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Abstract. The Southern Annular Mode (SAM) strongly influences climate variability in the Southern 20 

Hemisphere. The SAM index describes the phase and magnitude of the SAM and can be calculated by 

measuring the difference in mean sea level pressure (MSLP) between mid- and high-latitudes. This study 

investigates the effects of calculation methods and data resolution  on the SAM index, and subsequent 

interpretations of SAM impacts and trends. We show that the normalisation step that is traditionally used 

in calculating a non-dimensional the SAM index leads to substantial differences in the magnitude of the 25 

SAM index calculated at different temporal resolutions., Additionally, and that the equal weighting given 

that the normalisation approach gives to MSLP variability at the mid and high southern latitudes 

artificially alters temperature and precipitation correlations and the interpretation of climate change trends 

in the SAM. These issues can be overcome by instead using a dimensional formulation of the natural 

SAM index based on MSLP anomalies, resulting in consistent scaling and variability of the SAM index 30 

calculated at daily, monthly and annual data resolutions. The dimensional version of the natural SAM 

index has improved representation of SAM impacts in the high southern latitudes, including the 

asymmetric (zonal wave-3) component of MSLP variability, whereas the increased weighting given to 

mid-latitude MSLP variability in the non-dimensional normalized SAM index incorporates a stronger 
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component of tropical climate variability that is not directly associated with SAM variability. We 35 

conclude that a best-practicean improved approach of calculating the SAM index as a dimensional 

index derived from MSLP anomalies without normalisation would aid consistency across climate studies 

and avoid potential ambiguity in the SAM index, including SAM index reconstructions from paleoclimate 

data, and thus enable more consistent interpretations of SAM trends and impacts. 

 40 

1 Introduction 

 
The Southern Annular Mode (SAM) is the leading mode of atmospheric variability in the extratropical Southern 

Hemisphere. The SAM describes changes in the strength and position of the westerly wind belt and associated 

storm tracks, and can be char- acterised through the difference in zonal mean sea level pressure (MSLP) between 45 

the southern mid-latitudes and Antarctica (Thompson and Wallace, 2000; Marshall, 2003). A positive SAM is 

characterised by positive pressure anomalies at mid-latitudes and negative pressure anomalies over Antarctica 

(Fig 1; Marshall, 2003). These variations in the latitudinal pressure gradient have been found to influence 

temperature and precipitation across the Southern Hemisphere, and also interact with  other major modes of 

climate variability. For example, a positive SAM has been associated with decreases in precipitation and positive 50 

temperature anomalies in southeast South America often as a result of interactions with El Niño-Southern 

Oscillation (Silvestri and Vera, 2003; Vera and Osman, 2018). In South Africa, a positive SAM is associated 

with a decrease in rainfall during winter and spring related to a shift in the polar jet (Reason and Rouault, 2005). 

In Australia, a positive SAM during winter is linked to reduced precipitation in southern parts of the country, 

while a negative SAM in summer can lead to reduced rainfall and elevated temperature and bushfire risk in 55 

parts of eastern Australia (e.g., Meneghini et al., 2007; Mariani and Fletcher, 2016; Lim et al., 2019; Abram et 

al., 2021). While in New Zealand, a positive SAM is linked to a decrease in precipitation and an increase in 

temperature due to weakened westerly winds passing over the islands (Kidston et al., 2009). 
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 60 
Figure 1. Spatial correlation of SAM index to mean sea level pressure (MSLP) in the Southern Hemisphere. SAM 

index was calculated from annually means (January-December; 1950-2022, ERA5 data) using the difference in zonal 

MSLP at 40°S and 65°S (dashed lines). 

 
The phase and magnitude of SAM variability is described by the SAM index. Two methods are 65 

commonly used to calculate the SAM index. The first method is based on gridded data such as 

atmospheric reanalysis (e.g. ERA5) or climate model output, and breaks down extra tropical Southern 

Hemisphere atmospheric pressure data into orthogonal spatial patterns expressed by Empirical 

Orthogonal Functions (EOF). The first EOF explains the leading mode of Southern Hemisphere 

variability and its time series represents the SAM iIndex (Mo, 2000; Fogt and Bromwich, 2006). Recent 70 

advances in the application of the EOF method to describe the SAM include approaches to separate the 

zonally symmetric component of SAM variability from the asymmetric component of variability 

associated with the zonal wave-3 pattern (Goyal et al., 2022; Campitelli et al., 2022). The second method 

for calculating the SAM index uses the difference in the normalised zonal mean sea level pressure 

(MSLP) between 40°S and 65°S (Fig. 2). By this method the SAM Index can be calculated using gridded 75 

products from reanalysis or model outputs (Gong and Wang, 1999) or f r om  mor e  s pa r se  

instrumental records of MSLP from observing stations located in the southern mid-latitudes and 

around coastal Antarctica (Marshall, 2003). It is this second method of calculating the SAM index that is 

the main focus of the assessment carried out in this study, however we do also demonstrate the extension 

of our findings to EOF-based methods. 80 

 Instrumental climate measurements are sparse across the Southern Hemisphere, and particularly in 

