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Abstract. The Southern Annular Mode (SAM) strongly influences climate variability in the Southern Hemisphere. The SAM

index describes the phase and magnitude of the SAM and can be calculated by measuring the difference in mean sea level

pressure (MSLP) between mid- and high-latitudes. This study investigates the effects of calculation methods and data resolution

on the SAM index, and subsequent interpretations of SAM impacts and trends. We show that the normalisation step that is5

traditionally used in calculating a non-dimensional SAM index leads to substantial differences in the magnitude of the SAM

index calculated at different temporal resolutions, and that the equal weighting given to MSLP variability at the mid and high

southern latitudes artificially alters temperature and precipitation correlations and the interpretation of climate change trends in

the SAM. These issues can be overcome by instead using a dimensional formulation of the SAM based on MSLP anomalies,

resulting in consistent scaling and variability of the SAM index calculated at daily, monthly and annual data resolutions. The10

dimensional version of the SAM index has improved representation of SAM impacts in the high southern latitudes, including

the asymmetric (zonal wave-3) component of MSLP variability, whereas the increased weighting given to mid-latitude MSLP

variability in the non-dimensional SAM incorporates a stronger component of tropical climate variability that is not directly

associated with SAM variability. We conclude that a best-practice approach of calculating the SAM index as a dimensional

index derived from MSLP anomalies would aid consistency across climate studies and avoid potential ambiguity in the SAM15

index, including SAM index reconstructions from paleoclimate data, and enable more consistent interpretations of SAM trends

and impacts.

1 Introduction

The Southern Annular Mode (SAM) is the leading mode of atmospheric variability in the extratropical Southern Hemisphere.

The SAM describes changes in the strength and position of the westerly wind belt and associated storm tracks, and can be char-20

acterised through the difference in zonal mean sea level pressure (MSLP) between the southern mid-latitudes and Antarctica

(Thompson and Wallace, 2000; Marshall, 2003). A positive SAM is characterised by positive pressure anomalies at mid-
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latitudes and negative pressure anomalies over Antarctica (Fig 1; Marshall, 2003). These variations in the latitudinal pressure

gradient have been found to influence temperature and precipitation across the Southern Hemisphere, and also interact with

other major modes of climate variability. For example, a positive SAM has been associated with decreases in precipitation and25

positive temperature anomalies in southeast South America often as a result of interactions with El Niño-Southern Oscillation

(Silvestri and Vera, 2003; Vera and Osman, 2018). In South Africa, a positive SAM is associated with a decrease in rainfall

during winter and spring related to a shift in the polar jet (Reason and Rouault, 2005). In Australia, a positive SAM during

winter is linked to reduced precipitation in southern parts of the country, while a negative SAM in summer can lead to re-

duced rainfall and elevated temperature and bushfire risk in parts of eastern Australia (e.g., Meneghini et al., 2007; Mariani30

and Fletcher, 2016; Lim et al., 2019; Abram et al., 2021). While in New Zealand, a positive SAM is linked to a decrease in

precipitation and an increase in temperature due to weakened westerly winds passing over the islands (Kidston et al., 2009).

Figure 1. Spatial correlation of SAM index to mean sea level pressure (MSLP) in the Southern Hemisphere. SAM index was calculated from

annually means (January-December; 1950-2022, ERA5 data) using the difference in zonal MSLP at 40°S and 65°S (dashed lines).

The phase and magnitude of SAM variability is described by the SAM index. Two methods are commonly used to calculate

the SAM index. The first method is based on gridded data such as atmospheric reanalysis (e.g. ERA5) or climate model output,

and breaks down extra tropical Southern Hemisphere atmospheric pressure data into orthogonal spatial patterns expressed by35

Empirical Orthogonal Functions (EOF). The first EOF explains the leading mode of Southern Hemisphere variability and its

time series represents the SAM Index (Mo, 2000; Fogt and Bromwich, 2006). Recent advances in the application of the EOF

method to describe the SAM include approaches to separate the zonally symmetric component of SAM variability from the

asymmetric component of variability associated with the zonal wave-3 pattern (Goyal et al., 2022; Campitelli et al., 2022). The

second method for calculating the SAM index uses the difference in the normalised zonal mean sea level pressure (MSLP)40

between 40°S and 65°S (Fig. 2). By this method the SAM Index can be calculated using gridded products (Gong and Wang,

1999) or instrumental records of MSLP from observing stations located in the southern mid-latitudes and around coastal
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Antarctica (Marshall, 2003). It is this second method of calculating the SAM index that is the focus of the assessment carried

out in this study.

