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Abstract. The southern coast of South Africa displays a highly dynamical climate as it is at the convergence of the Atlantic 15 

and Indian Ocean, and it is located near the subtropical/temperate zone boundary with seasonal influence of 

easterlies/westerlies. The region hosts some key archeological sites with records of significant cognitive, technological and 

social developments. Reconstructions of the state and variability of past climate and environmental conditions around sites of 

archeological significance can provide crucial context for understanding the evolution of early humans. Here we present a 

short but high-resolution record of hydroclimate and temperature in South Africa. Our reconstructions are based on trace 20 

elements, calcite and fluid inclusion stable isotopes, and fluid inclusion microthermometry from a speleothem collected in 

Bloukrantz Cave, in the De Hoop Nature Reserve in the Western Cape region of South Africa.  

Our record covers the time period from 48.3 to 45.2 ka during Marine Isotope Stage 3. Both 𝛿18Oc and 𝛿13Cc show strong 

variability and covary with Sr/Ca. This correlation suggests that the control on these proxies originates from internal cave 

processes such as prior carbonate precipitation, which we infer to be related to precipitation amount. The hydroclimate 25 

indicators suggest a shift towards overall drier conditions after 46 ka, coincident with a cooling in Antarctica and drier 

conditions in the eastern part of South Africa corresponding to the Summer Rainfall Zone. 

Fluid inclusion-based temperature reconstructions show good agreement between the oxygen isotope and microthermometry 

methods, and results from the latter display little variation throughout the record, with reconstructed temperatures close to the 

present-day cave temperature of 17.5 °C. Overall, the BL3 record thus suggests relatively stable temperature from 48.3 to 45.2 30 

ka whereas precipitation was variable with marked drier episodes on sub-millennial timescales. 
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1 Introduction 

The southern region of South Africa is a key region for the study of human evolution. Some scholars have linked episodes of 45 

significant cultural changes, seemingly not related to subsistence requirements, during the Middle Stone Age (MSA) with 

artifacts such as engraved ochre, an ochre processing kit, engraved ostrich eggshells, bifacial points, and perforated marine 

shell beads, which are considered archaeological markers for ‘symbolically mediated behavior’ (e.g. Henshilwood et al., 2011; 

Henshilwood et al., 2014; Marean et al., 2007; Wurz, 2002). The environmental conditions at the time have been suggested to 

drive changes either by offering refuge (suitable habitat) allowing for experimentation, or on the contrary, by forcing innovative 50 

mechanisms of adaptation (d'Errico, 2003; Wadley, 2021). However, although the number of paleoenvironmental 

reconstructions in South Africa’s southern Cape coastal region during the MSA is increasing (e.g. Bar-Matthews et al., 2010; 

Braun et al., 2019b; Braun et al., 2020; Chase, 2010; Chase et al., 2021; Strobel et al., 2022), information on past climate in 

this region still remains sparse. In this study, we apply a suite of traditional and novel approaches to reconstruct climate in 

South Africa from a speleothem from Bloukrantz cave, that grew during a short interval during Marine Isotope Stage (MIS) 3. 55 

Our goal is to cross-validate the various proxies and reconstruct the state and variability of hydroclimate and temperature. 

Today, South Africa’s climate is marked by different seasonal and spatial rainfall patterns (Fig. 1). During austral winter, the 

southern westerlies wind belt is displaced northward, bringing precipitation to the southwestern tip of South Africa (the Winter 

Rainfall Zone – WRZ). During austral summer, the westerlies are displaced southwards, allowing easterlies to bring rain to 

the eastern part of South Africa (the Summer Rainfall Zone – SRZ). Bloukrantz Cave and several key archeological sites are 60 

located in the junction of these two rain zones, known as the Year-round Rainfall Zone (YRZ), with winter rain accounting for 

30 – 60 % of the annual precipitation and no marked seasonality (Carr et al., 2006; Chase and Meadows, 2007; Roffe et al., 

2019). Identifying the drivers of climate change in the YRZ is not straightforward as the YRZ is a transition zone between 

WRZ and SRZ and thus influenced by a variety of mechanisms: Indian Ocean sea surface temperature (SST), convective and 

tropical weather systems in the east (Engelbrecht et al., 2015), and the westerlies belt position and intensity, along with the 65 

associated frontal systems, in the west (Chase, 2010; Chase and Meadows, 2007).  

MIS 3, the period between ~ 60 to 29 ka during the last glacial period, is characterized by a global mean sea level lower than 

today (Siddall et al., 2008) and globally colder temperature (Van Meerbeeck et al., 2009). Northern hemisphere ice core proxies 

reveal substantial millennial-scale variability such as Dansgaard-Oeschger and Heinrich events (Andersen et al., 2004) and 

associated temperature changes (Huber et al., 2006; Kindler et al., 2014). In the Southern Hemisphere, Antarctic ice core 70 

records display similar variability, though of a lesser amplitude (Siddall et al., 2008). The Antarctic ice core record is mimicked 

by SST reconstructions from sediment cores surrounding the southern tip of the African continent, both in the Indian (e.g. 

Simon et al., 2013) and the Atlantic sector (e.g. Dyez et al., 2014; Peeters et al., 2004). Mean annual precipitation 

reconstructions in the SRZ of Southern Africa closely follow solar radiation intensity (daily January insolation at 30°S) with 

reduced amplitude variation during MIS 3 compared to MIS 4 and 5 (Partridge et al., 1997). This is illustrated in a spelelothem 75 

sample from Wolkberg cave, where a drying trend was recorded from ~51 to 46 ka and linked to decreasing solar radiation 
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(Holzkämper et al., 2009). In the YRZ, fynbos pollen numbers indicate a drying period from 60 to 40 ka followed by wetter 

conditions from 40 to 30 ka (Quick et al., 2016). In the speleothem record, this is illustrated by a marked decrease in the overall 

number of speleothem samples recovered at ~60 ka, followed by a slight increase from 45 to 30 ka (Braun et al., 2019a). In 95 

the Little Karoo region, still within the YRZ, a composite record (Chase et al., 2021; Talma and Vogel 1992) shows evidence 

of a shift from low- to high-latitude forcing dominance at the onset of MIS 4 (~70 ka). In the composite record (Chase et al., 

2021), changes in 𝛿13C have been interpreted to reflect changes in rain dominance, with increased summer rain dominance 

from 59 to 54 ka, from 49 to 47 ka and from 41 to 36 ka. A speleothem from the same region, covering the 88 – 18 ka time 

interval, displays trends similar to terrestrial runoff from the Namibian west coast, suggesting a general dominant contribution 100 

of winter rains (Braun et al., 2020). Finally, aridity reconstructions indicate variable aridity conditions in the WRZ through 

MIS 3, although with overall drier conditions compared to MIS 4 (Stuut et al., 2002).  

