Orbital CO₂ reconstruction using boron isotopes during the late Pleistocene, an assessment of accuracy.

Elwyn de la Vega¹, Thomas B. Chalk², Mathis P. Hain³, Megan R. Wilding⁴, Daniel Casey⁵, Robin Gledhill⁶, Chongguang Luo^ë, Paul A. Wilson^³, Gavin L. Foster²⁷.

¹School of Ocean and Earth Science, National Oceanography Centre Southampton, University of Southampton, Waterfront campus, Southampton SO14 3ZH, UK.
²University of Galway, Ollscoil na Gaillimhe, department of Geography, University Road, Galway, H91 TK33, Ireland.
³Centre Européen de Recherche et d’Enseignement des Géosciences de l’Environnement (CEREGE), Bâtiment Pasteur, Europole Mediterraneen de l’Arbois BP80,13545 Aix-en-Provence cedex 4.
⁴Earth and Planetary Sciences, University of California, Santa Cruz, CA, USA.
⁵State Key Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, P.R. China.

Correspondence to Elwyn de la Vega: elwyn.delavega@universityofgalway.ie

Abstract.

Boron isotopes in planktonic foraminifera are a widely used proxy to determine ancient surface seawater pH, and by extension atmospheric CO₂ concentration and climate forcing on geological time scales. Yet, to reconstruct absolute values for pH and CO₂, we require a δ¹¹B_{foram-borate} to pH calibration and independent determinations of ocean temperature, salinity, a second carbonate parameter, and the boron isotopic composition of seawater. Although δ¹¹B_{derived records of atmospheric CO₂} have been shown to perform well against ice core-based CO₂ reconstructions, these tests have been performed at only a few locations and with limited temporal resolution. Here we present two highly resolved CO₂ records for the late Pleistocene from ODP Sites 999 and 871. Our δ¹¹B_{derived CO₂} record shows a very good agreement with the ice core CO₂ record with an average offset of 4.6 ± 49 (2σ) ppm, and a RMSE of 25 ppm, with minor short-lived overestimations of CO₂ (of up to ~50 ppm) occurring during some glacial onsets. We explore potential drivers of this disagreement and conclude that partial dissolution of foraminifera has a minimal effect on the CO₂ offset. We also observe that the general agreement between δ¹¹B_{derived and ice core CO₂} is improved by optimising the δ¹¹B_{foram-borate} calibration. Despite these minor issues a strong linear relationship between relative change in climate forcing from CO₂ (from ice core data) and pH change (from δ¹¹B) exists over the late Pleistocene, confirming that pH change is a robust proxy of climate forcing over relatively short (<1 million year) intervals. Overall, these findings demonstrate that the boron isotope proxy is a reliable indicator of CO₂ beyond the reach of the ice cores and can help improve determinations of climate sensitivity for ancient time intervals.

1- Introduction.

The boron isotope composition of ancient planktonic foraminifera shells is widely used to reconstruct past concentrations of atmospheric CO₂ and to understand the drivers and responses of climate change over orbital and geological time scales. Unlike many environmental proxies where it is difficult to assess the accuracy of the resulting reconstructions (e.g. for sea surface temperature), the boron isotope pH/CO₂ proxy can directly be compared with the ice core CO₂ records, i.e. the West Antarctic ice sheet divide (Ahn et al., 2012), the EPICA (European Project for Ice Coring in Antarctica) dome Concordia ice core record (Siegenthaler et al., 2005; Luthi et al., 2008; Bereiter et al., 2015), and the Vostock ice core record (Petit et al., 1999). This comparison of CO₂ over the last 800 kyr provides a very powerful test of proxy accuracy. Several past intervals have been studied to test the boron isotope proxy in this way.
Given the success of these comparisons, the boron isotope proxy has been used to investigate the interaction between CO$_2$, the ocean carbon cycle and climate beyond the reach of the ice cores, such as during the Mid-Pleistocene transition (Hönisch et al., 2009; Chalk et al., 2017; Dyez et al., 2018), the Pliocene (Martinez-Boti et al., 2015, de la Vega et al., 2020), the Miocene (Foster et al., 2012; Greenop et al., 2014, Guillermic et al., 2022), the Eocene (Anagnostou et al., 2016, 2020; Harper et al., 2020), Paleocene-Eocene boundary (Penman et al., 2014; Gutjahr et al. 2017) and the Cretaceous-Palaeogene boundary (Hennehan et al., 2019). Application of the boron isotope proxy is however complicated by the need for: (i) an empirical species-specific calibration of δ^{11}B$_{basonite}$ to δ^{11}B$_{borate}$ in the pH expression (Hennehan et al., 2013, 2016, hereafter δ^{11}B$_{basonite}$ calibration), sometimes including extinct species for deep-time reconstruction; (ii) δ^{11}B of seawater (δ^{11}B$_{sw}$), temperature and salinity in the past to calculate pH from δ^{11}B; and (iii) a second carbonate parameter (typically total alkalinity, total dissolved inorganic carbon, DIC, or calcite saturation state) to convert pH to CO$_2$. While these variables do not influence the magnitude of uncertainty equally in all time intervals, assessment of the boron-based reconstructions against existing ice-core records is a powerful test of the proxy’s accuracy.

Recently, Hain et al. (2018) suggested that the radiative forcing from CO$_2$ change (ΔF$_{CO2}$) is linearly related to pH change (\DeltapH) of equilibrated water of the low-latitude surface ocean when the CO$_2$ change occurs faster than the residence time of carbon with respect to silicate weathering (e.g., ~1 million years (Myr)). That is, glacial/interglacial CO$_2$ climate forcing could be estimated directly from reconstructed \DeltapH. Given that one of the main priorities for accurate reconstructions of past CO$_2$ levels is to allow determinations of climate sensitivity, defined as the temperature response to a radiative forcing – typically a doubling of CO$_2$ with associated slow and fast feedbacks (e.g. Rohling et al., 2013, 2018) – this recognition may provide a useful shortcut. Climate forcing is a perturbation of the planet’s energy balance averaged over the planet (Hansen et al., 2008) and CO$_2$ forcing, ΔF$_{CO2}$ expressed in W/m2, at a given time can be written as:

$$\Delta F_{CO2} \equiv \alpha_{2xCO2} \times \frac{\Delta \log_{10} CO2}{\log_{10} 2} \quad (1)$$

where α_{2xCO2} is the sensitivity of the radiative balance per doubling of CO$_2$, and $\Delta \log_{10} CO2$ is the CO$_2$ change over time expressed in terms of how many 10-foldings of proportional (not absolute) CO$_2$ change (Hain et al., 2018).

