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Abstract. The Southern Annular Mode (SAM) strongly influences climate variability in the Southern Hemisphere. The SAM

index describes the phase and magnitude of the SAM and can be calculated by measuring the difference in mean sea level

pressure (MSLP) between mid- and high-latitudes. This study investigates the effects of calculation methods and data resolution

on the SAM index, and subsequent interpretations of SAM impacts and trends. We show that the normalisation step that is5

traditionally used in calculating the SAM index leads to substantial differences in the magnitude of the SAM index calculated

at different temporal resolutions. Additionally, the equal weighting that the normalisation approach gives to MSLP variability at

the mid and high southern latitudes artificially alters temperature and precipitation correlations and the interpretation of climate

change trends in the SAM. These issues can be overcome by instead using a natural SAM index based on MSLP anomalies,

resulting in consistent scaling and variability of the SAM index calculated at daily, monthly and annual data resolutions. The10

natural SAM index has improved representation of SAM impacts in the high southern latitudes, including the asymmetric

(zonal wave-3) component of MSLP variability, whereas the increased weighting given to mid-latitude MSLP variability in

the normalised SAM index incorporates a stronger component of tropical climate variability that is not directly associated

with SAM variability. We conclude that an improved approach of calculating the SAM index from MSLP anomalies without

normalisation would aid consistency across climate studies and avoid potential ambiguity in the SAM index, including SAM15

index reconstructions from paleoclimate data, and thus enable more consistent interpretations of SAM trends and impacts.

1 Introduction

The Southern Annular Mode (SAM) is the leading mode of atmospheric variability in the extratropical Southern Hemisphere.

The SAM describes changes in the strength and position of the westerly wind belt and associated storm tracks, and can be char-

acterised through the difference in zonal mean sea level pressure (MSLP) between the southern mid-latitudes and Antarctica20
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(Thompson and Wallace, 2000; Marshall, 2003). A positive SAM is characterised by positive pressure anomalies at mid-

latitudes and negative pressure anomalies over Antarctica (Fig 1; Marshall, 2003). These variations in the latitudinal pressure

gradient have been found to influence temperature and precipitation across the Southern Hemisphere, and also interact with

other major modes of climate variability. For example, a positive SAM has been associated with decreases in precipitation and

positive temperature anomalies in southeast South America often as a result of interactions with El Niño-Southern Oscillation25

(Silvestri and Vera, 2003; Vera and Osman, 2018). In South Africa, a positive SAM is associated with a decrease in rainfall

during winter and spring related to a shift in the polar jet (Reason and Rouault, 2005). In Australia, a positive SAM during

winter is linked to reduced precipitation in southern parts of the country, while a negative SAM in summer can lead to re-

duced rainfall and elevated temperature and bushfire risk in parts of eastern Australia (e.g., Meneghini et al., 2007; Mariani

and Fletcher, 2016; Lim et al., 2019; Abram et al., 2021). While in New Zealand, a positive SAM is linked to a decrease in30

precipitation and an increase in temperature due to weakened westerly winds passing over the islands (Kidston et al., 2009).

Figure 1. Spatial correlation of SAM index to mean sea level pressure (MSLP) in the Southern Hemisphere. SAM index was calculated from

annually means (January-December; 1950-2022, ERA5 data) using the difference in zonal MSLP at 40°S and 65°S (dashed lines).

The phase and magnitude of SAM variability is described by the SAM index. Two methods are commonly used to calculate

the SAM index. The first method is based on gridded data such as atmospheric reanalysis (e.g. ERA5) or climate model output,

and breaks down extra tropical Southern Hemisphere atmospheric pressure data into orthogonal spatial patterns expressed by

Empirical Orthogonal Functions (EOF). The first EOF explains the leading mode of Southern Hemisphere variability and its35

time series represents the SAM index (Mo, 2000; Fogt and Bromwich, 2006). Recent advances in the application of the EOF

method to describe the SAM include approaches to separate the zonally symmetric component of SAM variability from the

asymmetric component of variability associated with the zonal wave-3 pattern (Goyal et al., 2022; Campitelli et al., 2022). The

second method for calculating the SAM index uses the difference in the normalised zonal mean sea level pressure (MSLP)

between 40°S and 65°S (Fig. 2). By this method the SAM index can be calculated using gridded products from reanalysis or40

model outputs (Gong and Wang, 1999) or from more sparse instrumental records of MSLP from observing stations located in
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the southern mid-latitudes and around coastal Antarctica (Marshall, 2003). It is this second method of calculating the SAM

index that is the main focus of the assessment carried out in this study, however we do also demonstrate the extension of our

findings to EOF-based methods.