Speleothems are cave deposits (most often Ca carbonates), which can be accurately dated by the U-Th method. They are most 

commonly used to reconstruct changes in precipitation on the basis of variations in the oxygen isotopic composition (𝛿18O) of 

the calcite matrix (Lachniet, 2009). The carbon isotopic composition (𝛿13C) of speleothem calcite is more complex to interpret, 105 

as it can reflect changes in vegetation (C3 vs C4 plants) and respiration processes above the cave and/or cave internal processes 

leading to C isotope fractionation (Fohlmeister et al., 2020). The latter are commonly also reflected in variations in trace 

element to Ca ratios, such as Mg/Ca or Sr/Ca (Stoll et al., 2012). Here we combine both 𝛿18O and 𝛿13C from the calcite (later 

noted with subscript c), and Sr/Ca ratios to infer past changes in precipitation. 

Recently, quantitative proxies for cave temperature have been developed (Affek et al., 2008; Blyth and Schouten, 2013; Kluge 110 

et al., 2008; Krüger et al., 2011; Vonhof et al., 2006). Cave temperature generally reflects the mean annual air temperature 

outside of the cave (Poulson and White, 1969), making cave deposits ideal candidates for land temperature reconstructions. 

The first quantitative temperature reconstruction method that has been proposed is the water-carbonate paleothermometer 

based on oxygen isotopes. The theoretical background of this approach dates back to the 1950s (Epstein et al., 1951; Epstein 

et al., 1953; Mccrea, 1950; Urey, 1947). In speleothems, however, the application of this thermometer has initially been limited 115 

by the lack of knowledge of the water isotopic composition. This information can now be gained from fluid inclusion water 

isotope (FIWI) measurements (e.g. Affolter et al., 2014; Fernandez et al., 2023; Matthews et al., 2021; Vonhof et al., 2006; 

Warken et al., 2022; Wassenburg et al., 2021; Wortham et al., 2022), which reveal the isotopic composition of former drip 

water preserved in microscopic inclusions in the speleothem calcite. Here we combine temperature estimates based on the 

difference in oxygen isotopic composition of fluid inclusions and calcite with another, independent temperature proxy, namely 120 

fluid inclusion microthermometry. The microthermometry approach uses liquid-vapor homogenization temperatures to 

determine the density of the enclosed drip water (Krüger et al., 2011; Løland et al., 2022). The suite of all methods applied 

here allows us to derive multi-proxy records of both hydroclimate and temperature. 
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2 Material and Methods 140 

2.1 Site description and setting 

Bloukrantz Cave (34°27.557’S, 20°46.697’E, 10-25 m a.s.l.) is located at the coast of South Africa in the De Hoop Nature 

reserve in the southern Cape region (Noah, 2011). The cave is a composite marine abrasion cave formed in quartzite where 

the entrance is almost completely closed by travertine derived from overlying, aeolian calcarenite dunes. The narrow entrance 

leads to a first chamber followed by a steep slope down to the main room (Fig. S1). The interior of the cave is largely filled 145 

with columnar stalagmites that have grown since the entrance wall closed the cave. The speleothem used in this study (BL3) 

was collected in a smaller chamber adjacent to the main room (Adigun, 2016). The cave floor mainly consists of sand mixed 

with bat guano. An	Onset HOBO U23-001 ProV2 temperature logger was placed in the cave in February 2018 and data were 

collected in January 2019 and March 2020. In 2018, dripping was not active, and the logged relative humidity (rH) was ~90%. 

During the two subsequent visits in January 2019 and March 2020, dripping in the cave was active and the logged rH was 150 

~100% (Fig. S2). Temperature in the cave was fairly stable between February 2018 and March 2020 and varied from 16.4 to 

18.8 °C with a mean temperature of 17.5 ± 0.5°C (±1SD). Slightly further inland, at the Potberg station (34°22.623’S, 

20°02.044’E, 176 m a.s.l.), the mean annual temperature was 16 ± 5 °C for the same period with annual precipitation of 220-

380 mm. At Klipdrift sea cave (34°27.096’S, 20°43.458’E), a few kilometers west along the coast, a mean annual temperature 

of 17.6 ± 0.3 °C (±1SD) was recorded. The similar temperatures recorded at the two sites allow us to exclude potential warming 155 

from guano degradation at Bloukrantz cave as the Klipdrift sea cave does not shelter a bat colony. Bloukrantz cave is ideally 

positioned in the YRZ to provide local paleoclimate reconstructions in relation with key archeological sites such as Blombos 

cave and Klipdrift shelter. 

2.2 Sample description  

Sample BL3 (Figs. 2, S3) is 425 mm long and 105 mm wide at its widest (close to mid-height). The stalagmite displays two 160 

distinct growth episodes with a clear hiatus at 198 mm from the top (Fig. S3). The pre-hiatus part consists of white milky 

calcite with microcrystalline fabric according to the classification scheme of (Frisia, 2015) and displays multiple changes of 

the direction of the stalagmite growth axis, most likely linked to lateral shifts of the dripping site. After the hiatus, stalagmite 

BL3 features a 100 mm long straight section of translucent calcite with brittle columnar fabric (Frisia, 2015) that also covers 

the flanks of the lower part (Fig. S4). The top 95 mm consist again of microcrystalline, milky calcite, and shows clear layering. 165 

In this study, we are focusing mainly on the lower part of BL3 that formed during MIS 3 while the upper part formed during 

the Holocene. The clear growth axis changes observed at 241, 292, 312, 354, 380, and 401 mm (dashed lines in Fig. 2) are 

associated with darker layers. The surfaces of these dark layers show slight dissolution features and indicate potential short-

term growth interruptions of the stalagmite (S. Frisia, personal communication).  

