1	Spatiotemporal ITCZ dynamics during the last three millennia in
2	Northeastern Brazil and related impacts in modern human history
3	
4	Giselle Utida ¹ *, Francisco W. Cruz ¹ , Mathias Vuille ² , Angela Ampuero ¹ , Valdir F. Novello ³ ,
5	Jelena Maksic ⁴ , Gilvan Sampaio ⁵ , Hai Cheng ^{6,7,8} , Haiwei Zhang ⁶ ; Fabio Ramos Dias de
6	Andrade ¹ , R. Lawrence Edwards ⁹
7	
8	¹ Instittuto de Geociências, Universidade de São Paulo, Rua do Lago, 562, Cidade Universitária,
9	São Paulo-SP, 05508-090, Brazil
10	² Department of Atmospheric and Environmental Sciences, University at Albany, SUNY, Albany, NY,
11	USA
12	³ Geo- and Environmental Research Center, University of Tübingen, Tübingen, Germany
13	⁴ Division of Impacts, Adaptation and Vulnerabilities (DIIAV), National Institute for Space Research
14	(INPE), São Jose dos Campos-SP, Brazil
15	⁵ General Coordination of Earth Science (CGCT), National Institute for Space Research (INPE), Sao
16	Jose dos Campos-SP, Brazil
17	⁶ Institute of Global Environmental Change, Xi'an Jiaotong University, Xi'an, China
18	⁷ State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese
19	Academy of Sciences, Xi'an, China
20	⁸ Key Laboratory of Karst Dynamics, MLR, Institute of Karst Geology, CAGS, China
21	⁹ Department of Earth Sciences, University of Minnesota, Minneapolis, MN, USA
22	*Corresponding author: giselleutida@hotmail.com
23	
24	
25	
26	
27	

28 Abstract

29

30 Changes in tropical precipitation over the past millennia have usually been associated with 31 latitudinal displacements of the Intertropical Convergence Zone (ITCZ). Recent studies 32 provide new evidence that contraction and expansion of the tropical rainbelt may also have 33 contributed to ITCZ variability on centennial time scales. Over tropical South America few records point to a similar interpretation, which prevents a clear diagnosis of ITCZ changes 34 in the region. In order to improve our understanding of the equatorial rainbelt variability, 35 36 our study presents a reconstruction of precipitation for the last 3200 years from the 37 Northeast Brazil (NEB) region, an area solely influenced by ITCZ precipitation. We analyze 38 oxygen isotopes in speleothems that serve as a faithful proxy for the past location of the southern margin of the ITCZ. Our results, in comparison with other ITCZ proxies, indicate 39 that the range of seasonal migration, contraction and expansion of the ITCZ was not 40 41 symmetrical around the equator oin secular and multidecadal timescale. A new NEB ITCZ pattern emergesed based on the comparison between two distinct proxies that characterize 42 the ITCZ behavior during the last 2500 years, with an ITCZ zonal pattern between NEB 43 and the eastern Amazon. In NEB, the period related to the Medieval Climate Anomaly 44 45 (MCA – 950 to 1250 CE) was characterized by an abrupt transition from wet to dry 46 conditions. These drier conditions persisted until the onset of the period corresponding to the Little Ice Age (LIA) in 1560 CE, representing the longest dry period over the last 3200 47 48 years in NEB. The ITCZ was apparently forced by teleconnections between Atlantic Multidecadal Variability and Pacific-Decadal Variability that controlled the position, intensity 49 50 and extent-width length of the Walker cell over South America, changing the zonal ITCZ zonally, characteristics, while-and sea surface temperature changes in both the Pacific and 51 Atlantic, stretcheding/weakeneding the ITCZ-related rainfall meridionally over NEB. Wetter 52 53 conditions started around 1500 CE in NEB. During the last 500 years, our speleothems

document the occurrence of some of the strongest drought events <u>overfor</u> the last
millenniacenturies, which drastically affected population and environment of NEB during
the Portuguese colonial period. The historical droughts were able to affect the karst
system, and led to significant impacts over the entire NEB region.

58

Keywords: Holocene, speleothemsstalagmites, stable isotopes, droughts, Portuguese
 colony

61

62 1. Introduction

63

64 Northeastern Brazil (NEB) is one of the areas in South America (SA) most vulnerable to the impacts of climate change. The semi-arid conditions in NEB are strongly 65 affected by precipitation variability, and since the 18th century the region has experienced 66 67 more frequent drought events (Marengo and Bernasconi, 2015; Lima and Magalhães, 2018). Today the frequent droughts put ~57 million people, ~27% of the Brazilian 68 population, at risk of experiencing water scarcity (Marengo and Bernasconi, 2015; Lima 69 and Magalhães, 2018). Aside from native people, the region has been occupied since the 70 71 Portuguese colonization in the 16th century, and the ensuing intense agricultural activity 72 has been responsible for a large-scale degradation of the Caatinga biome, the typical vegetation of NEB's semi-arid areas. This land mismanagement and the increasing 73 74 frequency of regional droughts has put some of these areas at great risk of desertification 75 (Marengo and Bernasconi, 2015; Sampaio et al., 2020). Advancing our knowledge about 76 NEB's climate and recurrence of extreme events in a long-term context is therefore of 77 great importance to better anticipate the impacts of these intense and abrupt drought 78 events.

79 The Intertropical Convergence Zone (ITCZ) is one of the key elements responsible for precipitation over NEB, which is also indirectly affectsed by the South American 80 81 Summer Monsoon (SASM). When the ITCZ is in its southernmost position during austral 82 autumn, northern areas of NEB experience increased precipitation (Schneider et al., 2014), while the precipitation in the southern areas of NEB occurs mainly during austral 83 84 summer in response to climatic conditions in the tropical South Atlantic (Vera et al., 2006; Vuille et al., 2012). Although these systems are independent and arise in different 85 seasons, the position of the ITCZ affects SASM intensity and its development through 86 87 moisture influx to the continent (Vuille et al., 2012; Schneider et al., 2014).

88 On orbital to centennial timescales, weakened precipitation in NEB has been 89 associated with enhanced subsidence over NEB during intense SASM periods (Cruz et al., 90 2009; Orrison et al., 2022), giving rise to a zonal dipole between the western Amazon and 91 NEB (Cruz et al., 2009; Novello et al., 2018). This mode also operates today on 92 interannual and seasonal time scales (Lenters and Cook, 1997; Sulca et al., 2016).

93 More recent studies suggested that these variations on millennial and centennial timescales in NEB may also have been caused by contraction or expansion of the tropical 94 rainbelt ITCZ affecting the precipitation over South America (Utida et al., 2019; Chiessi et 95 96 al., 2021). These ITCZ dynamics would be forced by changes in tropical Atlantic and 97 Pacific sea surface temperature (SST) and related atmospheric circulation changes (e.g., Lechleitner et al., 20197; Utida et al., 2019; Chiessi et al., 2021; Steinman et al., 2022). 98 99 These results suggest complex ITCZ dynamics operating over NEB; a region where the lack of studies complicates the paleoclimate interpretations for the last millennia. 100

In comparison with the ITCZ, the SASM has received more attention from recent
studies, mainly due to its larger area of influence in SA, extending from the tropical Andes
to the Amazon and southeastern SA (e.g., Apaéstegui et al., 2018; Azevedo et al., 2019;
Della Libera et al., 2022). Rainfall variability overn Southern Northeast Brazil (S-NEB) is

105 also determined by the dynamics of , especially for the South Atlantic Convergence Zone (SACZ), a component of the SASM, influencing rainfall over South Northeast Brazil 106 107 (Novello et al., 2018; Zilli et al., 2019; Wong et al., 2021). The spatiotemporal precipitation 108 variability over tropical SA during the Common Era (CE) was evaluated based on a network of high-resolution proxy records (Novello et al., 2018; Campos et al., 2019; 109 110 Orrison et al., 2022). These studies point to an association between SASM variability and the latitudinal displacement of the ITCZ and SACZ, although changes in the latitude of the 111 112 ITCZ during the last millennia are not well established.

Previous studies based on oxygen and hydrogen isotopes from paleorecords obtained in NEB have served as useful proxies for ITCZ precipitation in the region (Cruz et al., 2009; <u>Novello et al., 2012;</u> Utida et al., 2019, 2020), while carbon isotopes have been used to interpret soil erosion/production and vegetation cover <u>iinat n-different bBiomes ofin</u> <u>Brazil</u> (Utida et al., 2020; Novello et al., 2021; Azevedo et al., 2021).

118 For the pastSince 4,200 years-ago, NEB has experienced semi-arid conditions 119 (Cruz et al., 2009; Utida et al., 2020) that waswere imprinted might affect on the oxygen isotope signals recorded in stalagmites. These drier conditions in NEB could have 120 resulted imprinted in stalagmites a seasonal bias toward the δ^{18} O rainfall of recharge 121 periods or an evaporative fractionation of stored karst water (Baker et al., 2019). In 122 123 addition, an imprint of isotopic fractionation processes associated with different karst architectures can affect the stalagmites δ^{18} O signals (Treble et al., 2022). Unfortunately, 124 cave monitoring in northern NEB is not available due to the scarcity of dripping water. 125 126 probably as a result of increasing droughts in the region in the last decades (Marengo and Bernasconi, 2015). Because of this, the interpretation fofr oxygen isotopes in the region 127 has been challenging. 128 129 Although the hydrological processes occurring in the epikarst may affected in the

130 <u>fractionation of oxygen isotope values in the dripping water and thusen controlling $\delta^{18}O$ </u>

131	recorded in stalagmites oin a global scale, -previous studies mentioned above-regarding
132	the oxygen isotopes in NEB stalagmites, suggest a strongtheir relationship with rainfall
133	amount based on y-model results and comparison with other regional and global records.
134	Building on these recent advances, we present an ITCZ precipitation reconstruction
135	based on stalagmite records from the state of Rio Grande do Norte (RN), located at the
136	modern southernmost limit of the ITCZ in eastern South America (Fig 1). By using oxygen
137	and carbon isotopes obtained from these stalagmites, we reconstruct precipitation, based
138	on field correlations maps interpretation between precipitation amount and oxygen isotopic
139	compositione of modern rainfall, and by using carbon isotopes to reconstruct and
140	vegetation/soil cover over the last 3,200 years over NEB. These data are essential to fill
141	the gap of high-resolution records in NEB and to improve the interpretation of ITCZ
142	dynamics over SA and how they are related to SASM variability during the CE.
1/13	

Paraíso Cave (Wang et al., 2017), 5) Cariaco Basin (Haug et al., 2001). <u>GNIP stations: A)</u>
Fortaleza, B) Brasília, C) Manaus.

156

157 2. Regional settings

158

159 2.1. Study area

160

161 We study stalagmites from two caves located in the Rio Grande do Norte State, in 162 northern NEB (Fig 1), Trapiá and Furna Nova Cave. The caves were developed in the 163 Cretaceous carbonate rocks of the Jandaíra Formation, Potiguar Basin, close to the Apodi 164 River valley in a region of exposed karst pavements (Pessoa-Neto, 2003; Melo et al., 2016;). The exposed karst pavements extend over several kilometers and include a series 165 of small canyon-like caves that usually are no more than 40 m deep (Silva et al., 2017). 166 167 We collected speleothems in Trapiá and Furna Nova caves. Trapiá Cave (5°33'45.43"S, 168 37°37'15.92"W) is a 2330 m long cave with 29 m of bedrock above the cave cavity. This cave is located 90 km from the Atlantic coast and ~ 50 m above sea level, with 169 temperature and relative humidity at the chamber of 28.5°C and 100%, respectively, in the 170 171 chamber. -Furna Nova Cave (5°2'3.22"S, 37°34'16"W) is located 60 km north of Trapiá 172 Cave, 45 km from the Atlantic coast and ~95 m above sea level. The cave is 239.3 m long, with 29.8 m of bedrock above the cave cavity. Its temperature and relative humidity inat 173 174 the speleothem chamber are 25°C and 95.0%, respectively.

The annual mean temperature <u>in the region</u> is around 28°C (INMET - National Institute of Meteorology – Instituto Nacional de Meteorologia – data from 1961-1990) and <u>the</u> average precipitation is approximately 730 mm/year, concentrated in the period between March and May, during the southernmost position of the ITCZ (Agência Nacional de Águas – ANA - National Agency of Waters, 2013; Ziese et al., 2018). Caatinga dry

forest is the typical vegetation of the region. It is adapted to short rainy seasons of 3 to 4 months in length and tolerates large interannual variations in precipitation. It is characterized by sparse dry forest, dominated by arboreal deciduous shrubland (Erasmi et al., 2009).

184

185 2.2. Climatology

186

The drylands of NEB extend from 2.5°S to 16.1°S, and from 34.8°W to 46°W, with 187 an area of about 1,542,000 km², representing 18.26% of the Brazilian territory (Marengo 188 and Bernasconi, 2015). Although the whole area is classified as semi-arid and has faced 189 190 intense droughts, especially influenced by El Niño, there are significant differences in climatic systems between the northern and southern sectors of NEB. Furthermore, the 191 192 NEB eastern coastal sector is characterized by a different rainfall seasonality, receiving 193 more rainfall across the year, as the climate in this region is modulated by the sea breeze 194 circulation and easterly wave disturbances during June and July (Gomes et al., 2015; Marengo and Bernasconi, 2015; Utida et al., 2019). 195

Northern NEB (N-NEB), where the studied caves are located, receives most of its
 precipitation from March to May, when the seasonal migration of the ITCZ reaches its
 southernmost position <u>around 2°N(Fig 2a)</u> (Schneider et al., 2014; Utida et al., 2020), and
 ITCZ-related precipitation extends across the equator southward to NEB (Fig 1). <u>In</u>
 <u>Southern-NEB (-S-NEB)</u>, the precipitation occurs mainly during summer, from December
 to February influenced by the margins of the SACZ (Fig. 1a).

In N-NEB, we analyzed monthly precipitation data of Pedra das Abelhas Station –
 RN (Fig 2a), from 1911 to 2015 (n=103). In order to exclude possible extreme events with
 a known forcing, we excluded the most significant years of El Niño - Southern Oscillation
 (ENSO) (39 years), according to Araújo et al. (2013). The results (Fig S1) reveal that in the

majority of years (interquartile range) the total rainy season persists from February to April. 206 with precipitation varying from 100 to 180 mm/month, and minor contributions occurring in 207 208 January and May (50-70 mm/month). During the driest years (25% of guantiles), the rainy 209 season persists also from February to April, but the maximum precipitation is below 90 mm/month, while during the wettest years (75% of guantiles), the rainy season starts in 210 January with more than 100 mm/month and lasts until May with almost 150 mm/month, 211 212 reaching values higher than 250 mm around March. These data show that years with increased precipitation amounts are characterized by a longer rainy season, while the 213 214 precipitation deficit during drought years is primarily the result of a shorter rainy season. The anomalous length of the rainy season can be attributed to variations in the meridional 215 216 SST gradient in the tropical Atlantic that result in a shift of the ITCZ to the north or south of its climatological position (e.g., Andreoli et al., 2011; Marengo and Bernasconi, 2015; 217 Alvalá et al., 2019). 218

219 In S-NEB, the precipitation occurs mainly during summer, from December to 220 February (Fig 1a and 2b). This regional seasonality difference with N-NEB is evident in the spatial correlation map between GPCC precipitation anomalies (Schneider et al., 2011) 221 and 8⁴⁸O anomalies obtained from IAEA-GNIP (International Atomic Energy Agency -222 Global Network of Isotopes in Precipitation) for Fortaleza and Brasília (the closest IAEA 223 station to Diva de Maura Cave) stations (Fig. 2). The reddish areas on the map indicate 224 225 significant negative correlations during the austral summer (DJF) and autumn (MAM) between the local precipitation δ^{18} O signals and the regional precipitation amount. Overall, 226 227 the spatial correlations indicate that in both areas the amount effect is the dominant effect 228 on the isotopic composition of rainfall (Dansgaard, 1964). However, the isotopic signal varies seasonally and as a function of the two different circulation systems. The negative 229 spatial correlation observed over N-NEB (Fig. 2a and 2c) suggests precipitation is 230 dominated by ITCZ dynamics, similar to the conditions over Fortaleza, while the negative 231

spatial correlation over S-NEB (Fig 2b) is a result of the rainfall influenced by the SASM
(Fig 1) (Vera et al., 2006), such as in Brasília city, in central Brazil. Therefore, precipitation
and the associated isotopic signal are the result of ITCZ dynamics in N-NEB, while they
are influenced by the SASM in the S-NEB. Accordingly, their rainfall seasonality is also
different (Fig 2), with a NDJFM peak in the south (Brasília) and a MAM rainfall peak in the
north (Fortaleza).