Instrumental climate measurements are sparse across the Southern Hemisphere, and particularly in Antarctica. This generally45

limits a reliable long term understanding of SAM variability from observations and reanalysis products to the time since 1957

(Marshall, 2003; Barrucand et al., 2018; Marshall et al., 2022), although some longer reconstructions based on observations

have also been developed back to the late 19th century (Jones et al., 2009; Visbeck, 2009). Over this historical period there

has been a significant positive trend in the SAM, particularly in the summer season, associated with stratospheric ozone loss as

well as rising atmospheric greenhouse gases (Thompson and Solomon, 2002; Fogt and Marshall, 2020). This trend is expected50

to continue in all seasons during the 21st century as climate continues to warm due to ongoing anthropogenic greenhouse

gas emissions, but with a temporary pause in summer trends due to the opposing influence of stratospheric ozone recovery

(Thompson et al., 2011; Goyal et al., 2019; Banerjee et al., 2020)

Longer-term reconstructions of the SAM have been developed using paleoclimate proxy records (e.g., ice cores, tree rings

and corals, etc) and multiple reconstructions for the last millennium have been produced (e.g., Villalba et al., 2012; Abram55

et al., 2014; Dätwyler et al., 2018; King et al., 2023). These long-term reconstructions show similar trends in the SAM index,

however, they display different magnitudes of reconstructed SAM variability. Although variability between reconstructions

could be due to differences in reconstruction methods and the networks of proxy data used, Wright et al. (2022) instead found

that differences in magnitude between the Abram et al. (2014) and Dätwyler et al. (2018) reconstructions were explained by the

data resolution used to calculate the instrumental SAM index. Dätwyler et al. (2018) trained their reconstruction to an annual60

SAM index calculated from monthly MSLP data, while Abram et al. (2014) used the annual SAM index from annual MSLP

data as their reconstruction target. The difference in magnitude of the annual SAM index in instrumental data calculated by

these alternate methods accounts for the apparently larger (though dimensionless) magnitude of SAM variability during the

last millennium in the Abram et al. (2014) reconstruction compared with the Dätwyler et al. (2018) reconstruction (Wright

et al., 2022). This discrepancy highlights the importance of understanding the impact of methodology in reconstructing the65

SAM index from observational data.

It has previously been shown that differences between the method (e.g. EOF or zonal difference index methods), variable

(e.g. pressure level) or source data (e.g. gridded reanalysis or station observations) results in sometimes marked differences

between available observational SAM indices, despite these indices all representing the same physical process (Ho et al.,

2012). However, it is not known how methodological choices within a single method, variable and data source might also have70

the potential to influence the results of SAM studies. To date, an optimal data resolution to use when calculating the SAM

index has not been established, and various versions constructed using different resolutions and orders of operation are made

available for the research community to use (e.g. http://www.nerc-bas.ac.uk/icd/gjma/sam.html). It also remains unexplored if

the choice to normalise zonal MSLP data prior to calculating the latitudinal difference in pressure anomalies (Gong and Wang,
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1999; Marshall, 2003) could influence assessments of past and future SAM changes, or the climate impacts that SAM causes75

in different parts of the Southern Hemisphere.

Here, we calculate historical SAM indices using daily, monthly and annual averages of zonal MSLP data, and using normalised

(traditional) and natural formulations of the SAM index. We explore differences between the SAM indices, and the reasons why

methodological choices introduce these differences, as well as the potential implications when analysing the spatial correlation

of SAM variability with temperature and precipitation impacts. Additionally, we also explore the influence of methods on the80

interpretation of SAM trends in projections of climate change during the 21st century. We conclude by making recommenda-

tions for an improved approach to calculating the SAM index that avoids potential differences introduced by methodology.

2 Methods

We use the ECMWF (European Centre for Medium-Range Weather Forecasts) Reanalysis v5 (ERA5) gridded data for our study

(Hersbach et al., 2020). ERA5 reanalysis data is currently available from 1950. Of the available reanalysis products, ERA5 has85

been shown to best reproduce Antarctic surface temperature and SAM relationships prior to the satellite era (Marshall et al.,

2022).

Daily resolution MSLP data in ERA5 for latitudes 40°S and 65°S were sourced from the KNMI Climate Explorer tool (Trouet

and Van Oldenborgh, 2013). From daily ERA5 data, the daily, monthly and annual means of zonal MSLP were calculated.

SAM Indices were then calculated for these three different data resolutions (Fig 2).90

Following the approach of Gong and Wang (1999), the SAM index was first calculated using the equation:

SAM = P ∗
40°S −P ∗

65°S (1)

where P*40°S and P*65°S are the normalised zonal MSLP at 40°S and 65°S, respectively.