By considering basic equilibrium reactions of carbon species, $\Delta \log_{10} CO2$ can be derived and expressed as:

$$\Delta \log_{10} CO2 \equiv \Delta \log_{10} DIC + \Delta pK_4 + \Delta pK_1 - \Delta pH \quad (2)$$

Hain et al. (2018) showed that the terms $\Delta \log_{10} DIC$ and $\Delta pK_4 + \Delta pK_1$ are small and that $\Delta \log_{10} CO2$ can therefore simply be expressed as:

$$\Delta \log_{10} CO2 \equiv -\Delta pH \quad (3a) \quad \Delta F_{CO2} \equiv -\log_{10} \frac{2}{\alpha_{2xCO2}} \Delta pH \equiv -12.3 \Delta pH \quad (3b)$$

To assess the uncertainty of this approximate -1:1 $\Delta \log_{10} CO2$/\DeltapH relationship Hain et al. (2018) considered three different end-member causes to compute the accurate $\Delta \log_{10} CO2$/\DeltapH relationship: (1) DIC addition/removal yields a slope of -1.3:1 (relative to the basic formalism), (2) CaCO$_3$ addition/removal (e.g. precipitation/dissolution, riverine input) yields a slope of -0.9:1, and (3) warming/cooling yields a slope of -1:1:1. That is, even if ΔpH was known exactly this range of plausible slopes results in estimated $\Delta \log_{10} CO2$ and ΔF_{CO2} that are systematically biased by -10% for change caused purely by CaCO$_3$ variations or +30% for change purely caused by DIC variations relative to the
In light of these recent advances, our aims here are twofold. First, we extend previous ice-core validation studies (Foster, 2008; Henehan et al. 2013; Chalk et al., 2017) and test the extent to which boron isotopes reconstruct CO₂ faithfully when current methods and assumptions are applied. In contrast to most previous studies, we use two deep ocean sites and present δ¹¹B and CO₂ data at high temporal resolution (1 sample every ~3 to 6 kyr). This enables: (i) a thorough test of the assumptions typically made including the central tenet of atmospheric CO₂ proxies that surface ocean CO₂ remains in equilibrium with the atmosphere over time at any given site, (ii) an evaluation of the overall uncertainty of the proxy; (iii) an evaluation of the influence of variable foraminiferal preservation on the accuracy of the CO₂ reconstructed; and (iv) a refinement of a number of the input assumptions and uncertainties, including the δ¹¹B_foram calibration. Second, we evaluate the approach of Hain et al. (2018) and assess the robustness of pH change to not only provide insights into the magnitude of climate forcing from CO₂ change, but also the ability of this approach to provide insights into the causes of CO₂ change over glacial-interglacial cycles.

2.1 Core location and oceanographic setting.

To accurately reconstruct atmospheric CO₂ with the δ¹¹B-CO₂ proxy, it is essential to measure δ¹¹B in foraminifera from locations where the CO₂ flux between the ocean and the atmosphere is in near equilibrium. We therefore target regions of the ocean where the water column is stratified and oligotrophic as these regions are most likely to attain this condition (Takahashi et al., 2009). Here, following previous studies (Foster, 2008; Henehan et al., 2013; Chalk et al., 2017), we report data from ODP Site 999 (Figure 1, 12.75°N, 78.73°W, water depth 2827 m, sedimentation rate 3.7 cm/ky) in the Caribbean and supplement this well studied site with samples from ODP Site 871 in the Western Pacific (5.55°N, 172.35°E, water depth 1255 m, sedimentation rate ~1 cm/ky). The sediments studied at ODP Site 871 are shallowly buried and the site today features a deep thermocline and is located off the equator, hence they are unlikely to be influenced by significant equatorial upwelling (Dyez and Ravelo, 2013, 2014). These two sites show a minor annual mean disequilibrium of +12 ppm (range ~0 to ~30 ppm, Takahashi et al., 2009) for ODP Site 871, and +21 ppm (Olsen et al., 2004; Foster, 2008) for ODP Site 999. These disequilibria are used to correct our CO₂ data derived from δ¹¹B and are assumed to be constant throughout the entire record presented here.
2.2 Samples.

2.2.1 Sample selection and preparation.

Samples of deep-sea sediment from our two study sites were taken at 6 cm (~3ky) and 10 cm (~6ky) resolution at ODPS 871 and 999 respectively. Around 1-2 mg of the foraminifer (between 120 and 200 individuals) from the species *Globigerinoides ruber** sensu stricto white* (hereafter *G. ruber ss*) were hand-picked from the size fraction 300-355 μm for a target of 10 to 20 ng of boron. *G. ruber ss* was chosen here because it is readily identified, is abundant throughout our chosen time interval and a δ¹³Bbenth measurements calibration that accounts for vital effects is available from culture, plankton tows and core-top samples (Henehan et al., 2013). It is also known to live in the upper surface of the ocean with a relatively small depth range which prevents significant influence of deeper more remineralised CO₂-rich waters on the measured δ¹³B. The morphotype *G. ruber sensu lato* (hereafter *G. ruber sl*) has slightly different morphology (Aurahs et al., 2001; Carter et al., 2017) and is thought to live in deeper water compared to *G. ruber ss* (Wang, 2000). The morphotype *G. ruber sl* was also hand separated and analysed at lower resolution at ODP 871 to monitor any change over time in morphotype differences in δ¹³B that could result from different habitats. For similar reasons, carbon and oxygen isotopes (δ¹³C and δ¹⁸O) were also measured on *G. ruber ss* and *sl* for comparison on the whole record at ODP 871. For this, around 10 individuals of *G. ruber* per sample were picked, their shells gently broken open and mixed and then a 100 μg aliquot of the homogenised carbonate was measured using a Thermo KIEL IV Carbonate device at the University of Southampton, Waterfront Campus.

2.2.2 Age constraints.

Samples were taken from 1.5 to 5 metres below sea floor (mbsf) for ODP 871 and from 9 to 21 mbsf for ODP 999. Sample age at Site 871 was initially determined from sample depth using published age models (Dyez and Ravelo, 2013). At Site 999, the age was determined by developing a new benthic δ¹⁸O record. The initial age model at Site 871 was refined by measuring δ¹⁸O on the benthic species *Cibicoides wuellerstorfi* (50 μg of 3-5 mixed, crushed and homogenised specimens) measured on a Thermo KIEL IV Carbonate device at the University of Southampton, Waterfront Campus. These new δ¹⁸O data (Figure 2) were then tuned to the benthic δ¹⁸O LR04 stack (Lisiecki and Raymo, 2005) using Analyseries (Paillard et al., 1996).
2.2.3 Fragment counts.

Foraminifera fragment counts were conducted on ODP Site 871 to monitor variations in carbonate preservation. Samples were sub-sampled using a splitter (in order to maintain homogeneity) and poured onto a picking tray. The fragmentation index (FI) was calculated following the approach of Howard and Prell (1994) and Berger (1970) where percentage fragment is defined as:

$$FI = 100 \times \frac{\text{number of fragments}}{\text{number of fragments+number of whole tests}} \quad (4)$$

Counts of whole intact grains and fragments of grains were conducted three times and averaged. The standard deviation (1σ) of the fragmentation index is 1.69. This approach followed that used in an early study at ODP Site 999 (Schmidt et al. 2006) ensuring that the datasets between the two sites are comparable.

2.2.4 Boron separation.

The hand separated foraminifera tests for boron isotope analysis were broken open, detrital clay was removed, and oxidatively cleaned and leached in a weak-acid to obtain a primary carbonate signal using established methods (Barker et al., 2003). Samples were then slowly dissolved in ~ 100 µl 0.5M HNO₃ added to 200 µl of MQ water. Dissolved samples were then centrifuged for 5 minutes to separate any remaining undissolved contaminants (e.g. silicate grains, pyrite crystals) and transferred to screw top 5 ml Teflon pots for subsequent boron separation. An aliquot equivalent to 7% of each sample was kept for elemental analysis and transferred to acid cleaned plastic vials in 130 µl 0.5M HNO₃. Samples were purified for boron using anion exchange column chemistry method prior to isotope analysis as described elsewhere (Foster, 2008). A total procedure blank (TPB) was conducted for each batch of samples and typically ranged from 0-50 pg which represents a very small contribution relative to our sample size (0-0.25%), hence no samples required correction in this study.