238

239

Figure 2 – Monthly mean observed precipitation amount for ANA stations and δ¹⁸O
 values for GNIP stations (IAEA-WMO, 2021) (black dots) and correlation maps between
 gridded precipitation anomalies (ANA stations) and GNIP δ¹⁸O anomalies (IAEA-WMO,

243	2021) (black dots): (a) Fortaleza GNIP station and precipitation at Pedra das Abelhas
244	station (star 1) in northern NEB, (b) Brasília GNIP station and precipitation at Andaraí
245	station (star 3) in southern NEB, c) Manaus GNIP station and precipitation at Belterra
246	station (star 4) in the eastern Amazon. The maps show the spatial correlation between
247	δ^{18} O anomalies at GNIP stations and GPCC gridded precipitation anomalies for December
248	to February (DJF) and March to May (MAM) for Fortaleza, Brasília and Manaus GNIP
249	stations (Ziese et al., 2018). The δ^{18} O values and precipitation for each station were
250	obtained from GNIP IAEA/WMO database. The reference period for analysis is 1960-2016.
251	Stars indicate the site locations: 1) Trapiá Cave, Furna Nova Cave and Pedra das Abelhas
252	ANA Station (reference period 1910-2019), 2) Boqueirão Lake (Utida et al., 2019), 3) Diva
253	de Maura Cave (Novello et al., 2012) and Andaraí ANA Station (reference period 1960-
254	1986), 4) Paraíso Cave (Wang et al., 2017) and Belterra ANA Station (reference period
255	1975-2007), 5) Cariaco Basin (Haug et al., 2001).

Another important region in SA affected by the ITCZ behavior is the eastern 257 Amazon, west of the NEB, where the Paraiso speleothem isotope record was retrieved 258 (Fig 1 and Fig 2c). This region is characterized by increased precipitation during DJFMAM 259 260 and a peak in rainfall and a 5¹⁸O minimum in MAM (Fig 2c) as a result of precipitation received from the ITCZ in both summer and autumn. It can be depicted by the negative 261 correlation between 8¹⁸O at the Manaus GNIP station and rainfall over the upstream 262 263 equatorial region under direct ITCZ influence. In addition, there is only a minor influence 264 through water recycling over the Amazon Basin, due to its proximity to the coast (Wang et al., 2017). 265

266

267 3. Materials and Methods

268	
269	The rainfall patterns overf the study area were evaluated by analyzing monthly
270	rainfall data from theef Pedra das Abelhas National Agency of Water (ANA) Station - RN,
271	located ~ 1 km-far from the Trapiá Cave (Fig. 1), using data from 1911 to 2015 (n=103). In
272	order to exclude possible extreme events with a known forcing, we excluded the 39 El
273	Niño - Southern Oscillation (ENSO) years that most drastically changed the precipitation
274	amount in NEB, following the methodology of Araújo et al. (2013).
275	In order to identify a spatial patterns distribution pattern of of rainfall amount and
276	associatied associated with the oxygen isotope signal in northeast and central Brazil, we
277	produced maps showing the Pearson's correlation scores produced correlation maps
278	between GPCC gridded precipitation anomalies (Schneider et al., 2011), based on the
279	period 1961-1990 for December to February (DJF) and March to May (MAM) (Ziese et al.,
280	2018); and δ^{18} O values for IAEA-GNIP stations (International Atomic Energy Agency -
281	Global Network of Isotopes in Precipitation, IAEA-WMO, 2021) for Northern NEB (Pedra
282	das Abelhas ANA and Fortaleza GNIP Station); Southern NEB (Andaraí ANA and Brasília
283	GNIP stations) and the Eastern Amazon (Belterra ANA and Manaus GNIP stations). The
284	IAEA stations were chosen based on according to their closest proximityties to sites
285	discussed in the study: 1) Trapiá Cave and Furna Nova Cave (this study), 2) Boqueirão
286	Lake (Utida et al., 2019), 3) Diva de Maura Cave (Novello et al., 2012) and 4) Paraíso
287	Cave (Wang et al., 2017). SitesPoints 1 and 2 are located in in N-NEB, 3 in Southern-NEB
288	<u>(S-NEB) and 4 in the Eastern Amazon.</u>
289	Four stalagmites were collected in northern-N-NEB caves, two at Trapiá Cave,
290	TRA5 and TRA7 that are 178 and 270 mm long, respectively (Fig <u>.</u> S <mark>21</mark>), and two at Furna

TRA5 and TRA7 that are 178 and 270 mm long, respectively (Fig. S21), and two at Furna
Nova, FN1 and FN2, with a length of 202 and 95 mm, respectively (Fig. S23). The
stalagmite FN1 was previously studied by Cruz et al. (2009) for chronology and oxygen
isotopes. Utida et al. (2020) also studied TRA7 for chronology and carbon isotopes. These

294 samples are part of the speleothem collection of the Geoscience Institute at the University
 295 of São Paulo.

296 Chronological studies on speleothems were based on U-Th geochronology 297 performed at the Laboratories of the Department of Earth and Environmental Sciences, College of Science and Engineering, University of Minnesota (USA), and at the Isotope 298 299 Laboratory of the Institute of Global Environmental Change, Xi'an Jiaotong, University of Xi'an (China), using an inductively coupled plasma-mass spectrometry (MC-ICP-MS 300 Thermo-Finnigan NEPTUNE) technique, according to Cheng et al. (2013). Subsamples of 301 302 \sim 100 mg were obtained in clear layers, close to the growth axis trying to keep a maximum thickness of 1.5 mm, 10 mm wide and no more than 3 mm depth. The powder samples 303 were dissolved in 14 N HNO₃ and spiked with a mixed solution of known ²³³U (0.78646 ± 304 0.0002 pmol/g) and ²²⁹Th (0.21686 ± 0.0001 pmol/g) concentration. Th and U were co-305 306 precipitated with FeCl and separated with Spectra/Gel® Ion Exchange 1x8 resin column with 6N HCl and super clear water, respectively. Th and U were counted in an inductively 307 308 coupled plasma-mass spectrometry (MC-ICP-MS Thermo-Finnigan NEPTUNE PLUS) and the results calculated in a standard spreadsheet based on Edwards et al. (1987) and 309 Richards and Dorale (2003) using the isotopic ratios measured, machine parameters and 310 corrections factors to eliminated effects of contamination by detrital Th to finally obtain the 311 age of each sample. The decay constants used are: λ_{238} 1.55125 x 10⁻¹⁰ (Jaffey et al., 312 1971), λ_{234} 2.82206 x 10⁻⁶ and λ_{230} = 9.1705 x 10⁻⁶ (Cheng et al., 2013). Corrected ²³⁰Th 313 ages assume the initial 230 Th/ 232 Th atomic ratio of 4.4 ± 2.2 x 10⁻⁶. Those are the values 314 for a material at secular equilibrium, with the bulk earth ²³²Th/²³⁸U value of 3.8 315 316 (McDonough and Sun, 1995). The ages are reported in BP (Before Present, defined as the 317 year 1950 A.D.) and also converted to Common Years (CE) and age uncertainties are 2 σ. 318 We analyzed a large number of U/Th ages to improve the age model and reduce the 319 errors associated with detrital Th and recrystallization.

320 -Age models of speleothem TRA5 and FN2 were based on 12 and 10 uranium U/Th dates, respectively (Table S1 and S2). The FN1 chronology is based on 10 321 322 previously published U/Th results obtained by Cruz et al. (2009) plus 8 additional new 323 dates obtained for this study (Table S1). Speleothem TRA7 has 27 U/Th ages that were 324 presented in Utida et al. (2020). The individual age models for all speleothems were 325 constructed by the software COPRA (Breitenbach et al., 2012) through a set of 2,000 Monte Carlo simulations, where a random age within the $\pm 1\sigma$ age interval was chosen 326 327 each time.

328 For oxygen and carbon isotope analysis of the speleothems, around 200 μ g of powder was drilled for each sample, consecutively at intervals of 0.1 mm (TRA5), 0.3 mm 329 (TRA7) and 0.15 mm (FN2), with a Micromill micro-sampling device. These samples were 330 prepared using an online automated carbonate preparation system and analyzed by a 331 332 GasBench interfaced to a Thermo Finnigan Delta V Advantage at the Laboratory of Stable Isotopes (LES) at the Geoscience Institute of the University of São Paulo. Isotopes are 333 reported in delta notation (δ^{18} O and δ^{13} C) relative to the Vienna Pee Dee Belemnite 334 335 (VPDB) standard, with uncertainties in the reproducibility of standard materials < 0.1%. The isotopic profiles of TRA5, TRA7, FN1 and FN2 stalagmites consist of 443, 885, 1215 336 337 and 651 isotope samples, respectively. These datasets provide an average resolution of ~1 year per sample for TRA5 and ~ 4 years for the other speleothem records. TRA7 $\delta^{13}C$ 338 results were presented by Utida et al. (2020) and FN1 δ^{18} O results by Cruz et al. (2009) 339 using the same methods. Cruz et al. (2009) do not provide FN1 δ^{13} C results, which were 340 341 not included in this study.

Different textural characteristics of speleothem TRA5 and FN2 were identified in intervals which were analyzed for mineralogical composition based on approximately 20 mg samples with X-ray powder diffraction in a Bruker D8 diffractometer (Cu Ka, 40 kV, 40

mA, step 0.02°, 153 s/step, scanning from 3 to 105° 20) at the NAP Geoanalítica 345 346 Laboratory of the University of São Paulo. Qualitative and quantitative mineralogical analyses were performed with Match! and FullProf software, using the Crystallographic 347 Open Database (Grazulis et al., 2009). Crystallographic data for the mineral phases were 348 349 taken from Pokroy et al. (1989) for aragonite and from Paquette and Reeder (1990) for calcite. Mineralogical results of TRA7 and FN1 were obtained by Utida et al. (2020) using 350 the same method. All results are presented in weight proportion (wt %). The δ^{18} O results of 351 speleothems were calibrated according to the percentage of calcite identified for the 352 353 interval applying the aragonite-calcite fractionation offset of 0.85% ± 0.29% (Zhang et al., 2014). The δ^{13} C results were not corrected because the original aragonite-secondary 354 355 calcite fractionation factor is negligible (~0.1-0.2‰) (Zhang et al., 2014). Even considering 356 the original aragonite-original calcite mean fractionation factor of 1.1‰ (Zhang et al., 2015), the range of δ^{13} C RN stalagmites is very large (>8‰) and the correction would not 357 358 affect the main interpretation.

359 The intra-site correlation model (iscam) was used to construct a composite record 360 (Fohlmeister, 2012). It combined the climate records to obtain a unique age model and 361 oxygen isotopic record, corrected only for mineralogical composition offer speleothems 362 from Rio Grande do Norte, which here is referred to as the RN Composite. The age-depth 363 modeling software was adjusted to calculate 1000 Monte-Carlo simulations on absolute 364 age determinations to find the best correlation between oxygen isotope records from Trapiá and Furna Nova speleothems, reproducing adjacent archives. The results estimate 365 366 the error of the age-depth model by indicating the 68%, 95% and 99% confidence intervals obtained from evaluation of a set of 2000 first order autoregressive processes (AR1) for 367 368 each record (Table S3). This method allows significantly reducingeing the age uncertainty within the overlapping periods and it can be tested if the signal of interest is indeed similar 369

370	in all the records (Fohlmeister, 2012). The age data were assumed to have a Gaussian
371	distribution and were calculated pointwise. The composite result was detrended and
372	normalized, according to the iscam method. The performance of the iscam results is
373	affected by low quality of chronological control, low resolution and hiatuses. Therefore, the
374	following intervals were removed from the stalagmite records before constructing the RN
375	Composite: FN1 0-12 mm and 187-202 mm, FN2 0-6 mm, TRA5 0-37mm and TRA7 222-
376	227 mm. In addition, the FN1 record was divided into two portions: FN1a 12.14-136.99
377	mm and FN1b 140.15-186.87 mm that are separated by a hiatus. The chronological age-
378	depth relationship in the overlapping parts of the individual stalagmites was modified and
379	improved according to the iscam results of the composite record. The composite
380	calculation rearranges the proxies in order to obtain the optimal calculated age and then
381	calculates the average of the proxy data after normalizing the records. The RN record only
382	contains overlapping segments between two stalagmites per period. Hence the RN
383	composite proxy error can be quantified as the difference between the $\delta^{18}O$ of the
384	stalagmites combined for any given point in time (Fig. S6).
385	
386	
387	4. Results
388	
389	<u>4.1. Modern climatology and δ^{18}O rainfall distribution</u>
390	The data fromof Pedra das Abelhas Station reveal that in the majority of years
391	(normal years - interquartile range) the rainy season persists from February to April, with
392	precipitation varying from 100 to 180 mm/month, and minor contributions occurring in
393	January and May (50-70 mm/month) (Fig. 2). During the drier years (lower quartile),
394	February has a reduced precipitation amount, similar to the amount in January during
395	normal years, as described above. The maximum precipitation of 90 mm/month occurs
	17

396	between March and April. For wetter years (upper quartile), the rainy season starts in
397	January with more than 100 mm/month and lasts until May with almost 150 mm/month,
398	reaching values higher than 250 mm around March. These data show that wetter years
399	are characterized by increased precipitation amounts and a longer rainy season starting in
400	January and ending in May, while the precipitation deficit during drought years is a result
401	of decreased precipitation amount and a shorter rainy season, with a peak in precipitation
402	between March and April. The anomalous length of the rainy season during dry and wet
403	years is attributed to variations in the meridional SST gradient in the tropical Atlantic that
404	results in a shift of the ITCZ to the north or south of its climatological position (e.g.,
405	Andreoli et al., 2011; Marengo and Bernasconi, 2015; Alvalá et al., 2019).
406	In S-NEB, the precipitation occurs mainly during summer, from December to
407	February (Fig. 1a and 3b). This regional seasonality difference with N-NEB is evident in
408	the spatial correlation map between GPCC precipitation anomalies and $\delta^{18}O$ anomalies
409	obtained from IAEA-GNIP for Fortaleza and Brasília stations (Fig. 3). The reddish areas on
410	the map indicate significant negative correlations during the austral summer (DJF) and
411	autumn (MAM) between the local precipitation δ^{18} O signals and the regional precipitation
412	amount. Overall, the spatial correlations indicate that in both areas the amount effect is the
413	dominant effect on the isotopic composition of rainfall (Dansgaard, 1964). However, the
414	isotopic signal varies seasonally and as a function of the two different circulation systems.
415	The negative spatial correlation observed over N-NEB (Fig. 3a) suggests precipitation is
416	dominated by ITCZ dynamics, similar to the conditions over Fortaleza, while the negative
417	spatial correlation over S-NEB (Fig. 3b) is a result of the rainfall influenced by the SASM
418	(Fig. 1) (Vera et al., 2006), such as in Brasília Ceity, in central Brazil. Therefore,
419	precipitation and the associated isotopic signal are the result of ITCZ dynamics in N-NEB,
420	while they are influenced by the SASM in the S-NEB. Accordingly, their rainfall seasonality