Antarctica. This generally limits a reliable long term understanding of SAM variability from observations 

and reanalysis products to the time since 1957 (Marshall, 2003; Barrucand et al., 2018; Marshall et al., 

2022), although some longer reconstructions based on observations have also been developed back to the 

late 19th century (Jones et al., 2009; Visbeck, 2009). Over this historical period there has been a 85 

significant positive trend in the SAM, particularly in the summer season, associated with stratospheric 

ozone loss as  well as rising atmospheric greenhouse gases (Thompson and Solomon, 2002; Fogt and 

Marshall, 2020). This trend is expected to continue in all seasons during the 21st century as climate 

continues to warm due to ongoing anthropogenic greenhouse gas emissions, but with a temporary pause 

in summer trends due to the opposing influence of stratospheric ozone recovery (Thompson et al., 2011; 90 

Goyal et al., 2019; Banerjee et al., 2020) 
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Longer-term reconstructions of the SAM have been developed using paleoclimate proxy records (e.g., 

ice cores, tree rings  and corals, etc) and multiple reconstructions for the last millennium have been 

produced (e.g., Villalba et al., 2012; Abram et al., 2014; Dätwyler et al., 2018; King et al., 2023). These 

long-term reconstructions show similar trends in the SAM index, however, they display different 95 

magnitudes of reconstructed SAM variability. Although variability between reconstructions could be due 

to differences in reconstruction methods and the networks of proxy data used, Wright et al. (2022) instead 

found that differences in magnitude between the Abram et al. (2014) and Dätwyler et al. (2018) 

reconstructions were explained by the data resolution used to calculate the instrumental SAM index. 

Dätwyler et al. (2018) trained their reconstruction to an annual SAM iIndex calculated from monthly 100 

MSLP data, while Abram et al. (2014) used the annual SAM iIndex from annual MSLP data as their 

reconstruction target. The difference in magnitude of the annual SAM index in instrumental data 

calculated by these alternate methods accounts for the apparently larger (though dimensionless) magnitude 

of SAM variability during the last millennium in the Abram et al. (2014) reconstruction compared with 

the Dätwyler et al. (2018) reconstruction (Wright et al., 2022). This discrepancy highlights the 105 

importance of understanding the impact of methodology in reconstructing the SAM index from 

observational data. 

It has previously been shown that differences between the method (e.g. EOF or zonal difference index 

methods), variable (e.g. pressure level) or source data (e.g. gridded reanalysis or station observations) 

results in sometimes marked differences between available observational SAM indices, despite these 110 

indices all representing the same physical process (Ho et al., 2012). 

However, it is not known how methodological choices within a single method, variable and data source 

might also have the potential to influence the results of SAM studies. To date, a best-practise an optimal 

data resolution to use when calculating the SAM index has not been established, and various versions 

constructed using different resolutions and orders of operation are made available for the research 115 

community to use (e.g. http://www.nerc-bas.ac.uk/icd/gjma/sam.html). It also remains unexplored if the 

choice to normalise zonal MSLP data prior to calculating the latitudinal difference in pressure anomalies 

(Gong and Wang, 1999; Marshall, 2003) could influence the assessments of past and future SAM changes, 

or the climate impacts that SAM causes in different parts of the Southern Hemisphere.  

Here, we calculate historical SAM indices using daily, monthly and annual averages of zonal MSLP data, 120 

and using dimen- sional normal ised ( t radi t ional )  and non-dimensionalnatural formulations of the 

SAM index. We explore differences between the SAM indices, and the reasons why methodological 

http://www.nerc-bas.ac.uk/icd/gjma/sam.html)


5  

choices introduce these differences, as well as the potential implications when analysing the spatial 

correlation of SAM variability with temperature and precipitation impacts. Additionally, we also explore 

the influence of methods on the interpretation of SAM trends in projections of climate change during the 125 

21st century. We conclude by making recommendations for a best-practicean improved approach to 

calculating the SAM index that avoids potential biases differences introduced by methodology. 

 
2 Methods 

 130 
We use the ECMWF (European Centre for Medium-Range Weather Forecasts) Reanalysis v5 (ERA5) gridded 

data for our study (Hersbach et al., 2020). ERA5 reanalysis data is currently available from 1950. Of the 

available reanalysis products, ERA5 has been shown to best reproduce Antarctic surface temperature and 

SAM relationships prior to the satellite era (Marshall et al., 2022). 

Daily resolution MSLP data in ERA5 for latitudes 40°S and 65°S were sourced from the KNMI Climate 135 

Explorer tool (Trouet and Van Oldenborgh, 2013). From daily ERA5 data, the daily, monthly and annual 

means of zonal MSLP were calculated. SAM Indices were then calculated for these three different data 

resolutions (Fig 2). 

Following the approach of Gong and Wang (1999), the SAM iIndex was first calculated using the equation: 

 140 

SAM = P
4
∗
0°S − P

6
∗
5°S (1) 

 
where P*40°S and P*65°S are the normalised zonal MSLP at 40°S and 65°S, respectively. 
 

