

Climate changes during the Lateglacial in South Europe: new insights 1

- based on pollen and brGDGTs of Lake Matese in Italy
- 3 Mary Robles^{1,2}, Odile Peyron², Guillemette Ménot³, Elisabetta Brugiapaglia¹, Sabine Wulf⁴, Oona Appelt⁵,

4 Marion Blache², Boris Vannière^{6,7}, Lucas Dugerdil², Bruno Paura¹, Salomé Ansanay-Alex³, Amy Cromartie⁸,

6

2

- 7 ¹Univ. Molise, Department of Agricultural, Environmental and Food Sciences, Campobasso, Italy
- 8 9 ² Univ. Montpellier, CNRS, IRD, EPHE, UMR 5554 ISEM, Montpellier, France
- ³ Univ. Lyon, ENSL, UCBL, UJM, CNRS, LGL-TPE, F-69007 Lyon, France
- 10 ⁴ Univ. Portsmouth, School of the Environment, Geography and Geosciences, Portsmouth, United Kingdom
- 11 ⁵ Helmholtz Centre Potsdam, GFZ German Research Centre of Geosciences, Section 3.6, Telegrafenberg,
- 12 Potsdam, Germany
- 13 ⁶Chrono-Environnement, CNRS, Univ. Bourgogne Franche-Comté, Besançon, France
- 14 15 ⁷MSHE Ledoux, CNRS, Université Bourgogne Franche-Comté, Besançon, France
- ⁸ Cornell Univ., Department of Anthropology, Ithaca, NY, USA
- 16 ⁹ Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, IRD, IFSTTAR, ISTerre, Grenoble, France

E-mails : Mary Robles, mary.robles@umontpellier.fr; Odile Peyron, odile.peyron@umontpellier.fr

- 17 ¹⁰ Aix-Marseille Univ., CNRS, IRD, UMR 7263 & 237 IMBE, Aix-en-Provence, France
- 18 19
- 20

21

22 **Short Abstract**

23 Quantitative climate reconstructions based on pollen and brGDGTs reveal, for the 24 Lateglacial, a warm Bølling-Allerød and a marked cold Younger Dryas in Italy, showing no 25 latitudinal differences in terms of temperatures across Italy. In terms of precipitation, no 26 latitudinal differences are recorded during the Bølling-Allerød whereas the latitudes 40-42°N 27 appear as a key junction point between wetter conditions in Southern Italy and drier conditions 28 in Northern Italy during the Younger Dryas.

29

30 Abstract

31 The Lateglacial (14,700-11,700 cal BP) is a key climate period marked by rapid but 32 contrasted changes in the Northern Hemisphere. Indeed, regional climate differences have been 33 evidenced during the Lateglacial in Europe and the Northern Mediterranean areas. However, 34 past climate patterns are still debated since temperature and precipitation changes are poorly 35 investigated towards the lower European latitudes. Lake Matese in Southern Italy is a key site 36 in the Central Mediterranean to investigate climate patterns during the Lateglacial. This study 37 aims to reconstruct climate changes and their impacts at Matese using a multi-proxy approach including magnetic susceptibility, geochemistry (XRF core scanning), pollen data and 38 39 molecular biomarkers like branched Glycerol Dialkyl Glycerol Tetraethers (brGDGTs).

⁵ Laurent Charlet9, Stephane Guédron9, Jacques-Louis de Beaulieu10, Sébastien Joannin2,4

40 Palaeotemperatures and -precipitation patterns are quantitatively inferred from pollen 41 assemblages (multi-method approach: Modern Analogue Technique, Weighted Averaging 42 Partial Least Squares regression, Random Forest, and Boosted Regression Trees) and brGDGTs 43 calibrations. The results are compared to a latitudinal selection of regional climate 44 reconstructions in Italy to better understand climate processes in Europe and in the circum-45 Mediterranean region. A warm Bølling-Allerød and a marked cold Younger Dryas are revealed 46 in all climate reconstructions inferred from various proxies (chironomids, ostracods, 47 speleothems, pollen, brGDGTs), showing no latitudinal differences in terms of temperatures 48 across Italy. During the Bølling-Allerød, no significant changes in terms of precipitation are 49 recorded, however, a contrasted pattern is visible during the Younger Dryas. Slightly wet 50 conditions are recorded south of latitude 42°N whereas dry conditions are recorded north of 51 latitude 42°N. During the Younger Dryas, cold conditions can be attributed to the southward 52 position of North Atlantic sea-ice and of the Polar Frontal JetStream whereas the increase of 53 precipitation is Southern Italy seems to be linked to relocation of Atlantic storm tracks into the 54 Mediterranean, induced by the Fennoscandian ice sheet and the North European Plain. On the 55 contrary, during the Bølling-Allerød warm conditions can be linked to the northward position 56 of North Atlantic sea-ice and of the Polar Frontal JetStream.

57

58 Keywords: Mediterranean region; Palynology; Molecular Biomarker; Paleoclimate; 59 Transfer functions; Tephra; Younger Dryas; Bølling–Allerød; Lateglacial

60

61 1. Introduction

62

In the Northern Hemisphere, the Lateglacial (ca. 14,700-11,700 cal BP) is a period of 63 64 special climatic interest characterized by contrasted and rapid climate changes, associated with 65 the successive steps of the deglaciation and changes in atmospheric and ocean circulation 66 patterns (e.g., Walker et al., 2012; Rehfeld et al., 2018). Following the cold Oldest Dryas (OD) 67 period, the Bølling-Allerød (B/A) or Greenland Interstadial-1 (GI-1) began abruptly at 14,700 68 cal BP with warmer conditions. At 12,900-11,700 cal BP, the Younger Dryas (YD) or Greenland 69 Stadial-1 (GS-1) was the last main millennial-scale cold event in Europe during the Lateglacial 70 (Greenland ice-core records; Rasmussen et al., 2014). The YD is characterized by extreme cold, 71 relative dry and windy climate conditions in northern-central Europe (Hepp et al., 2019). 72 Climate become distinctly warmer at 11,700 cal BP with the onset of the Holocene Interglacial

(Rasmussen et al., 2014). These rapid and marked climate oscillations have been observed in
the Greenland ice core records (Rasmussen et al., 2014) and in Europe from various proxies
such as pollen, oxygen isotopes, molecular biomarkers, beetles, and chironomids (e.g. Coope
and Lemdahl, 1995; Ammann et al., 2000; Coope and Lemdahl, 1995; Peyron et al., 2005;
Lotter et al., 2012; Millet et al., 2012; Blaga et al., 2013; Moreno et al., 2014; Heiri et al., 2015;
Ponel et al., 2022; Duprat-Oualid et al., 2022).

Regional climate differences have been evidenced during the Lateglacial, and temperature trends in Europe and the Mediterranean region are still a matter of active research and debate. The chironomid-based synthesis of Heiri et al. (2014) suggests that temperature variations during the Lateglacial tend to be more pronounced in Western Europe (British Isles, Norway) than in Southwestern Europe, Central and Southeastern regions. This is particularly true for the Younger Dryas cooling which is not well evidenced in East and Central Southern Europe (Heiri et al., 2014).

