10

15

20

25

30

Technical Note: A-best-practice-approachAn improved

methodology for-te calculating theSouthern Annular

Mode index to aid consistency between climate studies

Laura Velasquez-Jimenez?” and Nerilie J Abram®234"

Research School of Earth Sciences, Australian National University, Canberra ACT 2601, Australia
2Australian Centre for Excellence in Antarctic Science, Australian National University, Canberra ACT 2601,
Australia

2Centre ARC Centre of Excellence for Climate Extremes, Australian National University, Canberra ACT 2601,
Australia

4ARC Centre for Excellence for Weather of the 21st Century, Australian National University, Canberra ACT
2601, Australia

*These authors contributed equally to this work.

Correspondence: Laura Velasquez Jimenez (laura.velasquezjimenez@anu.edu.au)

Abstract. The Southern Annular Mode (SAM) strongly influences climate variability in the Southern
Hemisphere. The SAM index describes the phase and magnitude of the SAM and can be calculated by
measuring the difference in mean sea level pressure (MSLP) between mid- and high-latitudes. This study
investigates the effects of calculation methods and data resolution on the SAM index, and subsequent
interpretations of SAM impacts and trends. We show that the normalisation step that is traditionally used
in calculating a-ren-dimensienal the SAM index leads to substantial differences in the magnitude of the
SAM index calculated at different temporal resolutions.; Additionally,-and-that the equal weighting given
that the normalisation approach gives to MSLP variability at the mid and high southern latitudes

artificially alters temperature and precipitation correlations and the interpretation of climate change trends
in the SAM. These issues can be overcome by instead using a dimensienal-formulation-of-the-natural
SAM index based on MSLP anomalies, resulting in consistent scaling and variability of the SAM index
calculated at daily, monthly and annual data resolutions. The dimensional-version-of-the-natural SAM
index has improved representation of SAM impacts in the high southern latitudes, including the
asymmetric (zonal wave-3) component of MSLP variability, whereas the increased weighting given to
mid-latitude MSLP variability in the nen-dimensional-normalized SAM index incorporates a stronger
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component of tropical climate variability that is not directly associated with SAM variability. We
conclude that a—best-practicean improved approach of calculating the SAM index as—a-dimensional
index-derived-from MSLP anomalies without normalisation would aid consistency across climate studies
and avoid potential ambiguity in the SAM index, including SAM index reconstructions from paleoclimate
data, and thus enable more consistent interpretations of SAM trendsand impacts.

1 Introduction

The Southern Annular Mode (SAM) is the leading mode of atmospheric variability in the extratropical Southern
Hemisphere. The SAM describes changes in the strength and position of the westerly wind belt and associated
storm tracks, and can be char-acterised through the difference in zonal mean sea level pressure (MSLP) between
the southern mid-latitudes and Antarctica (Thompson and Wallace, 2000; Marshall, 2003). A positive SAM is
characterised by positive pressure anomalies at mid-latitudes and negative pressure anomalies over Antarctica
(Fig 1; Marshall, 2003). These variations in the latitudinal pressure gradient have been found to influence
temperature and precipitation across the Southern Hemisphere, and also interact with other major modes of
climate variability. For example, a positive SAM has been associated with decreases in precipitation and positive
temperature anomalies in southeast South America often as a result of interactions with EI Nifio-Southern
Oscillation (Silvestri and Vera, 2003; Vera and Osman, 2018). In South Africa, a positive SAM is associated
with a decrease in rainfall during winter and spring related to a shift in the polar jet (Reason and Rouault, 2005).
In Australia, a positive SAM during winter is linked to reduced precipitation in southern parts of the country,
while a negative SAM in summer can lead to reduced rainfall and elevated temperature and bushfire risk in
parts of eastern Australia (e.g., Meneghini et al., 2007; Mariani and Fletcher, 2016; Lim et al., 2019; Abram et
al., 2021). While in New Zealand, a positive SAM is linked to a decrease in precipitation and an increase in

temperature due to weakened westerly winds passing over the islands (Kidston et al., 2009).

Correlation coefficient (r)
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Figure 1. Spatial correlation of SAM index to mean sea level pressure (MSLP) in the Southern Hemisphere. SAM
index was calculated from annually means (January-December; 1950-2022, ERAS5 data) using the difference in zonal
MSLP at 40°S and 65°S (dashed lines).

The phase and magnitude of SAM variability is described by the SAM index. Two methods are
commonly used to calculate the SAM index. The first method is based on gridded data such as
atmospheric reanalysis (e.g. ERA5) or climate model output, and breaks down extra tropical Southern
Hemisphere atmospheric pressure data into orthogonal spatial patterns expressed by Empirical
Orthogonal Functions (EOF). The first EOF explains the leading mode of Southern Hemisphere
variability and its time series represents the SAM iindex (Mo, 2000; Fogt and Bromwich, 2006). Recent
advances in the application of the EOF method to describe the SAM include approaches to separate the
zonally symmetric component of SAM variability from the asymmetric component of variability
associated with the zonal wave-3 pattern (Goyal et al., 2022; Campitelli et al., 2022). The second method
for calculating the SAM index uses the difference in the normalised zonal mean sea level pressure
(MSLP) between 40°S and 65°S (Fig. 2). By this method the SAM Index can be calculated using gridded
products from reanalysis or model outputs (Gong and Wang, 1999) or from more sparse

instrumental records of MSLP from observing stations located in the southern mid-latitudes and
around coastal Antarctica (Marshall, 2003). It is this second method of calculating the SAM index that is
the main focus of the assessment carried out in this study, however we do also demonstrate the extension

of our findings to EOF-based methods.