Data was normalised relative to a 1961–1990 reference interval. Briefly, this involves subtracting the mean of the reference

interval from the time series, and then dividing the time series by the reference interval standard deviation. The SAM index95

was then calculated by subtracting the normalised zonal MSLP values at 65°S from the normalised zonal MSLP values at

40°S (Fig. 2). The normalisation step removes units from the MSLP data, and consequently the resultant SAM index is also

dimensionless. We refer to this as the normalised SAM index.

A natural SAM index in hPa pressure units was also calculated (Fig. 2). This followed the same equation and method as above,

but in this case P*40°S and P*65°S are the zonal MSLP anomalies at 40°S and 65°S. Specifically, for the natural SAM index100

the zonal MSLP anomalies are calculated relative to the 1961–1990 reference interval mean without dividing by the reference

interval standard deviation.

Discrepancies between daily, monthly and annual SAM index methods were investigated by calculating an annual mean SAM

from the daily and monthly indices (Fig. 2). The annual SAM values derived from the different resolution SAM indices were
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Figure 2. Methodological choices explored in this study by calculating normalised and natural SAM indices from different data resolutions.

then compared by a correlation coefficient (r) and by examining the gradient between different methods of calculating the SAM105

index. The spatial correlation of each SAM index at each data resolution with ERA5 gridded data for 2m air temperature and

precipitation was also examined to test the influence of methodological choices on detection and interpretation of the SAM’s

climate impacts.

To illustrate the impact that methodological choices could have on the interpretation of future SAM changes we also test climate

model output from 1850 to 2100. To illustrate the effect of methodological choices we use output from the CSIRO ACCESS-110

CM2 model prepared for CMIP6 (Dix et al., 2019). A full assessment of future SAM changes would require a more thorough

analysis across the ensemble of CMIP6 models, as done for example in Goyal et al. (2021), but our purpose in this study is to

simply illustrate the potential impact of methodological choices on such assessments. MSLP outputs from the ACCESS-CM2

model were sourced from the "very high" and "low" emission scenarios for future climate change (SSP5-8.5 and SSP1-2.6,

respectively) in order to best identify the range of influences that methodological choice could have on assessing SAM changes115
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in a warming climate. As the output from these global climate model simulations are routinely reported at monthly mean

resolution, only monthly and annual mean SAM indices were calculated for the future projections. Both normalised and natural

SAM indices were calculated from the climate model output, relative to a 1961-1990 reference interval.

In addition to these main analyses, we also verify the broad application of our findings by repeating our calculations of nor-

malised and natural SAM indices using the station locations that are used for the Marshall SAM index (Marshall, 2003). For120

this we used the ERA5 MSLP data extracted for the 12 grid cells corresponding to the station locations used for the Marshall

SAM index (Marshall, 2003). We further extended our comparison across common SAM index methodologies by constructing

EOF-based SAM indices using the ERA5 gridded MSLP data from south of 20°S at monthly and annual resolutions.

All data analysis were carried out using MATLAB R2022b software. This included using the M-map package and the Climate

Data Toolbox for producing the analyses and maps presented in this study (Greene et al., 2019; Pawlowicz, 2020).125

3 Results

3.1 SAM index characteristics

Data resolution strongly influences the magnitude of the normalised SAM index (Fig. 3a). While the pattern of interannual

variability of the normalised SAM is very similar for all data resolutions (as demonstrated by r values exceeding 0.99; Fig.

3b-c), the magnitude of interannual variability of the normalised SAM derived from monthly data is 1.4 times larger than the130

normalised SAM derived from daily data (Fig. 3b). Similarly, the magnitude of the annual normalised SAM index calculated

from annual means is 3.1 times larger than the normalised SAM derived from monthly data (Fig. 3c) and 4.4 times higher than

the annual SAM derived from daily data. This finding is consistent with the recalculation performed by Wright et al. (2022)

where the SAM index calculated from annual MSLP data displayed a higher variability than annual means derived from a

monthly SAM index.135

Differences in magnitude of the normalised SAM index are caused by a progressive decrease in standard deviation as MSLP

data is averaged over longer time periods (Table 1). This means that the normalisation of daily MSLP data removes a larger

magnitude of variability than normalisation of monthly MSLP data, and even more so when comparing to normalisation of

annual resolution MSLP data. Comparison of the reference interval MSLP standard deviations between the different data

resolutions (Table 1) gives similar ratios to the slopes between the annual mean SAM values derived from different resolution140