86 Diverging temperature trends are also reconstructed from different proxies during key 87 periods of the Lateglacial. Studies suggest that (1) the OD was cooler than the YD in Southern 88 and Central Europe in comparison with Northern Europe (Heiri et al., 2014; Moreno et al., 89 2014); (2) the Allerød period was warmer than the Bølling in the Southwestern Europe and 90 Mediterranean area (Moreno et al., 2014); and (3) temperatures were more contrasted during 91 the B/A and YD in the North-West of Europe in comparison to the South of Europe (Renssen 92 and Isarin, 2001; Moreno et al., 2014; Heiri et al., 2014). In contrast to temperature, the 93 precipitation signal is poorly known in Europe during the Lateglacial because few proxies are 94 available to quantitatively reconstruct precipitation change. Climate models (GCMs) simulate 95 significant hydrological changes during the B/A and contrasted North-South patterns during the 96 YD (Renssen and Isarin, 2001; Rea et al., 2020). They simulate drier conditions in Northern 97 Europe and wetter conditions in Southern Europe, i.e. in the South of Italy, the Dinaric Alps, 98 and Northern Turkey (Rea et al., 2020). Climate changes during the YD are attributed to a weak 99 Atlantic Meridional Overturning Circulation (AMOC) and a southward shift of the Polar 100 Frontal JetStream (PFJS), linked to the elevation of the ice sheet, in particular the Laurentide 101 ice sheet (Renssen and Isarin, 2001; Renssen et al., 2015; Rea et al., 2020). Rea et al. (2020) 102 also explains the regional climate patterns in Europe by a relocation of Atlantic storm tracks 103 along the western European margin and into the Mediterranean. 104

104 The understanding of climate processes in Europe and Mediterranean regions during the 105 Lateglacial still needs to be improved. The majority of climate reconstructions are focused on 106 temperatures, and changes in precipitation remain elusive. The "key" junction area between

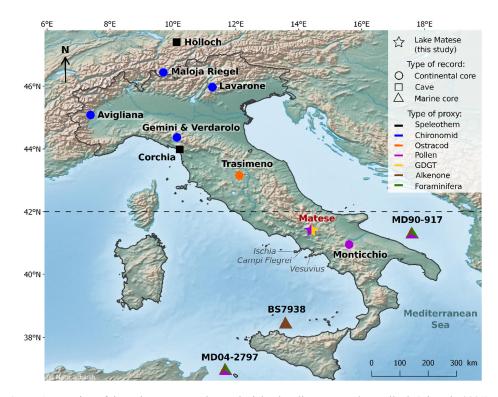
107 Northern and Southern Europe and regional climatic patterns also needs to be better defined. 108 Moreover, the proxies used to reconstruct climate changes (e.g., coleoptera, chironomids, 109 pollen, ostracods, speleothems) can show differences in terms of amplitudes or patterns which 110 are not only affected by temperatures, but also by precipitation or effective moisture (Moreno 111 et al., 2014; Samartin et al., 2017). For these reasons, more reliable temperature reconstructions, 112 especially from Western Europe and the Mediterranean region are required to test diverging 113 trends during the Lateglacial. The proxies largely used to quantitatively reconstruct past climate 114 changes are often a single proxy approach (e.g. Heiri et al., 2015; Gandouin et al., 2016; Peyron 115 et al., 2017; Marchegiano et al., 2020; Duprat-Oualid et al., 2022). Multiproxy approaches on 116 the same sedimentary record, including independent climate proxies, are necessary to better 117 understand the climate processes in Europe during the Lateglacial (Lotter et al., 2012; Ponel et 118 al., 2022). Pollen-based reconstructions have the advantage of reconstructing temperatures, 119 precipitation, and seasonality, however, the climate signal can be perturbed by other factors 120 such as CO₂ changes and human impact influencing vegetation development (Peyron et al., 121 2005). Over the last decades, novel proxies based on molecular geochemistry have been 122 developed and molecular biomarkers are being increasingly used to reconstruct temperatures 123 and represent a complementary proxy for lake sediments (Castañeda and Schouten, 2011). In 124 particular, branched Glycerol Dialkyl Glycerol Tetraethers (brGDGTs) are ubiquitous organic 125 compounds synthesized by bacteria (Weijers et al., 2006) which have been useful for 126 reconstruction environmental parameters. To date, the actual producers of brGDGTs remain 127 somewhat unknown although it is proposed they come from the phylum Acidobacteria (Weijers 128 et al., 2009; Sinninghe Damsté et al., 2018). The relationship, however, between brGDGT 129 distribution and environmental changes, in particular pH and temperature, are well established 130 (Naafs et al., 2017b, 2017a; Dearing Crampton-Flood et al., 2020; Martínez-Sosa et al., 2021; Raberg et al., 2021). The degree of methylation of brGDGTs (MBT; methylation of branched 131 132 GDGTs) varies depending on the mean annual air temperature (MAAT) and higher fractional 133 abundance of hexa- (III) and penta- (II) methylated brGDGTs are recorded in colder 134 environments (Weijers et al., 2007). Branched glycerol dialkyl glycerol tetraether (brGDGT) 135 membrane lipids are increasingly used as a temperature proxy: in Europe, brGDGTs have been 136 used to reconstruct the Mid to Late Holocene temperature changes in the Carpathians (Ramos-137 Román et al., 2022), the last 36,000 years in the Southern Iberian Peninsula (Rodrigo-Gámiz et 138 al., 2022), the Holocene temperatures in France (Martin et al., 2020), and in the Eastern 139 Mediterranean over the last deglaciation (Sanchi et al., 2014; Stockhecke et al., 2021). The 140 association in the same core between brGDGTs and other proxies such as pollen for climate

- 141 reconstructions are still rare (Watson et al., 2018; Martin et al., 2020; Dugerdil et al., 2021a, 142 2021b; Ramos-Román et al., 2022; Robles et al., 2022) and no study are yet available for the 143 circum-Mediterranean region during the Lateglacial. 144 This study presents a high-resolution climate reconstruction for the Lateglacial period in 145 South Central Europe, inferred from multi-proxy data of the Lake Matese sedimentary record (Southern Italy). In detail, the aims of this study are to: 146 147 1) establish reliable and independent quantitative climate reconstructions based on 148 molecular biomarkers (brGDGTs) and pollen data to help identify potential biases of currently 149 used proxies and thus improve the reliability of each proxy-inferred climate record; 150 2) compare these reconstructions with regional climate reconstructions and in the light of
- 151 other South European records;
- 3) better understand the climate processes in Europe and Mediterranean during theLateglacial period.
- 154

155 2. Study site

156

157 Lake Matese (41°24'33.3", 14°24'22.1"E, 1012 m a.s.l.) is located in the Caserta 158 province in the Campania region, Southern Italy, approximately 60 km north of the city of 159 Naples and the active Campanian volcanoes (Vesuvius, Campi Flegrei, Ischia) (Fig. 1). The 160 lake is situated in the Matese karst massif in the Southern Apennines, which extends over 30 km from the NE to the SW and is composed of Late Triassic-Miocene limestones and dolomites 161 162 (Fiorillo and Doglioni, 2010). The present formation of the massif was the result of an extension by strike-slip faults during the Quaternary, and several strong earthquakes were recorded in the 163 massif (Ferranti et al., 2015; Ferrarini et al., 2017; Galli et al., 2017; Valente et al., 2019). Lake 164 165 Matese is the highest karst lake of Italy and is surrounded by the two highest peaks of the massif, 166 Mount Miletto (2050 m a.s.l.) and Mount Gallinola (1923 m a.s.l.), which feed the lake by their snowmelt. Along the southern side of the lake, two sinkholes named the "Brecce" and 167 168 "Scennerato" are present (Fiorillo and Pagnozzi, 2015). In the 1920s, hydraulic works were 169 conducted to isolate the bottom of the lake and the main sinkholes by earthen dams (Fiorillo and Pagnozzi, 2015). The water level of the lake improved from 1007-1009 m a.s.l. to 1012 m 170 a.s.l. with a volume of 15 mm³ (Fiorillo and Pagnozzi, 2015). A part of the lake water is 171 172 transported to the hydroelectric power station of Piedimonte Matese at the bottom of the 173 mountain massif.