2.3 Effect of dissolution (leaching experiment).

To investigate the effect of partial dissolution on measured δ¹¹B, a leaching experiment was conducted on two species of commonly analysed planktic foraminifera: G. ruber ss and Triloculatus sacculifer (hereafter T. sacculifer). Around ~ 180 G. ruber ss (size 300-355 µm) and 40 T. sacculifer (size 500-600 µm) were picked four times and the samples were treated like so: one split was the control and received no treatment, and the three other samples (whole foraminifera) were placed in 0.0001 M Teflon distilled HNO₃ (pH 4) for 2, 4, and 6 hours respectively. The experiment was repeated for G. ruber ss by longer treatments, up to 10 hours in the dilute acid. The foraminifera subjected to these partial dissolution tests were then treated using the same cleaning and chromatography protocols described above.

We acknowledge that our leaching tests aren’t as thorough as those described in some other studies (e.g. Brown and Elderfield, 1996; Sadekov et al., 2010) but provide useful first-order insights into the susceptibility of δ¹¹B to partial dissolution of foraminiferal tests.

2.4 Analytical techniques

Boron isotope analyses were performed on a ThermoScientific Neptune multi collector inductively coupled plasma mass spectrometer (MC-ICPMS) with 10¹² W amplifier resistors using a standard-sample bracketing routine with NIST 951 boric acid standard (following Foster et al. 2013 and Foster, 2008). Elemental analysis was performed on each dissolved sample using a ThermoScientific Element inductively coupled plasma mass spectrometer (ICPMS). All analyses were carried out at the University of Southampton, Waterfront Campus (following Foster, 2008 and Henehan et al., 2015). Element to calcium ratios were measured with ⁴¹Ca and ⁴³Ca and measured against in house mixed element...
standards. Elemental ratios measured included: B/Ca, Mg/Ca, Al/Ca, Mn/Ca, Sr/Ca. Based on the reproducibility of our in-house standards, the uncertainty for most elemental ratios is ~ 5% (at 95% confidence).

2.5 Constraints on δ^{11}B-derived pH and CO$_2$

2.5.1 From δ^{11}B to pH.

Seawater pH is related to the boron isotopic composition of dissolved borate ion by the following equation:

$$
pH = pK_B - \log \left(\frac{\delta^{11}B_{\text{BGE}} - \delta^{11}B_{\text{borate}}}{\delta^{11}B_{\text{borate}} - \delta^{11}B_{\text{BGE}}} \right) \quad (5)
$$

where the isotopic fractionation factor α_B between B(OH)$_3$ and B(OH)$_4^-$ is 1.0272 as determined by Klochko et al. (2006) and the δ^{11}B of seawater is 39.61% (Foster et al., 2010) for both sites and kept constant throughout the record due to the long residence time of boron (10-20 Myr, Lemarchand et al. 2002).

The sea surface temperature (SST) values necessary to calculate pK_B in equation (5) were determined at both sites using the Mg/Ca of *G. ruber* and the relationship of Anand et al. (2003):

$$
\text{SST} = \frac{\ln(\frac{\text{Mg/Ca}_{\text{surf}}}{0.0195})}{0.09(\pm0.003)} \quad (6)
$$

This calibration does not include a depth correction but yields temperatures from core top samples that are consistent with modern SST (Olsen et al., 2016). The salinity that is used in the expression of pK_B is kept constant for both sites (35 PSU) due to the very minor effect of salinity on calculated CO$_2$.

To investigate the effect of the recently proposed pH effect on reconstructed Mg/Ca-derived SST and hence reconstructed CO$_2$, we've explored a scenario wherein we apply a pH correction on Mg/Ca-SST using the iterative approach of Gray and Evans (2019).

2.5.2 From pH to CO$_2$

Calculating CO$_2$ from boron isotope derived pH is dependent on the determination of a second parameter of the carbonate system. Here we use the modern value of total alkalinity (TA) at each site: 2279 and 2350 µmol/kg at ODP 871 and ODP 999, respectively (Shipboard Scientific Party, 1993; Takahashi et al., 2009). Following Chalk et al. (2017), these values were kept constant throughout the whole record. To account for any variations in alkalinity, a generous uniform (or flat) uncertainty of 175 µmol/kg is applied (i.e. equal likelihood of values within the range of uncertainty). This range in TA encompasses the likely range in this variable on glacial-interglacial (e.g. Toggweiler, 1999; Hain et al., 2010; Cartapanis et al., 2018) or longer timescales (Hönisch et al. 2009), and its adoption means the local site is not tied to a global sea-level record as had been practice previously. We avoid drawing this link because the ~+3% (+68µmol/kg) concentration increase of solute alkalinity occurring from sea-level lowering during the last glacial maximum may not have been the dominant driver of ocean alkalinity change (Boyle, 1988a/b; Sigman et al., 1998; Toggweiler, 1999; Hain et al., 2010; Cartapanis et al., 2018). By assuming a uniform distribution for TA we avoid imposing a temporal evolution to this variable because evolution of TA through a glacial cycle is uncertain and is unlikely to be simply a function of sea-level or salinity (e.g. Dyez et al. 2018) due to the effect of carbonate compensation.

The surface water CO$_2$ is then calculated as (Zeebe and Wolf-Gladrow, 2001):
where TA is the total alkalinity, K_B the equilibrium constant of boron species in seawater, B_T the concentration of boron in seawater (432.6 µmol/kg, Lee et al., 2010), [H$^+$] the concentration of H$^+$ determined from pH = \log [H$^+$], K_W the dissociation constant of water (function of T, S and pressure), K_1 and K_2 the first and second dissociation constants of carbonic acid (function of T, S and pressure, Luecker et al., 2000). The estimate of atmospheric CO$_2$ includes site-specific offsets relative to reconstructed surface water CO$_2$ to account for observed local disequilibrium (+21 ppm and +12 ppm at ODP Sites 999 and 871, respectively).

2.6 Uncertainty

2.6.1 Analytical uncertainty

The uncertainty on the measured δ^{11}B is expressed as the external uncertainty which includes instrumental error and chemical separation of the sample (see a detailed discussion in John and Adkins, 2010). This was determined empirically by long-term repeat measurements of JCP-1 subject to the same chemical purification as our foraminiferal samples. As discussed by Rae et al. (2011) this uncertainty is dependent on the intensity of the δ^{11}B signal and is expressed here by the following relationship defined during the duration of this study at the University of Southampton (Anagnostou et al., 2019), for δ^{11}B intensities <0.54V:

$$2\sigma = 129600 \cdot e^{-2.12 \cdot [^{11}B]} + 0.3385 \cdot e^{-1.544 \cdot [^{11}B]}$$ (8).

where $[^{11}B]$ is the intensity of 11B signal in volts. The δ^{11}B uncertainty for 11B intensities > 0.54V is 0.15‰ (at 95% confidence).