Data was normalised relative to a 1961–1990 reference interval. Briefly, this involves subtracting the 145 

mean of the reference interval from the time series, and then dividing the time series by the reference 

interval standard deviation. The SAM index was then calculated by subtracting the normalised zonal 

MSLP values at 65°S from the normalised zonal MSLP values at 40°S (Fig. 2). The normalisation step 

removes units from the MSLP data, and consequently also from the resultant SAM index, and so is also 

dimensionless. wWe refer to this as the non-dimensionalnormalised SAM index. 150 

A dimensional natural SAM index in hPa pressure units was also calculated (Fig. 2). This followed the 

same equation and method as above, but in this case P*40°S and P*65°S are the zonal MSLP anomalies at 

40°S and 65°S. Specifically, for the dimensional natural SAM index the zonal MSLP anomalies are 

calculated relative to the 1961–1990 reference interval mean without dividing by the reference interval 
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standard deviation. 155 

The relationship Discrepancies between daily, monthly and annual SAM index methods was then were 

investigated by calculating an annual mean SAM from the daily and monthly indices (Fig. 2). The annual 

SAM values derived from the different resolution SAM indices were then compared by a correlation 

coefficient (r) and by examining the gradient between different methods of calculating the SAM Iindex. 

The spatial correlation of each SAM index at each data resolution with ERA5 gridded data for 2m air 160 

temperature and precipitation was also examined to test the influence of methodological choices on 

detection and interpretation of the SAM’s climate impacts. 

 

 

 165 
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Figure 2. Methodological choices explored in this study by calculating dimensional and non-dimensionalnormalised and 

natural SAM indices from different data resolutions. 

 170 
 

To illustrate the impact that methodological choices could have on the interpretation of future SAM changes 

we also test climate model output from 1850 to 2100. To illustrate the effect of methodological choices we 

use output from the CSIRO ACCESS- CM2 model prepared for CMIP6 (Dix et al., 2019). A full 

assessment of future SAM changes would require a more thorough analysis across the ensemble of 175 
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CMIP6 models, as done for example in Goyal et al. (2021), but our purpose in this study is to simply 

illustrate the potential impact of methodological choices on such assessments. MSLP outputs from the 

ACCESS-CM2 model were sourced from the "very high" and "low" emission scenarios for future climate 

change (SSP5-8.5 and SSP1-2.6, respectively) in order to best identify the range of influences that 

methodological choice could have on assessing SAM changes in a warming climate. As the output from 180 

these global climate model simulations are routinely reported at monthly mean resolution, only 

monthly and annual mean SAM indices were calculated for the future projections. Both non-

dimensionalnormalised and dimensional natural SAM indices were calculated from the climate model 

output, relative to a 1961-1990 reference interval. 

In addition to these main analyses, we also verify the broad application of our findings by repeating our 185 

calculations of normalized and natural SAM indices using the station locations that are used for the Marshall 

SAM index (Marshall, 2003). For this we used the ERA5 MSLP data extracted for the 12 grid cells 

corresponding to the station locations used for the Marshall SAM index (Marshall, 2003). We further extended 

our comparison across common SAM index methodologies by constructing EOF-based SAM indices using the 

ERA5 gridded MSLP data from south of 20°S at monthly and annual resolutions.  190 

All data analysis were carried out using MATLAB R2022b software. This included using the M-map package 

and the Climate 

Data Toolbox for producing the analyses and maps presented in this study (Greene et al., 2019; Pawlowicz, 

2020). 

 195 

 
3 Results 

 
3.1 SAM index characteristics 

 200 

Data resolution strongly influences the magnitude of the non-dimensionalnormalised SAM index (Fig. 3a). 

While the pattern of interannual variability of the non-dimensionalnormalised SAM is very similar for all 

data resolutions (as demonstrated by r values exceeding 0.99; Fig. 3b-c), the magnitude of interannual 

variability of the non-dimensionalnormalised SAM derived from monthly data is 1.4 times larger than the 

non-dimensionalnormalised SAM derived from daily data (Fig. 3b). Similarly, the magnitude of the annual 205 

non-dimensionalnormalised SAM index calculated from annual means is 3.1 times larger than the non-

dimensionalnormalised SAM derived from monthly data (Fig. 3c) and 4.4 times higher than the annual 

SAM derived from daily data. This finding is consistent with the recalculation performed by Wright et al. 
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(2022) where the SAM index calculated from annual MSLP data displayed a higher variability than 

annual means derived from a monthly SAM index. 210 

Differences in magnitude of the non-dimensionalnormalised SAM index are caused by a progressive 

decrease in standard deviation as MSLP data is averaged over longer time periods (Table 1). This means 

that the normalisation of daily MSLP data removes a larger magnitude of variability than normalisation of 

monthly MSLP data, and even more so when comparing to normalisation of annual resolution MSLP data. 

Comparison of the reference interval MSLP standard deviations between the different data resolutions 215 

(Table 1) gives similar ratios to the slopes between the annual mean SAM values derived from different 

resolution SAM indices in Figure 3a-c. For example, the normalisation step in calculating the SAM index 

removes a 3.3 times greater magnitude of MSLP variability at 40°S for monthly resolution data 

compared to annual mean data (standard deviations of 1.694 and 0.509 hPa, respectively; Table), and 3 

times more variability at 65°S (standard deviations of 4.025 and 1.355 hPa, respectively; Table 1). This 220 

results in the 3.1 times greater magnitude of interannual SAM variability calculated from annual data 

relative to monthly data when using the normalisation method to calculate a non-dimensional the SAM 

index (Fig. 3c). 