- 174 The Matese Mountains are characterized by a Mediterranean warm-temperate, humid climate (Aucelli et al., 2013). The southwestern part of the massif, including Lake Matese, have 175 the highest precipitation with a maximum at Campitello Matese (1400 m a.s.l.) (Fiorillo and 176 Pagnozzi, 2015). Lake Matese shows an annual precipitation of 1808 mm with a maximum in 177 November (~290 mm) and December (~260 mm) and a minimum in July (~50 mm) (Fiorillo 178 179 and Pagnozzi, 2015). The annual temperatures correspond to 9.3°C with a minimum in January 180 (2°C) and a maximum in July (19°C) (Fiorillo and Pagnozzi, 2015). The precipitation is less 181 important in the southeastern part of the massif due to the Atlantic origin of storms and 182 orographic effect of mountains (Fiorillo and Pagnozzi, 2015). 183 The vegetation of the Matese massif is dominated by deciduous *Ouercus* and *Ostrva* 184 carpinofolia, while the highest altitudes at the northern flank also show an exposure of Fagus 185 sylvatica and the lower altitudes of the southern flank includes Mediterranean taxa such as
- 186 Quercus ilex (Taffetani et al., 2012; Carranza et al., 2012; Guarino et al., 2015). The
- hygrophilous vegetation at Lake Matese is distinguished by the presence of woody (e.g. Salix *alba*, S. caprea, S. cinerea subsp. cinerea, Populus nigra, P. alba), helophytes (e.g. Phragmites
- 188 *alba, S. caprea, S. cinerea* subsp. *cinerea, Populus nigra, P. alba*), helophytes (e.g. *Phragmites*
- 189 australis, Schoenoplectus lacustris, Typha angustifolia, T. latifolia) and hydrophytes species
- 190 (Myriophyllum spicatum, Persicaria amphibia).

191

Figure 1. Location of the Lake Matese and Lateglacial paleoclimate records : Hölloch (Li et al., 2021), Maloja Riegel (Heiri et al., 2014), Lago di Lavarone (Heiri et al., 2014), Lago Piccolo di Avigliana (Larocque and Finsinger, 2008), Lago Gemini (Samartin et al., 2017), Lago Verdarolo (Samartin et al., 2017), Corchia cave (Regattieri et al., 2014), Lake Trasimeno (Marchegiano et al., 2020), Lago Grande di Monticchio (Allen et al., 2002), MD90-917 (Combourieu-Nebout et al., 2013; Sicre et al., 2013), BS7938 (Sbaffi et al., 2004), MD04-2797 (Desprat et al., 2013; Sicre et al., 2013). Dotted line indicates latitude 42°N. Location of active Campanian volcanoes (Vesuvius, Campi Flegrei, Ischia).

192

193 **3. Material and methods**

194

195 <u>3.1 Coring retrieval</u>

Coring of Lake Matese was performed in July 2019 in the southwestern part of the lake (41°24'33.3"N, 14°24'22.1"E, 1012 m a.s.l.). Coring occurred on a floating raft composed of *Salix* spp. and *Phragmites* spp., naturally present in the eastern part of the lake. Three parallel cores (cores A, B and C) were taken with a 1 m Russian corer with a chamber diameter of 6.3 cm. The master core, measuring 535 cm, was constructed from sections of parallel cores and is based on the lithology and XRF data.

203 <u>3.2 Chronology and age-depth model</u>

204 Several methods have been used to build the chronology of the core including 205 radiocarbon dating, and tephrochronology. The regional pollen stratigraphy is used to validate 206 this age-depth model. Twelve accelerator mass spectrometry (AMS) ¹⁴C dates were measured 207 at Poznań Radiocarbon Laboratory and at the Radiocarbon Dating Center in Lyon. Plant 208 macrofossils (plant fibers, wood) and charcoal were selected for four samples, and bulk 209 sediment was used for eight samples according to the sediment type. Radiocarbon ages were 210 calibrated in years cal BP using the Calib 8.2 software with the IntCal20 calibration curve 211 (Reimer et al., 2020).

212 Visible tephra layers and cryptotephra layers, detected by magnetic susceptibility and 213 XRF core scanning data, were subsampled and processed for geochemical analysis. 214 Cryptotephra was extracted using H₂O₂ and HCl to remove organic matter and carbonates, 215 sieved at 20 and 100 microns, volcanic glass shards were embedded in resin, sectioned and 216 polished for electron probe microanalysis. A JEOL-JXA8230 probe the Helmholtz Centre 217 Potsdam (Germany) was used with a 15kV accelerating voltage, 10 nA beam current, and a 15 218 micron beam size. Analytical count times were 20 seconds for all elements except for K and 219 Na, measured first at 10 s. International glass standards such as the Max Planck Institute (MPI-220 glasses) ATHO-G, StHs6/80 and GOR-132 (Jochum et al., 2006) and the natural Lipari obsidian 221 (Hunt and Hill, 1996; Kuehn et al., 2011) were measured prior to sample analysis for data 222 quality insurance. Glass geochemical data of Matese tephras are normalized on an anhydrous, 223 volatile-free basis and compared with published tephra glass datasets (Wulf et al., 2008; Smith 224 et al., 2011; Tomlinson et al., 2012).

225 The age-depth model based on radiocarbon dates and correlated tephra ages was 226 constructed using an interpolated linear curve with the R 'Clam' program with 95% confidence 227 intervals (Blaauw, 2010). In order to validate the age depth models, the pollen stratigraphy of 228 the regional sites was compared with pollen data of Matese. The pollen stratigraphy of Pavullo 229 di Frignano (Vescovi et al., 2010), Lakes Accesa (Drescher-Schneider et al., 2007), Albano 230 (Mercuri et al., 2002), Mezzano (Sadori, 2018), Monticchio (Allen et al., 2002), and Trifoglietti 231 (De Beaulieu et al., 2017) were used to identify the OD-B/A, B/A-YD and YD-Holocene 232 transitions. We used the median age for each transition.

233

234 <u>3.3 Magnetic susceptibility and geochemistry</u>

235 Magnetic susceptibility (MS) was measured with a MS2E1 surface scanning sensor 236 from Bartington Instruments on a Geotek Multi-Sensor Core logger based at the Chrono-

environment laboratory (UMR CNRS - University of Franche-Comté). An interval of 3 mm or
5 mm was applied depending on the type of sediment.