Figure 3 – Monthly mean observed precipitation amount collected at ANA and $\delta^{18}O$ 440 values for GNIP stations (IAEA-WMO, 2021) (black dots) and correlation maps between aridded precipitation and δ^{18} O anomalies from the same stations (black dots) for: (a) Northern NEB, Fortaleza and Pedra das Abelhas stations (star 1), (b) Southern NEB, Brasília and Andaraí stations (star 3), c) Eastern Amazon, Manaus and Belterra stations (star 4). The maps show the spatial correlation between δ^{18} O anomalies at GNIP stations 445 and GPCC gridded precipitation anomalies based on the period 1961-1990 for December 446

447	to February (DJF) and March to May (MAM) for Fortaleza, Brasília and Manaus stations
448	(Ziese et al., 2018). The δ^{18} O values (left y axis) and precipitation (right y axis) for each
449	station were obtained from GNIP IAEA/WMO database. Stars indicate the site locations: 1)
450	Trapiá Cave, Furna Nova Cave and Pedra das Abelhas ANA Station (reference period
451	<u>1910-2019), 2) Boqueirão Lake (Utida et al., 2019), 3) Diva de Maura Cave (Novello et al.,</u>
452	2012) and Andaraí ANA Station (reference period 1960-1986), 4) Paraíso Cave (Wang et
453	al., 2017) and Belterra ANA Station (reference period 1975-2007), 5) Cariaco Basin (Haug
454	<u>et al., 2001).</u>
455	
456	
457	4. <mark>2</mark> 4. Chronology and mineralogy
458	
459	The RN record covers the last 5000 years, four stalagmites cover the last 3250
460	years, and two of these stalagmites cover partially the time period between 3000 and 1260
461	Before Common Era (BCE), with the exception of one hiatus at 2100 -1720 years BCE
462	(Fig <u>. 34</u> , Table S1 and S2).
463	Stalagmite TRA7 from Trapiá Cave was deposited from 3000 to 2180 BCE (Fig.
464	S43) with a low deposition rate (DR) of approximately 0.05 mm/yr. After a hiatus of 1880
465	years, it resumed deposition from-at 300 BCE until 1940 CE with a DR of 0.18 mm/yr. The
466	TRA5 stalagmite deposition occurred continuously from 1490 to 1906 CE (Fig. S4 <u>3</u>) with a
467	DR of 0.33 mm/yr <u>.</u> -
468	Stalagmite FN1 from Furna Nova was deposited over the last 3,600 years, with a
469	hiatus from 125 to 345 BCE and another one of approximately 100 years between 1525
470	and 1662 CE (Fig. S43), with an average DR of 0.09 mm/yr. The ages from the FN1
471	stalagmite are all in chronological order and contain low errors and were therefore all kept

472 <u>in the age model.</u> The FN2 stalagmite deposited continuously from 1226 BCE to 7 CE,
473 except for a hiatus between 189 and 45 BCE (Fig. S4<u>3</u>) with a DR of 0.20 mm/yr.

474 The mineralogy of the stalagmites from Trapiá Cave is formed by layers of crystals 475 with mosaic and columnar fabrics, composed exclusively of calcite, except for the base 476 portion of TRA7 from 173 to 270 mm (3,000 BCE to 130 CE), which is described as an 477 interbedded needle-like crystals texture, composed of 87.1 to 99% of aragonite (Fig. S12, Table S43). The same needle-like morphology is present in most of the Furna Nova Cave 478 479 stalagmites, composed of aragonite with a weight proportion greater than 85% in FN1, 480 extending from 0 to 83 mm (160 to 1,340 CE) and from 128 to 183 mm (1,730 BCE to 80 481 CE). In the FN2 sample this weight proportion is greater than 93.4% (1265 BCE to 35 CE). 482 The only interval composed of 100% calcite is from 95 to 125 mm in FN1 (Fig. S32, Table S43). These speleothem samples show no sign of dissolution or recrystallization. 483

484

485 4.3. Stalagmite δ^{18} O and δ^{13} C

486

The oxygen isotope ratios of the RN record vary from 0.6‰ to -4.5‰, with $\delta^{18}O$ mean values for each speleothem of -2.8‰ for TRA7, -3.5‰ for TRA5, -2.4‰ for FN1 and -1.5‰ for FN2. Similarities among the stalagmites are evident, especially around 1500 CE when $\delta^{18}O$ values abruptly decrease in TRA7 and TRA5, while in FN2 this period features a hiatus (Fig. S4).

492 These values were slightly changed by the correction for aragonite calcite 493 fractionation ($\delta^{18}O_{C-A}$) (Zhang et al., 2014), according to their aragonite weight proportion 494 (Table S3, Fig 3b). The $\underline{\delta}^{isotopic-18}O$ correction due to mineralogy for the stalagmites from 495 Furna Nova Cave resulted in changes of less than 0.1‰ of their mean values. The mean 496 correction for TRA7 equals an enrichment of 0.5‰ during the first-period spanning 130

497	BCE to 1940 CE1800 years. Values from TRA5 were corrected along the entire sample by
498	adding 0.85‰, as it is composed of 100% calcite. Therefore, the mean values increased
499	from -3.5‰ to -2.7‰ <u>(Fig. S4).</u> -
500	

502	Figure 4 – Rio Grande do Norte stalagmite isotope records and comparisons with
503	other records from South America. a) U/Th ages from each stalagmite studied. b) Raw
504	data of δ^{13} C. c) Oxygen isotope results corrected for calcite-aragonite fractionation (δ^{18} O _C -
505	_A), according to weight proportion of mineralogical results. d) $\delta^{18}O$ RN Composite
506	constructed using stalagmite records from NEB (black line). Grey shaded area denotes the
507	99% confidence interval of the age model. Blue shaded area referresed to LIA (Little Ice
508	Age), pink shaded area refersred to MCA (Medieval Climate Anomaly), light grey shaded
509	area refersred to Bond 2 event. e) Boqueirão Lake oD record (Utida et al., 2019). f) DV2
510	speleothem oxygen isotope record from Diva de Maura cave, southern NEB (Novello et
511	al., 2012). g) PAR01 and PAR03 δ^{18} O records from Paraíso cave, eastern Amazon (Wang
512	et al., 2017). h) Ti record of Cariaco Basin (Haug et al., 2001).
513	
514	Four main phases describe the δ^{13} C dataset (Fig. <u>4b</u> 3a). The oldest phase from
515	3000 to 2160 BCE is characterized by δ^{13} C values close to zero. After a hiatus (2170-1270
516	BCE) there is a short interval of stability with δ^{13} C values around -4‰ that lasts from 1270
517	to 840 BCE and is followed by a δ^{13} C enrichment that reaches a value of zero at 30 CE.
518	Between 30 and 1500 CE there is a trend toward more negative δ^{13} C values, varying from
519	0 to -8.8‰. This interval is marked by a valley at 190 CE with δ^{13} C values of -7.2‰ and a
520	peak at 1000 CE with δ^{13} C values of 0.22‰. The youngest period, from 1500 to 1930 CE
521	is more stable than the previous one, with δ^{13} C values averaging around - 6.4‰.

523 4.<u>34</u>. Composite

524

525 Combining the δ^{18} O results from the four RN stalagmites allows establishing a 526 continuous record covering the last ~3200 years, the RN Composite (Fig. <u>4d</u>4). The

527	correlation coefficient (r) between each measured $\delta^{18}\text{O}$ stalagmite time series is >0.59,
528	significant at the 95% level (Fig. S5). The composite provides an average temporal
529	resolution of ~2 years. The entire stable isotope time series is composed of 2495 $\delta^{18}\text{O}$
530	measurements, corrected according to mineralogical composition.
531	
532	5. Discussion
533	
534	5.1. U/Th chronology and RN Composite
535	The high values of ²³² Th and low ²³⁰ Th/ ²³² Th ratio suggest incorporation of detrital
536	Th transported by the seepage solution to the speleothems, which lead to a higher
537	uncertainty of the age values. Recrystallization of aragonite into calcite might also reduce
538	the U content and given older ages for carbonates (Lachniet et al., 2012). We assume that
539	these are the main reasons for age inversions along speleothems from Northeast Brazil.
540	Because FN1 is mostly composed of aragonite and presents low U concentration in
541	some samples of the first 127 cm and high ²³² Th amounts, we considered the association
542	of low ²³⁰ Th/ ²³² Th and low U content the most important factor affecting the age errors and
543	inversions in the FN1 stalagmite. In contrast, the FN2 stalagmite has a more precise
544	chronology due to the predominant aragonite composition, with high ²³⁸ U content and
545	higher ²³⁰ Th/ ²³² Th ratio than FN1. Although the TRA5 stalagmite is entirely composed of
546	calcite, the ²³⁸ U content is relatively high compared to other stalagmites, which improves
547	the confidence in its age results. The high ²³² Th contamination of TRA5 samples is the
548	main factor attributed to cause age inversions and increased errors. According to age
549	results produced by Utida et al. (2020), most of the TRA7 ages are in chronological order
550	and the inversions seem to not have a direct relationship with ²³⁸ U amount, and the high
551	²³² Th content is similar to other ages from TRA7. Most of the TRA7 stalagmite used in our
552	composite is composed of calcite and might not affect the main trends of δ^{18} O.

553	The age uncertainties caused by high 232Th concentration and calcite
554	recrystallization in stalagmites might affect the age model. However the strong coherence
555	between the δ^{18} O curves from different stalagmites argues in favor of the good quality of
556	our chronology. This is evident when FN2, which is composed 100% of aragonite, is
557	compared with other samples. There is a different amplitude range in its δ^{18} O values, but
558	when the curve is superposed on other δ^{18} O records the variability is similar. This
559	amplitude range is corrected when the δ^{18} O results are submitted to the ISCAM composite
560	construction, since it normalizes the results (Fig. S6).
561	Although the δ^{18} O results present a different range of values range between FN2
562	and FN1, the mineralogical correction did not significantly change expressively the main
563	curves (Fig. S4). TRA7 and FN1 underwenthad substantial changes due toin mineralogical
564	corrections between 80 to 1500 CE (Table S4). However the δ^{18} O trends were not
565	modified. The mineralogical correction for the last 500 years, adjusts the δ^{18} O values over
566	for the same range for TRA5, TRA7 and FN1 (Fig. S4). Some of this δ^{18} O variability might
567	also be attributed to karst fractionation effects. However, no cave monitoring in northern
568	NEB is available that could enable to quantifyconfirm the extent of these processes.
560	These differences in mineralogical corrections and possible δ^{18} O fractionations did

569	These differences in mineralogical corrections and possible δ^{18} O fractionations did
570	not disturbalter the general shape of the RN Composite. Before merginge the results,
571	ISCAM normalizes the δ^{18} O and different range values are adjusted to the same scale,
572	resulting in significant reduction in then the difference between stalagmite records is
573	significantly reduced (Fig. S6). The largest error occurs between 250 and 580 CE, when
574	the maximum and minimum values of FN1 and TRA7 are 2.4 ‰ and -1.50 ‰ after
575	normalization, respectively (Fig. S6). This is a period when FN1 registers high δ^{18} O values;
576	an anomaly that is not clearly seenevident in TRA7. The period extending from 500 to 570

577	CE, is characterized by an anti-phased signal between FN1 and TRA7, and hence the RN
578	Composite shows a smoothed signal during this time.
579	
580	5.2. Paleoclimate interpretation
581	
582	The variability of the global δ^{18} O values for speleothems originating from the same
583	cave is ~ 0.37 ‰, which can be attributed to karst fractionation effects and not directly to
584	hydroclimate, host rock geology, cave depth or cave microclimate instability (Treble et al.,
585	2022). Some intervals in coeval RN stalagmites from the same cave are above this limit,
586	however, we demonstrated based ony the composite treatment associated with
587	mineralogical corrections that the δ^{18} O variability from the RN record is similar for
588	stalagmites from the same cave and between the two studied caves throughout the period
589	analyzed, further reinforcing the notion applied by previous studies that these records can
590	be interpreted in a paleoclimatic context (Cruz et al., 2009; Utida et al., 2020). In addition,
591	we considered the RN composite as representative of a precipitation δ^{18} O signal, since the
592	differences between stalagmite records are significantly reduced after age rearrangements
593	and isotope normalization.
594	The δ^{18} O RN Composite allowed us to reconstruct precipitation changes influenced
595	by the ITCZ position in N-NEB and its convective intensity. This interpretation is based on
596	the spatial correlation between δ^{18} O at GNIP stations and GPCC precipitation (Fig. 23).
597	Highest precipitation amounts occur between March and May and they coincide with more
598	depleted δ^{18} O precipitation signals, consistent with the amount effect (Dansgaard, 1964).
599	Hence, the most negative δ^{18} O values in RN stalagmites reflect an increased rainfall
600	amount, as a consequence of an ITCZ position close to N-NEB (Cruz et al., 2009; Utida et
601	al., 2019).

602 A generally drier climate prevailed in NEB after the 4.2 ky BP (kiloyear Before Present) event in the Mid-Holocene (Cruz et al., 2009). This, which led to the 603 604 development of a sparse vegetation cover, the Caatinga, a sparse vegetation cover which 605 has persisted in NEB to the present -(De Oliveira et al., 1999; Utida et al., 2020; Chiessi et al., 2021). These drier conditions favored soil erosion during rainfall events and reduced 606 soil thickness (Utida et al., 2020). When erosion events remove most of the soil cover, 607 there is an increase in the carbon contribution from local bedrock (mean δ^{13} C of 0.5 ‰), 608 which leads to higher δ^{13} C values in the NEB stalagmites from RN(Utida et al., 2020). On 609 the other hand, more negative δ^{13} C values in stalagmites are associated with increased 610 soil coverage and soil production (Utida et al., 2020). In NEB soils have a δ^{13} C average 611 around -25 %, which suggests a dominant influence from C3 plants with δ^{13} C values 612 ranging between -32‰ and -20‰ (Pessenda et al., 2010). Therefore, the δ^{13} C stalagmite 613 614 results are interpreted as changes in soil production/erosion and the density of vegetation 615 coverage (e.g., Utida et al., 2020; Azevedo et al., 2021; Novello et al., 2021). 616 The oldest period covered by the RN Composite, from 1200 to 500 BCE, is 617 characterized by successive dry and wet multidecadal periods, with increased precipitation in N-NEB from 1060 to 750 BCE and from 460 to 290 BCE, as suggested by the negative 618 departures seen in the δ^{18} O values. During this last period, there is also a tendency from 619 lower to higher δ^{13} C values, suggesting progressive surface soil erosion related to rainfall 620 variability (Fig. 4), as interpreted by Utida et al. (2020). This period ends up in a stable 621 interval, lasting from 300 BCE to 0 CE, with little fluctuation in few- δ^{18} O valuesfluctuation 622 and δ^{13} C values close to the bedrock signature at about -1‰ to +1‰, indicating a lack of 623 soil above the cave. After an abrupt reduction of both isotopes around 200 CE, there was 624 a brief time of increased precipitation and vegetation development. Between 200 CE and 625 1500 CE, decreased δ^{13} C values, reachingto approximately -2‰, suggest a vegetation 626

627	development above the cave., Hhowever, δ^{18} O values indicate-a significant variability with
628	two main periods of dry conditions, from 270 to 530 CE and 1060 to 1500 CE. From 1500
629	CE to the present, more negative values of δ^{18} O represent wetter climatic conditions. The
630	more negative δ^{13} C during this period can be related to denser vegetation that favored
631	both soil production and stability above the cave. Due to the high range of δ^{13} C results
632	(more than 11‰), we assumed that the Prior Calcite Precipitation effect iswould be
633	negligible in our results. In addition, athe more positive δ^{13} C signal occurs around 280 BCE
634	when the climate conditions were not the driest in the last 5000 years, thus and probably
635	representing a local environmental change.
636	During the last 2500 years, the RN Composite shows similar characteristics as the
637	lower-resolution δD lipids record (n-C28 alkanoic acid from leaf waxes) obtained in
638	Boqueirão Lake sediments (N-NEB) (Figs. 1 and 4). Both records show a more stable
639	climatic signal between 400 BCE and 350 CE. From 500 to 1500 CE, enriched δD lipids
640	obtained in Boqueirão Lake were interpreted as the beginning of a long dry phase (Utida et
641	al., 2019), although the beginning of the dry period is slightly delayed when compared with
642	the RN speleothem isotope record. This inconsistencye might be related to different
643	chronological controls between lake and stalagmite records and possibly also by the
644	location of Boqueirão Lake that is affected by the ITCZ and the winter breezes as it is
645	located in the eastern coastal sector of NEB (Zular et al., 2018; Utida et al., 2019).
646	

657 Colored squares are speleothem U/Th age results. c) Boqueirão Lake δD record (Utida et
658 al., 2019). d) DV2 speleothem oxygen isotope record from Diva de Maura cave, southern
659 NEB (Novello et al., 2012). e) PAR01 and PAR03 δ¹⁸O records from Paraíso cave, eastern
660 Amazon (Wang et al., 2017). f) Ti record of Cariaco Basin (Haug et al., 2001).