Differences in the magnitude of the SAM index are overcome when a dimensional natural SAM index is 

instead calculated. The annual mean dimensional natural SAM values calculated from daily, monthly and 225 

annual resolution MSLP data all display the same phase and magnitude of interannual variability over 

time (Fig 3d). This highlights how the normalisation step that is traditionally used in calculating the 

non-dimensional SAM index can introduce ambiguity into SAM studies, but also how this ambiguity can 

be avoided by retaining the native pressure units in the natural SAM index. 

Our findings also demonstrate that a dimensional natural SAM index can be reliably calculated from low 230 

resolution MSLP data. Physically, it is the instantaneous difference in pressure between the mid and high 

southern latitudes that represents the processes of atmospheric SAM variability (Baldwin, 2001), and so 

daily resolution data might be assumed to retain a more pure measure of the SAM index. However, our 

findings using different resolutions of MSLP data show that the interannual trends and variability of the 

dimensional natural SAM are consistently captured using daily, monthly or annually averaged zonal MSLP 235 

anomalies (Fig. 3d). 

 

Our findings for the SAM index derived from the latitudinal pressure difference in gridded MSLP 

data also extend to other methods of calculating the SAM index. Consistent findings to those 
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demonstrated in Fig 3. are produced when normalised and traditional SAM indices are produced 240 

using the 12 observational locations for the Marshall SAM index (Figure A1). Similarly, the annual 

SAM data produced using an EOF method applied to monthly resolution gridded MSLP data has a 

muted amplitude compared to the same EOF-derived index based on annual resolution data (Figure 

A2). This demonstrates how the normalisation process impacts the scaling of the SAM index derived 

from different temporal resolutions of input data regardless of the SAM index method used. 245 
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Figure 3. Annual mean SAM values calculated by different methodological choices. a. Comparison of annual non-

dimensional 11ormalized SAM values calculated from daily (red), monthly (orange) and annual (blue) MSLP data. B. 250 

Relationship between the annual non-dimensional normalised SAM values calculated from daily and month 

resolution MSLP data. Dashed line represents 1:1 slope c. Relationship between the annual non- dimensional 

normalised SAM values calculated from monthly and annual resolution MSLP data. Dashed line represents 1:1 

slope. d. Comparison of annual dimensional natural SAM values calculated from daily (red), monthly (orange) and 
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annual (blue) MSLP data. 255 

 

Beyond scaling, there are additional (though small) year-to-year differences in the interannual variability 

and trends of the SAM when comparing dimensional natural and non-dimensionalnormalised  

calculations of the SAM index. These differences are evident when comparing annual SAM values 

calculated as a dimensional natural or non-dimensionalnormalised  index from annual MSLP data (Fig. 4, 260 

Table A1), and are similarly evident when comparing the variability of dimensional natural and non-

dimensionalnormalised SAM indices calculated from monthly MSLP data or from daily MSLP data (not 

shownTable A1). 

These differences in year-to-year variability and trends can again be explained as an artefact introduced 

by the normalisation step when calculating the non-dimensionaltraditional SAM index. By normalising 265 

the zonal MSLP data before calculating the zonal difference, an identical weighting is given to pressure 

variability in the mid and high latitudes in the calculation of the non- dimensional normalised SAM 

index. However, the magnitude of MSLP variability is consistently larger at 65°S compared with 40°S 

(Table 1). At daily resolution the magnitude of reference interval variability at 65°S is 2.22 times larger 

than the variability at 40°S (standard deviations of 5.597 hPa and 2.524 hPa, respectively), and at annual 270 

resolution variability at 65°S is 2.66 times larger than at 40°S (standard deviations of 1.355 hPa and 

0.509 hPa, respectively). Likewise, the long-term trends in MSLP are amplified at 65°S (-0.50 

hPa/decade from 1950-2022) compared to the MSLP trends at 40°S (0.18 hPa/decade). These differences 

suggest that the equal weighting of these latitudinal zones that is routinely applied in calculating the non- 

dimensional normalised SAM index may not be justified, and could artificially alter the interpretation of 275 

SAM variability, trends and impacts. 

Table 1. Characteristics of MSLP variability during the 1961-1990 reference interval for the zonal MSLP data used 

to calculate the SAM index at different resolutions. 

 

Data resolution 40°S standard deviation (hPa) 65°S standard deviation (hPa) 

Daily 2.524 5.597 

Monthly 1.694 4.025 

Annual 0.509 1.355 

 280 
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Figure 4. Comparison of interannual variability and trends from dimensional natural and non-285 

dimensionalnormalised annual SAM values calculated from annual resolution MSLP data. Y axis limits have been 

scaled relative to the regression slope between the natural and the normalised SAM index to provide optimal 

alignment of the indices.  