Instrumental climate measurements are sparse across the Southern Hemisphere, and particularly in Antarctica. This generally45

limits a reliable long term understanding of SAM variability from observations and reanalysis products to the time since 1957

(Marshall, 2003; Barrucand et al., 2018; Marshall et al., 2022), although some longer reconstructions based on observations

have also been developed back to the late 19th century (Jones et al., 2009; Visbeck, 2009). Over this historical period there

has been a significant positive trend in the SAM, particularly in the summer season, associated with stratospheric ozone loss as

well as rising atmospheric greenhouse gases (Thompson and Solomon, 2002; Fogt and Marshall, 2020). This trend is expected50

to continue in all seasons during the 21st century as climate continues to warm due to ongoing anthropogenic greenhouse

gas emissions, but with a temporary pause in summer trends due to the opposing influence of stratospheric ozone recovery

(Thompson et al., 2011; Goyal et al., 2019; Banerjee et al., 2020)

Longer-term reconstructions of the SAM have been developed using paleoclimate proxy records (e.g., ice cores, tree rings

and corals, etc) and multiple reconstructions for the last millennium have been produced (e.g., Villalba et al., 2012; Abram55

et al., 2014; Dätwyler et al., 2018; King et al., 2023). These long-term reconstructions show similar trends in the SAM index,

however, they display different magnitudes of reconstructed SAM variability. Although variability between reconstructions

could be due to differences in reconstruction methods and the networks of proxy data used, Wright et al. (2022) instead found

that differences in magnitude between the Abram et al. (2014) and Dätwyler et al. (2018) reconstructions were explained by the

data resolution used to calculate the instrumental SAM index. Dätwyler et al. (2018) trained their reconstruction to an annual60

SAM Index calculated from monthly MSLP data, while Abram et al. (2014) used the annual SAM Index from annual MSLP

data as their reconstruction target. The difference in magnitude of the annual SAM index in instrumental data calculated by

these alternate methods accounts for the apparently larger (though dimensionless) magnitude of SAM variability during the

last millennium in the Abram et al. (2014) reconstruction compared with the Dätwyler et al. (2018) reconstruction (Wright

et al., 2022). This discrepancy highlights the importance of understanding the impact of methodology in reconstructing the65

SAM index from observational data.

It has previously been shown that differences between the method (e.g. EOF or zonal difference index methods), variable

(e.g. pressure level) or source data (e.g. gridded reanalysis or station observations) results in sometimes marked differences

between available observational SAM indices, despite these indices all representing the same physical process (Ho et al., 2012).

However, it is not known how methodological choices within a single method, variable and data source might also have the70

potential to influence the results of SAM studies. To date, a best-practise data resolution to use when calculating the SAM

index has not been established, and various versions constructed using different resolutions and orders of operation are made

available for the research community to use (e.g. http://www.nerc-bas.ac.uk/icd/gjma/sam.html). It also remains unexplored if

the choice to normalise zonal MSLP data prior to calculating the latitudinal difference in pressure anomalies (Gong and Wang,

1999; Marshall, 2003) could influence the assessment of past and future SAM changes, or the climate impacts that SAM causes75

in different parts of the Southern Hemisphere.
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Here, we calculate historical SAM indices using daily, monthly and annual averages of zonal MSLP data, and using dimen-

sional and non-dimensional formulations of the SAM index. We explore differences between the SAM indices, and the reasons

why methodological choices introduce these differences, as well as the potential implications when analysing the spatial cor-

relation of SAM variability with temperature and precipitation impacts. Additionally, we also explore the influence of methods80

on the interpretation of SAM trends in projections of climate change during the 21st century. We conclude by making recom-

mendations for a best-practice approach to calculating the SAM index that avoids potential biases introduced by methodology.

2 Methods

We use the ECMWF (European Centre for Medium-Range Weather Forecasts) Reanalysis v5 (ERA5) gridded data for our study

(Hersbach et al., 2020). ERA5 reanalysis data is currently available from 1950. Of the available reanalysis products, ERA5 has85

been shown to best reproduce Antarctic surface temperature and SAM relationships prior to the satellite era (Marshall et al.,

2022).

