.782 0.755 0.795 0.783 

 Temperature annual range 0.848 0.865 0.85 0.87 0.866 

 Mean temperature wettest quarter 0.822 0.855 0.814 0.862 0.849 

 Precipitation of the wettest quarter 0.761 0.787 0.755 0.798 0.786 

 Precipitation seasonality 0.773 0.8 0.776 0.809 0.801 

 Mean diurnal temperature range 0.803 0.845 0.809 0.856 0.84 

 Mean temperature driest quarter 0.87 0.887 0.873 0.889 0.887 
  Precipitation of the driest quarter 0.806 0.846 0.822 0.868 0.847 
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 540 

Table A2: Weights of the linear models in MEMLM, MEMLMe, and MEMLMc for the three training sets.   

  MEMLM     MEMLMe     MEMLMc 

Weights RF ERT lightGBM RF ERT lightGBM RF ERT lightGBM 

SWAP -0.238 1.118 0.220 -0.597 1.001 0.619 -0.953 1.062 0.901 

NIMBIOS -0.263 0.934 0.393 -0.793 1.474 0.409 -0.713 1.263 0.533 

SMPDSv1 -0.106 0.721 0.431 -0.705 1.180 0.560 -0.340 0.598 0.773 

RF – random forest; ERT – extra random tree; lightGBM – a gradient boosting decision tree 
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Table A3: The weights of the 10 most important taxa for the environmental reconstructions in the SWAP, NIMBIOS and SMPDSv1 
training sets sorted by the random forests results. Diatom taxon codes follow Stevenson et al. (1991) 

  Taxon RF ERT LightGBM 
SWAP EU047A 0.505 0.139 0.033 

 AC013A 0.072 0.182 0.028 

 EU048A 0.061 0.064 0.02 

 TA003A 0.048 0.043 0.017 

 PE002A 0.031 0.013 0.027 

 CM048A 0.023 0.006 0.029 

 BR001A 0.022 0.012 0.032 

 TA004A 0.018 0.02 0.017 

 NA140A 0.012 0.007 0.01 
 CM017A 0.011 0.01 0.019 

NIMBIOS Alnus 0.263 0.096 0.045 

 Poaceae 0.146 0.161 0.124 

 Plantago 0.118 0.039 0.006 

 MoracUrtic 0.105 0.02 0.068 

 Bursera 0.049 0.016 0.008 

 Myrtaceae 0.024 0.007 0.016 

 Ericaceae 0.022 0.042 0.021 

 Hedyosmum 0.015 0.03 0.035 

 Asteraceae 0.013 0.083 0.056 
 Cyperaceae 0.013 0.02 0.068 

SMPDSv1 Picea 0.339 0.038 0.029 

 Fagus 0.169 0.016 0.012 

 
Betula 
Chamaebetula. 0.103 0.22 0.008 

 Betula 0.042 0.077 0.041 

 Alnus Alnobetula 0.039 0.017 0.007 

 Larix 0.03 0.03 0.009 

 Quercus deciduous 0.028 0.017 0.03 

 Olea 0.027 0.072 0.013 

 Oxyria Rumex 0.017 0.009 0.019 
  Poaceae 0.014 0.0144 0.028 

RF – random forest; ERT – extra random tree; lightGBM – a gradient boosting decision tree 545 
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Table A4: RMSEP (based on cross-validation) of the first five components (Comp) in weighted-averaging partial least squares (WA-
PLS) of the three training sets. Bold highlights the ‘best’ component, noting that we accept a higher PLS component only if it exhibits 
a 5% improvement on the previous component (Birks 1998).  550 

Data-set Feature 
WA-PLS 

Comp1 Comp2 Comp3 Comp4 Comp5 

SWAP pH 0.308 0.299 0.313 0.327 0.349 

NIMBIOS MAT 5.310 4.979 4.862 4.840 4.863 

SMPDSv1 MTCO 3.207 2.923 3.022 3.192 3.365 
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