Geochemical analyses were performed at high resolution by X-ray Fluorescence (XRF) with an AVAATECH core scanner at the EDYTEM laboratory (University Savoie Mont Blanc). A continuous 5 mm step measurement was applied with a run at 10 kV and 0.1 mA for 15 s to detect lightweight elements, such as Al, Si, K, Ca, Ti, Mn, Fe and a second run at 30 kV and 0.15 mA for 20 s to detect Br, Rb, Sr and Zr. The XRF core scanning provides an estimate of the geochemical composition, and the results are semi-quantitative and expressed as peak intensities counts i.e. counts per second (cps).

246

247 <u>3.4 Pollen analyses</u>

248 A total of 56 samples from the Matese core were collected at 4 cm or 6 cm resolution 249 for pollen analysis. For each sample, 1 cm³ of sediment was processed and 3 Lycopodium tablets 250 were added to estimate pollen concentration. Samples were treated following the standard 251 procedure (Faegri et al., 1989; Moore et al., 1991) including HCl, KOH, sieving, acetolysis and 252 HF. The pollen counts were analyzed with a Leica DM1000 LED microscope at a standard 253 magnification of 400x. Pollen taxa were identified using photo atlases (Beug, 2004; Reille, 254 1998; Van Geel, 2002) and a modern reference collection (ISEM, University of Montpellier). 255 Each slide was counted with a minimum of 300 terrestrial pollen grains, excluding aquatic 256 plants such as Cyperaceae, aquatic taxa, and fern spores. A simplified pollen diagram was 257 constructed with the R package Rioja (Juggins and Juggins, 2020).

258

259 <u>3.5 Pollen-inferred climate reconstruction</u>

A multi-method approach was used to reconstruct climate parameters from pollen data with more reliability than reconstructions based on a single climate reconstruction method (Peyron et al., 2013, 2011, 2005; Salonen et al., 2019). We have selected here the Modern Analog Technique (MAT; Guiot, 1990), Weighted Averaging Partial Least Squares regression (WAPLS; ter Braak and van Dam, 1989; ter Braak and Juggins, 1993), and the most recent machine-learning methods : Random Forest (RF; Breiman, 2001; Prasad et al., 2006) and Boosted Regression Trees (BRT; De'ath, 2007; Elith et al., 2008).

The MAT is an assemblage approach, based on the measure of the degree of dissimilarity (squared chord distance) between fossil and modern pollen assemblages (Guiot, 1990). Fossil pollen assemblages are compared to a set of modern assemblages (modern dataset), each one associated with climate estimates. The closest modern samples are retained

271 and averaged to estimate past climate conditions (annual and seasonal temperature and 272 precipitation). The WAPLS is a non-linear regression technique that models the relationships 273 between the climate parameters and the pollen taxa from a modern pollen dataset, before 274 applying these relationships to fossil pollen assemblages (ter Braak and Juggins, 1993; ter Braak 275 and van Dam, 1989). WAPLS and MAT methods are applied with the R package Rioja (Juggins 276 and Juggins, 2020). RF and BRT, based on machine learning, utilizes regression trees 277 developed with ecological data, and has been used recently to reconstruct palaeoclimatic changes (Salonen et al., 2019; Robles et al., 2022). These classification trees are used to 278 279 partition the data by separating the pollen assemblages based on the relative pollen percentages. 280 RF is based on a large number of regression trees, each tree being estimated from a randomized 281 ensemble of different subsets of the modern pollen dataset by bootstraping (Breiman, 2001; 282 Prasad et al., 2006). Finally, the RF prediction is applied on the fossil pollen record. BRT is 283 also based on regression trees (De'ath, 2007; Elith et al., 2008); it differs from RF in the 284 definition of the random modern datasets. In RF, each sample gets the same probability of being 285 selected, while in BRT the samples that were insufficiently described in the previous tree get a 286 higher probability of being selected. This approach is called 'boosting' and increases the 287 performance of the model over the elements that are least well predicted (Breiman, 2001; Prasad et al., 2006; De'ath, 2007; Elith et al., 2008). RF is applied with the R package randomForest 288 289 (Liaw and Wiener, 2002) and BRT with the R package *dismo* (Hijmans et al., 2021).

290 The modern pollen dataset (n = 3373 sites) used for the calibration of the methods is 291 based on the large Eurasian/Mediterranean dataset compiled by Peyron et al. (2013, 2017) and 292 completed by Dugerdil et al. (2021a) and Robles et al. (2022). In our study, we added pollen 293 data of 92 surface lake sediments from Italy (Finsinger et al., 2007) and 15 moss polsters from 294 the Matese massif (Robles, 2022). Then, a biome constraint (Guiot et al., 1993), based on the 295 pollen-Plant Functional Type method and following the biomization procedure (Peyron et al., 296 1998; Prentice et al., 1996) was applied to modern and fossil pollen samples. The modern pollen dataset finally selected for the calibration of the different methods contains 1018 samples 297 298 belonging to 3 biomes depicted in the fossil core: "warm mixed forest" (WAMX), "temperate 299 deciduous" (TEDE) and "cold steppe" (COST). Performance of each method and calibration 300 training was statistically tested (for more details, see Dugerdil et al., 2021a) to determining if modern samples are suitable for quantitative climate reconstructions. The Root Mean Square 301 302 Error (RMSE) and the R² are presented in the Supplementary Table S1. Five climate parameters 303 were reconstructed, mean annual air temperature (MAAT), mean temperature of the warmest 304 month (MTWA), mean temperature of the coldest month (MTCO), mean annual precipitation

(PANN), and winter precipitation (P_{winter} = December, January, and February). For each climate
parameter, the methods fitting with the higher R² and the lower RMSE were selected.
Cyperaceae and ferns in the Matese record have been excluded because they are associated with
local dynamics.

309

310 <u>3.6 BrGDGT analyses</u>

311 A total of 56 samples from the Matese core (4 cm or 6 cm resolution) were used for GDGT analysis (same as for pollen analysis). The samples were freeze-dried, powdered and 312 313 subsampled (1 g for clay and 0.4 g for gyttja). Lipids were extracted from the sediment using a 314 microwave oven (MARS 6; CEM) with dichloromethane:methanol (3:1). Then, the internal 315 standard was added (C₄₆ GDGT, Huguet et al., 2006). The total lipid extracts were separated 316 into apolar and polar fractions using a silica SPE cartridge with hexane:DCM (1:1) and 317 DCM:MeOH (1:1). The polar fractions containing brGDGTs were analyzed using a High-Performance Liquid Chromatography Mass Spectrometry (HPLC-APCI-MS, Agilent 1200) 318 319 with detection via selective ion monitoring (SIM) of m/z 1050, 1048, 1046, 1036, 1034, 1032, 320 1022, 1020, and 1018 in the LGL-TPE of ENS Lyon (Hopmans et al., 2016; Davtian et al., 321 2018). GDGT concentrations were calculated based on the internal standard. The analytic 322 reproducibility was assessed based on a sediment internal standard.