Daily resolution MSLP data in ERA5 for latitudes 40°S and 65°S were sourced from the KNMI Climate Explorer tool (Trouet

and Van Oldenborgh, 2013). From daily ERA5 data, the daily, monthly and annual means of zonal MSLP were calculated.

SAM Indices were then calculated for these three different data resolutions (Fig 2).90

Following the approach of Gong and Wang (1999), the SAM Index was first calculated using the equation:

SAM = P ∗
40°S

−P ∗
65°S

(1)

where P*40°S and P*65°S are the normalised zonal MSLP at 40°S and 65°S, respectively.

Data was normalised relative to a 1961–1990 reference interval. Briefly, this involves subtracting the mean of the reference

interval from the time series, and then dividing the time series by the reference interval standard deviation. The SAM index95

was then calculated by subtracting the normalised zonal MSLP values at 65°S from the normalised zonal MSLP values at 40°S

(Fig. 2). The normalisation step removes units from the MSLP data, and consequently also from the resultant SAM index, and

so we refer to this as the non-dimensional SAM index.

A dimensional SAM index in hPa pressure units was also calculated (Fig. 2). This followed the same equation and method as

above, but in this case P*40°S and P*65°S are the zonal MSLP anomalies at 40°S and 65°S. Specifically, for the dimensional100

SAM index the zonal MSLP anomalies are calculated relative to the 1961–1990 reference interval mean without dividing by

the reference interval standard deviation.

The relationship between daily, monthly and annual SAM index methods was then investigated by calculating an annual mean

SAM from the daily and monthly indices (Fig. 2). The annual SAM values derived from the different resolution SAM indices

were then compared by a correlation coefficient (r) and by examining the gradient between different methods of calculating the105

SAM Index. The spatial correlation of each SAM index at each data resolution with ERA5 gridded data for 2m air temperature
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Figure 2. Methodological choices explored in this study by calculating dimensional and non-dimensional SAM indices from different data

resolutions.

and precipitation was also examined to test the influence of methodological choices on detection and interpretation of the

SAM’s climate impacts.

To illustrate the impact that methodological choices could have on the interpretation of future SAM changes we also test climate

model output from 1850 to 2100. To illustrate the effect of methodological choices we use output from the CSIRO ACCESS-110

CM2 model prepared for CMIP6 (Dix et al., 2019). A full assessment of future SAM changes would require a more thorough

analysis across the ensemble of CMIP6 models, as done for example in Goyal et al. (2021), but our purpose in this study is to

simply illustrate the potential impact of methodological choices on such assessments. MSLP outputs from the ACCESS-CM2

model were sourced from the "very high" and "low" emission scenarios for future climate change (SSP5-8.5 and SSP1-2.6,

respectively) in order to best identify the range of influences that methodological choice could have on assessing SAM changes115

in a warming climate. As the output from these global climate model simulations are routinely reported at monthly mean
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resolution, only monthly and annual mean SAM indices were calculated for the future projections. Both non-dimensional and

dimensional SAM indices were calculated from the climate model output, relative to a 1961-1990 reference interval.

All data analysis were carried out using MATLAB R2022b software. This included using the M-map package and the Climate

Data Toolbox for producing the analyses and maps presented in this study (Greene et al., 2019; Pawlowicz, 2020).120

3 Results

3.1 SAM index characteristics

Data resolution strongly influences the magnitude of the non-dimensional SAM index (Fig. 3a). While the pattern of interannual

variability of the non-dimensional SAM is very similar for all data resolutions (as demonstrated by r values exceeding 0.99;

Fig. 3b-c), the magnitude of interannual variability of the non-dimensional SAM derived from monthly data is 1.4 times larger125

than the non-dimensional SAM derived from daily data (Fig. 3b). Similarly, the magnitude of the annual non-dimensional SAM

index calculated from annual means is 3.1 times larger than the non-dimensional SAM derived from monthly data (Fig. 3c)

and 4.4 times higher than the annual SAM derived from daily data. This finding is consistent with the recalculation performed

by Wright et al. (2022) where the SAM index calculated from annual MSLP data displayed a higher variability than annual

means derived from a monthly SAM index.130

Differences in magnitude of the non-dimensional SAM index are caused by a progressive decrease in standard deviation as