 

3.2 SAM impacts 290 

Spatial correlation analysis shows that the SAM index is correlated with Southern Hemisphere 

temperature variability, with similar broad-scale patterns across SAM index data resolutions and 

calculation methods (Fig. 5). In general, all formulations of the SAM indices produce negative 

correlations with annual mean temperature anomalies over the Antarctic continent, and positive 

correlations over the Antarctic Peninsula and southern South America, over the southern Indian Ocean, 295 

and over the Maritime continent extending into the eastern tropical Indian Ocean, the Coral Sea and the 

Tasman Sea. However, beyond these broadly consistent patterns we demonstrate that the methodology 

used to construct the SAM index does alter the strength of temperature correlations in some locations. 
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 300 
 
Figure 5. Spatial correlation of annual SAM values with ERA5 2m air temperature in the Southern Hemisphere 

(January-December averages over 1950-2022). Comparisons are shown for differences in SAM indices derived from 

monthly (top row) and annual (middle row) MSLP data, and for non-dimensionalnormalised SAM indices (left 

column) and dimensional natural SAM indices (middle column). Also shown are the differences in spatial correlation 305 

values based on MSLP data resolution (bottom row) and for dimensional natural versus non-dimensionalnormalised 

SAM indices (right column). In these correlation difference plots the shading represents differences between methods and 

data resolution while stippling indicates regions of negative spatial correlations. Consistent findings are also produced 



15  

comparing annual temperature correlations for SAM indices derived from daily and annual MSLP data (Fig. A31). 

 310 
Comparing the correlations produced by dimensional natural versus non-dimensional normalised 

formulations of the SAM index (i.e. comparing along rows in Fig. 5) clear spatial characteristics in 

correlation differences area evident. Generally, correlation strength in the region between 40°S and 65°S 

is stronger for the dimensional natural SAM than it is for the non-dimensional normalised SAM. These 

differences in correlation strength show three distinct nodes across the Southern Ocean and Drake Passage 315 

suggesting that the natural dimensional  SAM index better includes the asymmetric (zonal wave-3) 

component of SAM variability. In contrast areas north of 40°S more commonly have stronger correlations 

with the normalised non-dimensional SAM index. It is expected that this is because the normalised sation 

of the non-dimensional SAM index artificially increases the weighting of MSLP variability at 40°S (relative 

to MSLP variability at 65°S). This would emphasises the temperature effects of pressure variability in the 320 

mid-latitudes as well as their interactions with tropical circulation such as the Hadley and Walker 

circulation cells. 

Two important features are found when comparing the annual temperature correlations produced by different 

resolutions of the SAM index (i.e. comparing down columns in Fig. 5). Firstly, differences in resolution of 

the normalised non-dimensional SAM produce similar spatial patterns of correlation differences as are 325 

seen in the comparisioncomparison between natural dimensional and non-dimensionalnormalised SAM 

indices. Specifically, the normalisednon-dimensional SAM generated from monthly resolution MSLP data 

has stronger correlations with interannual temperature variability in the region between 40°S and 65°S, 

including showing improved correlation with the zonal wave-3 pattern. The non-dimensional normalised 

SAM generated from annual resolution MSLP data has generally stronger correlations with interannual 330 

temperature variability north of 40°S. These differences are emphasised even further in comparing annual 

temperature correlations with the normalised non-dimensional SAM generated from daily versus annual 

MSLP data (Fig. A13). This is again explainable through the increasingly strong weighting that is given to 

pressure variability at 40°S relative to variability at 65°S as MSLP data resolution is reduced in calculating 

the normalisednon-dimensional SAM (Table 1). However, the other important finding that is evident in 335 

this analysis is that the spatial differences in correlation strength associated with MSLP data resolution can 

be avoided almost altogether by using a natural dimensional SAM index (middle column of Fig. 5). 

Similar findings come from examining the correlation of annual precipitation with the various 

methodological choices for calculating the SAM index (Fig. 6). The primary correlation patterns with 

precipitation show broad agreement across methods. Positive mean annual SAM anomalies are associated 340 
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with latitudinal bands of increased precipitation near the Antarctic coast (including over the Antarctic 

Peninsula) and a band of decreased precipitation across the mid-latitudes. This represents the southward 

shift of the westerly winds and associated storm tracks when the SAM is in its positive phase. Other 

regions demonstrating positive mean annual precipitation associated with positive SAM anomalies 

include the Maritime Continent including the eastern tropical Indian Ocean and eastern Australia and the 345 

tropical eastern and central Pacific. Negative mean annual precipitation anomalies are also seen over 

West Antarctica in response to positive SAM phases. 