323

324 <u>3.7 GDGTs annual temperature reconstruction</u>

325 The proportion of tetra- (I), penta- (II) and hexa- (III) methylated brGDGTs includes 326 the fractional abundances of the 5-methyl (X), 6-methyl (X') and 7-methyl (X7) brGDGTs (Ding et al., 2016). The CBT and MBT indexes were defined by Weijers et al. (2007) and the 327 328 MBT'_{5me}, only based on the 5-methyl brGDGTs, by De Jonge et al. (2014). The Mean Annual 329 Air Temperature (MAAT) was reconstructed with global (Sun et al., 2011) and East African 330 (Russell et al., 2018) lacustrine calibrations. The mean temperature of Months Above Freezing 331 (MAF) was reconstructed with a lacustrine calibration based on Bayesian statistics (Martínez-332 Sosa et al., 2021; https://github.com/jesstierney/BayMBT) and a global lacustrine calibrations 333 with revised compound fractional abundances based on methylation and cyclization number 334 and methylation position (Raberg et al., 2021). Synthesis of the formulae for the main brGDGT 335 indices are presented in Table 1. Modern MAAT and MAF of the Lake Matese corresponds to 336 9.3 °C. 337 The analytic reproducibility corresponds to 0.040 for CBT, 0.0167 for MBT, 0.0206 for

338 MBT'sme, 0.8566 °C for MAAT developed by Sun et al. (2011), 0.6672 °C for MAAT

- 339 developed by Russell et al. (2018), and 0.5403 °C and 1.1258 °C for MAF_{Meth} and MAF_{Full}
- 340 developed by Raberg et al. (2021).

341

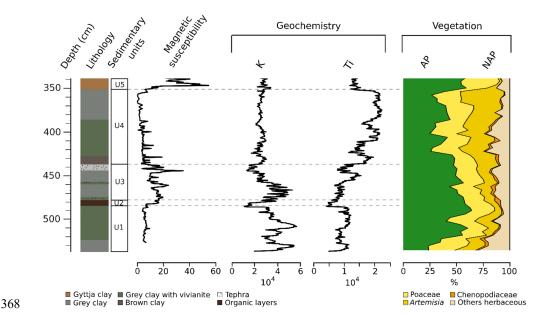
Table 1. Synthesis of the formulae for the main brGDGT indices. For acronym explanation of MAF_{Meth} and MAF_{Full} , see Raberg et al. (2021). For more information about the Bayesian statistics see Martínez-Sosa et al., 2021 and references therein.

Indice	Formula	Reference
%tetra	$\frac{Ia + Ib + Ic}{\Sigma brGDGTs}$	Ding et al., 2016
%penta	$\frac{IIa + IIa' + IIa_7 + IIb + IIb' + IIb_7 + IIc + IIc' + IIc_7}{\Sigma brGDGTs}$	Ding et al., 2010
%hexa	$\frac{IIIa + IIIa' + IIIa_7 + IIIb + IIIb' + IIIb_7 + IIIc + IIIc' + III}{\Sigma br GDGTs}$	Ding et al., 201
CBT	$-log \frac{Ib + IIb}{Ia + IIa}$	Weijers et al., 2007
MBT	$\frac{Ia + Ib + Ic}{\Sigma brGDGTs}$	Weijers et al., 2007
MBT' _{5me}	$\frac{Ia + Ib + Ic}{Ia + Ib + Ic + IIa + IIb + IIc + IIIa}$	De Jonge et al. 2014
MAAT (°C)	$3.949 - 5.593 \times CBT + 38.213 \times MBT$ $(n = 100, R^2 = 0.73, RMSE = 4.27^{\circ}C)$	Sun et al., 201
MAAT (°C)	$-1,21 + 32.42 \times MBT'_{5me}$ (n = 65, R ² = 0.92, RMSE = 2.44 °C)	Russell et al., 2018
MAF _{Meth} (°C)	$92.9 + 63.84 \times flb_{Meth}^2 - 130.51 \times flb_{Meth}$ - 28.77 × flla_{Meth}^2 - 72.28 × fllb_{Meth}^2 - 5.88 × fllc_{Meth}^2 + 20.89 × flla_{Meth}^2 - 40.54 × fllla_{Meth} - 80.47 × flllb_{Meth} (n = 182, R ² = 0.90, RMSE = 2.14 °C)	Raberg et al., 2021
MAF _{Full} (°C)	$-8.06 + 37.52 \times fIa_{Full} - 266.83 \times fIb_{Full}^{2}$ + 133.42 \times fIb_{Full} + 100.85 \times fIIa'_{Full}^{2} + 58.15 \times fIIIa'_{Full}^{2} + 12.79 \times fIIIa_{Full} (n = 182, R ² = 0.91, RMSE = 1.97 °C)	Raberg et al., 2021
MAF (°C)	Equation from the Bayesian model : $MBT'_{5me} = 0.030(\pm 0.001)MAF + 0.075(\pm 0.012)$ $(R^2 = 0.82, RMSE = 2.9 \ ^\circ C)$	Martínez-Sosa al., 2021

344 **4. Results**

345

346 <u>4.1 Lithology, magnetic susceptibility, geochemistry and pollen</u>

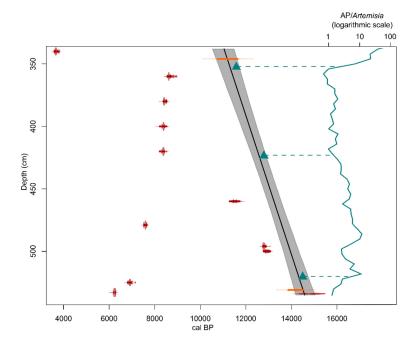

The lithology of Matese core (Fig. 2) is mainly composed of gray clay sediment with vivianite from the base to 350 cm, interrupted by an organic layer between 477-484 cm (sedimentary Unit 2) and a macroscopic visible tephra layer (Fig. 2) between 476-437 cm (sedimentary Unit 3). This part contains few plant fibers, which are essentially vertically oriented in the core. From 349 to 320 cm, the lithology is formed by a mix of clay sediment and gyttja (sedimentary Unit 5). This part is mostly composed by roots and fine rootlets.

353 Magnetic susceptibility (MS) and Potassium (K) peaks of XRF core scanning are used 354 to detect tephra layers (Fig. 2). MS and Potassium contents show increased values at 516-502 cm, 482-437 cm and 366-338 cm, which correspond to the deposition of tephra material 355 356 (macroscopic visible tephra and cryptotephra of primary and secondary deposition). Small 357 peaks are also visible in MS between 430 and 360 cm but they are not associated with any 358 observed tephra. Potassium content is also marked by an increase between 536-526 cm which 359 corresponds to tephra of primary deposition. Titanium (Ti) content, on the other hand, is 360 representative for terrigenous input which is prevailing in sedimentary Unit 4 (Fig. 2).

The main pollen taxa diagram (Fig. 2) shows the dominance of herbaceous taxa (Poaceae, *Artemisia*) and a small proportion of arboreal taxa at the base of the sequence. From 520 to 425 cm, the period is marked by three expansion phases of arboreal taxa, followed between 438 to 354 cm by a large increase of *Artemisia* and a drop of AP taxa starting at 422 cm. Finally, from 354 to 338 cm AP and Poaceae increase, whereas *Artemisia* significantly decline.

Figure 2. Sediment lithology, magnetic susceptibility, geochemical data and selected terrestrial pollen taxa of Matese. Arboreal Pollen (AP; green) and Non Arboreal Pollen (NAP; yellow-orange) are expressed in percentages of total terrestrial pollen.