MSLP data is averaged over longer time periods (Table 1). This means that the normalisation of daily MSLP data removes a

larger magnitude of variability than normalisation of monthly MSLP data, and even more so when comparing to normalisation

of annual resolution MSLP data. Comparison of the reference interval MSLP standard deviations between the different data

resolutions (Table 1) gives similar ratios to the slopes between the annual mean SAM values derived from different resolution135

SAM indices in Figure 3a-c. For example, the normalisation step in calculating the SAM index removes a 3.3 times greater

magnitude of MSLP variability at 40°S for monthly resolution data compared to annual mean data (standard deviations of

1.694 and 0.509 hPa, respectively; Table), and 3 times more variability at 65°S (standard deviations of 4.025 and 1.355 hPa,

respectively; Table 1). This results in the 3.1 times greater magnitude of interannual SAM variability calculated from annual

data relative to monthly data when using the normalisation method to calculate a non-dimensional SAM index (Fig. 3c).140

Differences in the magnitude of the SAM index are overcome when a dimensional SAM index is instead calculated. The annual

mean dimensional SAM values calculated from daily, monthly and annual resolution MSLP data all display the same phase

and magnitude of interannual variability over time (Fig 3d). This highlights how the normalisation step used in calculating

the non-dimensional SAM index can introduce ambiguity into SAM studies, but also how this ambiguity can be avoided by

retaining the native pressure units in the SAM index.145

Our findings also demonstrate that a dimensional SAM index can be reliably calculated from low resolution MSLP data. Phys-

ically, it is the instantaneous difference in pressure between the mid and high southern latitudes that represents the processes of
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Figure 3. Annual mean SAM values calculated by different methodological choices. a. Comparison of annual non-dimensional SAM values

calculated from daily (red), monthly (orange) and annual (blue) MSLP data. b. Relationship between the annual non-dimensional SAM

values calculated from daily and month resolution MSLP data. Dashed line represents 1:1 slope c. Relationship between the annual non-

dimensional SAM values calculated from monthly and annual resolution MSLP data. Dashed line represents 1:1 slope. d. Comparison of

annual dimensional SAM values calculated from daily (red), monthly (orange) and annual (blue) MSLP data.

atmospheric SAM variability (Baldwin, 2001), and so daily resolution data might be assumed to retain a more pure measure of

the SAM index. However, our findings using different resolutions of MSLP data show that the interannual trends and variability

of the dimensional SAM are consistently captured using daily, monthly or annually averaged zonal MSLP anomalies (Fig. 3d).150
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Beyond scaling, there are additional (though small) year-to-year differences in the interannual variability and trends of the

SAM when comparing dimensional and non-dimensional calculations of the SAM index. These differences are evident when

comparing annual SAM values calculated as a dimensional or non-dimensional index from annual MSLP data (Fig. 4), and are

similarly evident when comparing the variability of dimensional and non-dimensional SAM indices calculated from monthly

MSLP data or from daily MSLP data (not shown).155

These differences in year-to-year variability and trends can again be explained as an artefact introduced by the normalisation

step when calculating the non-dimensional SAM index. By normalising the zonal MSLP data before calculating the zonal

difference, an identical weighting is given to pressure variability in the mid and high latitudes in the calculation of the non-

dimensional SAM index. However, the magnitude of MSLP variability is consistently larger at 65°S compared with 40°S

(Table 1). At daily resolution the magnitude of reference interval variability at 65°S is 2.22 times larger than the variability160

at 40°S (standard deviations of 5.597 hPa and 2.524 hPa, respectively), and at annual resolution variability at 65°S is 2.66

times larger than at 40°S (standard deviations of 1.355 hPa and 0.509 hPa, respectively). Likewise, the long-term trends in

MSLP are amplified at 65°S (-0.50 hPa/decade from 1950-2022) compared to the MSLP trends at 40°S (0.18 hPa/decade).

These differences suggest that the equal weighting of these latitudinal zones that is routinely applied in calculating the non-

dimensional SAM index may not be justified, and could artificially alter the interpretation of SAM variability, trends and165

impacts.

Table 1. Characteristics of MSLP variability during the 1961-1990 reference interval for the zonal MSLP data used to calculate the SAM

index at different resolutions.