2.6.2 pH and CO$_2$ uncertainty

The CO$_2$ uncertainty we report was calculated with a Monte Carlo simulation (10,000 realisations) in order to fully account for the uncertainty in all variables used in the calculation of pH and CO$_2$ (σ_{CO_2} δ^{11}B-derived). The shape of the uncertainty distribution sampled is either normally distributed (for temperature, salinity and δ^{11}B) or uniform (for alkalinity, as discussed above). The maximum probability of all realisations was used as the central value for CO$_2$ and an error envelope at 1 and 2σ was calculated based on the 68% and 95% distribution of the realisations.

2.6.3 Uncertainty on the CO$_2$ offset

To constrain the offset between δ^{11}B-derived CO$_2$ and ice core CO$_2$, each sediment age is compared to the ice core CO$_2$ record by interpolation of the record of highest resolution (in this case the δ^{11}B record onto the ice core compilation). To fully account for age uncertainty when interpolating the sediment age to the well-dated ice core record, a distribution of the ice core data was calculated within the 4σ uncertainty of the δ^{11}B age and weighed by the respective likelihood based on the age difference between ice core and sediment core.

The CO$_2$ offset (or residual) is defined by:

$$\text{Offset}_{CO_2} = \text{CO}_2\delta^{11}$B-derived - \text{CO}_2\text{ice}$$ (9)
The uncertainty on this offset (σ_{offset}) accounts for the uncertainty of the interpolated ice core CO$_2$ ($\sigma_{\text{CO2,interpol}}$) and the one of the δ^{11}B-derived CO$_2$ ($\sigma_{\text{CO2,δ11B-derived}}$), such as:

$$\sigma_{\text{offset}} = \sqrt{\sigma_{\text{CO2,interpol}}^2 + \sigma_{\text{CO2,δ11B-derived}}^2}$$

2.7 The relationship between δ^{11}B-derived pH and ΔF_{CO2}.

The linear relationships between the relative CO$_2$ forcing ΔF_{CO2} and pH are determined with a York regression (York et al., 2004) that accounts for the uncertainty in both the independent and dependent variable (i.e. x and y axes). The ice core CO$_2$ interpolation used to calculate ΔF_{CO2} and uncertainty is determined as described in section 2.6 (Hain et al., 2018).

2.8 Optimising the G. ruber δ^{11}B borate-foraminifera calibration.

An optimised G. ruber δ^{11}B calibration was obtained by minimising the root mean square error (RMSE) of the average offset between δ^{11}B-derived CO$_2$ and ice core CO$_2$. The steps are illustrated in Figure S1. In order to optimise the calibration, 10,000 simulations of δ^{11}B$_{\text{foram}}$ and δ^{11}B$_{\text{borate}}$ from the calibration of Henehan et al. (2013) were performed within their normally distributed uncertainty (1σ), from which we defined the same number of linear models each including their slope and intercept. Then, we calculate the equilibrium pH and resultant equilibrium δ^{11}B$_{\text{borate}}$ from ice core CO$_2$ and the assumed constant TA at each core site. The δ^{11}B$_{\text{foram}}$ from the 10,000 linear models is then calculated and the difference to the ice core-derived δ^{11}B$_{\text{borate}}$ is determined. The linear model calibration that yields the minimum RMSE between these two borate variables defines the new δ^{11}B$_{\text{borate,foram}}$ calibration. Unless indicated otherwise, the pH results presented in this study are calculated with the published calibration (Henehan et al., 2013), and the results with the optimised calibration presented in section 4.2.6.

3 Results.

3.1 Temperature and fragment counts.

The SST at ODP Sites 999 and 871 show a cyclicity that agrees with the well-known glacial interglacial cycles of the late Pleistocene (Figure 2). The Mg/Ca-SST corrected for pH (Figure S2) shows lower temperatures of about 0.2 to 2.5°C, yet the glacial variation structure is maintained. The SST determined from G. ruber sI Mg/Ca uncorrected (red filled circles, Figure 2B) at Site 871, show systematically cooler temperatures than G. ruber ss (black filled circles). The fragmentation index (Figure 2) at ODP 871 range from 20 to 50 % and follow the well-documented “Pacific style” dissolution cycles (Sexton and Barker, 2012) with well-preserved carbonate (low fragments) during glacial and less well-preserved carbonates (higher fragments) during interglacials. The percentage sand typically anticorrelates with fragmentation counts at both sites, although it is less clear at ODP 999, perhaps due to the shorter record available. Fragmentation counts reach maxima at ODP 999 of 20 % during interglacials and up to 50 % during marine isotope stage MIS 11 which is concomitant with the mid-Brunhes dissolution interval (MBDI, Barker et al., 2006). The fragmentation counts at ODP 871 show no substantive anomaly during the MBDI.
346 Figure 2. Mg/Ca derived temperature, coarse fraction (sand), fragmentation and benthic δ¹⁸O and δ¹³C at ODP sites 999 and 871. A, B: Temperature at ODP 999 (from G. ruber ss, black, Schmidt et al., 2006) and ODP 871 (G. ruber ss, black, G.ruber sl, red, 2sd indicated by the grey error bar). C, D: Fragmentation index (light grey, data from Schmidt et al. (2006) for ODP 999) and sand (black line). E, F: Benthic C. wuellestorfi δ¹⁸O (blue) and LR04 benthic δ¹³O stack (black). A correction of +0.48‰ is applied to our δ¹⁸O data in order to adjust for species offset between C. wuellestorfi and LR04. G, H: Benthic C. wuellestorfi δ¹³C (orange).

3.2 pH and CO₂ reconstructions.

The δ¹³B, pH and δ¹³B-derived absolute CO₂ (Figure 3) from Sites 871 and 999, show clear cyclicity related to glacial-interglacial cycles. The CO₂ values carry an average uncertainty of ±48 ppm and the mean offset from the ice core CO₂ for a combination of the two records is 4.6 ±49 (2σ) ppm showing that there is a minor overestimation of CO₂ using the boron method yet it agrees on average well within uncertainty. The RMSE of the CO₂ offset for the combined record is 25 ppm.

Despite the overall close agreement between δ¹³B-derived CO₂ and ice core-derived CO₂, each of our δ¹³B-CO₂ records exhibit some short-lived intervals where the offsets from the ice core record are larger. This is further revealed by the residual CO₂ and the identification of the data above the upper quartile (i.e. the upper 25% of the data, Figure S3). Those data do not appear to be randomly distributed and instead occur at ~100 ky, ~220-290 ky and ~390 ky at ODP Site 999, in all three cases during the early stages of the glaciation (except for the MIS 8 glacial at 280ky, Figure S3). The mismatches with the ice core at ODP Site 871 show a similar temporal pattern occurring at ~220 and ~300 and ~390 ky (i.e. at glacial inceptions).
3.3 Contrasting δ^{11}B between morphotypes.

Within error, the few measurements of δ^{11}B of *G. ruber sl* at ODP 871 all agree with δ^{11}B of *G. ruber ss* (Figure 3) albeit the δ^{11}B of *G. ruber sl* is higher than *G. ruber ss* for all 4 data pairs available. The CO$_2$ derived from *G. ruber sl* (Figure 3) is on average 15 ppm lower than the one derived from *G. ruber ss*; though the much lower resolution (n=4) impedes a thorough comparison at this stage. The δ^{18}O and δ^{13}C of both morphotypes were compared for the whole records at ODP 871 (Figure S4) and a cross-plot shows a moderate to good agreement between *G. ruber ss* and *sl* ($r^2=0.55$ and 0.22 for δ^{18}O and δ^{13}C respectively, Figure S5). This is in contrast to other studies (e.g. Wang et al., 2000; Steinke et al., 2005) that show δ^{18}O in *G. ruber sl* to be systematically higher.