369 <u>4.2 Age-depth model</u>


The age-depth model is based on ¹⁴C dates and tephrochronology, and then pollen 370 371 stratigraphy was used to validate the age-depth model (Fig. 3). Based on their typical phono-372 trachytic and bimodal tephri-phonolitic to trachytic major element glass composition Matese 373 tephras at 530 cm and 346 cm depth can be correlated with distal Monticchio tephras TM-8 and TM-6-2, respectively (Fig. 4; Table 2). Tephra TM-8 has been correlated with the Neapolitan 374 Yellow Tuff (NYT) eruption (Wulf et al., 2004) which has an age of $14,194 \pm 172$ cal BP (Bronk 375 376 Ramsey et al., 2015). The tephra layer at 530 cm corresponds to the primary deposition and 377 secondary deposition of remobilised tephras that were identified at 510 cm and 475 cm. TM-6-2 most likely are derived from the Early Holocene Casale eruption from Campi Flegrei (Smith 378 379 et al., 2011) which is varve dated in Monticchio at $11,210 \pm 224$ cal BP (Wulf et al., 2008). The 380 tephra layer at 346 cm corresponds to a primary deposition.

The ages obtained with the regional pollen stratigraphy show an OD-B/A transition at 14,500 \pm 93.7 cal BP, a B/A-YD transition at 12,800 \pm 57.7 cal BP and a YD-Holocene transition at 11,575 \pm 103.1 cal BP (Allen et al., 2002; Mercuri et al., 2002; Drescher-Schneider et al., 2007; Vescovi et al., 2010; De Beaulieu et al., 2017; Sadori, 2018). Pollen stratigraphy of

- 385 the regional sites were compared with pollen data of Matese and the ages obtained show a good
- 386 correspondence with the ages of tephra samples but a poor correspondence with the ¹⁴C dates.
- 387 Therefore, most of the ¹⁴C dates (Table 3) are not included in the age-depth model (except the
- 388 date at the base of the core).

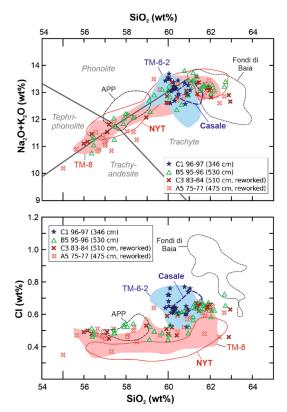

Figure 3. Age-depth model is based on calibrated AMS radiocarbon dates (red points; Table 3) and tephra ages (orange points; Table 2). Gray bands are 95% confidence intervals of the age-depth model. Blue triangles are the median of ages of the vegetation transition compiled with the regional pollen stratigraphy. This pollen stratigraphy includes the sites of Pavullo di Frignano (Vescovi et al., 2010), Accesa (Drescher-Schneider et al., 2007), Albano (Mercuri et al., 2002), Mezzano (Sadori, 2018), Monticchio (Allen et al., 2002), and Trifoglietti (De Beaulieu et al., 2017). AP/Artemisia ratio (blue line) is expressed on a logarithmic scale. AP: Arboreal Pollen.

Table 2. Tephra samples from Matese cores (MC) and correlation with tephra samples from Lago Grande di Monticchio (Wulf et al., 2008) and proximal eruptive sources.

Sample ID	Depth MC (cm)	Tephra Monticchio	Eruption	Age (cal BP)	Age reference
C1 96-97	346	TM-6-2	Casale	$11{,}210\pm224$	Wulf et al., 2008
A5 75-77	475 (reworked)		Neapolitan Yellow		
C3 83-84	510 (reworked)	TM-8	Tuff (NYT)	$14,194 \pm 172$	Bronk Ramsey et al., 2015
B5 95-96	530				2015

Figure 4. Bivariate plot of selected major elements (SiO₂ vs. total alkalis and SiO₂ vs. Cl) of Matese tephras and potential proximal and Monticchio tephra correlatives. Data from: TM-6-2 (Monticchio, Wulf et al., 2008; this study); TM-8 (Monticchio, Tomlinson et al., 2012; this study); Casale, Fondi di Baia (proximal; Smith et al., 2011); APP/Agnano Pomici Principali and NYT/Neapolitan Yellow Tuff (proximal; Tomlinson et al., 2012).

Table 3. AMS-radiocarbon dates (Radiocarbon Laboratory, Poznań), calibrated median ages, with 2 σ range of calibration from Matese cores (MC).

0		from whitese	cores (me).	14 .		
	Depth MC			AMS ¹⁴ C age	Age (cal BP) (2	Median age
Sample ID	(cm)	Lab code	Material	(BP)	σ)	(cal BP)
A4 40-41	340	Poz-128971	Bulk	3425 ± 30	3573 - 3822	3668
A4 60-61	360	Poz-138111	Bulk	7850 ± 40	8540 - 8968	8631
A4 80-81	380	Poz-138112	Bulk	7640 ± 50	8370 - 8541	8432
B4 50-51	400	Poz-128972	Bulk	7580 ± 60	8206 - 8519	8385
A5 20-21	420	Poz-138113	Bulk	7570 ± 50	8206 - 8512	8379
A5 60-61	460	Poz-128976	Bulk	10020 ± 50	11280 - 11743	11519
A6 52-53	479	Poz-119283	Plant fibers, wood fragments, charcoals	6730 ± 40	7513 - 7669	7596
A5 96-97	496	Poz-137155	Wood fragments	10870 ± 60	12728 - 12903	12799
B5 64-65	500	Poz-128973	Bulk	11000 ± 60	12769 - 13078	12925
A6 98-99	525	Poz-119284	Plant fibers	6060 ± 35	6795 - 7147	6912
B5 97-98	533	60747	Plant fibers	5430 ± 30	6190 - 6295	6236
B5 98-99	534	Poz-128975	Bulk	12650 ± 130	14331 - 15477	15027

392

393 <u>4.3 Pollen-inferred climate reconstructions</u>

Pollen-inferred climate reconstructions at Matese show similar trends for all methods (Fig. 5). The MAT and the BRT methods show higher sample-to-sample variability than the WAPLS, and RF appears as the less sensitive method. Statistical results of the model performance (Supplementary Table S1) show the better values for R² and RMSE for the BRT method (all climatic parameters).

399 Temperature trends show two cold periods (phases 1 and 3) and two warm periods 400 (phases 2 and 4). The reconstructed values (MAAT and MTWA) during the warm periods are 401 close to modern values whereas the values of MTCO are lower than the modern values. Annual 402 precipitation (PANN) shows few variations and the values of PANN and Pwinter are lower than modern values, with all methods. Phase 1 (535-530 cm; 14,600-14,500 cal BP) is characterized 403 404 by cold conditions and low precipitation during winter. Phase 2 (530-436 cm; 14,500-12,800 405 cal BP) is a warm period characterized by strong warming and punctuated by three colder events at 14,000 cal BP, 13,500-13,350 cal BP and 13,000 cal BP. Mean annual precipitation shows 406 407 little variation whereas Pwinter shows higher values than during the phase 1. Phase 3 (436-367 408 cm; 12,800-11,570 cal BP) is a strong event marked by cold conditions, a slight decline in Pwinter 409 and few changes for PANN. At the transition with phase 4, a significant decrease in the precipitation parameters is recorded. Phase 4 (367-338 cm; 11,570-11,000 cal BP) is 410 411 characterized by a well-marked temperature increase (MAAT and MTCO) associated with wet 412 conditions (hydrological parameters reach their maximum value).