Data resolution 40°S standard deviation (hPa) 65°S standard deviation (hPa)

Daily 2.524 5.597

Monthly 1.694 4.025

Annual 0.509 1.355

Figure 4. Comparison of interannual variability and trends from dimensional and non-dimensional annual SAM values calculated from

annual MSLP data.
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3.2 SAM impacts

Spatial correlation analysis shows that the SAM index is correlated with Southern Hemisphere temperature variability, with

similar broad-scale patterns across SAM index data resolutions and calculation methods (Fig. 5). In general, all formulations

of the SAM indices produce negative correlations with annual mean temperature anomalies over the Antarctic continent, and170

positive correlations over the Antarctic Peninsula and southern South America, over the southern Indian Ocean, and over the

Maritime continent extending into the eastern tropical Indian Ocean, the Coral Sea and the Tasman Sea. However, beyond these

broadly consistent patterns we demonstrate that the methodology used to construct the SAM index does alter the strength of

temperature correlations in some locations.

Figure 5. Spatial correlation of annual SAM values with ERA5 2m air temperature in the Southern Hemisphere (January-December averages

over 1950-2022). Comparisons are shown for differences in SAM indices derived from monthly (top row) and annual (middle row) MSLP

data, and for non-dimensional SAM indices (left column) and dimensional SAM indices (middle column). Also shown are the differences

in spatial correlation values based on MSLP data resolution (bottom row) and for dimensional versus non-dimensional SAM indices (right

column). In these correlation difference plots the shading represents differences between methods and data resolution while stippling indicates

regions of negative spatial correlations. Consistent findings are also produced comparing annual temperature correlations for SAM indices

derived from daily and annual MSLP data (Fig. A1).

Comparing the correlations produced by dimensional versus non-dimensional formulations of the SAM index (i.e. comparing175

along rows in Fig. 5) clear spatial characteristics in correlation differences area evident. Generally, correlation strength in the

region between 40°S and 65°S is stronger for the dimensional SAM than it is for the non-dimensional SAM. These differences

in correlation strength show three distinct nodes across the Southern Ocean and Drake Passage suggesting that the dimensional

SAM index better includes the asymmetric (zonal wave-3) component of SAM variability. In contrast areas north of 40°S more

commonly have stronger correlations with the non-dimensional SAM index. It is expected that this is because the normalisation180
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of the non-dimensional SAM index artificially increases the weighting of MSLP variability at 40°S (relative to MSLP variability

at 65°S). This would emphasise the temperature effects of pressure variability in the mid-latitudes as well as their interactions

with tropical circulation such as the Hadley and Walker circulation cells.

Two important features are found when comparing the annual temperature correlations produced by different resolutions of the

SAM index (i.e. comparing down columns in Fig. 5). Firstly, differences in resolution of the non-dimensional SAM produce185

similar spatial patterns of correlation differences as are seen in the comparision between dimensional and non-dimensional

SAM indices. Specifically, the non-dimensional SAM generated from monthly resolution MSLP data has stronger correlations

with interannual temperature variability in the region between 40°S and 65°S, including showing improved correlation with

the zonal wave-3 pattern. The non-dimensional SAM generated from annual resolution MSLP data has generally stronger

correlations with interannual temperature variability north of 40°S. These differences are emphasised even further in comparing190

annual temperature correlations with the non-dimensional SAM generated from daily versus annual MSLP data (Fig. A1). This

is again explainable through the increasingly strong weighting that is given to pressure variability at 40°S relative to variability

at 65°S as MSLP data resolution is reduced in calculating the non-dimensional SAM (Table 1). However, the other important

finding that is evident in this analysis is that the spatial differences in correlation strength associated with MSLP data resolution

can be avoided altogether by using a dimensional SAM index (middle column of Fig. 5).195

Similar findings come from examining the correlation of annual precipitation with the various methodological choices for

calculating the SAM index (Fig. 6). The primary correlation patterns with precipitation show broad agreement across methods.

Positive mean annual SAM anomalies are associated with latitudinal bands of increased precipitation near the Antarctic coast

(including over the Antarctic Peninsula) and a band of decreased precipitation across the mid-latitudes. This represents the

southward shift of the westerly winds and associated storm tracks when the SAM is in its positive phase. Other regions200

demonstrating positive mean annual precipitation associated with positive SAM anomalies include the Maritime Continent

including the eastern tropical Indian Ocean and eastern Australia and the tropical eastern and central Pacific. Negative mean

annual precipitation anomalies are also seen over West Antarctica in response to positive SAM phases.