Apart from these dark hiatus layers, inspections of thin sections did not reveal any significant changes of the calcite fabric 170 

throughout the MIS 3 part of the sample. The orientation of the calcite crystals in the microcrystalline fabric does not exhibit 
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preferential crystallographic orientation, which is indicated by the tipped terminations of small intra-crystalline fluid 

inclusions. The calcite fabric as a whole is quite porous, which explains its milky appearance. Fluid inclusions, both intra- and 

inter-crystalline, are abundant but of small size. A large portion of the inclusions is two-phase containing liquid water and a 

gas bubble. It is not yet clear whether the gas bubble contains air that might have been trapped during the formation of 180 

inclusions, or water vapor that would rather indicate post-formation water loss or volume alteration of the inclusions. Mono-

phase liquid inclusions, in contrast, were found to be relatively sparse. 

2.3 Sample preparation  

The sample was cut lengthwise into 1 cm thick slabs. One slab was used for X-ray Fluorescence (XRF) scanning while a 

second slab cut form the other half of the stalagmite was used for dating, isotopic analyses, and microthermometry analyses. 185 

Since stable isotopes and trace elements were measured on different slabs, the Sr/Ca and the stable isotopes transects show 

slight offsets which can be accounted for by tracing visible layers in both slabs (grey bars in Fig. 2 connect equivalent features). 

2.3.1 U-Th dating 

Subsamples for dating were drilled using a Sherline 5410 milling stage mounted with a 1.5 mm drill bit. The chemical 

separation procedure was largely derived from Edwards (1988). Briefly, ~250 µg of carbonate powder was spiked using a 190 

mixed solution of 229Th-233U-236U, calibrated using a Harwell uraninite (HU-1) solution considered at secular equilibrium. 

After dissolution with concentrated HNO3, Fe-precipitates were formed by addition of clean Fe and stepwise addition of 

NH4OH. After centrifugation the Fe-precipitate was dissolved in HCl and loaded onto AG1X8 resin, where Th was separated 

from U. Each fraction was then purified by another pass through AG1X8 resin for Th and U-TEVA resin for U. Isotopic ratios 

were measured at the Department of Earth sciences at the University of Bergen in dry plasma mode on a Nu Plasma II 195 

instrument upgraded with a plasma 3 source. Isotopic ratios were measured by peak jumping on a secondary electron multiplier 

(SEM). Mass bias was corrected using the 236U/233U spike ratio. A HU-1 solution was used as a standard solution to monitor 

analytical sessions. Activity ratios were calculated using decay constant values from Cheng et al. (2013). Ages were calculated 

using the Excel Isoplot add-in 3.75 (Ludwig, 2003) without decay constant uncertainties. All U-series data reported in tables 

and figures are presented with a ±2SD uncertainty. The 232Th/238U bulk Earth ratio of 3.8 was used to correct 230Th ages for 200 

detrital Th contamination (Taylor and Mclennan, 1985). Two samples were additionally dated at the Isotope Laboratory at 

Xi’an Jiaotong University (see supplement). 

2.3.2 Trace elements 

Sr/Ca ratios can be rapidly obtained by non-destructive XRF scanning (Scroxton et al., 2018). For this study, Sr/Ca ratios were 

measured on an ITRAX XRF core scanner from Cox Analytical Systems (Gothenburg, Sweden) using a 3 kW molybdenum 205 

(Mo) X-ray tube. The voltage was set to 28 kV, current to 28 mA, resolution to 200 µm, and exposure time to 20 s (Rokkan, 

2019). The slab on which the XRF scanning was performed was further cut in smaller pieces and placed onto a flat plexiglass 
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support inserted on top of the rail system. The stalagmite pieces were rotated so that the scans were taken parallel to the growth 

axes. The data presented here are the average of three parallel scans performed a few mm apart.  210 

2.3.3 Calcite stable isotopes 

Using the milling stage, carbonate powder was milled continuously in 1mm increments along transects following the growth 

axis of the BL3. Oxygen and carbon isotope ratios were measured on 30-50 µg samples following routine protocols at Farlab 

(Facility for advanced isotopic research and monitoring of weather, climate and biogeochemical cycling) on a Thermo Fisher 

Scientific MAT253 isotope ratio mass spectrometer with a Kiel IV carbonate preparation device. The δ13Cc- and d18Oc-values 215 

were calibrated against an in-house marble standard and NBS18, and are expressed in ‰ against VPDB. Reproducibility of 

standard measurements was better than 0.10 ‰ (1SD) for d18O and better than 0.05 ‰ (1SD) for δ13C. 

2.3.4 Microthermometry (liquid-vapor homogenization temperatures) 

The microthermometric approach uses the density of water in stalagmite fluid inclusions as a proxy to reconstruct cave 

temperature. The application of the microthermometry method to fluid inclusions in stalagmites is described in detail by Krüger 220 

et al. (2011) and sample preparation is described in Løland et al. (2022). Briefly, blocks of 20 mm width and 30-40 mm length 

were cut from the second slab alongside the isotope transects. Then, ~300 µm thick sections were cut from the calcite blocks 

with a low-speed saw (Buehler Isomet), and these unpolished thick sections were broken into smaller pieces of ~4x4 mm to 

fit on the sample holder of the microscope heating/freezing stage (Linkam THMS600). Individual monophase fluid inclusions 

were selected for analysis and cooled to 5 °C. At this temperature, the inclusion water is in a metastable liquid state and a 225 

femtosecond laser pulse was used to nucleate a vapor bubble (Krüger et al., 2007). Upon subsequent heating the vapor bubble 

becomes progressively smaller and eventually disappears at the liquid-vapor homogenization temperatures (Th(obs)). The 

measured Th(obs) values were then corrected for surface tension effects using an additional measurement of the vapor bubble 

radius at known temperature and a thermodynamic model (Marti et al., 2012) to calculate the water density and thus the 

formation temperature of the fluid inclusion. Information on the original density of the former drip water can be obtained only 230 

from monophase liquid fluid inclusions. Measurements of Th(obs) and of the bubble radii were challenging because of the small 

size of the inclusions (100 - 3000 µm3). In some cases, the collapse of the vapor bubble at Th(obs) could not be observed directly. 