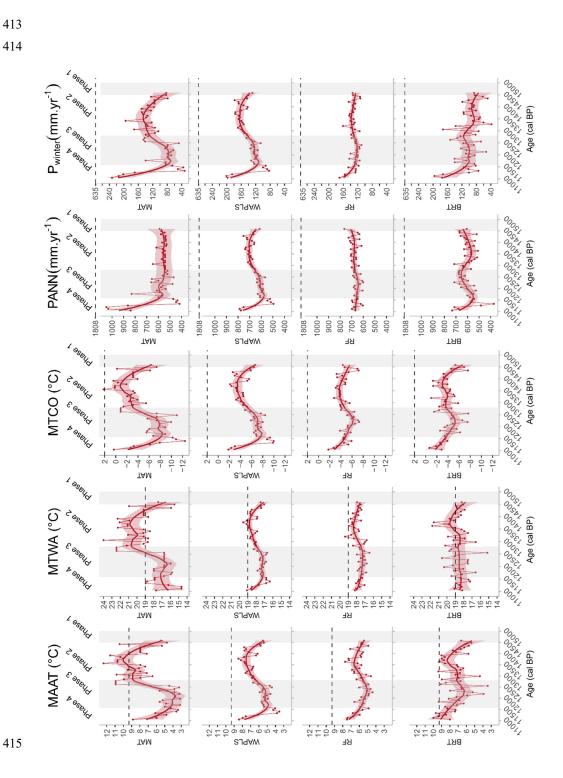
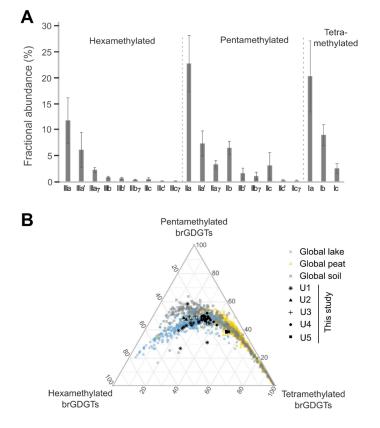


Figure 5. Lake Matese pollen-inferred climate reconstruction based on four methods against age: MAT (Modern Analogue Technique), WAPLS (Weighted Averaging Partial Least Squares regression), RF (Random Forest) and BRT (Boosted Regression Trees). Large lines correspond to loess smoothed curves, shaded areas to the 95% confidence interval and dotted lines to modern climate values of Lake Matese. MAAT: mean annual air temperature. MTWA: mean temperature of the warmest month. MTCO: mean temperature of the coldest month. PANN: mean annual precipitation. Pwinter: winter precipitation.

423

424 <u>4.3 BrGDGT-inferred climate reconstruction</u>


425

426 *4.3.1 Concentration and distribution of brGDGTs*

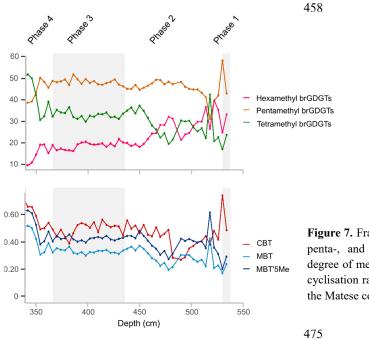
The total concentration of brGDGTs ranges between 0.06 and 8.63 µg.g⁻¹ dry sediment. 427 The fractional abundances of brGDGTs (Fig. 6A) show a dominance of pentamethylated 428 429 brGDGTs (II, 46%), especially brGDGT IIa (23%), brGDGTs IIa' (7%) and brGDGTs IIb (6%). The relative abundance of tetramethylated brGDGTs (I, 33%) is mainly explained by 430 431 brGDGT Ia (20%) and brGDGTs Ib (9%). The relative abundance of hexamethylated brGDGTs 432 (III, 21%) is mainly explained by brGDGT IIIa (11%) and brGDGTs IIIa' (6%). The relative 433 abundances of tetra, penta- and hexamethylated brGDGTs of Matese core are compared to 434 global datasets (Fig. 6B). Sediment samples of the Matese core show a good correspondence 435 with global lake and soil samples, except for some samples from sedimentary Unit 1 and 5. 436 Samples of sedimentary Unit 5, characterized by a mix of clay and gyttja, are more similar to 437 global soil and peat samples.

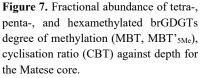
439

Figure 6. A) Fractional abundance of tetra-, penta-, and hexamethylated brGDGTs for Matese core. B) Ternary diagram showing the fractional abundances of the tetra-, penta-, and hexamethylated brGDGTs for Matese core (black points) and global lake (blue points; Martínez-Sosa et al., 2021), peat (yellow circles; Naafs et al., 2017a), and soils (gray circles; Yang et al., 2014; Naafs et al., 2017b).

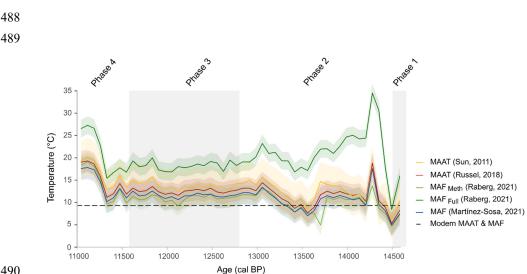
440

441 4.3.2 Indices of brGDGTs


The relative abundance of tetra-, penta-, and hexamethylated brGDGTs changes along Matese core (Fig. 7). The fractional abundance shows a dominance of pentamethylated brGDGTs except at 518 cm depth, and during the last phase (Phase 4). The fractional abundance of hexamethylated brGDGTs shows higher values between 535-502 cm and 490-466 cm and becomes dominant at 486 cm. The fractional abundance of tetramethylated brGDGTs shows higher values between 502-490 cm and 466-352 cm and is dominant at 518 cm and 352-338 cm (Phase 4).


The degree of methylation (MBT, MBT'_{5Me}) and the cyclisation ratio (CBT) also shows variation along Matese core (Fig. 7). The MBT and the MBT'_{5Me} show similar trends but different absolute values; they vary between 0.17 and 0.52 and between 0.20 and 0.63,

- 452 respectively. The degree of methylation remains relatively stable except during two phases of 453 decrease between 534-522 cm and 486-458 cm, and two phases with higher values at 518 cm depth and during the Phase 4. The CBT varies between 0.27 and 0.74. Phase 1 (535-530 cm) is 454 characterized by high values of CBT following by a decline until reaching a minimum between 455 456 494-482 cm. Then, the CBT slightly increases; at 382 cm a slow decline is recorded, and a
- 457 strong increase marks Phase 4.



476 4.3.3 Temperature reconstructions based on brGDGTs

477 The brGDGT inferred reconstructed MAAT using global (Sun et al., 2011) and East 478 African (Russell et al., 2018) lacustrine calibrations show similar trends than MAF 479 reconstructed using a Bayesian statistical model (Martínez-Sosa et al., 2021) and global (Raberg et al., 2021) lacustrine calibrations (Fig. 8). The values are higher than modern values, 480 especially the values for the MAF_{Full} (Raberg et al., 2021). During Phase 1 (535-530 cm; 481 482 14,600-14,500 cal BP), all calibrations show cold temperatures. Phase 2 (530-436 cm; 14,500-12,800 cal BP) is marked by an abrupt temperature increase or a stabilization for MAF_{Meth} or a 483 decline for MAF_{Full}. Between 13,700 and 13,200 cal BP, lower temperatures are recorded with 484 485 all calibrations and from 13,100 cal BP, temperatures slowly decrease until 11,300 cal BP 486 although a slight increase is recorded between 11,900-11,500 cal BP. Phase 4 (367-338 cm; 487 11,570-11,000 cal BP) is characterized by a significant increase of temperature.