SAM indices in Figure 3a-c. For example, the normalisation step in calculating the SAM index removes a 3.3 times greater

magnitude of MSLP variability at 40°S for monthly resolution data compared to annual mean data (standard deviations of

1.694 and 0.509 hPa, respectively; Table 1), and 3 times more variability at 65°S (standard deviations of 4.025 and 1.355 hPa,

respectively; Table 1). This results in the 3.1 times greater magnitude of interannual SAM variability calculated from annual

data relative to monthly data when using the normalisation method to calculate the SAM index (Fig. 3c).145
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Figure 3. Annual mean SAM values calculated by different methodological choices. a. Comparison of annual normalised SAM values

calculated from daily (red), monthly (orange) and annual (blue) MSLP data. b. Relationship between the annual normalised SAM values

calculated from daily and month resolution MSLP data. Dashed line represents 1:1 slope c. Relationship between the annual normalised

SAM values calculated from monthly and annual resolution MSLP data. Dashed line represents 1:1 slope. d. Comparison of annual natural

SAM values calculated from daily (red), monthly (orange) and annual (blue) MSLP data.

Differences in the magnitude of the SAM index are overcome when a natural SAM index is instead calculated. The annual mean

natural SAM values calculated from daily, monthly and annual resolution MSLP data all display a near-identical magnitude

of interannual variability over time (Fig 3d). This highlights how the normalisation step that is traditonally used in calculating
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the SAM index can introduce ambiguity into SAM studies, but also how this ambiguity can be avoided by retaining the native

pressure units in the natural SAM index.150

Our findings also demonstrate that a natural SAM index can be reliably calculated from low resolution MSLP data. Physically,

it is the instantaneous difference in pressure between the mid and high southern latitudes that represents the processes of

atmospheric SAM variability (Baldwin, 2001), and so daily resolution data might be assumed to retain a more pure measure of

the SAM index. However, our findings using different resolutions of MSLP data show that the interannual trends and variability

of the natural SAM are consistently captured using daily, monthly or annually averaged zonal MSLP anomalies (Fig. 3d).155

Our findings for the SAM index derived from the latitudinal pressure difference in gridded MSLP data also extend to other

methods of calculating the SAM index. Consistent findings to those demonstrated in Fig. 3 are produced when normalised

and traditional SAM indices are produced using the 12 observational locations used for the Marshall SAM index (Figure A1).

Similarly, the annual SAM data produced using an EOF method applied to monthly resolution gridded MSLP data has a muted

amplitude compared to the same EOF-derived index based on annual resolution data (Figure A2). This demonstrates how the160

normalisation process impacts the scaling of the SAM index derived from different temporal resolutions of input data regardless

of the SAM index method used.

Beyond scaling, there are additional (though small) year-to-year differences in the interannual variability and trends of the

SAM when comparing natural and normalised calculations of the SAM index. These differences are evident when comparing

annual SAM values calculated as a natural or normalised index from annual MSLP data (Fig. 4, Table A1), and are similarly165

evident when comparing the variability of natural and normalised SAM indices calculated from monthly MSLP data or from

daily MSLP data (Table A1).

These differences in year-to-year variability and trends can again be explained as an artefact introduced by the normalisation

step when calculating the traditional SAM index. By normalising the zonal MSLP data before calculating the zonal difference,

an identical weighting is given to pressure variability in the mid and high latitudes in the calculation of the normalised SAM170

index. However, the magnitude of MSLP variability is consistently larger at 65°S compared with 40°S (Table 1). At daily

resolution the magnitude of reference interval variability at 65°S is 2.22 times larger than the variability at 40°S (standard

deviations of 5.597 hPa and 2.524 hPa, respectively), and at annual resolution variability at 65°S is 2.66 times larger than at

40°S (standard deviations of 1.355 hPa and 0.509 hPa, respectively). Likewise, the long-term trends in MSLP are amplified at

65°S (-0.50 hPa/decade from 1950-2022) compared to the MSLP trends at 40°S (0.18 hPa/decade). These differences suggest175

that the equal weighting of these latitudinal zones that is routinely applied in calculating the normalised SAM index may not

be justified, and could artificially alter the interpretation of SAM variability, trends and impacts.

3.2 SAM impacts

Spatial correlation analysis shows that the SAM index is correlated with Southern Hemisphere temperature variability, with

similar broad-scale patterns across SAM index data resolutions and calculation methods (Fig. 5). In general, all formulations180
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Table 1. Characteristics of MSLP variability during the 1961-1990 reference interval for the zonal MSLP data used to calculate the SAM

index at different resolutions.