In these situations, a temperature cycling procedure with stepwise heating and subsequent cooling was applied to determine 

the homogenization temperature precisely. Bubble images for the radius measurements were taken at 5.1 ˚C where the vapor 

bubble in a calcite confined system reaches maximum size. Between 5 to 20 inclusions were measured in triplicate for each 235 

layer, depending on the number and size of available inclusions. Mean temperatures of coeval inclusions from the same growth 

layers were considered as a best estimate of the stalagmite formation temperature at the respective sample position. 

Temperature uncertainties are reported as 2 standard error (SE) of the mean. 
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2.3.5 Fluid inclusion water isotopes 

The remaining part of the blocks was divided in 3-5 mm wide lamella cut along the curved stalagmite growth layers using a 

diamond wire saw (Well 3421). These layer-parallel samples were then split into coeval subsamples of about 0.2-0.4 g for 260 

replicate measurements of fluid inclusion water isotopes. A total of 31 layers were analyzed, 25 at Farlab in Bergen and 6 at 

the University of Bern. The analytical setup in Bergen is described by Sodemann et al. (2023). Briefly, aliquots of >100 mg 

were crushed in a heated (120 °C) crusher device (similar to that described by e.g. De Graaf et al., 2020) connected to a Picarro 

L2130-i laser spectrometer. A microdrop device ensures a stable humidity background in the air stream that purges the crusher. 

After loading the sample into the preheated crusher, it took about 15-20 minutes to achieve a stable water background in the 265 

system. The fluid inclusion water was then released by crushing the sample and its isotopic composition was determined by 

subtracting the water background from the signal (Affolter et al., 2014). The analytical setup in Bern is described in Affolter 

et al. (2014). 

FIWI analyses could be performed only in the MIS 3 part of the stalagmite and on the topmost layers, because water yields 

from the columnar fabric of the Holocene part were too low. Data accuracy and reproducibility were estimated using in-house 270 

water standards sealed in borosilicate capillaries and crushed in the analytical line. Reproducibility was <0.4 ‰ for δ18O and 

<1.2 ‰ for δ2H (± 1SD). Results are reported as the average of 3 replicates per layer and uncertainties are calculated as 1SD 

or set as 0.4 ‰ for δ18Ow and 1.2 ‰ for δ2Hw, whichever was larger. FIWI temperatures were calculated using the empirical 

relationship from Tremaine et al. (2011), with the d18Oc measured on the crushed carbonate remaining after water isotope 

analyses. Uncertainties are reported as ±1 SD and include error propagation of both water and calcite δ18O. 275 

3 Results  

3.1 U-Th dating and Age model  

A total of 21 dates were obtained and range from 1.29 ± 0.01 to 47.54 ± 0.37 ka (see supplementary material). Two dates (at 

428 and 339 mm) were rejected as clear outliers. The age-depth model was calculated using the StalAge algorithm in R (Scholz 

and Hoffmann, 2011) as two distinct sections, before and after the hiatus, and is reported with a 95% confidence interval. The 280 

two dates performed at the Isotope Laboratory at Xi’an Jiaotong University have been included in the age-depth model. The 

age-depth model (Fig. S5) displays an almost linear growth from 48.4 to 45.2 ka with an average growth rate of 0.07 mm/yr 

except from ~46.0 to 46.4 ka when the growth appeared to have been faster with an average growth rate of 0.19 mm/a. After 

the hiatus, the growth was slower from 7.6 to 3.6 ka (0.06 mm/a) and faster from 3.6 to 1.5 ka (0.09 mm/a). 

3.2 Trace elements  285 

The Sr/Ca count ratios range from 288 to 687 (Fig. 2 and Fig. S6). For the lower part (MIS 3 section), a series of positive 

excursions of variable amplitude are overprinted on the baseline signal. The baseline itself increases slightly from 432 to 260 

mm (48.4 to 46 ka), followed by a more pronounced increase after 260 mm (46 ka).  
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After the hiatus (Holocene section), the Sr/Ca signal drops markedly with an average value of 348 between 200 and 150 mm 

(7.6 to 3.5 ka), followed by a gradual increase between 150 to 90 mm (3.5 to 2.9 ka) to values of 500. From 90 mm towards 

the top of the stalagmite (2.9 to 1.5 ka) values remain high with large variability. The Holocene section is characterized by an 

overall higher frequency variability. 300 

3.3 Calcite stable isotopes 

Bottom (MIS 3) and top (Holocene) part δ18Oc values range from -3.7 to -1.0 ‰ and from -5.1 to -2.6 ‰, respectively. δ13Cc 

values range from -7.9 to -1.4 ‰ for the bottom (MIS) 3 part and from -8.6 to -2.6 ‰ in the top (Holocene) section. δ18Oc and 

δ13Cc closely follow the same pattern. As with the Sr/Ca record, the isotopic baseline of the bottom (MIS 3) section displays 

little variation from 432 to 260 mm (48.4 to 46 ka) followed by an increase after 260 mm (46 ka) of up to 1 ‰ in δ18Oc	and 3 305 

‰ in 𝛿13Cc. A series of peaks is superimposed on the baseline in both the δ18Oc	and	𝛿13Cc records and corresponds to similar 

peaks in the Sr/Ca signal and the presence of dark layers in the sample. The amplitude of these excursions varies from 0.9 to 

1.7 ‰ for δ18Oc and from 2.3 to 5.1 ‰ for 𝛿13Cc. The top (Holocene) part displays lower values in both δ18Oc	and	𝛿13Cc 

immediately after the hiatus with little variation until 150 mm (3.5 ka), followed by a gradual increase until 90 mm (2.9 ka) 

and high values throughout the rest of the record. 310 

3.4 Microthermometry 

A total of 17 layers were analyzed including one in the Holocene part for comparison with the present-day temperature. 

Stalagmite formation temperatures reconstructed from the topmost Holocene part of BL3 (microcrystalline fabric), dated at 

1.8 ka, indicate an average value of 17.6 ± 0.6 °C (2SE), which is close to the present-day cave temperature (17.5 ± 0.5 °C) 

derived from cave monitoring. Most samples display slightly skewed (towards either low or high values) Gaussian-like 315 

distributions and a scatter of the temperature data within the individual layers ranging between 3-6 °C (see Fig. S7). Some 

samples, however, show a larger range (7-9 °C) with semi-uniform (i.e., flatter) distributions and larger standard error of the 

mean; nonetheless, these samples provided mean temperatures similar to adjacent samples with smaller ranges (Fig. S5). 