661

The oldest period covered by the RN Composite, from 1060 to 480 BCE, reflects 662 increased precipitation in N-NEB as suggested by negative S¹⁸O anomalies during most of 663 this period, although a tendency from lower to higher δ^{43} C values is observed, possibly led 664 by surface soil erosion (Fig 4). This period is also characterized by successive dry and wet 665 666 multidecadal periods that could favor soil production but did not contribute much to the carbon isotopic composition of speleothems because it was eroded during drier years, as 667 described in Utida et al. (2020). The association of erosion processes with δ^{13} C is rather 668 clear from 480 BCE to 0 CE when their values reach the bedrock signature at about -1‰ 669 to +1‰, which was caused by intense ITCZ rainfall as suggested by the more negative 670 values of 5¹⁸O. During the following period, the 5¹³C values are slightly more negative but 671 still high from 200 CE to 1500 CE, when the climate was mostly dry. This relationship is 672 contrary to what is observed in the last 500 years, during the period equivalent to the Little 673 674 Ice Age (LIA) (here from 1500 to 1800 CE) and in the last two centuries, that is marked by very negative values of 8⁴³C in response to wet climatic conditions as indicated by lower 675 δ^{48} O values. The more negative δ^{43} C during the LIA are probably related to denser 676 677 vegetation that favored both soil production and stability above the cave. Due to the high range of 8⁴³C results (more than 11‰), we assumed that the Prior Calcite Precipitation 678 effect would be negligible in our results. In addition, the more positive δ^{43} C signal occur 679 680 around 280 BCE when the climate conditions were not the driest in the last 5000 years.

681 During the last 2500 years, the RN Composite shows similar characteristics as the lower-resolution δD lipids obtained in Boqueirão Lake sediments (Fig 1 and 4). From 500 682 to 1500 CE, enriched obligities obtained in Boqueirão Lake sediments (N-NEB) were 683 interpreted as the beginning of a long dry phase (Utida et al., 2019), although the 684 beginning of the dry period is slightly delayed when compared with the RN speleothem 685 isotope record. This difference might be related to a strong influence of eolian and fluvial 686 687 sedimentary dynamics in Boqueirão Lake. Furthermore, the later location might also be 688 affected by different climatic conditions given its location in the eastern coastal sector of 689 NEB (Zular et al., 2018; Utida et al., 2019).

It is important to note that the RN record exhibits a climatic signal that is distinctly 690 691 different from the from DV2 speleothem record from Diva de Maura Cave in S-NEB (Novello et al., 2012). The general trend toward more positive values seen in both 692 693 stalagmites, resulting from insolation forcing (Cruz et al., 2009; Novello et al., 2012), explains the persistent dry conditions in the entire NEB region since 4.2 BP. However, the 694 DV2 record does not document the same multidecadal and centennial-scale climate 695 696 variability as recorded in the RN speleothem record (Fig 4). It is important to note that the RN record exhibits a climatic signal that is distinctly different from the from DV2 697 698 speleothem record from Diva de Maura Cave in S-NEB (Novello et al., 2012). Although 699 both regions are affected by the same mesoscale atmospheric circulation, the RN site 700 receives its precipitation directly from the ITCZ. At the S-NEB site, on the other hand, the primary source of precipitation is associated with the monsoon, as it is located too far 701 inland to be affected directly by the ITCZ, as demonstrated by the correlations maps (Fig. 702 703 3). The general trend toward more positive values, as a result from insolation forcing, occurs from 150 to 1500 CE in the RN Composite, but from 600 to 1900 CE in the DV2 704 sample (Cruz et al., 2009; Novello et al., 2012). This trend is a result of the persistently dry 705 conditions in the entire NEB region that suggests an ITCZ contraction in an orbital 706

707	timescale, resulting in drier conditions over NEB during periods of maximum austral
708	summer insolation (Cruz et al., 2009; Chiessi et al., 2021; Campos et al., 2022). However,
709	the DV2 record does not document the same multidecadal and centennial-scale climate
710	variability as recorded in the RN speleothem record, nor the less dry interval from 600 to
711	1060 CE seen in the RN Composite (Fig. 4). As demonstrated by the spatial correlation
712	maps between δ^{18} O values and regional precipitation (Fig. <u>3</u> 2), the S-NEB and N-NEB
713	regions are influenced by distinct rainfall regimes whose peaks of precipitation arise during
714	the summer monsoon season and the autumn ITCZ, respectively. Our data provide
715	evidence for this a spatial and temporal distinction of NEB climate patterns for the past that
716	can be interpreted as differences in seasonality during the last millennia. Furthermore,
717	contemporaneous dry or wet events in both N-NEB and S-NEB suggest the occurrence of
718	larger regional climate changes with higher environmental impacts.
719	When comparing N-NEB and eastern Amazon conditions, it is evident that the RN
720	Composite shares some similarities with the Paraíso stalagmite record (Wang et al.,
721	2017), due to the contribution of ITCZ precipitation in both places. But there are also
722	important differences (Fig. 4). The RN Composite shows lower δ^{18} O values between 500
723	and 1000 CE, compared to the earlier period, while Paraíso shows gradually decreasing
724	values around the same period, suggesting a slight increase in precipitation in both areas.
725	From 1160 to 1500 CE, abrupt increases in δ^{18} O values are seen in both records, which
726	indicate abrupt and prolonged drought conditions due to a northward ITCZ migration.
727	However, around 1100 CE, centered in the MCA, and the period from 1500 to 1750 CE,
728	Paraíso is antiphased with the RN Composite and in phase with the Cariaco Basin (Haug
729	et al., 2001), which is inconsistent with the notion of an ITCZ-induced regional precipitation
730	change. Instead, a zonally-oriented precipitation change within the ITCZ domain over
731	Brazil is required to explain the anti-phased behavior between precipitation in N-NEB and
732	the eastern Amazon, and similarities between Cariaco and the eastern Amazon. When
	35

considering conditions over the eastern Amazon, we see that the RN Composite shares 733 some similarities with the Paraiso stalagmite record, but there are also important 734 differences (Wang et al., 2017) (Fig 4). From the S¹⁸O peak around 250 CE to the end of 735 the drought period near 1500 CE, precipitation in both areas seems to share assumed to 736 737 be mostly driven by the ITCZ (Fig. 1).many similar characteristics, assumed to be mostly driven by the ITCZ (Fig. 1). However, during the event around 1100 CE, centered in the 738 Medieval Climate Anomaly (MCA), and the period from 1500 to 1750 CE, Paraiso is 739 antiphased with the RN record and in phase with the Cariaco Basin (Haug et al., 2001), 740 which suggests a zonal behavior of precipitation shifts in the ITCZ domain. Even though 741 742 the Paraiso and Cariaco sites are located in different hemispheres, the observed in-phase climate relationship during the LIA suggests that their isotopic signatures were both 743 sensitive to the same rainfall changes over northern South America (Fig 2). 744

The Bond 2 Event is recorded in the RN Composite, marked by increased
precipitation around 1000 BCE, when the ITCZ was displaced toward the south. This
southerly ITCZ displacement might be attributed to persistent lower temperatures in the
North Atlantic (Bond et al., 2001; Broccoli et al., 2006) caused by the slowdown of the
Atlantic Meridional Overturning Circulation (Jackson et al., 2015).

There is a relationship between the δ^{18} O values in our RN speleothems and 750 Atlantic Multidecadal Variability (AMV) (Lapointe et al., 2020), which reinforces the idea of 751 an ITCZ displacement toward the warmer hemisphere (Fig 5). Studies suggest that warm 752 AMV forces the ITCZ to shift meridionally (Knight et al., 2006, Levine et al., 2018), while 753 model simulations also suggest weakening of ITCZ from February to July during warm 754 755 AMV (Maksic et al., 2022). Although there are some decoupling intervals between our results and the AMV during the last two millennia, the driest periods from 200 to 580 CE 756 and 1100 and 1500 CE occurred during long relatively warm AMV anomalies which would 757 758 force a northward ITCZ displacement and low precipitation variability over NEB.
759	We investigate the potential relationship between δ^{18} O values in our RN
760	speleothems and an ITCZ displacement toward the warmer hemisphere to explain
761	paleoclimate variability observed in N-NEB. In order to test this hypothesis, the RN
762	Composite was compared with a reconstruction of Atlantic Multidecadal Variability (AMV)
763	(Lapointe et al., 2020) (Fig. 5). Some studies suggest that the warm phase of the AMV
764	(when the North Atlantic presents warm SST) forces the mean ITCZ to shift to the north of
765	its climatological position, thereby causing a reduction in NEB rainfall (Knight et al., 2006; $_{\tau}$
766	Levine et al., 2018), while a recent study suggests that the warm phase of the AMV would
767	cause a weakening of the ITCZ from February to July (Maksic et al., 2022). The driest
768	periods from 750 to 500 BCE, 200 to 580 CE and 1100 and 1500 CE occurred during long.
769	relatively warm AMV anomalies. , considering tThe warm average temperature of 22.19°C
770	for the period, which would force a northward ITCZ displacement or an ITCZ weakening,
771	and in both cases the result is low precipitation over NEB. The lowest AMV temperature
772	(cold phase) around 1500 CE might be related to the abrupt dry conditions seen in the RN
773	Composite and suggests an increased equatorial Atlantic SST, and consequently an
774	increaseding precipitation over N-NEB (Fig. 5). Opposite conditions between the RN
775	Composite and the AMV can be observed during the Current Warm Period, which requires
776	further and it has to be better investigationed. The relationship between North Atlantic
777	temperature and relationships with ITCZ location can also explain the Bond 2 Event
778	recorded in the RN Composite. It is marked by increased precipitation around 1000 BCE,
779	when the ITCZ was displaced toward the south. This southerly ITCZ displacement might
780	be attributed to persistently lower temperatures in the North Atlantic (Bond et al., 2001;
781	Broccoli et al., 2006) caused by the slowdown of the Atlantic Meridional Overturning
782	Circulation (Jackson et al., 2015).

2022). On the other hand, when AMV and PDV are both in cold phase, precipitation over
Amazon is anti-phased with NEB, resulting in decreased precipitation over the Amazon
and increased precipitation over NEB. Our analysis corroborates with this and points to
increasing precipitation over N-NEB and decreasing precipitation over eastern Amazon,
between 1500 and 1750 CE, when both AMV and PDV are in cold phase (Fig 4). This sign
reversal is assigned to perturbations of the regional Walker cell's produced by
teleconnection between the Atlantic and Pacific (Kayano et al., 2022, He et al., 2021).

801 Steinmann et al. (2022), suggested a southward displacement of the ITCZ during 802 the Common Era toward the southern hemisphere in response to changes in the Pacific and Atlantic meridional SST gradients. Indeed, our RN Composite is dynamically 803 804 consistent with these SST gradient changes and in agreement with the hypothesis of a north-south oscillation of the latitudinal ITCZ position in the tropical Atlantic during the last 805 806 millennia, modulating precipitation over N-NEB. When the tropical South Atlantic and 807 tropical eastern Pacific are anomalously warm - negative z-score (cold - positive z-score) 808 (Fig. 5) the ITCZ is displaced to the south (north), resulting in increaseding (decreaseding) precipitation over NEB, as observed during the LIA (Fig 5)... The abrupt changes in N-NEB 809 precipitation around 1100 and 1500 CE occur approximately synchronous with the SST 810 811 gradient changes, confirming how sensitive the RN speleothems respond to changes in 812 the ITCZ latitudinal position (Fig. 55). The same is observed during the period equivalent 813 to the LIA, between 1560 and 1800 CE considering N-NEB, S-NEB and eastern Amazon 814 records, when both Pacific and South Atlantic became warmer (Fig. 5). According to Steinmann et al. (2022), during the LIA period warm SST in the eastern tropical Pacific 815 816 and in the tropical South Atlantic would promote a southward displacement of the ITCZ. 817 This is supported by other records from the western Amazon and the tropical Andes that 818 document an intensified SASM during the LIA, fueled by the southern location of the ITCZ 819 (e.g., Vuille et al., 2012; Apaéstegui et al., 2018), which is also very well recorded in other

archives around the tropics (Leichleitner et al., 2017; Campos et al., 2019; Orrison et al.,
2022; Steinmann et al., 2022).

822	According to Kayano et al. (2020, 2022), during the last century, dry conditions
823	over N-NEB and the eastern Amazon are present when AMV and Pacific Decadal
824	Variability (PDV) are both in their warm phases, or when the AMV is in a cold phase and
825	the PDV in its warm phase. On the other hand, when AMV and PDV are both in their cold
826	phase, precipitation over the Amazon is anti-phased with NEB, resulting in decreased
827	precipitation over the Amazon and increased precipitation over NEB. This zonally aligned
828	precipitation signal over eastern tropical South America is the result of joint perturbations
829	of both the regional Walker and Hadley Cell's , produced by teleconnection between the
830	two ocean basins (He et al., 2021). This joint interaction between the two basins can help
831	explain the results seen during the cold AMV phase between 1500 and 1750 CE (Fig. 5),
832	when there is increasing precipitation over N-NEB increased, but -and-the eastern Amazon
833	saw a decrease ing precipitation over the eastern Amazon (Fig. 4).
834	The Bond 2 Event is recorded in the RN Composite, marked by increased
835	precipitation around 1000 BCE, when the ITCZ was displaced toward the south. This
836	southerly ITCZ displacement might be attributed to persistent lower temperatures in the
837	North Atlantic (Bond et al., 2001; Broccoli et al., 2006) caused by the slowdown of the
838	Atlantic Meridional Overturning Circulation (Jackson et al., 2015).
839	
ļ	

867 <u>numbers represent the peak of a drought event. Bold numbers represent the most severe</u>

868 drought events. A - Few drought events interval from 1620 to 1970s period. B - 1940s to
 869 1970s period. (c) Occurrence of historical drought years compiled from Lima and
 870 Magalhães (2018).

871

Although the age model errors of TRA5 are larger and could limit our ability to 872 attribute δ^{18} O peaks to specific single-year events, it still allows for a comparison between 873 these abrupt events with historical records to demonstrate the long-term context of abrupt 874 875 drought events in modern human history. We thus consider our speleothem-based record 876 as a first attempt to reconstruct precipitation in Northeast Brazil that would allow for a comparison with historical droughts. If our speleothem records regional hydroclimate, it 877 878 should retain a signal of the most intense droughts over NEB that are known to have struck the region based on the available historical literature of Brazil. 879 880 The highest peaks correspond to extreme drought events, such as the ones centered around 1546 and 1564 CE (points 1 and 2 of Fig. 6). They can be associated 881 with observed historical droughts that took place in 1553 and 1559 CE. These were the 882 first two events recorded in Brazil by the Portuguese Jesuits that led to a reported 883 884 reduction in riverflow in the tributaries of the main rivers of NEB (Serafim Leite, 1938; Hue

885 et al., 2006; Lima and Magalhães, 2018).