Beyond these broad similarities in SAM correlations with precipitation, we do again identify regions where methodological

choices alter the correlation results produced (Fig. 6; Fig A2). Correlations with interannual precipitation variability near 65°S,205

and particularly over the Antarctic Peninsula, are generally stronger for higher resolution versions of the non-dimensional SAM

index, and for all resolutions of the dimensional SAM index. Conversely, correlations with interannual precipitation variability

near 40°S, and specifically south of Australia, over the south island of New Zealand and west of Chile, are stronger for lower

resolution versions of the non-dimensional SAM, and for the non-dimensional SAM compared with the dimensional SAM.

These formulations of the SAM index also show stronger precipitation anomalies over parts of the tropics including northern210

Australia and the Amazon region, indicating the stronger representation of tropical-to-mid-latitude atmospheric circulation in

these versions of the SAM index that give increased weighting to pressure anomalies at 40°S. In other words, it is these regions

where methodological choices in constructing the SAM index will have the most impact on the interpretation of the SAM’s

influence on annual mean precipitation.
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Figure 6. Spatial correlation of annual SAM values with ERA5 precipitation in the Southern Hemisphere. (January-December averages over

1950-2022). Comparisons are shown for differences in SAM indices derived from monthly (top row) and annual (middle row) MSLP data,

and for non-dimensional SAM indices (left column) and dimensional SAM indices (middle column). Also shown are the differences in spatial

correlation values based on MSLP data resolution (bottom row) and for dimensional versus non-dimensional SAM indices (right column).

In these correlation difference plots the shading represents differences between methods and data resolution while stippling indicates regions

of negative spatial correlations. Consistent findings are also produced comparing annual precipitation correlations for SAM indices derived

from daily and annual MSLP data (Fig. A2).

We note that these comparisons are shown for mean annual precipitation and SAM anomalies, but it is well established that215

the impacts of SAM on precipitation vary by season (Fogt and Marshall, 2020). Because of this, the impacts of methodological

choices in assessing the SAM’s precipitation impacts at a seasonal scale may result in different regions where those method-

ological choices alter correlation strength. However we expect that our general conclusions would remain the same at the

seasonal scale, including that a dimensional version of the SAM index would produce correlation results that are unaffected by

choices in the resolution of zonal MSLP data used to construct the SAM index.220

3.3 SAM trends

Finally, we look at how methodological choices in constructing the SAM index could alter the interpretation of SAM changes

in a warming world. During the historical period the differences in interannual variability of annual SAM values produced by

dimensional or non-dimensional SAM indices are detectable but small (Fig. 4). However, as the response to human-caused

climate warming develops, the magnitude of SAM trends relative to the magnitude of historical variability show increasing225

differences between different methodological versions of the SAM index (Fig. 7).
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Figure 7. Example of future scenario SAM indices based on different calculation methods. a. Comparison of low emissions future scenario

(SSP1-2.6) based on dimensional (purple) and non-dimensional (green) SAM indices calculated from annual MSLP data for 1850-2100.

Thick lines show 50-yr moving averages. Reference interval used for calculating the SAM indices is 1961-1990. b. As in a, but for a very

high emissions future scenario (SSP5-8.5)

Long-term climate change trends are stronger in the non-dimensional SAM compared to the dimensional SAM, relative to

historical interannual variability (Fig. 7). This difference will affect interpretations of time of emergence (Hawkins et al.,

2020), which assess when a long-term climate trend (signal) emerges above the amplitude of historical climate variability

(noise) resulting in climate conditions that are beyond the range of historical experience. For example, under a future with230

very high greenhouse gas emissions (SSP5-8.5) the climate change signal on the SAM index (as assessed by a 50-year moving

average) emerges above the 1 standard deviation historical (1850-1949) noise level by 2025, and above the 2 standard deviation

historical noise level by 2091, in a non-dimensional formulation of the SAM. In contrast, for the dimensional SAM there is

emergence above the 1 standard deviation level by 2031, but no emergence occurs above the 2 standard deviation level during
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the 21st century. Likewise, under a low greenhouse gas emissions scenario (SSP1-2.6) there is emergence of the climate change235

signal for the non-dimensional SAM between 2063 and 2086, but emergence is not detected at any time during the 21st century

for the dimensional SAM.

This finding illustrates how methodological differences in calculating the SAM index have the potential to alter interpretations

of human-caused climate impacts on the SAM. Our findings suggest that the normalisation associated with a non-dimensional

SAM index may lead to assessments that the SAM has emerged outside of the range of historical experience sooner than would240

be determined based on a dimensional SAM. We emphasise that this is only an illustrative example based on a single climate

model, but it does demonstrate the potential for methodological choices to influence the interpretation of SAM trends between

different studies.