Beyond these broad similarities in SAM correlations with precipitation, we do again identify regions 

where methodological choices alter the correlation results produced (Fig. 6; Fig A42). Correlations with 

interannual precipitation variability near 65°S, and particularly over the Antarctic Peninsula, are generally 350 

stronger for higher resolution versions of the non-dimensionalnormalised SAM index, and for all resolutions 

of the natural dimensional SAM index. Conversely, correlations with interannual precipitation variability 

near 40°S, and specifically south of Australia, over the south island of New Zealand and west of Chile, 

are stronger for lower resolution versions of the non-dimensionalnormalised SAM, and for the non-

dimensionalnormalised SAM compared with the dimensional natural SAM. These formulations of the 355 

SAM index also show stronger precipitation anomalies over parts of the tropics including northern 

Australia and the Amazon region, indicating the stronger representation of tropical-to-mid-latitude 

atmospheric circulation in these versions of the SAM index that give increased weighting to pressure 

anomalies at 40°S. In other words, it is these regions where methodological choices in constructing the 

SAM index will have the most impact on the interpretation of the SAM’s influence on annual mean 360 

precipitation. 
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Figure 6. Spatial correlation of annual SAM values with ERA5 precipitation in the Southern Hemisphere. (January-365 

December averages over 1950-2022). Comparisons are shown for differences in SAM indices derived from monthly 

(top row) and annual (middle row) MSLP data, and for normalisednon-dimensional SAM indices (left column) and 

naturaldimensional SAM indices (middle column). Also shown are the differences in spatial correlation values based on 

MSLP data resolution (bottom row) and for dimensional natural versus non-dimensionalnormalised SAM indices 

(right column). In these correlation difference plots the shading represents differences between methods and data 370 

resolution while stippling indicates regions of negative spatial correlations. Consistent findings are also produced 
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comparing annual precipitation correlations for SAM indices derived  from daily and annual MSLP data (Fig. A24). 

 

We note that these comparisons are shown for mean annual precipitation and SAM anomalies, but it is 

well established that the impacts of SAM on precipitation vary by season (Fogt and Marshall, 2020). 375 

Because of this, the impacts of methodological choices in assessing the SAM’s precipitation impacts at a 

seasonal scale may result in different regions where those methodological choices alter correlation 

strength. However we expect that our general conclusions would remain the same at the seasonal scale, 

including that a dimensional natural version of the SAM index would produce correlation results that are 

unaffected by choices in the resolution of zonal MSLP data used to construct the SAM index. 380 

3.3 SAM trends 
 

Finally, we look at how methodological choices in constructing the SAM index could alter the 

interpretation of SAM changes in a warming world. During the historical period the differences in 

interannual variability of annual SAM values produced by natural dimensional or non-385 

dimensionalnormalised SAM indices are detectable but small (Fig. 4). However, as the response to 

human-caused climate warming develops, the magnitude of SAM trends relative to the magnitude of 

historical variability show increasing differences between different methodological versions of the SAM 

index (Fig. 7). 
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Figure 7. Example of future scenario SAM indices based on different calculation methods. a. Comparison of low 

emissions future scenario (SSP1-2.6) based on dimensional natural (purple) and non-dimensionalnormalised (green) 

SAM indices calculated from annual MSLP data for 1850-2100. Thick lines show 50-yr moving averages. Reference 395 

interval used for calculating the SAM indices is 1961-1990. b. As in a, but for a very high emissions future scenario 

(SSP5-8.5). Y-axis limits have been scaled relative to the regression slope between the natural and normalised SAM 

index over the reference interval to provide optimal alignment of the indices.  

 

Long-term climate change trends are stronger in the non-dimensionalnormalised SAM compared to the 400 

dimensional natural SAM, relative to historical interannual variability (Fig. 7). This difference will affect 

interpretations of time of emergence (Hawkins et al., 2020), which assess when a long-term climate 

trend (signal) emerges above the amplitude of historical climate variability (noise) resulting in climate 
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conditions that are beyond the range of historical experience. For example, under a future with very high 

greenhouse gas emissions (SSP5-8.5) the climate change signal on the SAM index (as assessed by a 50-405 

year moving average) emerges above the 1 standard deviation historical (1850-1949) noise level by 2025, 

and above the 2 standard deviation historical noise level by 2091, in a normalised non-dimensional 

formulation of the SAM. In contrast, for the natural dimensional SAM there is emergence above the 1 

standard deviation level by 2031, but no emergence occurs above the 2 standard deviation level during the 

21st century. Likewise, under a low greenhouse gas emissions scenario (SSP1-2.6) there is emergence of 410 

the climate change signal for the non-dimensionalnormalised SAM between 2063 and 2086, but emergence 

is not detected at any time during the 21st century for the dimensional natural SAM. 

This finding illustrates how methodological differences in calculating the SAM index have the potential to 

alter interpretations of human-caused climate impacts on the SAM. Our findings suggest that the 

normalisation associated with a non-dimensionalnormalised SAM index may lead to assessments that the 415 

SAM has emerged outside of the range of historical experience sooner than would be determined based on 

a dimensional natural SAM index. We emphasise that this is only an illustrative example based on a 

single climate model, but it does demonstrate the potential for methodological choices to influence the 

interpretation of SAM trends between different studies. 