<u>for</u>The highest peaks correspond to extreme drought events, such as the ones
centered around 1546 and 1564 CE (points 1 and 2 of Fig. 6). They can be associated
with observed historical droughts that took place in 1553 and 1559 CE. These were the
first two events recorded in Brazil by the Portuguese Jesuits that led to a reported
reduction in riverflow in the tributaries of the main rivers of NEB (Serafim Leite, 1938; Hue
et al., 2006; Lima and Magalhães, 2018).

892

893

Another relevant drought according to TRA5 is centered around 1620 CE (point 3 of Fig. 6). This drought is recorded in historical documents and lasted from 1614 to 1615

894 CE, although it did not have the same socioeconomic impact as the two prior droughts (Lima and Magalhães, 2018). In fact, from the middle of thebetween the 16th to the middle 895 896 of theand 17th century there are few historical drought records (periodoint a A inof Fig 6). 897 One hypothesis to explain this hiatus is the low population density of the NEB territory, resulting in poor historical documentation of such events. However, according to the TRA5 898 record, between the event 2 ~1564 CE and event 4 ~1717 CE (Fig. 6), the only drought 899 900 peak occurs in 1620 CE, confirming an almost 150-year long period of relative climate stability with prevailing wet conditions in NEB. These favorable conditions certainly helped 901 902 with the initial population establishment at the beginning of 16th century, and led to the 903 peak era of sugar cane production in NEB around 1650 CE along coastal areas (Taylor, 904 1970).

During the 18th century NEB experienced a significant increase in rural population, 905 906 characterized by the establishment of large cattle farms (Fausto, 2006). In this period, three droughts are documented in the TRA5 record (Fig. 6). The δ^{18} O excursion around 907 908 1717 CE (point 4 in Fig. 6) can be associated with the drought that lasted from 1720 to 1727 CE; the first big drought in NEB, which according to historical documents, caused the 909 910 mortality of wildlife and cattle, and affected the agricultural productivity. Entire lindigenous tribes died of starvation as a consequence of this drought and a concurrent smallpox 911 912 (variola) epidemic, which also killed other ethnic groups, especially the native population 913 and black people enslaved during that period (Alves, 1929).

The following event around 1740 CE (point 5 in Fig. 6) was also recorded in historical documents, but did not seem to be associated with major impacts. However, all of these droughts were probably responsible for a drop in sugar-cane exports to Europe during the first half of the 18th century (Galloway, 1975).

918 Another drought occurred from 1776 to 1778 CE, and is imprinted in our record 919 | around 1770 CE (point 6 in Fig. 6). This event was again accompanied by a variola

920 outbreak probably spread by <u>a</u> lowering in <u>the</u> sanitary conditions and increased people agglomeration. The association between this disease and droughts might explain the 921 922 economic and health crisis, since people started to migrate to the cities looking for 923 treatment and food, leading the Brazilian Governor to transfer infected people to isolated 924 lands, resulting in thousands of deaths (Rosado, 1981). Finally, the most recent peak in 925 our data displays an event around 1835 CE (point 7 of Fig. 6), associated with a drought 926 that lasted from 1833 to 1835, reaching the northernmost areas of NEB, and leading to the 927 largest human migration to other Brazilian regions (Lima and Magalhães, 2018). The 928 droughts centered around 1770 and 1835 had a huge impact oin society according the historical records (Lima and Magalhães, 2018). 929

Our TRA5 stalagmite data record some of the most important droughts that
occurred in NEB between the 16th and the 18th centuries, demonstrating the potential of
stalagmite studies in monitoring abrupt and extreme climate events through time.
However, the speleothems do not record all documented historical dry events, as some
droughts may not have affected the Trapiá Cave region or they were not strong or long
enough to affect the isotopic signal of the groundwater storage in the epikarst.

Although the precision of the TRA5 speleothem chronology precision is reducedis 936 937 not so precise during the last ~150 years, we observe that the wet period from the 1940s. 938 to the 1970s (linepoint Bb inof Fig. 66) is coincident with the mid-20th ccentury break in global warming that has been discussed to as being forced by aerosol emissions (e.g., 939 940 Booth et al., 2012; Undorf et al., 2018). Our data suggest an increased precipitation in this period that is supported by a trend in decreasing values of δ^{18} O in corals from the 941 northeast coast of N-NEB, equally that is interpreted as an ITCZ southward displacement 942 943 caused by a decreasing SST gradient between the North and South Atlantic (Pereira et al., 944 2022).

945	Our TRA5 stalagmite data record some of the most important droughts that
946	occurred in NEB between the 16th and the 18th centuries, demonstrating the potential of
947	stalagmite studies in monitoring abrupt and extreme climate events through time.
948	However, the speleothems do not record all documented historical dry events, as some
949	droughts may not have affected the Trapiá Cave region, as discussed before for climate
950	differences between N-NEB and S-NEB, or they were not strong or long enough to affect
951	the isotopic signal of the groundwater storage in the epikarst. Furthermore, the period
952	between 1620 and 1717 CE is devoid of any abrupt drought events in the TRA5
953	stalagmite, which is again consistent with the historical records. It is also important to
954	mention that Lima and Magalhães (2018) report all drought events in NEB and do not
955	indicate their location.
956	We suggest that progressive changes in the mean ITCZ position along the last 500
957	years might be responsible for historical droughts that affected the seasonality of N-NEB
958	and caused abrupt and strong drought events. Additional drought-sensitive high-resolution

959 records will be required to improve our understanding of these historical droughts events in
960 NEB.

Figure 6 – $\delta^{18}O_{C-A}$ record from TRA5 speleothem and its U/Th ages and errors 964 represented by black dots and lines at the top of the graph. The numbers in the graph represent the occurrence of historical drought years compiled from Lima and Magalhães 965 (2018). a - middle of the 16th to the middle of the 17th century. b - 1940s to 1970s period. 966

967

6. Conclusions 968

969

We present the first high-resolution record for the ITCZ in N-NEB that covers the 970 971 last 3200 years and also records the major historical droughts that took place in NEB 972 during the last 500 years. Based on two distinct stalagmite proxies oxygen isotopes, we 973 describe the regions' -paleoclimate variability for the last 2500 years and its connections 974 to remote forcing mechanisms such as the AMV and changes in Pacific and Atlantic SST 975 gradients.

976 The N-NEB record presents a trend toward drier conditions from 1000 BCE to 1500 CE as is also being observed in the Diva de Maura Cave in S-NEB, interpreted as an ITCZ 977 withdrawal contraction and SASM weakening oin an orbital timescale, respectively. A 978 979 These data suggest a trend toward increased aridity over NEB from 3000 BP to the present, although the two records are influenced by distinctly different climate systems 980 with different precipitation seasonality, ITCZ and SASM dynamics are known to be closely 981 982 linked (Vuille et al., 2012).

983 During the last millennia, ITCZ dynamics in the tropical Atlantic - South America 984 sector cannot be explained solely by north-south ITCZ migrations or one single forcing mechanism. We propose a zonally non-uniform behavior of the ITCZ during the event 985 986 centered around 1100 CE and the drought period events between 1500 and 1750 CE, 987 when the RN record is anti-phased with the Paraíiso cave record from the eastern Amazon. This zonal behavior would be forced by the interactions between AMV and PDV 988

989 modes that changed the regional Walker cell position and ITCZ intensity/width
 990 <u>extentlength</u> and thus affecting precipitation variability between <u>the</u> eastern Amazon and
 991 N-NEB.

992 The historical droughts discussed are the longest drought events in Northeast 993 Brazil that occurred within the zone of influence of the ITCZ, and are thus probably the 994 most likely to be recorded by stalagmites, according to our interpretation. The northern and 995 southern NEB are influenced by different climatic systems, the ITCZ and SASM, 996 respectively, and this can explain, in part, the differences between historical and 997 stalagmite records of Rio Grande do Norte. These historical droughts recorded in the RN stalagmite suggest that much of the socioeconomic development of the NEB, which 998 999 occurred after 1500 CE, benefitted from conditions that were unusually humid in a longterm context. During the last 500 years the technological development, infrastructure, 1000 1001 civilization and population growth relied on more abundant resources. On the other hand, 1002 our data also shows how short, abrupt drought events significantly affected human 1003 population and other life forms, especially when associated with anthropogenic changes in 1004 the environment. These droughts induced an environment favorable for spreading of disease, starvation, lack of water, environmental degradation and crowding of people 1005 1006 seeking help, among other problems. These events demonstrate the social and 1007 environmental impacts associated with extreme events in this vulnerable environment and our speleothem work documents the enormous potential of these archives to reconstruct 1008 1009 the drought history in this region.

1010

1011

1012 Acknowledgments

1013 We thank Alyne Barros M. Lopes, Osmar Antunes and Christian Millo (LES-IGc-1014 USP, Brazil) for their support during the analyses. We thank M.E.D.-L.G, J.C.R., E.A.S.B,

1015 V.A. and W.D. for their support in U/Th analysis. We are grateful to Dr. Cristiano Chiessi for comments onabout the draft, and Leda Zogbi and Diego de Medeiros Bento for the 1016 1017 Trapiá cave and Furna Nova maps. We thank Jocy Brandão Cruz, Diego de Medeiros 1018 Bento, José latagan Mendes de Freitas, Darcy José dos Santos, Uilson Paulo Campos (CECAV/RN), Antônio Idaelson do Nascimento and Geilson Góes Fernandes for all their 1019 support duringin the field trip, information and data about the caves. This work was 1020 supported by the FAPESP, Brazil through PIRE NSF-FAPESP [2017/50085-3 to F.W.C], 1021 as well as the fellowships to G.U. [2020/02737-4], V.F.N [2016/15807-5], J.M. 1022 [2018/23522-6] and A.A. [2020/09258-4]. The NSF, United States NSF support through 1023 grants [AGS-1303828 and OISE-1743738] to MV and 1103403 to R.L.E and H.C. is 1024 1025 acknowledged. The NSFC, China support through grant [NSFC 41888101] to H.C. and [NSFC 42261144753] to H.Z. is acknowledged, G.U. is grateful to CAPES for the PhD and 1026 PostDoc fellowships through the Programa de Pós-Graduação em Geoquímica e 1027 1028 Geotectônica at Universidade de São Paulo, Brazil. 1029

- 1030

1031 Data availability

1032 The dataset generated as part of this study will be available in the PANGAEA 1033 website.

1034

1035 <u>Author contribution</u>

1036 <u>G.U. and F.W.C designed the experiment, performed isotopic analysis and</u>
1037 prepared the manuscript with help from the coauthors; F.W.C. directed the project and
1038 revised all versions of manuscript; M.V. helped with the interpretation and revision of the
1039 manuscript; A.A. contributed with statistical analysis and interpretation; V.F.N. contributed
1040 with the paleoclimate interpretations and revision of the manuscript; G.S. and J.M. helped

1041	with interpretation and revision of the manuscript; F.R.D.A. provided and interpreted the							
1042	mineralogical analysis; H.Z. helped with U/Th analysis and revision of the manuscript, and							
1043	H.C. and R.L.E. coordinated the laboratory procedures for U/Th analysis.							
1044								
1045	Competing interests							
1046	The authors declare that they have no known competing financial interests or							
1047	personal relationships that could have appeared to influence the work reported in this							
1048	paper.							
1049								
1050	References							
1051	Alvalá, R.C.S., Cunha, A.P.M.A., Briton, S.S.B., Seluchi, M.E., Marengo, J.A., Moraes,							
1052	O.L.L., Carvalho, M.A.: Drought monitoring in the Brazilian Semiarid region, An. Acad.							
1053	Bras. Ciênc., 91 (1), e20170209, https://doi.org/10.1590/0001-3765201720170209,							
1054	2019.							
1055	Alves, J.: História das secas (século XVII a XIX). Fundação Waldemar Alcântara,							
1056	Fortaleza, https://colecaomossoroense.org.br/site/wp-							
1057	content/uploads/2018/07/HISTÓRIA-DAS-SECAS.pdf, last accessed: 21 16 March							
1058	August 2023. 2003.							
1059	ANA – Agência Nacional de Águas, Sistema Nacional de Informações sobre Recursos							
1060	Hídricos: http://www.snirh.gov.br/hidroweb/apresentacao, last accessed: 01 February							
1061	2022, 2013.							
1062	Andreoli, R. F. S., de Souza, R.A.F., Kayano, M.T., Candido, L.A.: Seasonal anomalous							
1063	rainfall in the central and eastern Amazon and associated anomalous oceanic and							
1064	atmospheric patterns, Int. J. Climatol., 32, 1193–1205,							
1065	https://doi.org/10.1002/joc.2345, 2011.							

1066 Apaéstegui, J., Cruz, F.W., Vuille, M., Fohlmeister, J., Espinoza, J.C., Sifeddine, A., 1067 Strikis, N., Guyot, J.L., Ventura, R., Cheng, H., Edwards, R.E.: Precipitation changes over the eastern Bolivian Andes inferred from speleothem (δ^{18} O) records for the last 1068 1400 Sci. 494. 124–134, 1069 Earth Planet. Lett., vears. 1070 https://doi.org/10.1016/j.epsl.2018.04.048, 2018.

- Araújo, R.G., Andreoli, R.V., Candido, L.A., Kayano, M.T., de Souza, R.A.F.: Influence of 1071 El Niño-Southern Oscillation and Equatorial Atlantic on rainfall over northern and 1072 South 1073 northeastern regions of America, Acta Amaz., 43. 4. 469-480. 1074 https://doi.org/10.1590/S0044-59672013000400009, 2013.
- Azevedo, V., Strikis, N.M., Novello, V.F., Roland, C.L., Cruz, F.W., Santos, R.V., Vuille,
 M., Utida, G., de Andrade, F.D., Cheng, H., Edwards, R.L.: Paleovegetation seesaw in
 Brazil since the Late Pleistocene: A multiproxy study of two biomes, Earth Planet. Sci.
 Lett., 563, 116880, https://doi.org/10.1016/j.epsl.2021.116880, 2021.
- 1079 Baker, A., Hartmann, A., Duan, W., Hankin, S., Comas-Bru, L., Cuthbert, M.O., Treble,
- 1080 P.C., Banner, J., Genty, D., Baldini, L.M., Bartolomé, M., Moreno, A., Pérez-Mejías, C.,
- 1081Werner, M.: Global analysis reveals climatic controls on the oxygen isotope1082composition of cave drip water. Nat. Commun., 10, 2984.
- 1083 <u>https://doi.org/10.1038/s41467-019-11027-w, 2019.</u>
- Bond, G., Kromer, B., Beer, Muscheler, R., Evans, M.N., Showers, W., Hoffmann, S., LottiBond, R., Hajdas, I., Bonani, G.: Persistent Solar Influence on North Atlantic Climate
 During the Holocene, Science, 294, 2130-2136,
 https://doi.org/10.1126/science.1065680, 2001.
- Booth, B.B.B., Dunstone, N.J., Halloran, et al., P.R., Andrews, T., Bellouin, N.: Aerosols
 implicated as a prime driver of twentieth-century North Atlantic climate variability,
 Nature, 484, 228-232, https://doi.org/10.1038/nature10946, 2012.