Standard errors of the mean range from 0.5 to 2.0 °C. The considerably larger errors compared to the study of  Løland et al. 

(2022) are, at least partly, due to the lower number Th measurements. In general, the reconstructed temperatures are similar 320 

throughout the MIS 3 part of the stalagmite (Fig. 3 and Fig. S7), ranging from 17.7 ± 1.1 °C to 20.7 ± 1.3°C (2 SE). Apparent 

differences between data points are within error and therefore not interpreted here.  That being said, the temperature record at 

face value suggests more variability from 46.5 until 45.3 ka, with the highest temperature determined at ~45.8 ka (Fig. 3 and 

Fig. S7). The average temperature observed in the MIS3 part is 18.8 ± 0.5 °C (mean and standard deviation across all average 

temperatures) 325 
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3.5 Fluid inclusion water isotopes 

The FIWI data are distributed in two clusters in a cross-plot of δ2Hw versus δ18Ow (Fig. 4). The older cluster comprises samples 

from the base of BL3 to ~46 ka and plots along the local meteoric water line (LMWL – from GNIP station at Cape Town 

airport from 1961 to 2013) with values ranging from -3.8 to -2.4 ‰ and from -17.4 to -10.2 ‰ for δ18Ow and δ2Hw, respectively. 430 

Samples younger than ~46 ka plot as a distinct cluster, slightly off the LMWL, and with higher values ranging from -1.0 to -

0.5 ‰ and from -4.7 to -2.0 ‰ for δ18Ow and δ2Hw, respectively. Timeseries of both δ18Ow and d2Hw display trends similar to 

the δ18Oc baseline with little variations from 48.3 to 46 ka followed by an increase after 46 ka (Fig. 3).  

There are three possible ways of calculating cave temperature based on the available dataset. The first method is by estimating 

today’s δ2H relationship to temperature and applying it to the past considering this relationship has not significantly changed 435 

over time (e.g. Affolter et al., 2019). At Mossel bay (east of Bloukrantz Cave in the YRZ), Braun et al. (2017) found that there 

is a weak correlation (R=0.4) between δ2H and temperature (δ2H=2.7(±0.6)*T-54(±10)). Applying this relationship results in 

temperature estimates 4-5°C lower than microthermometry and standard deviations >4°C (1SD). The second approach is to 

calculate δ18Ow from the measured δ2Hw using a modern δ18Ow vs δ2Hw relationship (i.e. LMWL), and then calculating the 

temperature using the Tremaine et al. (2011) equation (e.g. Meckler et al., 2015). This approach is often favored as δ2Hw is 440 

less impacted than δ18Ow by fractionation processes in the cave or analytical system. It relies, however, on the assumption that 

the LMWL has not changed significantly over time. At Bloukrantz cave this approach results in FIWI temperature on average 

~4°C lower than microthermometry and larger standard deviations compared to the third approach (Fig. S8). The third 

approach is to calculate temperatures using the equation of Tremaine et al. (2011) with measured δ18Oc and δ18Ow. The 

calculated temperatures range from 15.4 to 21.1 °C from 48.3 to 46 ka and are in good agreement with liquid-vapor 445 

homogenization temperatures (Fig. 3 & S8) with the exception of the peaks in δ18Oc where FIWI temperatures are ~3°C colder. 

This last approach is the one we selected as we believe it is the most likely to render actual temperature variation in the cave. 

After 46 ka, FIWI temperatures depart from the microthermometry results with positive offsets of 5 to 15 °C. d-excess values 

are fairly constant throughout the record with an average value of 9.7 ± 1.9 (1SD), except for the younger samples that display 

decreasing values starting at ~46 ka (Fig. S9). 450 

4 Discussion 

4.1 Hydroclimate  

Interpreting isotopic and geochemical proxies in speleothems is not straightforward as epikarst and cave processes, directly or 

indirectly linked to climate, can alter the proxy signals (e.g. Fairchild and Baker, 2012b; Mickler et al., 2004; Oster et al., 

2012). The BL3 record displays a strong correlation between δ18Oc and 𝛿13Cc (R2 values ≥ 0.9) that can reflect out-of-455 

equilibrium precipitation. Trace element incorporation (e.g., Sr) in the carbonate matrix is related to hydroclimate changes and 

higher Sr/Ca values are commonly interpreted to reflect prior carbonate precipitation - PCP (Baker et al., 1997; Fairchild et 

al., 2000; Fairchild and Treble, 2009; Frisia et al., 2011; Wassenburg et al., 2020). PCP can be defined as carbonate 
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precipitation upstream of the final drip site, either in the epikarst or in the cave itself, during i) periods of lower cave pCO2 

prompting CO2 degassing and precipitation of carbonate or ii) drier periods when an increased proportion of air in the lower 

epikarst and/or longer residence time of the water on the cave ceiling/stalactites allow CO2 degassing and precipitation along 

the flow path. During PCP, many trace elements including Sr preferentially remain in the solution (Morse and Bender, 1990), 

appearing enriched over Ca in the subsequent carbonate precipitating on the stalagmite. PCP also changes both 𝛿13Cc and δ18Oc 480 

towards higher values as light isotopes will be removed from the dissolved inorganic carbon (DIC) reservoir during CO2 

degassing (Deininger et al., 2021; Dreybrodt, 2008; Hansen et al., 2019), with increases of up to 2 ‰ and 7 ‰, respectively, 

for δ18Oc and 𝛿13Cc at T=20°C (Hansen et al., 2019). From our dataset we observe a slope of 2.45 for the 𝛿13Cc vs δ18Oc 

correlation which points to incomplete O-isotope buffering between the DIC and H2O reservoir, based on the Rayleigh 

distillation model developed by Mickler et al. (2006). In this model, a vertical slope corresponds to complete buffering, while 485 

a slope of 0.52 is the theoretical limit for a system with no buffering. The rate of recharge, illustrated by the drip-rate, and cave 

pCO2 are considered to be the primary controls on PCP (Fohlmeister et al., 2020; Oster et al., 2012), with both lower cave 

pCO2 and lower drip rate favoring PCP either in the lower epikarst or at the cave ceiling (Frisia et al., 2011). Individually, 

Sr/Ca ratios, δ18Oc and 𝛿13Cc can be influenced by a variety of mechanisms (e.g. Fairchild et al., 2000; Fohlmeister et al., 2020; 

Lachniet, 2009), however the correlation of the three proxies and the fact that the relative amplitude among peaks in both δ18Oc 490 

and 𝛿13Cc is similar indicates that these proxies are influenced by a common mechanism. We hence propose that stable isotope 

and Sr/Ca ratios in stalagmite BL3 are controlled primarily by PCP.  