Instrumental climate measurements are sparse across the Southern Hemisphere, and particularly in
Antarctica. This generally limits a reliable long term understanding of SAM variability from observations
and reanalysis products to the time since 1957 (Marshall, 2003; Barrucand et al., 2018; Marshall et al.,
2022), although some longer reconstructions based on observations have also been developed back to the
late 19th century (Jones et al., 2009; Visbeck, 2009). Over this historical period there has been a
significant positive trend in the SAM, particularly in the summer season, associated with stratospheric
ozone loss as well as rising atmospheric greenhouse gases (Thompson and Solomon, 2002; Fogt and
Marshall, 2020). This trend is expected to continue in all seasons during the 21st century as climate
continues to warm due to ongoing anthropogenic greenhouse gas emissions, but with a temporary pause
in summer trends due to the opposing influence of stratospheric ozone recovery (Thompson et al., 2011;
Goyal et al., 2019; Banerjee et al., 2020)
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Longer-term reconstructions of the SAM have been developed using paleoclimate proxy records (e.g.,
ice cores, tree rings and corals, etc) and multiple reconstructions for the last millennium have been
produced (e.g., Villalba et al., 2012; Abram et al., 2014; Détwyler et al., 2018; King et al., 2023). These
long-term reconstructions show similar trends in the SAM index, however, they display different
magnitudes of reconstructed SAM variability. Although variability between reconstructions could be due
to differences in reconstruction methods and the networks of proxy data used, Wright et al. (2022) instead
found that differences in magnitude between the Abram et al. (2014) and Datwyler et al. (2018)
reconstructions were explained by the data resolution used to calculate the instrumental SAM index.
Déatwyler et al. (2018) trained their reconstruction to an annual SAM iindex calculated from monthly
MSLP data, while Abram et al. (2014) used the annual SAM iindex from annual MSLP data as their
reconstruction target. The difference in magnitude of the annual SAM index in instrumental data
calculated by these alternate methods accounts for the apparently larger (though dimensionless) magnitude
of SAM variability during the last millennium in the Abram et al. (2014) reconstruction compared with
the Datwyler et al. (2018) reconstruction (Wright et al., 2022). This discrepancy highlights the
importance of understanding the impact of methodology in reconstructing the SAM index from

observational data.

It has previously been shown that differences between the method (e.g. EOF or zonal difference index
methods), variable (e.g. pressure level) or source data (e.g. gridded reanalysis or station observations)
results in sometimes marked differences between available observational SAM indices, despite these
indices all representing the same physical process (Ho et al., 2012).

However, it is not known how methodological choices within a single method, variable and data source
might also have the potential to influence the results of SAM studies. To date, a-best-practise an optimal
data resolution to use when calculating the SAM index has not been established, and various versions
constructed using different resolutions and orders of operation are made available for the research
community to use (e.g. http://www.nerc-bas.ac.uk/icd/gjma/sam.html). It also remains unexplored if the
choice to normalise zonal MSLP data prior to calculating the latitudinal difference in pressure anomalies
(Gong and Wang, 1999; Marshall, 2003) could influence the assessments of past and future SAM changes,
or the climate impacts that SAM causesin different parts of the Southern Hemisphere._

Here, we calculate historical SAM indices using daily, monthly and annual averages of zonal MSLP data,
and using dimen-sional-normalised (traditional) and nen-dimensionatnatural formulations of the
SAM index. We explore differences between the SAM indices, and the reasons why methodological



http://www.nerc-bas.ac.uk/icd/gjma/sam.html)

125

130

135

140

145

150

choices introduce these differences, as well as the potential implications when analysing the spatial
correlation of SAM variability with temperature and precipitation impacts. Additionally, we also explore
the influence of methods on the interpretation of SAM trends in projections of climate change during the
21st century. We conclude by making recommendations for a—best-practicean improved approach to
calculating the SAM index that avoids potential-biases differences introduced by methodology.

2 Methods

We use the ECMWEF (European Centre for Medium-Range Weather Forecasts) Reanalysis v5 (ERA5) gridded
data for our study (Hersbach et al., 2020). ERA5 reanalysis data is currently available from 1950. Of the
available reanalysis products, ERA5 has been shown to best reproduce Antarctic surface temperature and
SAM relationships prior to the satellite era (Marshall et al., 2022).

Daily resolution MSLP data in ERAS for latitudes 40°S and 65°S were sourced from the KNMI Climate
Explorer tool (Trouetand Van Oldenborgh, 2013). From daily ERA5 data, the daily, monthly and annual
means of zonal MSLP were calculated. SAM Indices were then calculated for these three different data

resolutions (Fig 2).

Following the approach of Gong and Wang (1999), the SAM itndex was first calculated using the equation:

SAM = Pygos = Pgses

where P*4°5 and P*sses are the normalised zonal MSLP at 40°S and 65°S, respectively.