- 1091 Breitenbach, S.F.M., Rehfeld, K., Goswami, B., Baldini, J.U.L., Ridley, H. E., Kennett, D.
- 1092 J., Prufer, K.M., Aquino, V.V., Asmerom, Y., Polyak, V.J., Cheng, H., Kurths, J.,
- 1093 Marwan, N.: COnstructing Proxy Records from Age models (COPRA), Clim. Past, 8, 1094 1765–1779, https://doi.org/10.5194/cp-8-1765-2012, 2012.
- Broccoli, A. J., Dahl, K.A., Stouffer, R.J.: Response of the ITCZ to Northern Hemisphere
 cooling, Geophys. Res. Lett., 33, L01702, https://doi.org/10.1029/2005GL024546,
 2006.
- Campos, J.L.P.S., Cruz, F.W., Ambrizzi, T., Deininger, M., Vuille, M., Novello, V.F., Strikis,
 N.M.: Coherent South American Monsoon Variability During the Last Millennium
 Revealed Through High-Resolution Proxy Records, Geophys. Res. Lett., 46, 8261–
 8270, https://doi.org/10.1029/2019GL082513, 2019.
- 1102 <u>Campos, M.C.; Chiessi, C.M.; Novello, V.F.; Crivellari, S.; Campos, J.L.P.S.; Albuquerque,</u>
 1103 <u>A.L.S.; Venancio, I.M.; Santos, T.P.; Melo, D.B.; Cruz, F.W.; Sawakuchi, A.O.;</u>
 1104 <u>Mendes, V.R.: South American precipitation dipole forced by interhemispheric</u>
 1105 <u>temperature gradient, Sci. Rep., 12, 10527, https://doi.org/10.1038/s41598-022-14495-</u>
 1106 1, 2022.
- Cheng, H., Edwards, R.L., Shen, C-C., Polyak, V.J., Asmerom, Y., Woodhead, J.,
 Hellstrome, J., Wang, Y., Kong, X., Spötlg, C., Wang, X., Alexander Jr. E.C.:
 Improvements in ²³⁰Th dating, ²³⁰Th and ²³⁴U half-life values and U-Th isotopic
 measurements by multi-collector inductively coupled plasma mass spectrometry, Earth
 Planet. Sci. Lett., 371-372, 82-91, https://doi.org/10.1016/j.epsl.2013.04.006, 2013.
- Chiessi, C. M., Mulitza, S., Taniguchi, N.K., Prange, M., Campos, M.C., Häggi, C.,
 Schefuß, E., Pinho., T.M.L., Frederichs, T., Portilh-Ramos, R.C., Souza, S.H.M.,
 Crivellari, S., Cruz, F.W.: Mid- to late-Holocene contraction of the Intertropical
 Convergence Zone over northeastern South America, Paleocean. Paleoclim., 36,
 e2020PA003936, https://doi.org/10.1029/2020PA003936, 2021.

- Cruz, F.W., Vuille, M., Burns, S.J., Wang. X., Cheng, H., Werner, M., Edwards, R.L.,
 Karman, I., Auler, A.S., Nguyen, H.: Orbitally driven east-west antiphasing of South
 American precipitation, Nat. Geosci., 2, 210-214, https://doi.org/10.1038/ngeo444,
 2009.
- 1121 Dansgaard, W.: Stable isotopes in precipitation, Tellus XVI, 4, 436-468,
 1122 https://doi.org/10.1111/j.2153-3490.1964.tb00181.x, 1964.
- De Oliveira, P.E., Barreto, A.M.F., Suguio, K.: Late Pleistocene-Holocene climatic and
 vegetational history of the Brazilian Caatinga: the fossil dunes of the middle São
 Francisco River, Palaeogeogr. Palaeoclimatol. Palaeoecol., 152, 319-337,
 https://doi.org/10.1016/S0031-0182(99)00061-9, 1999.
- Della Libera, M.E., Novello, V.F., Cruz, F.W., Orrison, R., Vuille, M., Maezumi, S.Y., de
 Souza, J., Cauhy, J., Campos, J.L.P.S., Ampuero, A., Utida., G., Stríkis, N.M., Stumpf,
 C.F., Azevedo, V., Zhang, H., Edwards, R.L., Cheng. H.: Paleoclimatic and
 paleoenvironmental changes in Amazonian lowlands over the last three millennia,
 Quat. Sci. Rev., 279, 107383, https://doi.org/10.1016/j.quascirev.2022.107383, 2022.
- 1132 Edwards, R. L., Cheng, H., Wasserburg, J.: 238 U- 234 U- 230 Th- 232 Th systematics and the
- precise measurement of time over the past 500,000 years. Earth Planet. Sci. Lett., 81,
- 1134 175-92, https://doi.org/10.1016/0012-821X(87)90154-3, 1987.
- Erasmi, S., Maurer, F., Petta, R.A., Gerold, G., Barbosa, M.P.: Interannual variability of the
 Normalized Difference Vegetation Index over Northeast Brazil and its relation to rainfall
 and El Niño Southern Oscillation, Geo-Öko, 30, 3-4, 185-206, 2009.
- Fausto, B.: História do Brasil, 12th ed., Editora Universidade de São Paulo, São Paulo,
 660 pp., ISBN 85-314-0240-9, 2006.
- 1140 Fohlmeister, J.: A statistical approach to construct composite climate records of dated 1141 archives, Quat. Geochronol., 14, 48-56, https://doi.org/10.1016/j.quageo.2012.06.007,
- 1142 2012.

- Galloway, J.H.: Northeast Brazil 1700-50: The agricultural crisis re-examined, J. Hist.
 Geogr., 1, 1, 21-38, https://doi.org/10.1016/0305-7488(75)90073-0, 1975.
- Gomes, H.B., Ambrizzi, T., Herdies, D.L., Hodges, K., da Silva, B.F.P.: Easterly Wave
 Disturbances over Northeast Brazil: An Observational Analysis, Adv. Meteorol.,
 176238, https://doi.org/10.1155/2015/176238, 2015.
- 1148 Grazulis, S., Chateigner, D., Downs, R.T., Yokochi, A.F.T., Quirós, M., Lutterotti, L.,
- 1149 Manakova, E., Butkus, J., Moeck., P., Le Bail., A.: Crystallography Open Database –
- an open-access collection of crystal structures, J. Appl. Crystallogr., 42, 726-729,
- 1151 https://doi.org/10.1107/S0021889809016690, 2009.
- Haug, G., Hughen, K.A., Sigman, D.M., Peterson, L.C., Röhl, U.: Southward migration of
- the Intertropical Convergence Zone through the Holocene, Science, 293, 5533, 1304-
- 1154 1308, https://doi.org/10.1126/science.1059725, 2001.
- He, Z., Dai, A., Vuille, M.: The Joint Impacts of Atlantic and Pacific Multidecadal Variability
 on South American Precipitation and Temperature, J. Clim., 34, 7959-7981,
 https://doi.org/10.1175/JCLI-D-21-0081.1, 2021.
- 1158 Hue, S. M.: Primeiras Cartas do Brasil 1551-1555: Introdução e notas, Jorge Zahar Editor,
- 1159 Rio de Janeiro, 147 pp., ISBN 8571109079, 2006.
- 1160 IAEA/GNIP Global Network of Isotopes in Precipitation, The GNIP Database,
 1161 https://nucleus.iaea.org/wiser, last access: 20 August 2021.
- 1162 INMET Instituto Nacional de Meteorologia, Banco de Dados Meteorológicos para Ensino
 1163 e Pesquisa, http://www.inmet.gov.br/, last access 5 November 2021.
- Jackson, L.-C., Kahana, R., Graham, T., Ringer, M.A., Woollings, T., Mecking, J.V., Wood,
 R.A.: Global and European climate impacts of a slowdown of the AMOC in a high
 resolution GCM, Clim. Dyn., 45, 3299–3316, https://doi.org/10.1007/s00382-015-25402, 2015.

- Jaffey, A.H., Flynn, K.F., Glendenin, L.E., Bentley, W.C., Essling, A.M., Precision
 measurement of half-lives and specific activities of ²³⁵U and ²³⁸U. Physical Rev. C 4,
 1889-1906, https://doi.org/10.1103/PhysRevC.4.1889, 1971.
- Kayano, M.T., Andreoli, R.V., de Souza, R.A.: Pacific and Atlantic multidecadal variability
 relations to the El Niño events and their effects on the South American rainfall, Int. J.
- 1173 Clim., 40(4), 2183-2200, https://doi.org/10.1002/joc.6326, 2020.
- 1174 Kayano, M.T., Cerón, W.L., Andreoli, R.V., Souza, R.A.F., Avila-Diaz, A., Zuluaga, C.F.,
- 1175 Carvalho, L.M.V.: Does the El Niño-Southern Oscillation Affect the Combined Impact of
- 1176 the Atlantic Multidecadal Oscillation and Pacific Decadal Oscillation on the
- 1177 Precipitation and Surface Air Temperature Variability over South America?, Atmos., 13,
- 1178 231, https://doi.org/10.3390/atmos13020231, 2022.
- Knight, J.R., Folland, C.K., Scaife, A.A.: Climate impacts of the Atlantic Multidecadal
 Oscillation, Geophys. Res. Let., 33, L17706, https://doi.org/10.1029/2006GL026242,
 2006.
- Lachniet, M.S., Bernal, J.P., Asmerom, Y., Polyak, V., Uranium loss and aragonite–calcite
 age discordance in a calcitized aragonite stalagmite, Quat. Geochron., 14, 26-37,
- 1184 <u>https://doi.org/10.1016/j.quageo.2012.08.003, 2012.</u>
- Lapointe, F., Bradley, R.S., Francus, P., Balascio, N.L., Abbott, M.B., Stoner, J.S., StOnge, G., De Coninck, A., Labarre, T.: Annually resolved Atlantic Sea surface
 temperature variability over the past 2,900 y, PNAS, 117, 44, 27171–27178,
 https://doi.org/10.1073/pnas.2014166117, 2020.
- 1189 Lechleitner, F. A., Breitenbach, S.F.M., Rehfeld, K., Ridley, H.E., Asmerom, Y., Prufer,
- 1190 K.M., Marwan, N., Goswami, B., Kennett, D.J., Aquino, V.V., Polyak, V., Haug, G.H.,
- 1191 Eglinton, T.I., Baldini, J.U.L.: Tropical rainfall over the last two millennia: Evidence for a
- low-latitude hydrologic seesaw, Sci. Rep., 7, 45809, https://doi.org/10.1038/srep45809,
- 1193 2017.

- Lenters, J. D., Cook, K. H.: On the origin of the Bolivian High and related circulation features of the South American climate, J. Atmos. Sci., 54, 656–677, https://doi.org/10.1175/1520-0469(1997)054<0656:OTOOTB>2.0.CO;2, 1977.
- 1197 Levine, A.F.Z., Frierson, D.M.W., McPhaden, M.J.: AMO Forcing of Multidecadal Pacific
- 1198 ITCZ Variability, J. Clim., 31, 5749–5764, https://doi.org/10.1175/JCLI-D-17-0810.1,
- 1199 2018.
- Lima, J.R., Magalhães, A.R.: Secas no Nordeste: registros históricos das catástrofes
 econômicas e humanas do século 16 ao século 21, Parcer. Estratég., 23, 46, 191-212,
- 1202 2018. Available at: https://seer.cgee.org.br/parcerias_estrategicas/article/view/896/814.
- 1203 Maksic J., Shimizu, M.H., Kayano, M.T., Chiessi, C.M., Prange, M., Sampaio, G.: Influence
- 1204 of the Atlantic Multidecadal Oscillation on South American Atmosphere Dynamics and
- 1205 Precipitation, Atmos., 13, 11, 1778, https://doi.org/10.3390/atmos13111778, 2022.
- Marengo, J.A., Bernasconi, M.: Regional differences in aridity/drought conditions over
 Northeast Brazil: present state and future projections, Clim. Chang., 129, 103-115,
 https://doi.org/10.1007/s10584-014-1310-1, 2015.
- 1209 Marengo, J.A., Galdos, M.V., Challinor, A., Cunha, A.P., Marin, F.R., Vianna, M.S., Alvala,
- R.C.S., Alves, L.M., Moraes, O.L., Bender, F.: Drought in Northeast Brazil: A review of
 agricultural and policy adaptation options for food security, Clim. Resil. Sustain., 1, 17,
 https://doi.org/10.1002/cli2.17, 2021.
- McDonough, W.F., Sun, S.-s.: The composition of the Earth, Chem.ical Geol.ogy, 120, (3–
 4) 223-253, ISSN 0009-2541, https://doi.org/10.1016/0009-2541(94)00140-4, 1995.
- Melo, A.C.C., Castro, D.L., Bezerra, F.H.R., Bertotti, G.: Rift fault geometry and evolution
 in the Cretaceous Potiguar Basin (NE Brazil) based on fault growth models, J. South
 Am. Earth Sci., 71, 96-107, https://doi.org/10.1016/j.jsames.2016.07.006, 2016.
- 1218 Novello, V.F., Cruz, F.W., Karmann, I., Burns, S.J., Stríkis, N.M., Vuille, M., Cheng, H., 1219 Edwards, R.L., Santos, R.V., Frigo, E., Barreto, E.A.S.: Multidecadal climate variability

in Brazil's Nordeste during the last 3000 years based on speleothem isotope records,

1221 Geophys. Res. Lett., 39, L23706, https://doi.org/10.1029/2012GL053936, 2012.

1222 Novello, V.F., Cruz, F.W., Moquet, J.S., Vuille, M., de Paula, M.S., Nunes, D., Edwards,

- 1223 R.L., Cheng, H., Karmann, I., Utida, U., Stríkis, N.M., Campos, J.L.P.S.: Two Millennia
- of South Atlantic Convergence Zone Variability Reconstructed from Isotopic Proxies,
- 1225 Geophys. Res. Lett., 45, https://doi.org/10.1029/2017GL076838, 2018.
- 1226 Novello, V.F., Cruz, F.W., Vuille, M., Campos, J.L.P.S., Stríkis, N.M., Apaéstegui, J.,
- 1227 Moquet, J.S., Azevedo, V., Ampuero, A., Utida, G., Wang, X., Paula-Santos, G.M.,
- Jaqueto, P., Pessenda, L.C.R., Breecker, D.O., Karmann, I.: Investigating δ^{13} C values
- in stalagmites from tropical South America for the last two millennia, Quat. Sci. Rev.,
- 1230 255, 106822, https://doi.org/10.1016/j.quascirev.2021.106822, 2021.
- 1231 Orrison, R., Vuille, M., Smerdon, J.E., Apaéstegui, J., Azevedo, V., Campos, J.L.P.S.,
- 1232 Cruz, F.W., Della Libera, M.E., Stríkis, N.M.: South American Monsoon variability over
- the last millennium in paleoclimate records and isotope-enabled climate models, Clim.

1234 Past, 18, 2045–2062, https://doi.org/10.5194/cp-18-2045-2022, 2022.

- Paquette, J., Reeder, R.J.: Single-crystal X-ray structure refinements of two biogenetic
 magnesian calcite crystals, Am. Mineral., 75, 1151-1158, 1990.
- 1237 Pereira, N.S., Clarke, L.J., Chiessi, C.M., Kilbourne, K.H., Crivellari, S., Cruz, F.W.,

1238 Campos, J.L.P.S., Yu, T.-L., Shen, C.-C., Kikuchi, R.K.P., Pinheiro, B.R., Longo, G.O.,

1239 Sial, A.N., Felis, T.: Mid to late 20th century freshening of the western tropical South

1240 Atlantic triggered by southward migration of the Intertropical Convergence Zone,

- 1241
 Palaeogeogr.
 Palaeoclimatol.
 Palaeoecol.,
 597,
 111013,

 1242
 https://doi.org/10.1016/j.palaeo.2022.111013, 2022.
- Pessenda, L.C.R., Gouveia, S.E.M., Ribeiro, A.S., De Oliveira, P.E., Aravena, R.: Late
 Pleistocene and Holocene vegetation changes in northeastern Brazil determined from

1245 carbon isotopes and charcoal records in soils, Palaeogeogr. Palaeoclimatol.
1246 Palaeoecol., 297, 597-608, https://doi.org/10.1016/j.palaeo.2010.09.008, 2010.

Pessoa-Neto, O.C.: Estratigrafia de sequências da plataforma mista neogênica na Bacia
Potiguar, margem equatorial brasileira, Revista Bras. Geociênc., 33, 3, 263-278, 2003.
Pokroy, B., Fieramosca, J. S., Von Dreele, R. B., Fitch, A. N., Caspi, E. N., Zolotoyabko,

1250 E.: Atomic structure of biogenic aragonite, Chem. Mater., 19, 3244-3251,
1251 https://doi.org/10.1021/cm070187u, 1989.

1252 Richards, D., Dorale, J.: Uranium-series chronology and environmental applications of 1253 speleothems. Rev. Mineral., 52, 407-460, https://doi.org/10.2113/0520407, 2003.