Data resolution 40°S standard deviation (hPa) 65°S standard deviation (hPa)

Daily 2.524 5.597

Monthly 1.694 4.025

Annual 0.509 1.355

Figure 4. Comparison of interannual variability and trends from normalised and natural annual SAM values calculated from annual resolution

MSLP data. Y-axis limits have been scaled relative to the regression slope between the natural and normalised SAM index to provide the

optimal alignment of the indices

of the SAM indices produce negative correlations with annual mean temperature anomalies over the Antarctic continent, and

positive correlations over the Antarctic Peninsula and southern South America, over the southern Indian Ocean, and over the

Maritime continent extending into the eastern tropical Indian Ocean, the Coral Sea and the Tasman Sea. However, beyond these

broadly consistent patterns we demonstrate that the methodology used to construct the SAM index does alter the strength of

temperature correlations in some locations.185

Comparing the correlations produced by natural versus normalised formulations of the SAM index (i.e. comparing along rows

in Fig. 5) clear spatial characteristics in correlation differences are evident. Generally, correlation strength in the region between

40°S and 65°S is stronger for the natural SAM than it is for the normalised SAM. These differences in correlation strength

show three distinct nodes across the Southern Ocean and Drake Passage suggesting that the natural SAM index better includes

the asymmetric (zonal wave-3) component of SAM variability. In contrast areas north of 40°S more commonly have stronger190

correlations with the normalised SAM index. It is expected that this is because the normalised SAM index artificially increases

9



Figure 5. Spatial correlation of annual SAM values with ERA5 2m air temperature in the Southern Hemisphere (January-December averages

over 1950-2022). Comparisons are shown for differences in SAM indices derived from monthly (top row) and annual (middle row) MSLP

data, and for normalised SAM indices (left column) and natural SAM indices (middle column). Also shown are the differences in spatial

correlation values based on MSLP data resolution (bottom row) and for natural versus normalised SAM indices (right column). In these

correlation difference plots the shading represents differences between methods and data resolution while stippling indicates regions of

negative spatial correlations. Consistent findings are also produced comparing annual temperature correlations for SAM indices derived from

daily and annual MSLP data (Fig. A3).

the weighting of MSLP variability at 40°S (relative to MSLP variability at 65°S). This emphasises the temperature effects of

pressure variability in the mid-latitudes as well as their interactions with tropical circulation such as the Hadley and Walker

circulation cells.

Two important features are found when comparing the annual temperature correlations produced by different resolutions of195

the SAM index (i.e. comparing down columns in Fig. 5). Firstly, differences in resolution of the normalised SAM produce

similar spatial patterns of correlation differences as are seen in the comparision between natural and normalised SAM indices.

Specifically, the normalised SAM generated from monthly resolution MSLP data has stronger correlations with interannual

temperature variability in the region between 40°S and 65°S, including showing improved correlation with the zonal wave-3

pattern. The normalised SAM generated from annual resolution MSLP data has generally stronger correlations with interan-200

nual temperature variability north of 40°S. These differences are emphasised even further in comparing annual temperature

correlations with the normalised SAM generated from daily versus annual MSLP data (Fig. A3). This is again explainable

through the increasingly strong weighting that is given to pressure variability at 40°S relative to variability at 65°S as MSLP

data resolution is reduced in calculating the normalised SAM (Table 1). However, the other important finding that is evident in
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this analysis is that the spatial differences in correlation strength associated with MSLP data resolution can be avoided almost205

altogether by using a natural SAM index (middle column of Fig. 5).

Similar findings come from examining the correlation of annual precipitation with the various methodological choices for

calculating the SAM index (Fig. 6). The primary correlation patterns with precipitation show broad agreement across methods.

Positive mean annual SAM anomalies are associated with latitudinal bands of increased precipitation near the Antarctic coast

(including over the Antarctic Peninsula) and a band of decreased precipitation across the mid-latitudes. This represents the210

southward shift of the westerly winds and associated storm tracks when the SAM is in its positive phase. Other regions

demonstrating positive mean annual precipitation associated with positive SAM anomalies include the Maritime Continent

including the eastern tropical Indian Ocean and eastern Australia and the tropical eastern and central Pacific. Negative mean

annual precipitation anomalies are also seen over West Antarctica in response to positive SAM phases.