 420 

4 Discussion and Conclusions 

 
Our results allow us to make recommendations for a best-practiceimproved approach to calculating the 

SAM index that ocan enable greater consistency across climate studies. The traditionally used 

(normalisednon-dimensional) SAM index (Gong and Wang, 1999; Marshall, 2003) involves normalising 425 

zonal MSLP data before calculating the latitudinal MSLP difference that defines the SAM. It is n’ot 

clear why the choice to normalise zonal MSLP data was originally made, although it is possible that this 

was to facilitate comparisons align with EOF-based methods of defining the SAM that produce non-

dimensional principal components (Gong and Wang, 1999; Baldwin, 2001), or because ofto allow each 

latitude to contribute equally to the index, or because of the scarcity of observations and potential 430 

spurious trends in early MSLP data in the Antarctic region (Baldwin, 2001; Marshall, 2003). It is possible 

that the biases between different climate model representations of atmospheric pressure fields in the 

Southern Hemisphere might also be somewhat avoided through applying normalisation in constructing 

the SAM index.  
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We find that the normalisation step involved in the traditionally used (non-dimensional)defined SAM 435 

index has the potential to introduce multiple biases discrepancies in climate studies. Firstly, the 

magnitude of the non-dimensionalnormalised SAM index value varies substantially based on the 

temporal resolution of zonal MSLP data used to construct the SAM index (Fig 3a-c). Because the index 

produced by this method is dimensionless these differences are hard to trace when SAM indices are then 

applied in climate research, and there are examples where this has then resulted in seemingly large 440 

differences in the magnitude of paleoclimate reconstructions of the SAM (Wright et al., 2022). The 

normalisation step in calculating the non-dimensional SAM also gives equal weighting to MSLP 

variability and trends in the mid and high latitudes. However, the magnitude of MSLP variability and 

trends are substantially larger at 65°S compared to 40°S (Table 1). The effect of equally weighting 

MSLP anomalies at 40°S and 65°S results in biases differences in correlations with temperature and 445 

rainfall data that could alter the interpretation and attribution of SAM impacts in some regions. This 

includes generally reducing SAM correlations with temperature and precipitation variability in the high 

southern latitudes, and giving enhanced influence to the impacts of mid-latitude pressure anomalies and 

their links to tropical atmospheric circulation (Figs. 5 and 6). Furthermore, the non-dimensionalnormalised 

SAM index displays stronger future climate change trends relative to the magnitude of historical 450 

variability. Because of this the SAM would be assessed to emerge above historical experience sooner this 

century using a non-dimensionalnormalised SAM index compared with a dimensional natural index (Fig. 

7). 

These problems are overcome when using a dimensional natural version of the SAM based on zonal 

MSLP anomalies rather than normalised MSLP data. The dimensional natural SAM index produces 455 

consistent indices across different resolutions of MSLP data (Fig 3d), that also have consistent spatial 

correlations with temperature and precipitation (Figs 5 and 6). Although SAM index anomalies are 

commonly expressed in monthly, seasonal or yearly means, it is the influence of the SAM on synoptic- 

scale features such as the path of low pressure system storms and Rossby wave breaking that determines 

climate impacts (Pepler, 2020; Spensberger et al., 2020). This might suggest that accurate representation 460 

of the SAM requires daily or better resolution of MSLP data. However, we demonstrate that the annually 

averaged climate impacts of the SAM are as effectively represented by latitudinal differences in annual 

MSLP data as they are for monthly or daily resolution MSLP data (Figs. 5 and 6; A31 and A42), 

provided that a dimensional natural SAM index method is used. Correlations of temperature and 

precipitation anomalies with the SAM are also consistently stronger for the mid-to-high latitude region 465 

where SAM variability is focused when using the natural dimensional SAM compared with the non-
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dimensionalnormalised  SAM. This includes an improved representation of the asymmetric (zonal-wave 

3) components of SAM variability in the dimensional natural SAM index, whereas increased weighting 

of mid-latitude pressure anomalies in the non-dimensionalnormalised SAM results in increased 

incorporation of tropical atmospheric circulation anomalies into the SAM index. 470 

Biases Discrepancies in the non-dimensionalnormalised SAM index appear to be related to the assumed 

equal weighting of MSLP variability at the mid and high latitudes when the zonal MSLP data is 

normalised. Instead of assuming either equal (non-dimensional normalised SAM) or no weighting 

(dimensional natural SAM) of zonal MSLP data, it could be considered if an equal area weighting based 

on latitude is optimal for constructing the SAM index. This latitudinal weighting can be achieved by 475 

multiplying the zonal MSLP data by the square root of the cosine of latitude (weighting of 0.875 for 40°S 

and 0.650 for 65°S). This latitudinal weighting has a ratio of 1.3, which is substantially less than the 

observed difference in MSLP variability and trends which are approximately 2-3 times larger at 65°S 

than 40°S (Table 1). Hence, even when accounting for equal area, the variability and trends in MSLP 

data remain larger at 65°S and should therefore provide a larger contribution to SAM variability than 480 

pressure variability at 40°S (Table A21). This is further verified by repeating our analyses using a 

dimensional SAM index based on latitude weighted MSLP data. These demonstrate that spatial 

temperature and precipitation correlations are stronger for the dimensional natural SAM rather than a 

weighted dimensional natural SAM (Fig. A35-46). The weighted natural dimensional SAM also has 

spatial correlation differences when the SAM is calculated at different temporal resolutions which are not 485 

present for the dimensional natural SAM (Fig. A35-64). Hence it appears that area weighting of MSLP 

anomalies does not improve the representation of the SAM index. 