Data was normalised relative to a 1961-1990 reference interval. Briefly, this involves subtracting the
mean of the reference interval from the time series, and then dividing the time series by the reference
interval standard deviation. The SAM index was then calculated by subtracting the normalised zonal
MSLP values at 65°S from the normalised zonal MSLP values at 40°S (Fig. 2). The normalisation step
removes units from the MSLP data, and consequently alse-from-the resultant SAM index;-anéd-se_is also
dimensionless. w\\e refer to this as the nen-dimensionalnormalised SAM index.

A dimensional-natural SAM index in hPa pressure units was also calculated (Fig. 2). This followed the
same equation and method as above, but in this case P*4°s and P*eses are the zonal MSLP anomalies at
40°S and 65°S. Specifically, for the-dimensional natural SAM index the zonal MSLP anomalies are
calculated relative to the 1961-1990 reference interval mean without dividing by the reference interval

(]
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standard deviation.

TFhe-relationship Discrepancies between daily, monthly and annual SAM index methods was-then-were
investigated by calculating an annual mean SAM from the daily and monthly indices (Fig. 2). The annual
SAM values derived from the different resolution SAM indices were then compared by a correlation
coefficient (r) and by examining the gradient between different methods of calculating the SAM tindex.
The spatial correlation of each SAM index at each data resolution with ERA5 gridded data for 2m air
temperature and precipitation was also examined to test the influence of methodological choices on
detection and interpretation of the SAM’s climate impacts.
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Figure 2. Methodological choices explored in this study by calculating gimensional-ane-ren-dimensionatnormalised and

natural SAM indices from different dataresolutions.
170

To illustrate the impact that methodological choices could have on the interpretation of future SAM changes
we also test climate model output from 1850 to 2100. To illustrate the effect of methodological choices we
use output from the CSIRO ACCESS- CM2 model prepared for CMIP6 (Dix et al., 2019). A full
175  assessment of future SAM changes would require a more thorough analysis across the ensemble of
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CMIP6 models, as done for example in Goyal et al. (2021), but our purpose in this study is to simply
illustrate the potential impact of methodological choices on such assessments. MSLP outputs from the
ACCESS-CM2 model were sourced from the "very high" and "low" emission scenarios for future climate
change (SSP5-8.5 and SSP1-2.6, respectively) in order to best identify the range of influences that
methodological choice could have on assessing SAM changesin a warming climate. As the output from
these global climate model simulations are routinely reported at monthly mean resolution, only
monthly and annual mean SAM indices were calculated for the future projections. Both nen-
dimenstonatnormalised and-dimensional-natural SAM indices were calculated from the climate model
output, relative to a 1961-1990 reference interval.

In addition to these main analyses, we also verify the broad application of our findings by repeating our

calculations of normalized and natural SAM indices using the station locations that are used for the Marshall
SAM index (Marshall, 2003). For this we used the ERA5 MSLP data extracted for the 12 grid cells
corresponding to the station locations used for the Marshall SAM index (Marshall, 2003). We further extended

our comparison across common SAM index methodologies by constructing EOF-based SAM indices using the

ERADS gridded MSLP data from south of 20°S at monthly and annual resolutions.

All data analysis were carried out using MATLAB R2022b software. This included using the M-map package

and the Climate

Data Toolbox for producing the analyses and maps presented in this study (Greene et al., 2019; Pawlowicz,
2020).

Results
SAM index characteristics

Data resolution strongly influences the magnitude of the nen-dimensienalnormalised SAM index (Fig. 3a).
While the pattern of interannual variability of the nen-dimensionalnormalised SAM is very similar for all
data resolutions (as demonstrated by r values exceeding 0.99; Fig. 3b-c), the magnitude of interannual
variability of the nen-dimensienalnormalised SAM derived from monthly data is 1.4 times larger than the
non-dimensienalnormalised SAM derived from daily data (Fig. 3b). Similarly, the magnitude of the annual
non-dimensionalnormalised SAM index calculated from annual means is 3.1 times larger than the ron-
dimensionatnormalised SAM derived from monthly data (Fig. 3c) and 4.4 times higher than the annual
SAM derived from daily data. This finding is consistent with the recalculation performed by Wright et al.
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(2022) where the SAM index calculated from annual MSLP data displayed a higher variability than
210  annual means derived from a monthly SAM index.

Differences in magnitude of the nen-dimensienalnormalised SAM index are caused by a progressive
decrease in standard deviation as MSLP data is averaged over longer time periods (Table 1). This means
that the normalisation of daily MSLP data removes a larger magnitude of variability than normalisation of
monthly MSLP data, and even more so when comparing to normalisation of annual resolution MSLP data.

215  Comparison of the reference interval MSLP standard deviations between the different data resolutions
(Table 1) gives similar ratios to the slopes between the annual mean SAM values derived from different
resolution SAM indices in Figure 3a-c. For example, the normalisation step in calculating the SAM index
removes a 3.3 times greater magnitude of MSLP variability at 40°S for monthly resolution data
compared to annual mean data (standard deviations of 1.694 and 0.509 hPa, respectively; Table), and 3

220  times more variability at 65°S (standard deviations of 4.025 and 1.355 hPa, respectively; Table 1). This
results in the 3.1 times greater magnitude of interannual SAM variability calculated from annual data
relative to monthly data when using the normalisation method to calculate a-nen-dimensional the SAM
index (Fig. 3c).