Figure 6. Spatial correlation of annual SAM values with ERA5 precipitation in the Southern Hemisphere. (January-December averages

over 1950-2022). Comparisons are shown for differences in SAM indices derived from monthly (top row) and annual (middle row) MSLP

data, and for normalised SAM indices (left column) and natural SAM indices (middle column). Also shown are the differences in spatial

correlation values based on MSLP data resolution (bottom row) and for natural versus normalised SAM indices (right column). In these

correlation difference plots the shading represents differences between methods and data resolution while stippling indicates regions of

negative spatial correlations. Consistent findings are also produced comparing annual precipitation correlations for SAM indices derived

from daily and annual MSLP data (Fig. A4).

Beyond these broad similarities in SAM correlations with precipitation, we do again identify regions where methodological215

choices alter the correlation results produced (Fig. 6; Fig A4). Correlations with interannual precipitation variability near 65°S,

and particularly over the Antarctic Peninsula, are generally stronger for higher resolution versions of the normalised SAM

index, and for all resolutions of the natural SAM index. Conversely, correlations with interannual precipitation variability near
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40°S, and specifically south of Australia, over the south island of New Zealand and west of Chile, are stronger for lower

resolution versions of the normalised SAM, and for the normalised SAM compared with the natural SAM. These formulations220

of the SAM index also show stronger precipitation anomalies over parts of the tropics including northern Australia and the

Amazon region, indicating the stronger representation of tropical-to-mid-latitude atmospheric circulation in these versions

of the SAM index that give increased weighting to pressure anomalies at 40°S. In other words, it is these regions where

methodological choices in constructing the SAM index will have the most impact on the interpretation of the SAM’s influence

on annual mean precipitation.225

We note that these comparisons are shown for mean annual precipitation and SAM anomalies, but it is well established that

the impacts of SAM on precipitation vary by season (Fogt and Marshall, 2020). Because of this, the impacts of methodological

choices in assessing the SAM’s precipitation impacts at a seasonal scale may result in different regions where those method-

ological choices alter correlation strength. However we expect that our general conclusions would remain the same at the

seasonal scale, including that a natural version of the SAM index would produce correlation results that are unaffected by230

choices in the resolution of zonal MSLP data used to construct the SAM index.

3.3 SAM trends

Finally, we look at how methodological choices in constructing the SAM index could alter the interpretation of SAM changes

in a warming world. During the historical period the differences in interannual variability of annual SAM values produced

by natural or normalised SAM indices are detectable but small (Fig. 4). However, as the response to human-caused climate235

warming develops, the magnitude of SAM trends relative to the magnitude of historical variability show increasing differences

between different methodological versions of the SAM index (Fig. 7).

Long-term climate change trends are stronger in the normalised SAM compared to the natural SAM, relative to historical

interannual variability (Fig. 7). This difference will affect interpretations of time of emergence (Hawkins et al., 2020), which

assess when a long-term climate trend (signal) emerges above the amplitude of historical climate variability (noise) resulting in240

climate conditions that are beyond the range of historical experience. For example, under a future with very high greenhouse gas

emissions (SSP5-8.5) the climate change signal on the SAM index (as assessed by a 50-year moving average) emerges above

the 1 standard deviation historical (1850-1949) noise level by 2025, and above the 2 standard deviation historical noise level

by 2091, in a normalised formulation of the SAM. In contrast, for the natural SAM there is emergence above the 1 standard

deviation level by 2031, but no emergence occurs above the 2 standard deviation level during the 21st century. Likewise, under245

a low greenhouse gas emissions scenario (SSP1-2.6) there is emergence of the climate change signal for the normalised SAM

between 2063 and 2086, but emergence is not detected at any time during the 21st century for the natural SAM.

This finding illustrates how methodological differences in calculating the SAM index have the potential to alter interpretations

of human-caused climate impacts on the SAM. Our findings suggest that the normalised SAM index may lead to assessments

that the SAM has emerged outside of the range of historical experience sooner than would be determined based on a natural250
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Figure 7. Example of future scenario SAM indices based on different calculation methods. a. Comparison of a low emissions future scenario

(SSP1-2.6) based on natural (purple) and normalised (green) SAM indices calculated from annual MSLP data for 1850-2100. Thick lines

show 50-yr moving averages. Reference interval used for calculating the SAM indices is 1961-1990. b. As in a, but for a very high emissions

future scenario (SSP5-8.5). Y-axis limits have been scaled relative to the regression slope between the natural and normalised SAM index

over the reference interval to provide the optimal alignment of the indices.

SAM index. We emphasise that this is only an illustrative example based on a single climate model, but it does demonstrate

the potential for methodological choices to influence the interpretation of SAM trends between different studies.