Rosado, J. V.-U., (org): Memorial da Seca. Brasília, Coleção Mossoroense, nº 163, Centro
 Gráfico do Senado Federal/ESAM, https://colecaomossoroense.org.br/site/acervo oswaldo-lamartine/, last access: 25 August 2022, 1981.

Sampaio, P.R.F., Saraiva Jr, J.C., Portela, J.C., da Silva, J.F.: Agricultural areas to
desertification in RN and mitigating measures: the case of settlements Milagres and
Terra da Esperança, HOLOS, 36, 7, e5902, https://doi.org/10.15628/holos.2020.5902,
2020.

Schneider, T., Bischoff, T., Haug, G.H.: Migrations and dynamics of the intertropical
convergence zone, Nature, 513, 7516, 45-53, https://doi.org/10.1038/nature13636,
2014.

Schneider, U., Becker, A., Finger, P., Meyer-Christoffer, A., Rudolf, B., Ziese, M.: GPCC
Full Data Reanalysis Version 6.0 at 1.0Ű: Monthly Land-Surface Precipitation from
Rain-Gauges built on GTS-based and Historic Data,
https://doi.org/10.5676/DWD_GPCC/FD_M_V7_100, 2011.

Serafim Leite, S.J.: História da Companhia de Jesus no Brasil, Tomo II (Século XVI - A
Obra), Civilização Brasileira, Rio de Janeiro, 658 pp. 1938.

- Silva, O.L., Bezerra, F.H.R., Maia, R.P., Cazarin, C.L.: Karst landforms revealed at various
 scales using LiDAR and UAV in semi-arid Brazil: Consideration on karstification
 processes and methodological constraints, Geomorphol., 295, 611-630,
 https://doi.org/10.1016/j.geomorph.2017.07.025, 2017.
- Steinman, B.A., Stansell, N.D., Mann, M.E., Cooke, C.A., Abbott, M.B., Vuille, M., Bird,
 B.W., Lachniet, M.S., Fernandez, A.: Interhemispheric antiphasing of neotropical
 precipitation during the past millennium, PNAS, 119, 17, e2120015119,
 https://doi.org/10.1073/pnas.2120015119, 2022.
- Sulca, J., Vuille, M., Silva, Y., Takahashi, K.: Teleconnections between the Peruvian
 Central Andes and Northeast Brazil during Extreme Rainfall Events in Austral Summer,
- 1280 J. Hydrometeorol., 17, 499-515, https://doi.org/10.1175/JHM-D-15-0034.1, 2016.
- Taylor, K.S.: The Economics of Sugar and Slavery in Northeastern Brazil, Agric. Hist., 44
 3, 267-280, 1970.
- 1283 Treble, P.C., Baker, A., Abram, N.J., Hellstrom, J.C., Crawford, J., Gagan, M.K., Borsato,
- 1284A., Griffiths, A.D., Bajo, P., Markowska, M., Priestley, S.C., Hankin, S., Paterson, D.:1285Ubiquitous karst hydrological control on speleothem oxygen isotope variability in a
- 1286 <u>global study, Commun. Earth Environ., 3, 29, https://doi.org/10.1038/s43247-022-</u> 1287 00347-3, 2022.
- Undorf, S., Bollasina, M.A., Hegerl, G.C.: Impacts of the 1900–74 Increase in
 Anthropogenic Aerosol Emissions from North America and Europe on Eurasian
 Summer Climate, J. Clim., 31, 8381-8399, https://doi.org/10.1175/JCLI-D-17-0850.1,
 2018.
- Utida, G., Cruz, F.W., Etourneau, J., Bouloubassi, I., Schefuß, E., Vuille, M., Novello, V.,
 Prado, L.F., Sifeddine, A., Klein, V., Zular, A., Viana, J.C.C., Turcq, B.: Tropical South
 Atlantic influence on Northeastern Brazil precipitation and ITCZ displacement during

the past 2300 years, Sci. Rep., 9, 1698, https://doi.org/10.1038/s41598-018-38003-6,
2019.

1297 Utida, G., Cruz, F.W., Santos., R.V., Sawakuchi, A.O., Wang, H., Pessenda, L.C.R.,

1298 Novello, V.F., Vuille, M., Strauss, A.M., Borella, A.C., Stríkis, N.M., Guedes, C.C.F., De

- 1299 Andrade, F.D., Zhang., H., Cheng, H., Edwards, R.L.: Climate changes in Northeastern
- 1300 Brazil from deglacial to Meghalayan periods and related environmental impacts, Quat.

1301 Sci. Rev., 250, 106655, https://doi.org/10.1016/j.quascirev.2020.106655, 2020.

- Vera, C., Higgins, W., Amador, J., Ambrizzi, T., Garreaud, R., Gochis, D., Gutzler, D.,
 Lettenmaier, D., Marengo, J., Mechoso, C.R., Nogues-Paegle, J., Silva Dias, P.L.,
 Zhang, C.: Toward a Unified View of the American Monsoon Systems, J. Clim., 19,
- 1305 4977-5000, https://doi.org/10.1175/JCLI3896.1, 2006.
- 1306 Vuille, M., Burns, S.J., Taylor, B.L., Cruz, F.W., Bird, B.W., Abbott, M.B., Kanner, L.C.,

1307 Cheng, H., Novello, V.F.: A review of the South American monsoon history as recorded
1308 in stable isotopic proxies over the past two millennia, Clim. Past, 8, 1309–1321,
1309 https://doi.org/10.5194/cp-8-1309-2012, 2012.

- 1310 Wang, X., Edwards, R.L., Auler, A.S., Cheng, H., Kong, X., Wnag, Y., Cruz, F.W., Dorale,
- J.A., Chiang, H.-W.: Hydroclimate changes across the Amazon lowlands over the past
 45,000 years, Nature, 541, 204-207, https://doi.org/10.1038/nature20787, 2017.

1313 Wong, M.L.; Wang, X.; Latrubesse, E.M.; He, S.; Bayer, M.: Variations in the South Atlantic Convergence Zone over the mid-to-late Holocene inferred from speleothem 1314 δ¹⁸O 1315 in central Brazil, 270, 107178, Quat. Scie. Rev., https://doi.org/10.1016/j.quascirev.2021.107178, 2021. 1316

1317 Zhang, H., Cai, Y., Tan, L., Cheng, H., Qin, S., An, Z., Edwards, R.L., Ma, L.: Large 1318 variations of δ^{13} C values in stalagmites from southeastern China during historical 1319 times: implications for anthropogenic deforestation, Boreas, 44, 511-525, 1320 https://doi.org/10.1111/bor.12112, 2015.

Zhang, H., Cai, Y., Tan, L., Qin, S., An, Z.: Stable isotope composition alteration produced
by the aragonite-to-calcite transformation in speleothems and implications for
paleoclimate reconstructions, Sediment. Geol., 309, 1-14,
https://doi.org/10.1016/j.sedgeo.2014.05.007, 2014.

Ziese, M., Rauthe-Schöch, A., Becker, A., Finger, P., Meyer-Christoffer, A., Schneider, U.:
GPCC Full Data Daily Version 2018 at 1.0°: Daily Land-Surface Precipitation from
Rain-Gauges built on GTS-based and Historic Data [datset],
https://doi.org/10.5676/DWD_GPCC/FD_D_V2018_100, 2018.

Zilli, M.T.; Carvalho, L.M.V.; Lintnerm, B.R., The poleward shift of South Atlantic
Convergence Zone in recent decades, Clim. Dyn., 52, 2545-2563,
https://doi.org/10.1007/s00382-018-4277-1, 2019.

Zular, A., Utida, G., Cruz, F.W., Sawakuchi, A.O., Wang, H., Bícego, M. Giannini, P.C.F.,
Rodrigues, S.I., Garcia, G.P.B., Vuille, M., Sifeddine, A., Zocatelli. R., Turcq, B.,
Mendes, V.R.: The effects of mid-Holocene fluvio-eolian interplay and coastal
dynamics on the formation of dune-dammed lakes in NE Brazil, Quat. Sci. Rev., 196,
137–153, https://doi.org/10.1016/j.quascirev.2018.07.022, 2018.

Spatiotemporal ITCZ dynamics during the last three millennia in Northeastern Brazil and related impacts in modern human history

Giselle Utida¹*, Francisco W. Cruz¹, Mathias Vuille², Angela Ampuero¹, Valdir F. Novello³, Jelena Maksic⁴, Gilvan Sampaio⁵, Hai Cheng^{6,7,8}, Haiwei Zhang⁶; Fabio Ramos Dias de Andrade¹, R. Lawrence Edwards⁹

¹Instittuto de Geociências, Universidade de São Paulo, Rua do Lago, 562, Cidade Universitária, São Paulo-SP, 05508-090, Brazil

²Department of Atmospheric and Environmental Sciences, University at Albany, SUNY, Albany, NY, USA ³Geo- and Environmental Research Center, University of Tübingen, Tübingen, Germany

⁴Division of Impacts, Adaptation and Vulnerabilities (DIIAV), National Institute for Space Research (INPE), São Jose dos Campos-SP, Brazil

⁵General Coordination of Earth Science (CGCT), National Institute for Space Research (INPE), Sao Jose dos Campos-SP, Brazil

⁶Institute of Global Environmental Change, Xi'an Jiaotong University, Xi'an, China

⁷State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy

of Sciences, Xi'an, China

⁸Key Laboratory of Karst Dynamics, MLR, Institute of Karst Geology, CAGS, China

⁹Department of Earth Sciences, University of Minnesota, Minneapolis, MN, USA

*Corresponding author: giselleutida@hotmail.com

Supplementary Material

5-6 figures and 4 tables.

Figure S1 - Pedra das Abelhas ANA Station precipitation analyzed from 1911 to 2015 (n=103), excluding the strongest ENSO years (39 years), according to Araújo et al. (2013).

Figure S $\underline{21}$ – TRA7 and TRA5 speleothem images indicating results of U/Th ages in BCE/CE and mineralogical composition. Outlines indicate the portions according to mineralogy. TRA7 ages and mineralogy obtained by Utida et al. (2020).

FN1

Figure S³² – Speleothem FN1 and FN2 images indicating results of U/Th ages BCE/CE. Outlines indicate the portions according to mineralogy. * FN1 ages obtained by Cruz et al. (2009). FN1 mineralogy obtained by Utida et al. (2020).

Sample	Depth	238	U	²³² T	ĥ	²³⁰ Th /	²³² Th	d ²³⁴ L	J*	²³⁰ T	h / ²³⁸ U	²³⁰ Th A	ge (yr)	²³⁰ Th A	ge (yr)	δ^{234} U _{In}	tial ^{**}	²³⁰ Th (yr Bf	Age P)***	Age
Number	(mm)	m) (ppb)		(ppt)		(atomic x10 ⁻⁶)		(measured)		(activity)		(uncorrected)		(corrected)		(corrected)		(corrected)		BCE/CE
FN1 speled	othem																			
FN1-1	1	214	± 1	382 <u>5</u> 4.9	± 18	5.8	<u>+2</u>	<u>60</u> 59.5	±4	0.0064	±0.00232	739	±271	183	±387	-60	±4	125	±387	1825
FN1-a ¹	5	119	± 0	228	± 2	28	±4	-68	±3	0.0033	±0.00043	383	±50	323	±58	-68	±3	265	±58	1685
FN1-b ¹	9	4134	± 16	698	± 2	280	±5	-58	±1	0.0029	±0.00005	333	±6	328	±6	-58	±1	270	±6	1680
FN1-B1 ¹	12	7837	± 26	3878	± 10	148	±2	-58	±2	0.0044	±0.00006	515	±7	500	±10	-58	±2	442	±10	1508
FN1-T ¹	16	1152	± 4	1256	± 3	91	±1	-61	±2	0.0060	±0.00007	700	±9	666	±19	-61	±2	608	±19	1342
FN1-22	22	701	± 2	8378	± 169	26	±1	-58	±2	0.0191	±0.00013	2234	±17	1864	±262	-58	±2	1795	±262	155
FN1-T2	29	812	± 1	2425	± 49	69	±2	-56	±1	0.0125	±0.00034	1453	±40	1360	±77	-57	±1	1298	±77	652
FN1-2 ¹	41	48	± 0	151	± 2	54	±5	-53	±2	0.0102	±0.00089	1180	±100	1080	±110	-53	±2	1022	±110	928
FN1-2A	72	5814	± 36	1171	± 6	868	±7	-57	±4	0.0106	±0.00009	1232	±12	1226	±12	-57	±4	1168	±12	782
FN1-3 ¹	88	85	± 0	209	± 1	90	±3	-56	±2	0.0133	±0.00041	1545	±48	1469	±61	-56	±2	1411	±61	539
FN1-106	106	508	± 1	2506	± 50	63	±1	-52	±2	0.0190	±0.00014	2205	±16	2054	±108	-52	±2	1985	±108	-35
FN1-4 ¹	127	75	± 0	97	± 1	210	±7	-53	±3	0.0164	±0.00046	1899	±54	1860	±57	-53	±3	1802	±57	148
FN1-4.1	137	13580	± 49	2593	± 53	1535	±31	-62	±2	0.0178	±0.00008	2086	±10	2080	±11	-62	±2	2018	±11	-68
FN1-140	140	12302	± 97	9588	± 208	433	±9	-57	±3	0.0205	±0.00017	2394	±22	2370	±28	-57	±3	2301	±28	-351
FN1-4.2	145	15185	± 51	4074	± 82	1271	±26	-57	±2	0.0207	±0.00008	2418	±10	2410	±12	-57	±2	2348	±12	-398
FN1-4A ¹	147	17533	± 81	3486	± 7	1734	±6	-55	±2	0.0209	±0.00011	2441	±14	2435	±14	-56	±2	2377	±14	-427
FN1-B ¹	187	20240	± 200	2847	± 8	2680	±12	-55	±3	0.0229	±0.00024	2671	±30	2667	±30	-55	±3	2609	±30	-659
FN1-4B ¹	202	7297	± 22	165820	± 830	27	±1	-52	±2	0.0377	±0.00076	4435	±91	3730	±360	-52	±2	3672	±360	-1722
FN2 speled	othem																			
FN2-1	1	4480	± 13	7017	± 142	197	±4	-1	±2	0.0187	±0.00007	2058	±8	2012	±33	-1	±2	1943	±33	7
FN2-4	4	5566	± 15	4344	± 12	392	±3	-4	±2	0.0185	±0.00000	2052	±16	2030	±20	-4	±2	1968	±20	-18
FN2-6	6	5161	± 31	5881	± 123	294	±6	0	±3	0.0203	±0.00013	2241	±16	2208	±28	0	±3	2139	±28	-189
FN2-2	10	4525	± 17	9648	± 196	172	±4	1	±2	0.0223	±0.00010	2454	±14	2392	±46	1	±2	2330	±46	-380
FN2-20	20	6588	± 15	11520	± 232	222	±5	-4	±2	0.0236	±0.00008	2610	±10	2559	±37	-4	±2	2497	±37	-547
FN2-27	27	8524	± 23	1698	± 35	1918	±39	-5	±2	0.0232	±0.00008	2571	±10	2565	±11	-5	±2	2503	±11	-553
FN2-3	45	4895	± 20	6182	± 126	338	±7	-2	±2	0.0259	±0.00010	2867	±18	2830	±32	-2	±2	2768	±32	-818
FN2-52	52	9454	± 30	3965	± 80	1041	±21	-11	±2	0.0265	±0.00010	2960	±13	2948	±16	-11	±2	2886	±16	-936
FN2-74	74	16129	± 50	3438	± 70	2131	±43	-6	±2	0.0275	±0.00009	3065	±12	3059	±13	-6	±2	2997	±13	-1047
FN2-6	90	21367	± 213	2993	± 17	3410	±23	-11	±6	0.0289	±0.00031	3242	±40	3238	±40	-11	±6	3176	±40	-1226
		stants: λ	-00	5125x10 ⁻¹⁰		<u>et al., 19</u>						2013). Th				9.1705		<u>Cheng e</u>		
<u>201</u>		$J = ([^{234}U)$		<u>vity</u> ⁻¹)x100							(T). i.e δ ²³							ages as		
initia	al 230Th/2	³² Th aton	<u>nic ratio</u>	of 4.4 ±2.2	<u>2 x10⁻°.</u> ⁻	Those ar	<u>e the va</u>	<u>lues for a</u>	mater	<u>ial at sec</u>	ular equilib	rium. wit	<u>h the bu</u>	lk earth	232 Th/ 232	[°] U value	of 3.8	. The e	rrors ar	<u>ə</u>

Table S1 – Chronological results. U/Th results obtained from speleothem FN1 and FN2. ¹Data obtained by Cruz et al. (2009).

arbitrarily assumed to be 50%. ***B.P. stands for "Before Present" where the "Present" is defined as the year 1950 A.D.