Differences in the magnitude of the SAM index are overcome when a-dimensional natural SAM index is

225  instead calculated. The annual mean dimensional-natural SAM values calculated from daily, monthly and
annual resolution MSLP data all display the same phase and magnitude of interannual variability over
time (Fig 3d). This highlights how the normalisation step_that is traditionally used in calculating the
non-dimensional SAM index can introduce ambiguity into SAM studies, but also how this ambiguity can
be avoided by retaining the native pressure units in the natural SAM index.

230 Our findings also demonstrate that a dimensional-natural SAM index can be reliably calculated from low
resolution MSLP data. Physically, it is the instantaneous difference in pressure between the mid and high
southern latitudes that represents the processes of atmospheric SAM variability (Baldwin, 2001), and so
daily resolution data might be assumed to retain a more pure measure of the SAM index. However, our
findings using different resolutions of MSLP data show that the interannual trends and variability of the

235  dimensional natural SAM are consistently captured using daily, monthly or annually averaged zonal MSLP
anomalies (Fig. 3d).

Our findings for the SAM index derived from the latitudinal pressure difference in gridded MSLP

data also extend to other methods of calculating the SAM index. Consistent findings to those
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demonstrated in Fig 3. are produced when normalised and traditional SAM indices are produced

using the 12 observational locations for the Marshall SAM index (Figure Al). Similarly, the annual

SAM data produced using an EOF method applied to monthly resolution gridded MSLP data has a

muted amplitude compared to the same EOF-derived index based on annual resolution data (Figure

A2). This demonstrates how the normalisation process impacts the scaling of the SAM index derived

from different temporal resolutions of input data regardless of the SAM index method used.
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Figure 3. Annual mean SAM values calculated by different methodological choices. a. Comparison of annual ren-
dimensional 11ormalized SAM values calculated from daily (red), monthly (orange) and annual (blue) MSLP data. B.
Relationship between the annual nen-dimensional_normalised SAM values calculated from daily and month
resolution MSLP data. Dashed line represents 1:1 slope c. Relationship between the annual ren-—dimensional
normalised SAM values calculated from monthly and annual resolution MSLP data. Dashed line represents 1:1
slope. d. Comparison of annual-dimensional natural SAM values calculated from daily (red), monthly (orange) and
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annual (blue) MSLP data.

Beyond scaling, there are additional (though small) year-to-year differences in the interannual variability
and trends of the SAM when comparing dimensional—natural and nen-dimensionalnormalised
calculations of the SAM index. These differences are evident when comparing annual SAM values
calculated as a dimenstonpal-natural or ren-dimensionatnormalised index from annual MSLP data (Fig. 4,
Table Al), and are similarly evident when comparing the variability of dimensional-natural and ren-
dimensionalnormalised SAM indices calculated from monthly MSLP data or from daily MSLP data (ret
shownTable Al).

These differences in year-to-year variability and trends can again be explained as an artefact introduced
by the normalisation step when calculating the nen-dimensionattraditional SAM index. By normalising
the zonal MSLP data before calculating the zonal difference, an identical weighting is given to pressure
variability in the mid and high latitudes in the calculation of the nen-—dimensional-normalised SAM
index. However, the magnitude of MSLP variability is consistently larger at 65°S compared with 40°S
(Table 1). At daily resolution the magnitude of reference interval variability at 65°S is 2.22 times larger
than the variability at 40°S (standard deviations of 5.597 hPa and 2.524 hPa, respectively), and at annual
resolution variability at 65°S is 2.66 times larger than at 40°S (standard deviations of 1.355 hPa and
0.509 hPa, respectively). Likewise, the long-term trends in MSLP are amplified at 65°S (-0.50
hPa/decade from 1950-2022) compared to the MSLP trends at 40°S (0.18 hPa/decade). These differences
suggest that the equal weighting of these latitudinal zones that is routinely applied in calculating the ren-
dimenstonat-normalised SAM index may not be justified, and could artificially alter the interpretation of
SAM variability, trends and impacts.

Table 1. Characteristics of MSLP variability during the 1961-1990 reference interval for the zonal MSLP data used
to calculate the SAM index at different resolutions.

Data resolution 40°S standard deviation (hPa) 65°S standard deviation (hPa)
Daily 2.524 5.597
Monthly 1.694 4.025
Annual 0.509 1.355

12
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Figure 4. Comparison of interannual variability and trends from dimensional—natural and nen-
dimensionalnormalised annual SAM values calculated from annual resolution MSLP data._Y axis limits have been
scaled relative to the regression slope between the natural and the normalised SAM index to provide optimal
alignment of the indices.