Major growth direction changes and dark layers are concomitant with each peak and further examination of these layers reveals 

signs of dissolution/erosion on top of organic-rich layers. These observations could point to microbial activity during periods 

of lower drip rate, allowing bacterial communities to colonize the stalagmite surface (pers. Comm. Silvia Frisia). The layers 495 

therefore appear to correspond to short hiatuses, indicating that drip water availability rather than ventilation drives PCP in 

Bloukrantz cave. A likely scenario is therefore that periodic drying episodes caused both the observed variations in the 

geochemical parameters and the visual changes in the speleothem. As conditions became drier, the drip-rate would have 

decreased, allowing for more PCP as for example during the period with lower rH in 2018 when there was no active dripping 

in the cave (Fig. S2). Eventually, calcite growth would stop, allowing for dust to settle at the top (i.e. dark layers) and alteration 500 

of stalagmite surfaces, until growth resumed (with or without growth direction change) under wetter conditions. 

In addition to the pronounced peaks, both the Sr/Ca ratio and the isotope profiles display an increase in the baseline after ~46 

ka that indicates general drying if the same interpretation is applied (i.e. higher values reflect drier conditions). Interestingly, 

this increase in the baseline at ~46 ka corresponds to a thinning of the stalagmite’s width (see Fig. 2) likely due to slower drip-

rate as conditions became drier (Fairchild and Baker, 2012a). Overall, the record from 48.3-45.2 ka can thus be interpreted as 505 

variable precipitation from 48.3 to 45.2 ka with short, marked drier episodes and overall drying after ~46 ka. Based on our age 

model, the duration of the dry phases was ~ 200 ± 200 yrs, with relatively large uncertainty due to the 0.3 – 0.8 % uncertainty 

of the U-Th dates. We also note that the duration of the isotopic peaks could have been even shorter if unresolved hiatuses are 
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present. Despite the remaining uncertainty in the duration of the dry phases, it is clear that they represent processes operating 

on sub-millennial (centennial or decadal) timescales.  525 

 

Comparison with other paleoclimate records is hampered by the scarcity of regional high-resolution records and by the relative 

short time period covered by our data (<3 kyrs). That being said, the Antarctic temperature record based on δ18O from the 

EPICA Dronning Maud Land (EDML) ice core (Epica Community Members et al., 2006; Epica Community Members et al., 

2010) shows some similarities. Notably, a cooling phase starting at ~45.9 ka at EDML appears to coincide with what we 530 

interpret as overall drying at Bloukrantz cave (Fig. 5). Cooling in Antarctica has been associated with an equatorward shift of 

the southern westerlies belt, causing a northward extension of the winter rainfall zone along the west coast of Africa (Chase 

and Meadows, 2007; Engelbrecht et al., 2019; Stuut et al., 2002). This is illustrated in core MD96-2094 from Walvis Ridge 

off southwest Africa (19°59.97’S, 9°15.87’E), where the Aridity index developed by Stuut et al. (2002) starts decreasing 

around 46 ka and until 40 ka, matching a speleothem growth period in northern Namibia (18°15.42’S, 13°53.68’E; Railsback 535 

et al., 2016), and indicating increased rainfall due to northward movement of the westerlies. Similarly, off Southeast Africa, 

on the Agulhas Plateau, an increase in ice-rafted debris at ~ 46.1 ka and a gradual decrease in Agulhas Leakage Fauna both in 

the Cape Basin record (Peeters et al., 2004) and in core CD 154 17-17K (Simon et al., 2013) are associated with a northward 

shift of the Subtropical Front. These observations have been interpreted as a northward shift of both atmospheric (southern 

westerlies belt) and oceanic (subtropical front) circulation systems as a result of cooling in Antarctica. On land, a speleothem 540 

record from Wolkberg cave, in the Limpopo Province in the northeastern part of South Africa (Holzkämper et al., 2009), 

spanning the period of ~59 to 46 ka, displays a hiatus at 46.3 ka, coinciding with the onset of overall drier conditions at 

Bloukrantz cave. The presence of hiatus(es) is generally not systematically linked to drier conditions, however, other records 

offer some line of evidence for lower precipitations in the summer rainfall zone. The speleothem record from Lobatse cave in 

Botswana (Holmgren et al., 1995) presents a sharp increase (~6 ‰) in 𝛿13Cc at ~46 ka followed by constant high 𝛿13Cc values 545 

and a hiatus at 43.2 ka. This signal was interpreted as drier conditions in the northeastern part of South Africa (in the SRZ). 

Further away, in southwestern Madagascar (24°06’S, 43°46’E) a speleothem growth period from ~48 to 46 ka has been linked 

to Antarctic isotope maxima (i.e. warmer periods) and high solar summer irradiation, allowing the southward expansion of the 

intertropical convergence zone and associated rain-bearing system to reach southwestern Madagascar (Burns et al., 2022). The 

growth period of these records collectively points to overall drier conditions in the Summer rainfall zone between 46 to 43 ka 550 

and correlates well with reconstructed rainfall amount at Tswaing crater (Partridge et al., 1997) that shows a decrease in rainfall 

amount starting at 50 ka and reaching a minimum at 44 ka. 