3.4 Dissolution experiments.

The leaching experiments on *T. sacculifer* and *G. ruber ss* show a different response for the two species (Figure S6). While *G. ruber ss* show no significant variation in measured δ^{11}B under different treatments, *T. sacculifer* shows no systematic variations in δ^{11}B for the control and first two treatments (leached in 2 and 4 hours in 0.0001M HNO$_3$, pH 4) but shows a ~1‰ shift (relative to the control) towards lighter δ^{11}B after 6 hours at pH 4.
3.5 Relationship between δ^{11}B-pH and CO$_2$ forcing from the ice core.

A cross plot of δ^{11}B-derived pH CO$_2$ forcing from the ice core record for each of our marine core study sites is shown in Figure 4 and is compared to the theoretically-derived approximate ΔFCO$_2$/ΔpH relationships as adopted by Hain et al. (2018): -1:1 W/m2 (dashed black line); CaCO$_3$ addition/removal (-0.9:1 W/m2 plain yellow line); DIC addition/removal (-1.3:1 W/m2 dotted-dashed blue); and warming/cooling temperature forcing (-1.1:1 W/m2 dashed red). Our analysis includes full propagation of uncertainty in pH, in contrast to Hain et al. (2018) who considered only the reported uncertainty of δ^{11}B$_{borate}$ in their validation exercise. In both cases the uncertainty in ΔFCO$_2$ accounts for the error in interpolation arising when comparing age-uncertain δ^{11}B-derived pH with ΔFCO$_2$ from the well-dated and high-resolution ice core CO$_2$ record (see methods 2.7 and 2.6 for details). This treatment of ΔFCO$_2$ uncertainty is dominated by the spread of ice core CO$_2$ data points within the δ^{11}B age uncertainty. The data are fitted with a York-type regression (thin black line; York et al., 2004) where the grey envelope represents the uncertainty of the linear relationship that best represents the data (i.e., the envelope is not the prediction interval), considering the uncertainty in pH and ΔFCO$_2$. The regressed slope is ΔF/ΔpH = -15.42 ± 0.8 W/m2 (-1.2:1 relative to basic formalism) and shows a good agreement with the theoretical temperature and DIC driven relationships.

The effect of the uncertainty assigned to pH (fully propagated or using the measurement uncertainty of the boron isotope) on the regressed slope is shown in Figure S7. The slope of the York regression when using the uncertainty from δ^{11}B only, as in Hain et al. (2018), shows a very close agreement with the basic formalism, with a slope of ΔF/ΔpH = -12.4 ± 0.3 W/m2, (-1:1 relative to the basic formalism) but with an unsatisfactory goodness of fit (mean square weighted deviation, mswd) of 6, whereas propagating the full pH uncertainty based on our iterative Monte-Carlo simulations improves goodness of fit to ~1 at a Δlog$_{10}$CO$_2$/ΔpH of -1.2:1 (Figure 4).
4 Discussion.

4.1 Cyclicit in foraminifera preservation.

Percentage fragments and sand fraction (> 63µm) at both studied core sites are anticorrelated and show a clear cyclicity, with better preservation of carbonates during glacial periods (Figure 2). The anticorrelation is clearer at ODP 871 where we have the longest record (Figure 2). Sexton and Barker (2012) suggest that this Pacific Ocean pattern of preservation (Farrell and Prell, 1989) initiated after the mid Pleistocene transition (MPT) around 1 Ma, and that preservation cycles in the Pacific prior to MPT showed a more “Atlantic style” of dissolution with better (poorer) preservation occurring during interglacials (glacials). Several data sets (deep oxygen and carbon isotopes, carbonate ion data, and sortable silt) point towards a strengthening of ventilated deep Pacific waters (lower circumpolar deep water LCDW) that lead to the better preservation during glacials in the Pacific after the MPT (Sexton and Barker, 2012).
The observation that the fragmentation records of sites 999 and 871 covary is likely attributable to the different water masses that fill the Caribbean basin relative to the rest of the Atlantic basin. During glacial periods, the deep Atlantic is filled by nutrient- and carbon-rich corrosive southern sourced waters (Antarctic Bottom Water, AABW) with a reduced contribution from the less corrosive, nutrient-poor North Atlantic Deep Water (NADW) (Oppo and Lehman, 1993) causing calcareous sediments in the deep Atlantic Ocean >2500 m to be less well-preserved during glacial than interglacial times. The opposite pattern of dissolution is seen in the Caribbean because shoaling of the northern sourced waters during glacial periods produces a mid-depth well-ventilated water mass that feeds into the Caribbean through its deepest sill (~1900 m, Johns et al., 2002). Thus the deep Caribbean is filled with less corrosive waters during glacial times than interglacial periods improving the preservation of carbonate during glacial times in a similar pattern to a Pacific style dissolution cycle albeit in response to Atlantic circulation changes. During interglacials, the Northern sourced waters are mixed with corrosive southern sourced waters (Antarctic Intermediate Waters and upper circumpolar deep waters) leading to less well-preserved sediments.

4.2 Causes of offset between δ^{13}B-derived and ice core CO$_2$.

The δ^{13}B-derived CO$_2$ record from both of our study sites is in very good agreement with the ice core record, with an average offset of combined both cores of 4.6 ± 49 (2σ) ppm and corresponding RMSE of 24.7 ppm. The CO$_2$ offset calculated with Mg/Ca-SST corrected for pH is shown in Figure S8 for comparison and the average is -4.8 ±42 (2σ) ppm, showing a reduced offset of 9 ppm compared to treatment with no pH correction on SST (a difference of -11 ±14 (2σ) and -8 ±12 (2σ) ppm at ODP site 871 and 999, respectively). This difference is due to the pH correction lowering the SST estimates on average without greatly changing the temporal structure of pH and CO$_2$ offsets.

In both treatments, the RMSE is smaller than the average CO$_2$ uncertainty of ±48 ppm (2σ, 95% confidence) for each datapoint. However, the minor CO$_2$ offsets observed in both records do not appear to be random and tend to fall during the first half of each glacial cycle (Figure S2). In order to have the highest confidence in CO$_2$ reconstructions using δ^{13}B, this pattern warrants further investigation (see below). We only discuss the CO$_2$ records calculated without a pH correction on SST.

4.2.1 Comparison between morphotypes of G. ruber

If as others suggested (e.g. Wang et al., 2000; Steinke et al., 2005; Numberger et al., 2009) G. ruber sl and G. ruber ss occupied different depth habitats, then inadvertent sampling of the cryptic G. ruber sl morphotype might conceivably produce the biases we observe between δ^{13}B-derived CO$_2$ and atmospheric CO$_2$ from the ice cores. However, while our Mg/Ca-derived temperatures for G. ruber sl and G. ruber ss display variable offsets, they are within uncertainty (Figure 2) and our δ^{18}O and δ^{13}C data for the two morphotypes at ODP 871 show a good agreement with no consistent differences (Figure S4). Thus, while the water column profile of δ^{18}O and δ^{13}C can be affected by factors other than temperature, salinity and biological productivity (e.g. carbonate ion effect, Spero et al., 1997), overall, our data suggest that the two morphotypes we analysed shared similar depth habitat preferences.