3.2 SAM impacts

Spatial correlation analysis shows that the SAM index is correlated with Southern Hemisphere
temperature variability, with similar broad-scale patterns across SAM index data resolutions and
calculation methods (Fig. 5). In general, all formulations of the SAM indices produce negative
correlations with annual mean temperature anomalies over the Antarctic continent, and positive
correlations over the Antarctic Peninsula and southern South America, over the southern Indian Ocean,
and over the Maritime continent extending into the eastern tropical Indian Ocean, the Coral Sea and the
Tasman Sea. However, beyond these broadly consistent patterns we demonstrate that the methodology
used to construct the SAM index does alter the strength of temperature correlations in some locations.
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Figure 5. Spatial correlation of annual SAM values with ERA5 2m air temperature in the Southern Hemisphere
(January-December averages over 1950-2022). Comparisons are shown for differences in SAM indices derived from
monthly (top row) and annual (middle row) MSLP data, and for nea-dimensienatnormalised SAM indices (left
column) and dimensienal-natural SAM indices (middle column). Also shown are the differences in spatial correlation
values based on MSLP data resolution (bottom row) and for dimensionat-natural versus ren-gimensionalnormalised
SAM indices (right column). In these correlation difference plots the shading represents differences between methods and
data resolution while stippling indicates regions of negative spatial correlations. Consistent findings are also produced

14



310

315

320

325

330

|335

340

comparing annual temperature correlations for SAM indices derived from daily and annual MSLP data (Fig. A3%).

Comparing the correlations produced by—dimensional natural versus nen-dimensional normalised
formulations of the SAM index (i.e. comparing along rows in Fig. 5) clear spatial characteristics in
correlation differences area evident. Generally, correlation strength in the region between 40°S and 65°S
is stronger for the dimensional-natural SAM than it is for the nen-dimensional normalised SAM. These
differencesin correlation strength show three distinct nodes across the Southern Ocean and Drake Passage
suggesting that the-natural dimensional SAM index better includes the asymmetric (zonal wave-3)
component of SAM variability. In contrast areas north of 40°S more commonly have stronger correlations
with the normalised nen-dimensional SAM index. It is expected that this is because the normalised satien
of-thenen-dimensional SAM index artificially increases the weighting of MSLP variability at 40°S (relative
to MSLP variability at 65°S). This-weuld emphasises the temperature effects of pressure variability in the
mid-latitudes as well as their interactions with tropical circulation such as the Hadley and Walker
circulation cells.

Two important features are found when comparing the annual temperature correlations produced by different
resolutions of the SAM index (i.e. comparing down columns in Fig. 5). Firstly, differences in resolution of
the normalised nen-dimensional SAM produce similar spatial patterns of correlation differences as are
seen in the eemparisioncomparison between_natural-dimensienal and ren-dimensionalnormalised SAM
indices. Specifically, the normalisednen-dimensienal SAM generated from monthly resolution MSLP data
has stronger correlations with interannual temperature variability in the region between 40°S and 65°S,

including showing improved correlation with the zonal wave-3 pattern. The ren-dimensional normalised
SAM generated from annual resolution MSLP data has generally stronger correlations with interannual
temperature variability north of 40°S. These differences are emphasised even further in comparing annual
temperature correlations with the normalised ron-dimensional SAM generated from daily versus annual
MSLP data (Fig. A%3). Thisis again explainable through the increasingly strong weighting that is given to
pressure variability at 40°S relative to variability at 65°S as MSLP data resolution is reduced in calculating
the normalisedren-dimensional SAM (Table 1). However, the other important finding that is evident in
this analysis is that the spatial differences in correlation strength associated with MSLP data resolution can
be avoided almost altogether by using a natural-dimensienal SAM index (middle column of Fig. 5).

Similar findings come from examining the correlation of annual precipitation with the various
methodological choices for calculating the SAM index (Fig. 6). The primary correlation patterns with
precipitation show broad agreement across methods. Positive mean annual SAM anomalies are associated

15
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with latitudinal bands of increased precipitation near the Antarctic coast (including over the Antarctic
Peninsula) and a band of decreased precipitation across the mid-latitudes. This represents the southward
shift of the westerly winds and associated storm tracks when the SAM is in its positive phase. Other
regions demonstrating positive mean annual precipitation associated with positive SAM anomalies
include the Maritime Continent including the eastern tropical Indian Ocean and eastern Australia and the
tropical eastern and central Pacific. Negative mean annual precipitation anomalies are also seen over
West Antarctica in response to positive SAM phases.

Beyond these broad similarities in SAM correlations with precipitation, we do again identify regions
where methodological choices alter the correlation results produced (Fig. 6; Fig A42). Correlations with
interannual precipitation variability near 65°S, and particularly over the Antarctic Peninsula, are generally
stronger for higher resolution versions of the ren-dimensienatnormalised SAM index, and for all resolutions
of the_natural-dimensional SAM index. Conversely, correlations with interannual precipitation variability
near 40°S, and specifically south of Australia, over the south island of New Zealand and west of Chile,
are stronger for lower resolution versions of the nen-dimensionalnormalised SAM, and for the nen-
dimensionatnormalised SAM compared with the-dimensienal natural SAM. These formulations of the
SAM index also show stronger precipitation anomalies over parts of the tropics including northern
Australia and the Amazon region, indicating the stronger representation of tropical-to-mid-Ilatitude
atmospheric circulation in these versions of the SAM index that give increased weighting to pressure
anomalies at 40°S. In other words, it is these regions where methodological choices in constructing the
SAM index will have the most impact on the interpretation of the SAM’s influence on annual mean

precipitation.
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Figure 6. Spatial correlation of annual SAM values with ERAS5 precipitation in the Southern Hemisphere. (January-
December averages over 1950-2022). Comparisons are shown for differences in SAM indices derived from monthly
(top row) and annual (middle row) MSLP data, and for normalisedren-dimensienal SAM indices (left column) and
naturaldimensional SAM indices (middle column). Also shown are the differences in spatial correlation values based on
MSLP data resolution (bottom row) and for dimensional-natural versus ren-dimensienalnormalised SAM indices
(right column). In these correlation difference plots the shading represents differences between methods and data

resolution while stippling indicates regions of negative spatial correlations. Consistent findings are also produced
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comparing annual precipitation correlations for SAM indices derived_from daily and annual MSLP data (Fig. A24).