In combination with these lines of evidence from the SRZ, the overall drier conditions at Bloukrantz cave at 46 ka and the 

subsequent stop in growth at 45.3 ka could be explained by reduced summer rainfall through a northward shift of the southern 

westerlies belt. Such northward expansion of the WRZ has also been simulated for Last Glacial Maximum conditions 555 

(Engelbrecht et al 2019). In the simulation, this northward shift of the westerlies was paired with drier conditions along a 

narrow stretch along the south coast due to berg-wind conditions along the Cape Fold mountains. Our data indeed suggest that 
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with Antarctic cooling during MIS 3, winter rainfall did not provide sufficient moisture to sustain carbonate growth at 

Bloukrantz cave and that the northward expansion of the WRZ is not matched by a similar eastward expansion and/or is linked 

to reduced westerlies intensity. 575 

In contrast to the overall drying trend, the repeated apparent drying we observe in our record in the form of peaks in isotope 

ratios and Sr/Ca is not directly matched in the isotopic records from Lobatse cave or Wolkberg cave. However, the Wolkberg 

record displays some marked variability in aragonite/calcite content with shifts from 100% calcite to >90% aragonite on sub-

millennial to millennial timescales (Holzkämper et al., 2009). Holzkämper et al. (2009) tentatively linked higher aragonite 

content to drier conditions as factors controlling the formation of aragonite are low drip rates, higher temperature and high Mg 580 

concentration in the drip water, the latter likely linked to decreased precipitation and longer residence time in the epikarst 

(Frisia et al., 2002). This could suggest that these sub-millennial events are not restricted to the southern Cape coastal area but 

may have been more regional. 

4.1 Temperature 

The good agreement between the youngest (Holocene) microthermometry estimate with measured cave temperature (green 585 

diamond in Fig. 3c) shows that the microthermometry method can provide reliable cave temperatures for Bloukrantz cave, 

despite the challenges posed by the small size of the fluid inclusions in BL3 and scarcity of monophase liquid inclusions. 

Microthermometry temperatures during the MIS 3 section of our record reveal an average temperature of 18.8 ± 0.5 °C, i.e., 

about 1 °C warmer compared to present day (Fig. 3c). The slightly warmer temperature is noteworthy given that the time 

period covered by the record is within the last glacial period, with colder-than-Holocene temperatures in most parts of the 590 

world. Our results suggest that, in the southern Cape region of South Africa, the overall globally cooler conditions are offset 

by other influences, such as changes in ocean circulation or the coastline distance due to lower relative sea level. Offshore of 

southern Africa, reconstructed SST for MIS 3 are > 1-4 °C colder than modern day in the Indian (Fig. S10; Simon et al. 2013), 

Southern (Dyez et al. 2014) and Atlantic (Kirst et al., 1999) sectors. The Southern sector (Dyez et al., 2014) records the smallest 

temperature offset, with 1.0°C colder temperature for MIS 3 than for modern-day, compared to 2.8°C and 4.1°C in the Indian 595 

Ocean and Atlantic Ocean respectively. Moreover, a 70 m lower relative sea level during the interval covered by our record 

(Grant et al., 2012) would have shifted the coastline seawards by almost 10 km (Jacobs et al., 2020). Göktürk et al. (2023) 

simulated that such a coastline shift would result in drier conditions and more pronounced continentality along the coastline 

of the southern Cape region, with higher (lower) daily max (min) temperature and overall higher mean annual temperature 

which could explain why higher than today temperatures are recorded at Bloukrantz cave. 600 

 

Interestingly, no significant changes in temperature are found during most of the Sr/Ca and isotope peaks, suggesting that the 

process(es) influencing the calcite composition are not related to temperature. The peaks observed in the calcite-based proxies 

are also not apparent in the FIWI signal. When PCP occurs, δ18O and δ13C of the DIC increase as primary calcite is precipitated; 

the δ18O of the DIC will then gradually decrease due to re-equilibration with the water over time (Deininger et al., 2021; 605 
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Hansen et al., 2019). If the time between PCP and the subsequent calcite precipitation on the stalagmite is not long enough to 

allow for O-isotope equilibration with H2O, δ18Oc of the stalagmite calcite will be elevated compared to what would be 

expected from the δ18Ow and the cave temperature (Deininger et al., 2021; Dreybrodt and Fohlmeister, 2022; Hansen et al., 

2019). Indeed, while FIWI temperatures calculated using the T-𝛼	relationship from Tremaine et al. (2011) show generally very 640 

good agreement with microthermometry from 48.3 to 45.8 ka, they deviate during the isotopic peaks with FIWI-T ~3°C colder 

than the corresponding microthermometry. The FIWI results thus further support our interpretation of the isotope peaks as 

cave-internal processes controlled by hydroclimate. 

After 46 ka, FIWI temperatures clearly depart from microthermometry estimates with values 5 to 15°C warmer. In δ18Ow vs 

δ2Hw space, these younger samples plot as a distinct cluster away from the LMWL, in contrast to the samples older than ~46 645 

ka (Fig. 4). Such departure from the LMWL has been observed in other studies (Van Breukelen et al., 2008; Wainer et al., 

2011; Warken et al., 2022) and could point either to analytical artefacts (e.g. Fernandez et al., 2023; Matthews et al., 2021) or 

to in-cave processes such as evaporation (Warken et al., 2022). Water content in the samples can in some cases track potential 

water loss during the analytical procedure as fabric amenable to leaking will result in both lower water content and a departure 

from the MWL (Fernandez et al., 2023; Matthews et al., 2021). Here, the water content displays little variation through most 650 

of the record (Fig. 4 and Fig. S7) except for 2 samples with higher water content at ~45.9 ka, just before the FIWI data depart 

from the LMWL. In addition, replicate measurements of the younger samples do not show any trend in δ18Ow vs δ2Hw space 

as would be expected from variable partial loss of water during heating of the samples (Fernandez et al., 2023). Further, no 

changes in the speleothem fabric were detected that could explain a change in behavior during analysis for these samples. We 

thus do not have any evidence that suggests analytical artefacts could cause the departure of the younger MIS 3 samples away 655 

from the LMWL.  