Henehan et al. (2013) found that G. ruber ss and sl record similar δ^{13}B in core-top sediments, and through necessity, used mixed morphotypes in their culture study. The δ^{13}B-derived pH and CO$_2$ for G. ruber sl examined here are consistently higher and lower, than G. ruber ss by around 0.05 pH units and 15 ppm CO$_2$, respectively (Figure 3). This is contrary to expectation if G. ruber sl lived in deeper more acidic waters as suggested by other studies (Wang et al., 2000; Steinke et al., 2005), but consistent with some data sets that show that the habitat of G. ruber ss and sl can vary by location (Numberger et al., 2009). We acknowledge that the scarcity of G. ruber sl in our samples means that our data set for this morphotype is too small to draw firm conclusions and this warrants further investigation at other study sites. Nonetheless, the closeness of the morphotypes in terms of δ^{13}B and depth habitat throughout our record implies any inadvertent sampling of G. ruber sl in the G. ruber ss fraction in this study and location would not significantly bias our reconstructions.
4.2.2 Change in upwelling and CO₂ disequilibrium.

ODP sites 871 and 999 are both located today in stratified oligotrophic environments with a deep modern thermocline (base of the thermocline is at ~200 and 400 m at ODP 871 and 999, respectively; Olsen et al., 2016). It should be noted, however, that both sites are situated relatively close to regions displaying ΔpCO₂ >40 ppm (Figure 1). However, if local upwelling occurred over the study interval, or if these areas of upwelled water expanded, we would expect these periods to be characterised by relatively low SST, high surface δ¹⁸O, and low surface δ¹³C due to an increased influence of deep colder and more remineralised waters. The identified anomalous intervals in residual CO₂ at ODP 871 (e.g at ~210, ~290 ky, Figure 5) show no particular anomaly in planktonic C and O isotopes (Figure S4) or in SST (Figure 2, Figure S9), ruling out significant variations in upwelling at that site. Equally, no SST anomaly was identified at ODP 999 to be coincident with the intervals of high residual CO₂ (Figure S9).

This suggests the CO₂ anomalies revealed in Figure 5 are not the result of enhanced local disequilibrium via sub-surface water mixing.

4.2.3 Partial dissolution.

The CO₂ derived from *G. ruber* δ¹¹B at ODP 999 and 871 appears to show, at first order at least, positive CO₂ offset during periods of high fragmentation (~100, ~210, ~400ky, red filled circles in Figure 5, defined by the upper 25% quantile of fragments) following a “Pacific style” dissolution cycle (better preservation and lower fragmentation during glacial periods). Periods of high fragmentation at ODP site 999 and 871 both (incidentally) correspond to a positive CO₂ offset 75% of the time, and 25% to a negative CO₂ offset, (note that values close to 0 were omitted in this calculation). We also note that almost all CO₂ offsets uncertainty (2σ) overlap with the 0 line, hence the percentage of CO₂ offset that are above or below the 0 line should be interpreted with caution.

![Figure 5](https://doi.org/10.5194/cp-2022-93)

Figure 5. Top panels: CO₂ offset (defined as offset = CO₂ δ¹¹B-derived – CO₂ ice) for ODP Sites 999 (this study and Chalk et al., 2017) and 871. See text for error bars calculations. Bottom panels: fragmentation index at Site 999 (Schmidt et al., 2006) and 871 (this study). Red dots in the lower panels are the fragments above the upper quartile (and corresponding CO₂ in the upper panel, red dots). Green dots represent periods of low fragments below the upper quartile (and corresponding CO₂ in the upper panel, green dots).
In detail however, a cross-plot of fragment counts and CO$_2$ offset (Supplementary Figure S10) fitted with a linear regression shows no significant correlation for both core site 999 ($r^2=0.07, p=0.2$) and 871 ($r^2=0.01, p=0.62$). Although it should be noted that this simple linear regression presupposes a linear relationship between the variables and does not account for the significant uncertainty in both CO$_2$ offset and fragmentation index. In particular, the CO$_2$ offset carries the uncertainty from the interpolated ice core CO$_2$ (see methods). Fragment counts at ODP 999 also come with the additional uncertainty related to the interpolation of the record of Schmidt et al. (2006), whereas fragments counts and δ^{11}B-derived CO$_2$ at 871 are measured on the same samples. A cross-correlation function also shows no correlation between CO$_2$ offset and fragmentation (Figure S11).

While it seems unlikely the small offsets observed are fully explained by partial dissolution, the positive CO$_2$ offsets observed during some periods of high fragmentation index (Figure 5), are in line with the trend observed in T. sacculifer during our dissolution experiments that showed a decreased δ^{11}B (that translates to higher CO$_2$) with progressive dissolution (Supplementary Figure S6). However our dissolution tests, are consistent with field studies (e.g. Seki et al., 2010), and suggest that G. ruber δ^{11}B is relatively robust to dissolution (see section 3.4 above). The pattern observed here for T. sacculifer has been documented in other studies where lower δ^{11}B is observed for core-top samples from deeper ocean sites bathed by waters with low calcite saturation state (Hönisch and Hemming, 2004, Seki et al., 2010). Tests of T. sacculifer can contain a significant proportion of gametogenic calcite (ranging 30 to 75% of the weight of pregametogenic calcite, Bé, 1980; Caron et al 1990) which forms at the end of the life cycle in deeper lower pH cold waters. It has been suggested that δ^{11}B is lower in gametogenic calcite than in the primary test (Ni et al., 2007) reflecting the digestion and expulsion of symbionts (Bé et al., 1983) before gametogenesis, driving a relative acidification of the micro-environment (no CO$_2$ uptake by photosynthesis) around the foraminifera (Zeebe et al. 2003; Hönisch et al., 2003; Henehan et al. 2016), and movement to deeper more acidic waters during that life-stage. It has also been shown that this gametogenic calcite is more resistant to dissolution (Hemleben et al., 1989; Wycech et al., 2018) resulting in partial dissolution acting preferentially on ontogenic calcite driving δ^{11}B in the residual test to lower isotopic composition.

While the decrease in δ^{11}B in dissolved test of T. sacculifer is well explained by the lighter isotopic composition of gametogenic calcite, G. ruber tests do not contain such gametogenic calcite (Caron et al., 1990). Hence, if the observed occasional decrease in δ^{11}B (low pH, high CO$_2$) was caused by partial dissolution, it needs to be explained by other processes. It should also be considered that the dissolution experiments performed here could be of longer duration (e.g. Caron et al., 1990; Sadekov et al., 2010) and be more quantitative (e.g. with alkalinity of leaching acid, trace element data and foraminifera weight data to evaluate the degree of dissolution over time). Furthermore, alternative measures and proxies of dissolution may yield more quantitative constraints (e.g. benthic B/Ca as an indicator of bottom water carbonate ion concentration) on the importance of dissolution in generating our observed CO$_2$ offsets.