We note that these comparisons are shown for mean annual precipitation and SAM anomalies, but it is
well established that the impacts of SAM on precipitation vary by season (Fogt and Marshall, 2020).
Because of this, the impacts of methodological choices in assessing the SAM’s precipitation impacts at a
seasonal scale may result in different regions where those methodological choices alter correlation
strength. However we expect that our general conclusions would remain the same at the seasonal scale,
including that a dimensional-natural version of the SAM index would produce correlation results that are
unaffected bychoices in the resolution of zonal MSLP data used to construct the SAM index.

3.3 SAM trends

Finally, we look at how methodological choices in constructing the SAM index could alter the
interpretation of SAM changes in a warming world. During the historical period the differences in
interannual variability of annual SAM values produced by natural—dimensional or nen-
dimensionalnormalised SAM indices are detectable but small (Fig. 4). However, as the response to
human-caused climate warming develops, the magnitude of SAM trends relative to the magnitude of
historical variability show increasing differences between different methodological versions of the SAM
index (Fig. 7).
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Figure 7. Example of future scenario SAM indices based on different calculation methods. a. Comparison of low
emissions future scenario (SSP1-2.6) based on dimensional-natural (purple) and ren-dimensionatnormalised (green)
SAM indices calculated from annual MSLP data for 1850-2100. Thick lines show 50-yr moving averages. Reference
interval used for calculating the SAM indices is 1961-1990. b. As in a, but for a very high emissions future scenario

(SSP5-8.5). Y-axis limits have been scaled relative to the regression slope between the natural and normalised SAM

index over the reference interval to provide optimal alignment of the indices.

Long-term climate change trends are stronger in the non-dimensionainormalised SAM compared to the
dimensional-natural SAM, relative to historical interannual variability (Fig. 7). This difference will affect
interpretations of time of emergence (Hawkins et al., 2020), which assess when a long-term climate

trend (signal) emerges above the amplitude of historical climate variability (noise) resulting in climate
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conditions that are beyond the range of historical experience. For example, under a future with very high
greenhouse gas emissions (SSP5-8.5) the climate change signal on the SAM index (as assessed by a 50-
year moving average) emerges above the 1 standard deviation historical (1850-1949) noise level by 2025,
and above the 2 standard deviation historical noise level by 2091, in a normalised ren-dimensionat
formulation of the SAM. In contrast, for the_natural-dimensional SAM there is emergence above the 1
standard deviation level by 2031, but no emergence occurs above the 2 standard deviation level during the
21st century. Likewise, under a low greenhouse gas emissions scenario (SSP1-2.6) there is emergence of
the climate changesignal for the ren-dimensienatnormalised SAM between 2063 and 2086, but emergence
is not detected at any time during the 21 centuryfor the dimensienat-natural SAM.

This finding illustrates how methodological differences in calculating the SAM index have the potential to
alter interpretations of human-caused climate impacts on the SAM. Our findings suggest that the
normalisation-asseciated-with-a-nen-dimensienalnormalised SAM index may lead to assessments that the
SAM has emerged outside of the range of historical experience sooner than would be determined based on
a dimensienal-natural SAM _index. We emphasise that this is only an illustrative example based on a
single climate model, but it does demonstrate the potential for methodological choices to influence the
interpretation of SAM trends betweendifferent studies.

4 Discussion and Conclusions

Our results allow us to make recommendations for a-best-practiceimproved approach to calculating the
SAM index that ecan enable greater consistency across climate studies. The traditionally used
(normalisednen-dimensional) SAM index (Gong and Wang, 1999; Marshall, 2003) involves normalising
zonal MSLP data before calculating the latitudinal MSLP difference that defines the SAM. It is_n’ot
clear why the choice to normalise zonal MSLP data was originally made, although it is possible that this
was to facilitatecomparisens-align with EOF-based methods of defining the SAM that produce non-
dimensional principal components (Gong and Wang, 1999; Baldwin, 2001), er-because-ofto allow each
latitude to contribute equally to the index, or because of the scarcity of observations and potential

spurious trends in early MSLP data in the Antarctic region (Baldwin, 2001; Marshall, 2003). It is possible

that the biases between different climate model representations of atmospheric pressure fields in the