We thus recommend that the best-practicean improved method for calculating the SAM index from zonal  

MSLP data should be: 

 490 

SAM = P4
∗
0°S − P6

∗
5°S (2) 

where P*40°S and P*65°S are the zonal MSLP anomalies at 40°S and 65°S, respectively. 

 

Using this method the resulting natural SAM index will have dimensional pressure units that avoid 

scaling issues and ambiguity between studies, give appropriate influence to different magnitude of 495 

pressure anomalies between the mid-latitudes and Antarctica, produce consistent indices and spatial 

correlation results across temporal scales, and generate generally stronger relation- ships to SAM impacts 

in the southern high latitudes than the traditionally used non-dimensionalnormalised SAM index. 
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Appendix A:  

 

 

Figure A1. Annual mean SAM values calculated from stations sites used in the Marshall Index by different 620 
methodological choices. a. Comparison of annual normalised SAM values calculated from daily (orange), 

monthly (purple) and annual (green) MSLP data. b. Comparison of annual natural SAM values calculated from 

daily (orange), monthly (purple) and annual (green) MSLP data.  
 

Formatted: Font: Not Bold



28  

 625 
Figure A2. Annual mean SAM values calculated using the EOF method. a. Comparison of annual SAM values 

calculated from monthly (oranage) and annual (nlue) MSLP data. b. Relationship between the annual SAM 

values calculated from monthy and annual resolutions MSLP data. Dashed line represents 1:1 slope.   
 

 630 
Table A1. Correlation coefficients and slopes between data resolutions between calculation methods. 

 

Natural SAM- 

Normalised SAM 

Correlation coefficients Slope 

Daily- Daily 0.9914 0.237 

Monthly -Monthly 0.9867 0.341 

Annual - Annual 0.9867 1.07 
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 640 
 

 

Figure A31. Spatial correlation of annual SAM values with ERA5 2m air temperature in the Southern Hemisphere 

(January-December averages over 1950-2022). Comparisons are shown for differences in SAM indices derived from 

daily (top row) and annual (middle row) MSLP data, and for non-dimensionalnormalised SAM indices (left column) 645 

and dimensional natural SAM indices (middle column). Also shown are the differences in spatial correlation values 

based on MSLP data resolution (bottom row) and for dimensional natural versus non-dimensionalnormalised SAM 

indices (right column). In these correlation difference plots the shading represents differences between methods and 

data resolution while stippling indicates regions of negative spatial correlations. 



30  

 650 

 
 

Figure A42. Spatial correlation of annual SAM values with ERA5 precipitation in the Southern Hemisphere (January-

December averages over 1950-2022). Comparisons are shown for differences in SAM indices derived from daily (top 

row) and annual (middle row) MSLP data, and for normalisednon-dimensional SAM indices (left column) and 655 

dimensional natural SAM indices (middle column). Also shown are the differences in spatial correlation values 

based on MSLP data resolution (bottom row) and for dimensional natural versus non-dimensionalnormalised SAM 

indices (right column). In these correlation difference plots the shading represents differences between methods and 

data resolution while stippling indicates regions of negative spatial correlations. 
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Table A21. Characteristics of latitude-weighted MSLP variability and trends for the zonal means used to calculate the 660 

SAM index at different data resolutions. 

 

Data resolution 40°S standard deviation 

(1961-1990; hPa) 

65°S standard deviation 

(1961-1990; hPa) 

40°S trend (1950-2022; 

hPa/decade) 

65°S trend (1950-2022; 

hPa/decade) 

Daily 2.025 3.638 0.16 -0.32 

Monthly 1.482 2.616 0.16 -0.32 

Annual 0.446 0.881 0.16 -0.32 
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 665 

 
 

Figure A53. Spatial correlation of annual SAM values with ERA5 2m air temperature in the Southern Hemisphere 

(January-December averages over 1950-2022). Comparisons are shown for differences in SAM indices derived from 

monthly (top row) and annual (middle row) MSLP data, and for latitudinally weighted natural dimensional SAM 670 

indices (left column) and unweighted dimensional natural SAM indices (middle column; as in Fig. 5). Also shown 

are the differences in spatial correlation values based on MSLP data resolution (bottom row) and for natural 
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dimensional versus non-dimensional normalised SAM indices (right column). In these correlation difference plots 

the shading represents differences between methods and data resolution while stippling indicates regions of negative 

spatial correlations. 675 

 

 

 
 

Figure A64. Spatial correlation of annual SAM values with ERA5 precipitation in the Southern Hemisphere 680 

(January-December averages over 1950-2022). Comparisons are shown for differences in SAM indices derived from 
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monthly (top row) and annual (middle row) MSLP data, and for latitudinally weighted dimensional natural SAM 

indices (left column) and unweighted dimensional natural SAM indices (middle column; as in Fig. 6). Also shown are 

the differences in spatial correlation values based on MSLP data resolution (bottom row) and for dimensional natural 

versus non-dimensional normalised SAM indices (right column). In these correlation difference plots the shading 685 

represents differences between methods and data resolution while stippling indicates regions of negative spatial 

correlations. 