4 Discussion and Conclusions

Our results allow us to make recommendations for a best-practice approach to calculating the SAM index to enable consistency245

across climate studies. The traditionally used (non-dimensional) SAM index (Gong and Wang, 1999; Marshall, 2003) involves

normalising zonal MSLP data before calculating the latitudinal MSLP difference that defines the SAM. It isn’t clear why

the choice to normalise zonal MSLP data was originally made, although it is possible that this was to facilitate comparisons

with EOF-based methods of defining the SAM that produce non-dimensional principal components (Gong and Wang, 1999;

Baldwin, 2001), or because of potential spurious trends in early MSLP data in the Antarctic region (Baldwin, 2001; Marshall,250

2003).

We find that the normalisation step involved in the traditionally used (non-dimensional) SAM index has the potential to intro-

duce multiple biases in climate studies. Firstly, the magnitude of the non-dimensional SAM index value varies substantially

based on the temporal resolution of zonal MSLP data used to construct the SAM index (Fig 3a-c). Because the index produced

by this method is dimensionless these differences are hard to trace when SAM indices are then applied in climate research, and255

there are examples where this has then resulted in seemingly large differences in the magnitude of paleoclimate reconstructions

of the SAM (Wright et al., 2022). The normalisation step in calculating the non-dimensional SAM also gives equal weighting

to MSLP variability and trends in the mid and high latitudes. However, the magnitude of MSLP variability and trends are

substantially larger at 65°S compared to 40°S (Table 1). The effect of equally weighting MSLP anomalies at 40°S and 65°S

results in biases in correlations with temperature and rainfall data that could alter the interpretation and attribution of SAM260

impacts in some regions. This includes generally reducing SAM correlations with temperature and precipitation variability in

the high southern latitudes, and giving enhanced influence to the impacts of mid-latitude pressure anomalies and their links to

tropical atmospheric circulation (Figs. 5 and 6). Furthermore, the non-dimensional SAM index displays stronger future climate

change trends relative to the magnitude of historical variability. Because of this the SAM would be assessed to emerge above

historical experience sooner this century using a non-dimensional SAM index compared with a dimensional index (Fig. 7).265
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These problems are overcome when using a dimensional version of the SAM based on zonal MSLP anomalies rather than

normalised MSLP data. The dimensional SAM index produces consistent indices across different resolutions of MSLP data

(Fig 3d), that also have consistent spatial correlations with temperature and precipitation (Figs 5 and 6). Although SAM

index anomalies are commonly expressed in monthly, seasonal or yearly means, it is the influence of the SAM on synoptic-

scale features such as the path of low pressure system storms and Rossby wave breaking that determines climate impacts270

(Pepler, 2020; Spensberger et al., 2020). This might suggest that accurate representation of the SAM requires daily or better

resolution of MSLP data. However, we demonstrate that the annually averaged climate impacts of the SAM are as effectively

represented by latitudinal differences in annual MSLP data as they are for monthly or daily resolution MSLP data (Figs. 5

and 6; A1 and A2), provided that a dimensional SAM index method is used. Correlations of temperature and precipitation

anomalies with the SAM are also consistently stronger for the mid-to-high latitude region where SAM variability is focused275

when using the dimensional SAM compared with the non-dimensional SAM. This includes an improved representation of

the asymmetric (zonal-wave 3) components of SAM variability in the dimensional SAM index, whereas increased weighting

of mid-latitude pressure anomalies in the non-dimensional SAM results in increased incorporation of tropical atmospheric

circulation anomalies into the SAM index.

Biases in the non-dimensional SAM index appear to be related to the assumed equal weighting of MSLP variability at the280

mid and high latitudes when the zonal MSLP data is normalised. Instead of assuming either equal (non-dimensional SAM) or

no weighting (dimensional SAM) of zonal MSLP data, it could be considered if an equal area weighting based on latitude is

optimal for constructing the SAM index. This latitudinal weighting can be achieved by multiplying the zonal MSLP data by

the square root of the cosine of latitude (weighting of 0.875 for 40°S and 0.650 for 65°S). This latitudinal weighting has a ratio

of 1.3, which is substantially less than the observed difference in MSLP variability and trends which are approximately 2-3285

times larger at 65°S than 40°S. Hence, even when accounting for equal area, the variability and trends in MSLP data remain

larger at 65°S and should therefore provide a larger contribution to SAM variability than pressure variability at 40°S (Table