Southern Hemisphere might also be somewhat avoided through applying normalisation in constructing
the SAM index.
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We find that the normalisation step involved in the traditionally used {ren-dimensionaljdefined SAM
index has the potential to introduce multiple biases—discrepancies in climate studies. Firstly, the
magnitude of the nren-dimensionalnormalised SAM index value varies substantially based on the
temporal resolution of zonal MSLP data used to construct the SAM index (Fig 3a-c). Because the index
produced by this method is dimensionless these differences are hard to trace when SAM indices are then
applied in climate research, and there are examples where this has then resulted in seemingly large
differences in the magnitude of paleoclimate reconstructions of the SAM (Wright et al., 2022). The
normalisation step in—ecaleulating—the—non-dimensional-SAM also gives equal weighting to MSLP
variability and trends in the mid and high latitudes. However, the magnitude of MSLP variability and
trends are substantially larger at 65°S compared to 40°S (Table 1). The effect of equally weighting
MSLP anomalies at 40°S and 65°S results in biases-differences in correlations with temperature and
rainfall data that could alter the interpretation and attribution of SAM impacts in some regions. This
includes generally reducing SAM correlations with temperature and precipitation variability in the high
southern latitudes, and giving enhanced influence to the impacts of mid-latitude pressure anomalies and
their links totropical atmospheric circulation (Figs. 5 and 6). Furthermore, the ron-dimensionalnormalised
SAM index displays stronger future climate change trends relative to the magnitude of historical
variability. Because of this the SAM would be assessed to emerge above historical experience sooner this
century using a nen-dimensionatnormalised SAM index compared with a dimensional-natural index (Fig.
7).

These problems are overcome when using a-dimensional natural version of the SAM based on zonal
MSLP anomalies rather than normalised MSLP data. The dimensional-natural SAM index produces
consistent indices across different resolutions of MSLP data (Fig 3d), that also have consistent spatial
correlations with temperature and precipitation (Figs 5 and 6). Although SAM index anomalies are
commonly expressed in monthly, seasonal or yearly means, it is the influence of the SAM on synoptic-
scale features such as the path of low pressure system storms and Rossby wave breaking that determines
climate impacts (Pepler, 2020; Spensherger et al., 2020). This might suggest that accurate representation
of the SAM requires daily or better resolution of MSLP data. However, we demonstrate that the annually
averaged climate impacts of the SAM are as effectively represented by latitudinal differences in annual
MSLP data as they are for monthly or daily resolution MSLP data (Figs. 5 and 6; A3% and A42),
provided that a dimensional-natural SAM index method is used. Correlations of temperature and
precipitation anomalies with the SAM are also consistently stronger for the mid-to-high latitude region
where SAM variability is focused when using the_natural-dimensional SAM compared with the ren-
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dimensionatnormalised  SAM. This includes an improved representation of the asymmetric (zonal-wave
3) components of SAM variability in the dimensienal-natural SAM index, whereas increased weighting
of mid-latitude pressure anomalies in the ren-dimensienatnormalised SAM results in increased
incorporation of tropical atmospheric circulation anomalies into the SAM index.

Biases-Discrepancies in the nen-dimensionalnormalised SAM index appear to be related to the assumed
equal weighting of MSLP variability at the mid and high latitudes when the zonal MSLP data is
normalised. Instead of assuming either equal (nren-dimensional normalised SAM) or no weighting
(cimensienal-natural SAM) of zonal MSLP data, it could be considered if an equal area weighting based
on latitude is optimal for constructing the SAM index. This latitudinal weighting can be achieved by
multiplying the zonal MSLP data by the square root of the cosine of latitude (weighting of 0.875 for 40°S
and 0.650 for 65°S). This latitudinal weighting has a ratio of 1.3, which is substantially less than the
observed difference in MSLP variability and trends which are approximately 2-3 times larger at 65°S
than 40°S (Table 1). Hence, even when accounting for equal area, the variability and trends in MSLP
data remain larger at 65°S and should therefore provide a larger contribution to SAM variability than
pressure variability at 40°S (Table A2%). This is further verified by repeating our analyses using a
dimensional SAM index based on latitude weighted MSLP data. These demonstrate that spatial
temperature and precipitation correlations are stronger for the dimensional-natural SAM rather than a
weighted dimensiopabnatural SAM (Fig. A35-46). The weighted_natural-dimensional SAM also has
spatial correlation differences whenthe SAM is calculated at different temporal resolutions which are not
present for the dimensional-natural SAM (Fig. A35-64). Hence it appears that area weighting of MSLP
anomalies does not improve the representation of the SAM index.

We thus recommend that the-best-practicean improved method for calculating the SAM index from zonal
MSLP data should be:

SAM = Pjpos —Plsog

where P*4o°5 and P*eses are the zonal MSLP anomalies at 40°S and 65°S, respectively.

Using this method the resulting natural SAM index will have dimensional pressure units that avoid

scaling issues and ambiguity between studies, give appropriate influence to different magnitude of
pressure anomalies between the mid-latitudes and Antarctica, produce consistent indices and spatial
correlation results across temporal scales, and generate generally stronger relation- ships to SAM impacts
in the southern high latitudes than the traditionally used ren-dimensionratnormalised SAM index.
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Appendix A:

a s From daily MSLP data
e From monthly MSLP data
e From annual MSLP data
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Figure Al. Annual mean SAM values calculated from stations sites used in the Marshall Index by different [Formatted: Eont: Not Bold

methodological choices. a. Comparison of annual normalised SAM values calculated from daily (orange)
monthly (purple) and annual (green) MSLP data. b. Comparison of annual natural SAM values calculated from
daily (orange), monthly (purple) and annual (green) MSLP data.
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Figure A2. Annual mean SAM values calculated using the EOF method. a. Comparison of annual SAM values Formatted: Font: 10 pt
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values calculated from monthy and annual resolutions MSLP data. Dashed line represents 1:1 slope.,,

Formatted: Font: Not Bold

630 Formatted: Font: 10 pt, Not Bold

Table Al. Correlation coefficients and slopes between data resolutions between calculation methods.