An alternative explanation could be in-cave evaporation (e.g. Warken et al., 2022). Using a Craig-Gordon evaporation model 

(Craig and Gordon, 1965) with an n value of 1 (i.e. non-turbulent atmosphere), and the average δ2Hw and δ18Ow values from 

the data points > 46 ka as a starting point, <5% loss to evaporation under rH between 80 to 85 % could explain the isotopic 

values of the younger samples. These are not unrealistic conditions, as rH of 86 % has been measured when no dripping was 660 

observed in the cave (Fig. S2). Cave evaporation occurs when relative humidity decreases as a consequence of i) better 

ventilation, when the cave air is partially replaced by outside air with a lower rH, or ii) lower drip rate, decreasing the water 

supply to the cave and thus the rH. Wind-induced changes in ventilation seem unlikely given the cave geometry, whereas 

changes in ventilation induced by thermal convection (Fairchild and Baker, 2012c) are not supported by the apparently constant 

microthermometry temperatures during most of the record. We hence suggest that slower drip rate and lower water supply 665 

could be the cause for lower rH, leading to evaporation in the cave and elevated δ18Ow and δ2Hw of the younger samples at the 

end of the MIS 3 section. This interpretation is also in line with the calcite-based proxies suggesting a drying trend leading up 

to the prominent growth hiatus. 
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5 Summary and conclusions 

This study presents a 3 kyr long, high-resolution and multi-proxy record of temperature and hydroclimate at the southern coast 675 

of South Africa during MIS 3 (45.2-48.3 ka). Based on fluid inclusion microthermometry, we reconstruct an average cave 

temperature for the MIS 3 section of the stalagmite of 18.8 ± 0.5 °C, slightly warmer compared to the present day. This 

difference could be due to increased continentality. We find generally good agreement between the microthermometry and 

water isotope-based temperature estimates, with exceptions during parts of the record where other proxies indicate drier 

conditions.  680 

During the investigated time interval of MIS 3, precipitation at the site appears to have been highly variable. Short episodes of 

higher δ18Oc, 𝛿13Cc and Sr/Ca values are likely linked to Prior Carbonate Precipitation and to drier conditions. These 

fluctuations in hydroclimate do not appear to be accompanied by substantial changes in temperature.  

After 46 ka, a trend in the calcite proxy baselines and a distinctly different isotope signal in the fluid inclusions is interpreted 

to reflect overall drier conditions with potential evaporation in the cave. Drier conditions between 46 to 43 ka are also observed 685 

in other records from the Summer Rainfall Zone, whereas wetter conditions were reconstructed further north in Namibia. 

Given a coeval cooling at Dronning Maud Land in Antarctica, these observations together suggest a potential influence of the 

Antarctic ice sheet through a northward displacement of the Southern westerly wind belt shifting the rain pattern over South 

Africa. 
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Figure 1: Map of southern Africa showing the study site (red circle) with the main rainfall zones (grey shading) and other sites 1060 
referred to in the text (yellow circles). Major atmospheric circulation is indicated by thin black arrows and major oceanic currents 
are indicated by thick white arrows. BC - Blauwkrantz cave; WC - Wolkberg cave (Holkämper et al. 2009); LC - Lobatse cave 
(Holmgren et al. 1995); TC - Tswaing crater (Partridge et al. 1997); EC – Efflux Cave (Braun et al. 2020); CC – Cango Cave (Talma 
and Vogel 1992; Chase et al. 2021); PP – Pinnacle Point (Bar-Matthews et al. 2010). Marine cores MD02-2588; CD154 17-17K (Simon 
et al. (2013); GeoB 1711 (Kirst et al. 1999); MD02-2594 (Dyez et al. 2014) and CBR (Peeters et al. 2004). WRZ - Winter Rainfall 1065 
Zone (dark grey); YRZ - Year-round Rainfall Zone (grey); SRZ - Summer Rainfall Zone (light grey); AC - Agulhas Current; BC - 
Benguela Current; SAC - South Atlantic Current. 
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Figure 2: a. BL3 stalagmite. Dashed lines indicate the isotope transects along the main growth axes of the speleothem. The solid 
black line indicates the major hiatus between MIS 3 and the Holocene (see text). Sr/Ca and isotope analyses were measured on two 1075 
different slabs resulting in slight offsets between the records (illustrated by the grey shadings). b. Sr/Ca as count-rate ratios from 
XRF scanning; c. 𝛿18Oc; d. 𝛿13Cc. Dashed lines indicate the onset of darker layers in the stalagmite. Dating depths are indicated by 
the black square symbols on the x-axis (the open symbols correspond to the two samples measured at the Isotope Laboratory at 
Xi’an Jiaotong University). 
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Figure 3: BL3 proxy data vs age. a. 𝛿18Oc (grey line) and 𝛿18Ow (black circles); b. 𝛿2Hw (light blue circles); c. Temperature 
reconstructions from fluid inclusion water isotopes (ochre diamonds) and microthermometry (dark blue line and diamonds). Open 1100 
symbols correspond to samples analyzed at the University of Bern. In (c) the dashed line indicates the present-day temperature in 
the cave and the dark green diamond on the right corresponds to the topmost sample (microthermometry data). Black squares at 
the bottom indicates the U-Th dates and their associated error bars (2σ). The open square symbols correspond to the two samples 
measured at the Isotope Laboratory at Xi’an Jiaotong University. 
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 1115 
 
Figure 4: Fluid inclusion water isotope data plotted in 𝛿2Hw vs 𝛿18Ow space. Lines indicate the global (black) and local (dashed blue 
– from GNIP station at Cape Town airport from 1961 to 2013) meteoric water lines. The color bar on the right indicates the water 
content for each sample. The red dashed ellipse marks the youngest data cluster discussed in the text. Open symbols correspond to 
samples analyzed at the University of Bern. Error bars ± 1SD. 1120 
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 1135 

Figure 5: Comparison to other climate records: a. 𝛿18O from the EPICA Dronning Maud Land ice core in the Atlantic sector of the 
Antarctic Ice Sheet (EPICA community members 2006); b. 𝛿18Oc from Bloukrantz cave in the YRZ (this study); c. 𝛿13Cc from 
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Wolkberg cave in the SRZ (Holzkämper et al. 2009); d. 𝛿13Cc from Lobatse cave in the SRZ (Holmgren et al. 1995); e. Annual 
precipitation reconstruction from Tswaing crater in the SRZ (Partridge et al. 1997); f. Ice Rafted Debris from core MD02-2588 on 1140 
the southern Agulhas Plateau (Simon et al. 2013); g. Mean annual Sea Surface Temperature and Agulhas Leakage Fauna 
reconstructed from core CD154 17-17K in the southwest Indian Ocean (Simon et al. 2013). 
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