Some studies have shown that laboratory dissolved specimens of T. sacculifer (Sadekov et al., 2010) and naturally dissolved specimens of G. ruber (Iwasaki et al., 2019) undergo targeted partial preferential dissolution of the shell. However, variations in intra-shell δ^{11}B are currently unknown due to limitations in laser ablation techniques that impede a direct evaluation of δ^{11}B heterogeneity in foraminifera chambers. Future studies are needed to constrain the δ^{11}B spatial distribution in foraminiferal shells caused by potential variations in δ^{11}B from dissolution, ontogeny (e.g. Meilland et al., 2021) and/or vital effects (e.g. change in photosymbiotic activity throughout the life cycle, Lombard et al., 2009, Henehan et al., 2013, Takagi et al., 2019).

In the absence of these constraints, and given the limitations of our dissolution experiments, we conclude that partial dissolution is unlikely to be a significant driver of the δ^{11}B-CO$_2$ records we present here. Even though it was thought to be a species susceptible to dissolution (Berger, 1970), we confirm that the δ^{11}B of G. ruber appears more resistant to dissolution-driven modification than T. sacculifer.
4.2.4. Effect of dissolution on Mg/Ca and calculated CO₂

The direction of change of Mg/Ca with partial dissolution is towards lower ratios in partially dissolved foraminifera (e.g. Brown and Elderfield, 1996; Dekens et al., 2002; Fehrenbacher and Martin, 2014). If the Mg/Ca is impacted during periods of high fragmentation, the lower ratio would result in lower temperatures leading to lower calculated CO₂ values (equation 7). This effect is opposite to the occasional positive deviation of CO₂ observed during intervals of high fragmentation at ODP Site 999. While the weak correlation between fragmentation and CO₂ precludes a firm interpretation of dissolution effect, we conclude that the effect of partial dissolution on Mg/Ca ratio and resulting CO₂ (if any) is negligible and not responsible for the CO₂ offsets observed during intervals of high fragmentation.

4.2.5. Change in the second carbonate parameter, alkalinity.

Past changes in TA are poorly constrained, although some constraints are starting to emerge for the late Quaternary (e.g. Cartapanis et al., 2018). However, since pH is directly determined by δ²⁷B, pH defines the ratio of alkalinity to DIC (see supplementary information S12). Hence, at any given pH, any change in alkalinity must be counteracted by a change in DIC, which has the opposing effect on CO₂. This is demonstrated by the tight relation between pH and CO₂ highlighted by our data (Figure 4). The largest residual CO₂ is ~50 ppm at ODP 999. To produce an effective alkalinity-driven change in CO₂ of this magnitude at a given pH requires an alkalinity reduction of about ~300 to 500 μmol/mol (supplementary Figure S13). This is far larger than any expected change over a glacial cycle (Cartapanis et al., 2018, Hönisch et al., 2009). We therefore rule out varying TA as the cause of the minor CO₂ offsets observed (Figure 5).

4.2.6 Improving the δ²⁷B -pH G. ruber calibration

A further potential cause for the minor offsets observed between δ²⁷B-derived and ice core CO₂ could be a small inaccuracy in the calibration between δ²⁷B of foraminifera and borate for G. ruber (Henehan et al., 2013). Having the ice core data to compare with δ²⁷B-derived CO₂ offers an opportunity to explore the effect of altering the input variables of the pH-CO₂ calculation to see if doing so improves the fit to ice-core values. Note that such an exercise is for illustrative purposes only because we seek to retain the independence offered by the δ²⁷B-calibrated data in the context of CO₂ forcing (section 4.3). Nonetheless, in future work we suggest this calibration can be applied in tandem to the empirical relationship of Henehan et al. (2013). The published (Henehan et al., 2013) and obtained optimised calibration (Figure S14) are:

\[\delta^{27}\text{B}_{\text{borate}} = \frac{\delta^{27}\text{B}_{\text{foram}}-8.87(\pm1.52)}{0.60(\pm0.09)} \quad \text{(Henehan et al., 2013)} \]

\[\delta^{27}\text{B}_{\text{borate}} = \frac{\delta^{27}\text{B}_{\text{foram}}-6.46}{0.72} \quad \text{(optimised calibration)} \]

The newly calculated CO₂ with the updated calibration shows an improved average CO₂ offset (Figure 6) of -3.43 ± 41 (2σ) ppm (vs 4.6 ± 49 (2σ) ppm with the calibration of Henehan et al., 2013) and an RMSE of 20.68 ppm (vs. 25 ppm with the published calibration).
Figure 6. Composite $\delta^{11}\text{B}$-derived CO$_2$ from both core sites 999 and 871 using the published $\delta^{11}\text{B}_{\text{borate}}$-$\text{foram}$ calibration (grey points, Henehan et al., 2013) and the improved calibration (red points). The black line is the Antarctic composite ice core CO$_2$ record (Bereiter et al., 2015).

When analysing the CO$_2$ offset using the optimised $G. \text{ruber}$ calibration and the fragmentation index at each core location (same approach as Figure 5), we observe that intervals of high fragments (defined as values above the upper quartile) are no longer preferentially associated with positive CO$_2$ offset (Figure S15). Intervals of high fragments at site 999 have 50% chance of corresponding CO$_2$ with positive offsets to the ice core (and 50% with negative offset to the ice core). Intervals of high fragments at site 871 have 56% of corresponding CO$_2$ with a positive offset to the ice core (and 44% with a negative offset to the ice core). This analysis shows that a small change in the borate $G. \text{ruber} \delta^{11}\text{B}$ calibration does not cause any visual correlation between CO$_2$ offset and fragmentation index (Figure S15), and that uncertainty in the $\delta^{11}\text{B}_{\text{foram-borate}}$ calibration of Henehan et al. (2013) can – at least partly – explain the minor discrepancies we observe between $\delta^{11}\text{B}$-derived and ice core CO$_2$.

4.3 Relative CO$_2$ forcing and pH.

Our new pH data, added to the existing compilation, show a good agreement with the formalism defined by Hain et al. (2018; Figure 4). It should be noted that CO$_2$ in this case is provided by the ice core directly and is not estimated from the $\delta^{13}\text{B}$-derived pH. As discussed above, because these two proxies are independent of one another, the slope of their relationship may be used to interrogate the mechanisms of CO$_2$ change. Our data fall between the CaCO$_3$ (yellow plain line) and the DIC (dotted-dashed blue line) end-members suggesting that the CO$_2$ change observed on glacial-interglacial timescales was driven by a mix of mechanisms rather than to a single cause. This is in line with studies that require a number of mechanisms to explain glacial interglacials CO$_2$ change (soft tissue pump, carbonate compensation pump and thermal pump, e.g. Brovkin et al., 2007, Kohfeld and Ridgwell, 2009, Hain et al., 2010, Chalk et al., 2019, Sigman et al., 2021). We note that this is a preliminary interpretation because of the sensitivity of our finding to pH uncertainty (section 3.5, Figure S7). To overcome this ambiguity in estimating past ΔFCO$_2$ and to better deconvolve the driving mechanisms of glacial/interglacial CO$_2$ change, we recommend that future studies collect pH data at higher temporal resolution.
resolution to examine the change in slope through a glacial cycle and strive to further quantify and reduce uncertainties related to pH determination.