4 Discussion and Conclusions

Our results allow us to make recommendations for an improved approach to calculating the SAM index that can enable greater

consistency across climate studies. The traditionally used (normalised) SAM index (Gong and Wang, 1999; Marshall, 2003)255

involves normalising zonal MSLP data before calculating the latitudinal MSLP difference that defines the SAM. It is not clear

13



why the choice to normalise zonal MSLP data was originally made, although it is possible that this was to align with EOF-based

methods of defining the SAM that produce non-dimensional principal components (Gong and Wang, 1999; Baldwin, 2001), to

allow each latitude to contribute equally to the index, or because of the scarcity of observations and potential spurious trends in

early MSLP data in the Antarctic region (Baldwin, 2001; Marshall, 2003). It is possible that biases between different climate260

model representations of atmospheric pressure fields in the Southern Hemisphere might also be somewhat avoided through

applying normalisation in constructing the SAM index.

We find that the normalisation step involved in the traditionally-defined SAM index has the potential to introduce multiple

discrepancies in climate studies. Firstly, the magnitude of the normalised SAM index value varies substantially based on the

temporal resolution of zonal MSLP data used to construct the SAM index (Fig 3a-c). Because the index produced by this265

method is dimensionless these differences are hard to trace when SAM indices are then applied in climate research, and there

are examples where this has then resulted in seemingly large differences in the magnitude of paleoclimate reconstructions

of the SAM (Wright et al., 2022). The normalisation step also gives equal weighting to MSLP variability and trends in the

mid and high latitudes. However, the magnitude of MSLP variability and trends are substantially larger at 65°S compared to

40°S (Table 1). The effect of equally weighting MSLP anomalies at 40°S and 65°S results in differences in correlations with270

temperature and rainfall data that could alter the interpretation and attribution of SAM impacts in some regions. This includes

generally reducing SAM correlations with temperature and precipitation variability in the high southern latitudes, and giving

enhanced influence to the impacts of mid-latitude pressure anomalies and their links to tropical atmospheric circulation (Figs.

5 and 6). Furthermore, the normalised SAM index displays stronger future climate change trends relative to the magnitude of

historical variability. Because of this the SAM would be assessed to emerge above historical experience sooner this century275

using a normalised SAM index compared with a natural index (Fig. 7).

These problems are overcome when using a natural version of the SAM based on zonal MSLP anomalies rather than normalised

MSLP data. The natural SAM index produces consistent indices across different resolutions of MSLP data (Fig 3d), that

also have consistent spatial correlations with temperature and precipitation (Figs 5 and 6). Although SAM index anomalies

are commonly expressed in monthly, seasonal or yearly means, it is the influence of the SAM on synoptic-scale features280

such as the path of low pressure system storms and Rossby wave breaking that determines climate impacts (Pepler, 2020;

Spensberger et al., 2020). This might suggest that accurate representation of the SAM requires daily or better resolution of

MSLP data. However, we demonstrate that the annually averaged climate impacts of the SAM are as effectively represented

by latitudinal differences in annual MSLP data as they are for monthly or daily resolution MSLP data (Figs. 5 and 6; A3

and A4), provided that a natural SAM index method is used. Correlations of temperature and precipitation anomalies with285

the SAM are also consistently stronger for the mid-to-high latitude region where SAM variability is focused when using the

natural SAM compared with the normalised SAM. This includes an improved representation of the asymmetric (zonal-wave

3) components of SAM variability in the natural SAM index, whereas increased weighting of mid-latitude pressure anomalies

in the normalised SAM results in increased incorporation of tropical atmospheric circulation anomalies into the SAM index.
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Discrepancies in the normalised SAM index appear to be related to the assumed equal weighting of MSLP variability at the290

mid and high latitudes when the zonal MSLP data is normalised. Instead of assuming either equal (normalised SAM) or no

weighting (natural SAM) of zonal MSLP data, it could be considered if an equal area weighting based on latitude is optimal

for constructing the SAM index. This latitudinal weighting can be achieved by multiplying the zonal MSLP data by the square

root of the cosine of latitude (resulting in a weighting of 0.875 for 40°S and 0.650 for 65°S). This latitudinal weighting has a

ratio of 1.3, which is substantially less than the observed difference in MSLP variability and trends which are approximately295

2-3 times larger at 65°S than 40°S (Table 1). Hence, even when accounting for equal area, the variability and trends in MSLP

data remain larger at 65°S and should therefore provide a larger contribution to SAM variability than pressure variability at

40°S (Table A2). This is further verified by repeating our analyses using a natural SAM index based on latitude-weighted

MSLP data. These demonstrate that spatial temperature and precipitation correlations are stronger for the natural SAM rather

than a weighted natural SAM (Fig. A5-6). The weighted natural SAM also has spatial correlation differences when the SAM is300

calculated at different temporal resolutions which are not present for the natural SAM (Fig. A5-6). Hence it appears that area

weighting of MSLP anomalies does not improve the representation of the SAM index.