Formatted: Font: 10 pt

o T T A A

Natural SAM- Correlation coefficients  Slope, « | Formatted: Font: Not Bold

Normalised SAM, Formatted: Font: Bold

Daily- Daily 0.9914 0.237
Monthly -Monthly 0.9867 0.341

Formatted: Font: Bold

Annual - Annual 0.9867 1.07 Formatted Table

Formatted: Font: Bold

Formatted: Font: Not Bold

Formatted: Font: Not Bold

Formatted: Font: Not Bold

Formatted: Font: 10 pt

(

[

| (

635 %
(

[

[

o JC A U U L

28



Normalised SAM index and temperature Natural SAM index and temperature

Difference between normalised SAM and
netural SAM

06 04 02 ) 02 0. L] 06 04 02 [ 02 04 06 01 0.
Correlation coefficient (r) Correlation coefficient (r) : e : 208 E 2
Difference - _— Higher in Higher in
between Y, TN ] natural normalised
i NSO | sam SAM
daily and i N\ /
annual b
7 C eee—
002 001 0 0ot 002
Higher in Higher in Higher in Higher in
annual SAM daily SAM annual SAM daily SAM
SAMInd " Difference between non-dimensional SAM and

AL SAMind o

dimensional SAM

640

645

Difference —
between ‘\Q‘}ﬂ -
daily and %
annual S
e
65°S
— E s =
002 001 o 001 002 002 001 ° oot 002
ol Sz, e 1 B o0
Higher in Higher in Higher in Higher in
annual SAM daily SAM annual SAM daily SAM

U T S
Higher in Higher in
dimensional non-dimensional
SAM SAM

Figure A31. Spatial correlation of annual SAM values with ERA5 2m air temperature in the Southern Hemisphere
(January-December averages over 1950-2022). Comparisons are shown for differences in SAM indices derived from
daily (top row) and annual (middle row) MSLP data, and for ren-dimensienalnormalised SAM indices (left column)
and dimensienal-natural SAM indices (middle column). Also shown are the differences in spatial correlation values
based on MSLP data resolution (bottom row) and for eimensionat-natural versus rena-dimensienalnormalised SAM
indices (right column). In these correlation difference plots the shading represents differences between methods and

data resolution while stippling indicates regions of negative spatial correlations.
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Figure A42. Spatial correlation of annual SAM values with ERA5 precipitation in the Southern Hemisphere (January-
December averages over 1950-2022). Comparisons are shown for differences in SAM indices derived from daily (top
row) and annual (middle row) MSLP data, and for normalisedren-dimensional SAM indices (left column) and
dimenstonat-natural SAM indices (middle column). Also shown are the differences in spatial correlation values
based on MSLP data resolution (bottom row) and for dimensionat-natural versus rea-dimensienalnormalised SAM
indices (right column). In these correlation difference plots the shading represents differences between methods and
data resolution while stippling indicates regionsof negative spatial correlations.
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Table A2%. Characteristics of latitude-weighted MSLP variability and trends for the zonal means used to calculate the

SAM index at differentdata resolutions.

Data resolution

40°S standard deviation

65°S standard deviation

40°S trend (1950-2022;

65°S trend (1950-2022;

(1961-1990; hPa) (1961-1990; hPa) hPa/decade) hPa/decade)
Daily 2.025 3.638 0.16 -0.32
Monthly 1.482 2.616 0.16 -0.32
Annual 0.446 0.881 0.16 -0.32
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Figure A53. Spatial correlation of annual SAM values with ERA5 2m air temperature in the Southern Hemisphere
(January-December averages over 1950-2022). Comparisons are shown for differences in SAM indices derived from
670 monthly (top row) and annual (middle row) MSLP data, and for latitudinally weighted_natural-dimensional SAM
indices (left column) and unweighted dimensienal-natural SAM indices (middle column; as in Fig. 5). Also shown
are the differences in spatial correlation values based on MSLP data resolution (bottom row) and for natural
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dimensional versus nen-dimensional normalised SAM indices (right column). In these correlation difference plots
the shading represents differences between methods and data resolution while stippling indicates regions of negative

spatial correlations.
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Figure AG4. Spatial correlation of annual SAM values with ERAS precipitation in the Southern Hemisphere
(January-December averages over 1950-2022). Comparisons are shown for differences in SAM indices derived from
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monthly (top row) and annual (middle row) MSLP data, and for latitudinally weighted eimensionat-natural SAM
indices (left column) and unweighted dimensienal-natural SAM indices (middle column; as in Fig. 6). Also shown are
the differences in spatial correlation values based on MSLP data resolution (bottom row) and for dimensienal-natural
versus ren-dimensienal normalised SAM indices (right column). In these correlation difference plots the shading
represents differences between methods and data resolution while stippling indicates regions of negative spatial

correlations.
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