A1). This is further verified by repeating our analyses using a dimensional SAM index based on latitude weighted MSLP

data. These demonstrate that spatial temperature and precipitation correlations are stronger for the dimensional SAM rather

than a weighted dimensional SAM (Fig. A3-4). The weighted dimensional SAM also has spatial correlation differences when290

the SAM is calculated at different temporal resolutions which are not present for the dimensional SAM (Fig. A3-4). Hence it

appears that area weighting of MSLP anomalies does not improve the representation of the SAM index.

We thus recommend that the best-practice method for calculating the SAM index from zonal MSLP data should be:

SAM = P ∗
40°S

−P ∗
65°S

(2)

where P*40°S and P*65°S are the zonal MSLP anomalies at 40°S and 65°S, respectively.295

Using this method the resulting SAM index will have dimensional pressure units that avoid scaling issues and ambiguity be-

tween studies, give appropriate influence to different magnitude of pressure anomalies between the mid-latitudes and Antarc-
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tica, produce consistent indices and spatial correlation results across temporal scales, and generate generally stronger relation-

ships to SAM impacts in the southern high latitudes than the traditionally used non-dimensional SAM index.
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Appendix A: Appendix A

Figure A1. Spatial correlation of annual SAM values with ERA5 2m air temperature in the Southern Hemisphere (January-December

averages over 1950-2022). Comparisons are shown for differences in SAM indices derived from daily (top row) and annual (middle row)

MSLP data, and for non-dimensional SAM indices (left column) and dimensional SAM indices (middle column). Also shown are the

differences in spatial correlation values based on MSLP data resolution (bottom row) and for dimensional versus non-dimensional SAM

indices (right column). In these correlation difference plots the shading represents differences between methods and data resolution while

stippling indicates regions of negative spatial correlations.
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Figure A2. Spatial correlation of annual SAM values with ERA5 precipitation in the Southern Hemisphere (January-December averages over

1950-2022). Comparisons are shown for differences in SAM indices derived from daily (top row) and annual (middle row) MSLP data, and

for non-dimensional SAM indices (left column) and dimensional SAM indices (middle column). Also shown are the differences in spatial

correlation values based on MSLP data resolution (bottom row) and for dimensional versus non-dimensional SAM indices (right column).

In these correlation difference plots the shading represents differences between methods and data resolution while stippling indicates regions

of negative spatial correlations.

Table A1. Characteristics of latitude-weighted MSLP variability and trends for the zonal means used to calculate the SAM index at different

data resolutions.

Data resolution 40°S standard deviation

(1961-1990; hPa)

65°S standard deviation

(1961-1990; hPa)

40°S trend (1950-2022;

hPa/decade)

65°S trend (1950-2022;

hPa/decade)

Daily 2.025 3.638 0.16 -0.32

Monthly 1.482 2.616 0.16 -0.32

Annual 0.446 0.881 0.16 -0.32
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Figure A3. Spatial correlation of annual SAM values with ERA5 2m air temperature in the Southern Hemisphere (January-December

averages over 1950-2022). Comparisons are shown for differences in SAM indices derived from monthly (top row) and annual (middle

row) MSLP data, and for latitudinally weighted dimensional SAM indices (left column) and unweighted dimensional SAM indices (middle

column; as in Fig. 5). Also shown are the differences in spatial correlation values based on MSLP data resolution (bottom row) and for

dimensional versus non-dimensional SAM indices (right column). In these correlation difference plots the shading represents differences

between methods and data resolution while stippling indicates regions of negative spatial correlations.
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Figure A4. Spatial correlation of annual SAM values with ERA5 precipitation in the Southern Hemisphere (January-December averages

over 1950-2022). Comparisons are shown for differences in SAM indices derived from monthly (top row) and annual (middle row) MSLP

data, and for latitudinally weighted dimensional SAM indices (left column) and unweighted dimensional SAM indices (middle column; as in

Fig. 6). Also shown are the differences in spatial correlation values based on MSLP data resolution (bottom row) and for dimensional versus

non-dimensional SAM indices (right column). In these correlation difference plots the shading represents differences between methods and

data resolution while stippling indicates regions of negative spatial correlations.
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