The close agreement of the pH and ice core CO\textsubscript{2} data with the theoretical relationships has a number of consequences for the reconstruction of CO\textsubscript{2} change during periods of Earth history beyond the ice core CO\textsubscript{2} and climate records where constrains on δ11B\textsubscript{sw} and the second carbonate parameter and temperature are uncertain. The ΔpH formalism still requires an estimation of δ11B\textsubscript{sw} and temperature (for the pK\textsubscript{a} term, equation 5) however, as discussed in Hain et al. (2018), while absolute reconstruction of pH is significantly influenced by estimates of δ11B\textsubscript{sw} and temperature, reconstruction of relative pH change (ΔpH) is inherently much less sensitive to these input variables.

Reconstructing ΔFCO\textsubscript{2} from ΔpH is ideally applicable only on relatively short timescales less than 1 Myr, when δ11B\textsubscript{sw} is likely to be constant given the multi-million year residence time of boron in the ocean (Lemarchand et al., 2000, Greenop et al., 2017). Furthermore, to reconstruct ΔFCO\textsubscript{2} (and thus climate sensitivity to CO\textsubscript{2}), the formalism can be applied as long as, in equation 2, ΔpH remains the overwhelming control. This is dependent on the residence time of carbon in the ocean with respect to silicate weathering – approximately one million years (Hain et al., 2018) such that net carbon addition to or removal from the Earth System through volcanic outgassing or silicate weathering is likely to be minor over the million-year timescale. However, during some short events, such as for instance the Palaeocene-Eocene Thermal Maximum, considerable carbon was added to the system in <200 kyr (e.g. Gutjahr et al., 2017) invalidating the formulation described in equation 2 on these intervals. We also emphasize that this formalism is only valid as long as core sites remain in equilibrium with the atmosphere.

4.4 Caveats and future studies.

The aim of this study is to evaluate the capacity of the δ11B-pH proxy in G. ruber to accurately reconstruct atmospheric CO\textsubscript{2} in the past. The overall agreement with the high confidence ice core CO\textsubscript{2} (e.g. Bereiter et al., 2015) is very promising and gives confidence to δ11B-derived CO\textsubscript{2} reconstructions beyond the ice core record (>800 ky). We have however identified occasional, minor offsets between the two records and explored potential drivers (partial dissolution, δ11B borate-foram calibration, local air-sea disequilibrium). It is likely that the minor disagreement observed (Figure 5) has a combination of drivers and that a single mechanism is not solely responsible for the CO\textsubscript{2} offsets observed. To confirm these trends, we recommend future work to focus on the following:

1. The improved δ11B calibration approach should be tested at more core locations. We note that the improved calibration to the ice core records reported here was achieved using data from two sites. While care is taken in the choice of study site to minimize air-sea CO\textsubscript{2} disequilibrium and sediment dissolution, the newly defined improved δ11B\textsubscript{borate-foram} calibration should be seen as an exercise that is tailored to the available data in this study, and future high-resolution studies can apply the method used here (section 4.4.5) to further test how the G. ruber calibration changes if CO\textsubscript{2} offsets occur in a similar fashion (i.e. at a particular time in each glacial cycles). We note the importance of high resolution (at least 3 ky) sampling in future studies because most CO\textsubscript{2} offsets observed are short lived.

2. A multiproxy approach is ideally needed. In particular, reliable indicators of temperature and productivity, to assess change in upwelling and foraminifera ecology. We encourage future studies to expand high resolution boron-derived CO\textsubscript{2} record and ancillary data (C and O isotopes, proxy of carbonate preservation and bottom water corrosiveness, biological productivity) to further constrain the capacity of the boron isotope pH/CO\textsubscript{2} proxy to generate reliable CO\textsubscript{2} records. As more recent IODP expeditions include porewater data, constraints on bottom water conditions and degree of corrosiveness at a given site will become available to evaluate the impact on δ11B signals in foraminifera.
(3) Efforts should continue to decrease the analytical uncertainty associated with a δ^{11}B measurement by MC-ICPMS because this still accounts for ~40% of the total uncertainty associated with each δ^{11}B-derived CO$_2$ estimate.

(4) We find little evidence to suggest that partial dissolution of foraminiferal tests (G. ruber) is a major driver of uncertainty in δ^{11}B-derived CO$_2$ estimates but more thorough experiments are desirable because of site-to-site differences in foraminifera taphonomy.

5. Conclusion.

We carried out the most thorough test to date of the δ^{11}B–pH (CO$_2$) proxy by comparing new high-resolution (3 to 6 ky per sample) boron isotope–based pH and CO$_2$ at two locations with CO$_2$ from the ice core record. Results suggest that the boron isotope proxy is robust and suited to reconstructing CO$_2$ to a precision of ±48 ppm (2σ, RMSE =25ppm) over this interval, with little or no systematic bias shown by a mean residual of 4.6 ± 49 (2σ) ppm. This provides high confidence to the application of the proxy beyond the reach of the ice core records.

Despite the overall good agreement, there are some minor short-lived CO$_2$ offsets that appear to have some temporal structure and we explored a number of possible drivers. A visual correlation between CO$_2$ offset and fragmentation index at core site 999 is observed (Figure 5) but is not statistically significant. The effect of partial dissolution on δ^{11}B in G. ruber appears to be negligible in our record, but the possible heterogeneity of δ^{11}B within shells as well as variable susceptibility to dissolution of the different parts of the foraminifera, encourages further exploration.

An revised δ^{11}B borate–foramin calibration was calculated by minimising the offset between δ^{11}B–derived CO$_2$ and ice core CO$_2$ using published calibration (Henehan et al., 2013). While the new calibration improves the fit to the ice core records, we caution against its use to estimate CO$_2$ given that it is no longer independent of the ice core or the assumptions we make here to calculate CO$_2$ (i.e. that TA is constant).

The formalism established by Hain et al. (2018) is robust, showing that relative CO$_2$ forcing in the past can be determined from pH change alone, even in the face of significant uncertainty in δ^{11}B of seawater and without the need to determine a second carbonate parameter. This will not only be of great interest to determine CO$_2$ forcing in ancient geological times where δ^{11}B of seawater and a second carbonate parameter are poorly constrained, but the nature of the observed relationship over the last 400 kyr confirms that multiple drivers are likely responsible for glacial-interglacial CO$_2$ change.

6. Data availability.

All raw data will be provided as supplementary information once the manuscript is accepted.

7. Author contribution.

E.d.l.V generated boron isotope and elemental data and wrote the manuscript. E.d.l.V, T.B.C, M.P.H and G.L.F analysed the data. G.L.F, T.B.C, M.P.H and P.A.W contributed to the editing and reviewing of the manuscript. M.W, R.G and D.C generated oxygen and carbon isotope data and fragmentation index data. R.G and D.C were supervised by T.B.C and G.L.F. C.L assisted with foraminifera picking and boron isotope analysis. E.d.l.V, T.B.C and G.L.F designed the research.

8. Competing interest.

The authors declare they have no conflict of interest.

We thank J. Andy Milton for assistance in MC-ICPMS and ICPMS analysis, and members of the “B-team”, Agnes Michalik and Matthew Cooper for clean laboratory assistance. This work was funded...
by NERC grant NE/P011381/1 to GLF, PAW, TBC and MPH and by Royal Society Wolfson Awards to both GLF and PAW.

10. References.

Schmidt, M. W., et al. (2006). "Western Caribbean sea surface temperatures during the late Quaternary." Geochemistry, Geophysics, Geosystems 7(2).