 230 U = ([234 U/ 238 U]_{activity}- $^{-1}$)x1000. ** δ^{234} U_{initial} was calculated based on 230 Th age (T). i.e., δ^{234} U_{initial} = δ^{234} U_{measured} x e^{A234xT}. Corrected 230 Th ages assume the initial 230 Th/ 232 Th atomic ratio of 4.4 ±2.2 x10⁻⁶. Those are the values for a material at secular equilibrium, with the bulk earth 232 Th/ 238 U value of 3.8. The errors are arbitrarily assumed to be 50%. ***B.P. stands for "Before Present" where the "Present" is defined as the year 1950 A.D.

Table S2 – Chronological results. U/Th results obtained from speleothem TRA5.

Sample	Depth	238	Ů	232	² Th	²³⁰ Th /	²³² Th	d ²³⁴	U*	²³⁰ T	h / ²³⁸ U	²³⁰ Th A	ge (yr)		h Age yr)	δ^{234} U _{lr}	itial ^{**}	²³⁰ TI (yr	h Age BP)***	Age
Number	(mm)	(pp	b)	(p	pt)	(atomic	: x10 ⁻⁶)	(meas	ured)	(ac	tivity)	(uncori	ected)	-	ected)	(corre	cted)		ected)	BCE/CE
TRA5 speleo	them																			
TRA5 <mark>-</mark> 2	7	1411	±2	3788	± 76	6	±1	-145	±2	0.0009	±0.00009	119	±12	27	±66	-145	±2	-42	±66	1992
TRA5-18	18	2035	± 4	76686	± 1543	5	±0	-139	±2	0.0121	±0.00019	1541	±25	259	±907	-139	±2	197	±907	1753
TRA5 <mark></mark> 20	20	1915	± 4	20400	± 410	6	±0	-145	±2	0.0036	±0.00010	463	±12	100	±257	-145	±2	31	±257	1919
TRA5b-37	37	1977	± 2	612	± 13	89	±8	-139	±1	0.0017	±0.00014	211	±18	200	±19	-139	±1	130	±19	1820
TRA5-41	41	1889	± 5	2858	± 58	25	±1	-138	±2	0.0023	±0.00008	291	±10	240	±38	-138	±2	178	±38	1772
TRA5-58	58	1921	± 3	585	± 12	122	±4	-142	±2	0.0022	±0.00006	286	±7	276	±10	-142	±2	214	±10	1736
TRA <mark>58</mark> -71	71	2371	± 14	5165	± 108	21	±1	-147	±5	0.0028	±0.00012	356	±16	282	±55	-147	±5	213	±55	1737
TRA5b-90	90	2031	± 2	256	± 6	413	±18	-139	±1	0.0032	±0.00011	401	±14	396	±15	-139	±1	326	±15	1624
TRA <mark>58</mark> -104	104	2018	± 14	7328	± 155	22	±1	-141	±6	0.0049	±0.00023	618	±29	495	±92	-141	±6	426	±92	1524
TRA5-116	116	1785	± 4	912	± 18	124	±4	-139	±2	0.0038	±0.00008	488	±10	471	±16	-139	±2	409	±16	1541
TRA5-132	132	2699	± 5	1549	± 31	118	±3	-140	±2	0.0041	±0.00006	522	±8	503	±16	-140	±2	441	±16	1509
TRA5b-169	169	1969	± 2	108	± 5	1237	±73	-136	±1	0.0041	±0.00015	519	±19	517	±19	-136	±1	447	±19	1503

<u>U decay constants: $\lambda_{238} = 1.55125 \times 10^{-10}$ (Jaffey et al., 1971) and $\lambda_{234} = 2.82206 \times 10^{-6}$ (Cheng et al., 2013). Th decay constant: $\lambda_{230} = 9.1705 \times 10^{-6}$ (Cheng et al., 2013). * δ^{234} U = ([²³⁴U/²³⁸U]_{activity}⁻¹)×1000. ** δ^{234} U_{initial} was calculated based on ²³⁰Th age (T). i.e., δ^{234} U_{initial} = δ^{234} U_{measured} x e^{λ 234xT}. Corrected ²³⁰Th ages assume the initial ²³⁰Th/²³²Th atomic ratio of 4.4 ±2.2 × 10⁻⁶. Those are the values for a material at secular equilibrium. with the bulk earth ²³²Th/²³⁸U value of 3.8. The errors are arbitrarily assumed to be 50%. ***B.P. stands for "Before Present" where the "Present" is defined as the year 1950 A.D.</u>

Table S3 – Parameters used to establish the composite record of Trapiá and Furna Nova amites with *iscam* programming (Fohlmeister, 2012)

2	stalagmites with iscam programming (Fohlmeister. 2012)											
	-	Parameter Range Description nrAR1 2000 Number of AR1 simulations										
	_	nrAR1 <u>2000</u> Number of AR1 simulations nrAR1_MC 1000 Number of MC runs for each AR1										
		nrAR1_MC nrMC					ata aata					
		nrSMOOTH										
		CUT										
		GAUSS	0 MC simu	lations with	n Gaussian d	istribution		_				
		Interpol	<u>-1</u> Pointwise		erpolation be							
	Detrend 2 Detrending and normalizing before running the method											
3												
4	Calcite-Aragonite fractionation											
5	We use the aragonite-calcite fractionation offset described by Zhang et al. (2014) obtained											
6	for stalagmites from China. We used the equation 1 bellow to considerer the proportion between											
7	calcite and original aragonite for each stalagmite interval of RN stalagmites, according to the Table											
8	S3. We included the mean δ^{18} O for each interval before and after C-A correction in Table S3.											
9												
10	$\delta^{18}O_{C-A \text{ corr}} = \frac{\text{sample calcite \%}}{100\% \text{ original aragonite}} \text{ x calcite fractionation offset} $ Equation (1)											
11												
12	Та	bla 54 - 5	peleothem intervals a	according	to texture :	and miner	al weight pro	portion (wt)				
13			A - crystals with mo									
14			y Utida et al. (2020). (<u>Heedie-like</u>				
14					-	COTTECTION	<u>1</u>					
			<u>open</u>	eothem M	<u>ineraiogy</u>							
		latan (al			Aregonite	Coloito	<u>δ¹⁸O mean (</u>	% VPDB)				
	Sample	<u>Interval</u> (mm)	<u>Age (yr BCE/CE)</u>	<u>Texture</u>	<u>Aragonite</u> (wt %)	<u>Calcite</u> (wt %)	before C-A					
							<u>correction</u>	correction				
		<u>30-54</u>	<u>1745 to 1855 CE</u>	<u>A</u>	<u>0.0</u>	<u>100.0</u>	<u>-3.50</u>	<u>-2.65</u>				
	TRA5	<u>54-87</u>	<u>1640 to 1745 CE</u>	<u>A</u>	<u>0.0</u>	<u>100.0</u>	<u>-3.56</u>	<u>-2.71</u>				
	<u></u>	<u>87-108</u>	<u>1565 to 1640 CE</u>	<u>A</u>	<u>0.0</u>	<u>100.0</u>	<u>-3.58</u>	<u>-2.73</u>				
		<u>108-178</u>	<u>1490 to 1565 CE</u>	<u>A</u>	<u>0.0</u>	<u>100.0</u>	<u>-3.40</u>	<u>-2.55</u>				
		<u>0-173</u>	130 BCE to 1940 CE	<u>A</u>	<u>0.0</u>	<u>100.0</u>	<u>-2.80</u>	<u>-1.95</u>				
	<u>TRA7*</u>	<u>173-215</u>	290 to 130 BCE	<u>B</u> <u>B</u>	<u>99.0</u>	<u>1.0</u>	<u>-2.14</u>	<u>-2.13</u>				
		<u>215-270</u>	3000 to 290 BCE	B	<u>87.1</u>	<u>12.9</u>	<u>-3.12</u>	<u>-3.01</u>				
		<u>0-27</u>	<u>1170 to 1790 CE</u>	B	<u>85.2</u>	<u>14.9</u>	<u>-2.14</u>	<u>-2.01</u>				
	<u>FN1*</u>	<u>27-83</u>	610 to 1170 CE	<u>B</u> <u>A</u> <u>B</u>	<u>90.6</u>	<u>9.4</u>	<u>-2.87</u>	<u>-2.78</u>				
		<u>83-128</u>	80 to 610 CE	A	<u>0.0</u>	<u>100.0</u>	<u>-1.87</u>	<u>-1.03</u>				
		<u>128-202</u>	1730 BCE to 80 CE		<u>94.5</u>	<u>5.5</u>	<u>-2.54</u>	<u>-2.49</u>				
		<u>6-31</u>	660 to 189 BCE	B	<u>94.7</u>	<u>5.3</u>	<u>-1.20</u>	<u>-1.15</u>				
	<u>FN2</u>	<u>31-56</u>	<u>960 to 660 BCE</u>	B	<u>94.8</u>	<u>5.2</u>	<u>-1.56</u>	<u>-1.52</u>				
		<u>56-63</u> <u>63-95</u>	<u>1005 to 960 BCE</u> 1265 to 1005 BCE	<u>B</u> B	<u>94.8</u> 93.4	<u>5.2</u> <u>6.6</u>	<u>-2.03</u>	<u>-1.99</u>				
		03-33	1200 10 1000 DUE		<u>93.4</u>	<u>0.0</u>	<u>-1.94</u>	<u>-1.88</u>				

15 Table S3 – Speleothem intervals according to texture and mineral weight proportion (wt).

16 Texture description: A - crystals with mosaic and columnar fabrics; B - interbedded needle-like

17 crystals. *Obtained by Utida et al. (2020).

	Speleothem Mineralogy							
Sample	Interval (mm)	Age (yr BCE/CE)	Texture	Aragonite (wt %)	Calcite (wt %)			
	30-5 4	1855 to 1745 CE	A	0.0	100.0			
TRA5	54-87	1745 to 1640 CE	A	0.0	100.0			
TRAD	87-108	1640 to 1565 CE	A	0.0	100.0			
	108-178	1565 to 1490 CE	A	0.0	100.0			
	0-173	1940 CE to 130 BCE	A	0.0	100.0			
TRA7*	173-215	130 to 290 BCE	₽	99.0	1.0			
	215-270	290 to 3000 BCE	₿	87.1	12.9			
	0-27	1790 to 1170 CE	₿	85.2	14.9			
FN1*	27-83	1170 to 610 CE	₿	90.6	9.4			
FINI-	83-128	610 to 80 CE	A	0.0	100.0			
	128-202	80 CE to 1730 BCE	₽	94.5	5.5			
	6-31	189 to 660 BCE	₽	94.7	5.3			
FN2	31-56	660 to 960 BCE	₽	94.8	5.2			
F INZ	56-63	960 to 1005 BCE	₽	94.8	5.2			
	63-95	1005 to 1265 BCE	₽	93. 4	6.6			

18

19 Table S4 – Parameters used to establish the composite record of Trapiá and Furna Nova
 20 stalagmites with *iscam* programming (Fohlmeister, 2012)

Parameter	Range	Description
nrAR1	2000	Number of AR1 simulations
nrAR1_MC	1000	Number of MC runs for each AR1
nrMC	100000	Number of MC simulations for measured data sets
nrSMOOTH	10	Number of years used for smoothing before the correlation
CUT	4	Extrapolation of isotope data allowed beyond dated depths
GAUSS	θ	MC simulations with Gaussian distribution
Interpol	-1	Pointwise linear interpolation between dated depths
Detrend	2	Detrending and normalizing before running the method

23

Figure S43 – Age models of each stalagmite speleothems from Rio Grande do Norte. Age 24 models were calculated using COPRA (Breitenbach et al., 2012) through a set of 2.000 Monte 25 26 Carlo simulations. The COPRA age model was produced for each sample and covers the entire 27 stalagmite. Squares and horizontal bars: age results and with error bars. Red line: COPRA average age model. Cyan Grey line: *iscam* age model errors considering 95% confidence interval.

Figure S4 – Rio Grande do Norte stalagmite isotope record. (a) U/Th ages for RN stalagmites. (b) Raw data of δ^{13} C. (c) Oxygen isotope results for RN record. (d) Oxygen isotope results corrected for calcite-aragonite fractionation ($\delta^{18}O_{C-A}$), according to weight proportion of mineralogical results. (e) $\delta^{18}O$ RN Composite constructed using stalagmite records from NEB (black line). Grey lines denote the age model confidence interval of 99%. (f) February insolation curve at 10°S (Berger and Loutre, 1991).

Figure S⁵⁶ – Distribution of maximum correlation coefficients for 2000 pairs of AR1 time series with the same characteristics as the measured δ^{18} O stalagmite time series. a) distribution for TRA7 and FN1a; b) distribution for TRA7+FN1a and FN2; c) distribution for TRA7+FN1a+FN2 and TRA5; d) distribution for TRA7+FN1a+FN2+TRA5 and FN1b. e) Best time series results for the individual steps *iscam* performs for the composite time series construction. Highest correlation coefficient is indicated for each correlation step. All established time series are significant at the 95% confidence limit.

coupled plasma mass spectrometry, Earth Planet, Sci. Lett., 371-372, 82-91, 65 66 https://doi.org/10.1016/j.epsl.2013.04.006, 2013. Cruz. F.W.. Vuille. M.. Burns. S.J.. Wang. X.. Cheng. H.. Werner. M.. Edwards. R.L.. Karman. I.. 67 68 Auler, A.S., Nguyen, H., 2009. Orbitally driven east-west antiphasing of South American precipitation. Nat. Geosci. 2. 210-214. https://doi.org/10.1038/ngeo444. 69 70 Fohlmeister. J.. 2012. A statistical approach to construct composite climate records of dated archives. Quat. Geochronol. 14. 48-56. https://doi.org/10.1016/j.guageo.2012.06.007. 71 72 Jaffey, A.H., Flynn, K.F., Glendenin, L.E., Bentley, W.C., Essling, A.M., Precision measurement of half-lives and specific activities of ²³⁵U and ²³⁸U. Physical Rev. C 4, 1889-1906. 73 https://doi.org/10.1103/PhysRevC.4.1889, 1971. 74 Utida. G., Cruz, F.W., Santos., R.V., Sawakuchi, A.O., Wang, H., Pessenda, L.C.R., Novello, V.F., 75 Vuille. M.. Strauss. A.M.. Borella. A.C.. Stríkis. N.M.. Guedes. C.C.F.. De Andrade. F.D.. 76 77 Zhang., H., Cheng, H., Edwards, R.L., 2020. Climate changes in Northeastern Brazil from deglacial to Meghalayan periods and related environmental impacts. Quat. Sci. Rev. 250. 78 106655. https://doi.org/10.1016/j.quascirev.2020.106655. 79 Zhang, H., Cai, Y., Tan, L., Qin, S., An, Z.: Stable isotope composition alteration produced by the 80 aragonite-to-calcite transformation in speleothems and implications for paleoclimate 81 reconstructions, Sediment. Geol., 309, 1-14, https://doi.org/10.1016/j.sedgeo.2014.05.007, 82 83 <u>2014.</u>