We thus recommend that an improved method for calculating the SAM index from zonal MSLP data should be:

SAM = P ∗
40°S −P ∗

65°S (2)

where P*40°S and P*65°S are the zonal MSLP anomalies at 40°S and 65°S, respectively.305

Using this method the resulting natural SAM index will have dimensional pressure units that avoid scaling issues and ambi-

guity between studies, give appropriate influence to different magnitude of pressure anomalies between the mid-latitudes and

Antarctica, produce consistent indices and spatial correlation results across temporal scales, and generate generally stronger

relationships to SAM impacts in the southern high latitudes than the traditionally used normalised SAM index.
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Appendix A

Figure A1. Annual mean SAM values calculated from station sites used in the Marshall index by different methodological choices. a. Com-

parison of annual normalised SAM values calculated from daily (orange), monthly (purple) and annual (green) MSLP data. b. Comparison

of annual natural SAM values calculated from daily (orange), monthly (purple) and annual (green) MSLP data.
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Figure A2. Annual mean SAM values calculated using the EOF method. a. Comparison of annual SAM values calculated from monthly

(orange) and annual (blue) MSLP data. b. Relationship bewteen the annual SAM values calculated from monthly and annual resolutions

MSLP data. Dashed line represents 1:1 slope

Table A1. Correlation coefficients and slopes between data resolutions between calculation methods

Natural SAM - Normalised SAM Correlation coefficient Slope

Daily - Daily 0.9914 0.237

Monthly - Monthly 0.9897 0.341

Annual - Annual 0.9867 1.07
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Figure A3. Spatial correlation of annual SAM values with ERA5 2m air temperature in the Southern Hemisphere (January-December

averages over 1950-2022). Comparisons are shown for differences in SAM indices derived from daily (top row) and annual (middle row)

MSLP data, and for normalised SAM indices (left column) and natural SAM indices (middle column). Also shown are the differences in

spatial correlation values based on MSLP data resolution (bottom row) and for natural versus normalised SAM indices (right column). In

these correlation difference plots the shading represents differences between methods and data resolution while stippling indicates regions of

negative spatial correlations.

Table A2. Characteristics of latitude-weighted MSLP variability and trends for the zonal means used to calculate the SAM index at different

data resolutions.

Data resolution 40°S standard deviation

(1961-1990; hPa)

65°S standard deviation

(1961-1990; hPa)

40°S trend (1950-2022;

hPa/decade)

65°S trend (1950-2022;

hPa/decade)

Daily 2.025 3.638 0.16 -0.32

Monthly 1.482 2.616 0.16 -0.32

Annual 0.446 0.881 0.16 -0.32
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Figure A4. Spatial correlation of annual SAM values with ERA5 precipitation in the Southern Hemisphere (January-December averages over

1950-2022). Comparisons are shown for differences in SAM indices derived from daily (top row) and annual (middle row) MSLP data, and

for normalised SAM indices (left column) and natural SAM indices (middle column). Also shown are the differences in spatial correlation

values based on MSLP data resolution (bottom row) and for natural versus normalised SAM indices (right column). In these correlation

difference plots the shading represents differences between methods and data resolution while stippling indicates regions of negative spatial

correlations.
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Figure A5. Spatial correlation of annual SAM values with ERA5 2m air temperature in the Southern Hemisphere (January-December

averages over 1950-2022). Comparisons are shown for differences in SAM indices derived from monthly (top row) and annual (middle row)

MSLP data, and for latitudinally weighted natural SAM indices (left column) and unweighted natural SAM indices (middle column; as in

Fig. 5). Also shown are the differences in spatial correlation values based on MSLP data resolution (bottom row) and for natural versus

normalised SAM indices (right column). In these correlation difference plots the shading represents differences between methods and data

resolution while stippling indicates regions of negative spatial correlations.
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Figure A6. Spatial correlation of annual SAM values with ERA5 precipitation in the Southern Hemisphere (January-December averages

over 1950-2022). Comparisons are shown for differences in SAM indices derived from monthly (top row) and annual (middle row) MSLP

data, and for latitudinally weighted natural SAM indices (left column) and unweighted natural SAM indices (middle column; as in Fig. 6).

Also shown are the differences in spatial correlation values based on MSLP data resolution (bottom row) and fornatural versus normalised

SAM indices (right column). In these correlation difference plots the shading represents differences between methods and data resolution

while stippling indicates regions of negative spatial correlations.
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