490

Figure 8. Mean Annual Air Temperature (MAAT) based on global (Sun et al., 2011) and East African (Russell et al., 2018) lacustrine calibrations and Mean temperature of Months Above Freezing (MAF) based on Bayesian statistics (Martínez-Sosa et al., 2021) and global (Raberg et al., 2021) lacustrine calibrations against age for the Matese core. Shaded areas correspond to the error associated with calibrations and dotted lines correspond to modern climate values of Lake Matese.

491 5. Discussion

492

493 5.1 Validation of age-depth model

494 The compilation of ages derived from the Italian pollen stratigraphy into the Matese 495 age-model is based on the main vegetation changes identified in the area during the Lateglacial. 496 In summary, the OD in Italian pollen records (and in the present study, Fig. 4) is characterized 497 by an open vegetation dominated by Poaceae, Artemisia, with a few arboreal pollen such as 498 Pinus and Juniperus appearing (Allen et al., 2002; Vescovi et al., 2010; Drescher-Schneider et 499 al., 2007; De Beaulieu et al., 2017; Sadori, 2018). During the B/A, a significant increase of 500 arboreal pollen taxa, including deciduous Quercus deciduous, is recorded, and in the majority 501 of records Betula appears (Allen et al., 2002; Drescher-Schneider et al., 2007; Vescovi et al., 502 2010; Sadori, 2018; this study). During the YD, an increase of Poaceae and Artemisia (Allen et 503 al., 2002; Mercuri et al., 2002; Drescher-Schneider et al., 2007; Vescovi et al., 2010) and an 504 overall decrease of arboreal pollen taxa, except in Southern Italy, (Allen et al., 2002; Beaulieu 505 et al., 2017; this study) are documented.

506 The ages of tephra samples and ages constrained from the pollen stratigraphy are in good agreement, contrasting results from the ¹⁴C dates which are randomly scattered and 507

508	systematically too young (Fig. 2). The sediments of the Matese core are mainly composed of
509	clay with only few plant fibers. Considering the recurrence of radiocarbon dates between 7570
510	and 7850 cal BP in the core interval between 420 and 360 cm depth (see Table 1), it is
511	hypothesized that the dated organic matter may have originated from penetrating roots of plants
512	growing during sedimentary Unit 5's deposition (Fig. 4). Indeed, aquatic plants of sedimentary
513	Unit 5, identified with pollen, evidence a shallow water body and the development of tree
514	species that typically grow in wetland.
515	Therefore, the overall age-depth model of the Matese core is based on imported, well-
516	accepted tephra ages and one ¹⁴ C date of a bulk sediment sample from the bottom of the core
517	at 534 cm (Fig. 2).
518	
519	5.2 Influence of proxies and methods on climate reconstructions
520	
521	5.2.1 Lake Matese climate signal reliability
522	Climate reconstructions are based both on pollen and brGDGTs, and some temperature
523	discrepancies (absolute values or amplitudes) are depicted depending on the proxies (Fig. 9).
524	The temperature amplitudes and absolute values are higher for brGDGTs (5-20°C) than the
525	pollen (4-10°C) reconstructions. Pollen-inferred temperature values depend heavily on the
526	quality of the modern pollen dataset including the number of samples, the diversity of samples
527	in terms of biomes, and the similarity with the fossil samples (Chevalier et al., 2020). In our
528	study, the modern database includes several modern samples from the Matese massif, and 95
529	samples from Italy were added to complete the dataset. Moreover, the spatial autocorrelation is
530	low for MAT (Moran's I<0.34, p-value<0.01), and climate trends are consistent between
531	methods. Reconstructed values for temperatures are close to modern values during the warmest
532	periods, however, precipitation is largely underestimated by all methods for the recent time
533	period (Fig. 5). The same observation was made in Calabria in Southern Italy (Trifoglietti;
534	Joannin et al., 2012), a region also characterized by precipitation above 1700 mm. The
535	underestimation of precipitation is certainly linked to the lack of modern samples located in
536	very wet Mediterranean areas. Considering the brGDGT climate signal, the reconstructed
537	temperatures are overestimated in comparison with modern values (Fig. 8). For shallow
538	temperate lakes (< 20 m), like Lake Matese, our brGDGT reconstructions suggest values
539	anomalously higher than the expected temperature due to thermal variability (seasonal and
540	diurnal; Martínez-Sosa et al., 2021). Lake Matese is located at an altitude of 1012 m a.s.l. and
541	the strong seasonal variability may have influenced the brGDGT distribution. Moreover, the

542 Lake Matese climate reconstructions are based on several global lacustrine calibration datasets, 543 which may not be well adapted to reconstruct paleotemperatures in the Mediterranean region. 544 According to Dugerdil et al. (2021a), local calibrations perform better to reconstruct more 545 reliable absolute values. Unfortunately, at date, only a few global lacustrine calibrations are 546 available, and a local calibration dataset for the Mediterranean region is still missing.

547

548 5.2.2 Regional climate signal reliability depending on the proxy

549 Climate reconstructions inferred from Lake Matese are compared to key terrestrial and 550 marine temperature and precipitation records (Fig. 9, 10) in a latitudinal transect in central 551 Mediterranean. These reconstructions for the Mediterranean region are based on different 552 proxies. Most of those are indicators of annual temperatures, but some of them are indicators 553 of seasonal temperature changes. For example, transfer functions based on chironomid assemblages provide estimates of mean July air temperatures (Larocque and Finsinger, 2008; 554 555 Heiri et al., 2014; Samartin et al., 2017), while ostracod assemblages allow quantitative 556 reconstruction of both January and July palaeotemperatures (Marchegiano et al., 2020). Planktonic foraminifera provide estimates of spring and autumn sea surface temperatures (SST) 557 558 (Sicre et al., 2013). Molecular biomarkers are considered as indicators of annual temperatures like brGDGTs (this study) or alkenones (Sbaffi et al., 2004; Sicre et al., 2013). For precipitation 559 560 (Fig. 10), fewer reconstructions are available and they are mainly based on records of pollen (Combourieu-Nebout et al., 2013), δ^{18} O G. bulloides in marine sediments (Sicre et al., 2013), 561 562 and δ^{18} O in speleothems (Regattieri et al., 2014). Pollen enable the reconstruction of both 563 annual and seasonal temperatures and precipitation (e.g. Allen et al., 2002; Tarroso et al., 2016). The comparison between climate reconstructions inferred from different proxies allows 564 565 us to identify reliable regional climate signals and to reduce the bias linked to each proxy. 566 Indeed, differences may appear for the timing or amplitudes of changes according to the type of proxy. These differences may be amplified by the proxy provenance, either marine or 567 continental. In Figure 9, the temperature reconstructions above 42°N are mainly based on 568 569 chironomids, and the climate signal reconstructed is consistent between the sites. In South Italy, 570 at Monticchio, climate reconstructions are based on three pollen records from the same site and 571 differences in terms of amplitude and trend are clearly evidenced (Fig. 9I). These differences 572 are linked to the differences in the core location in the lake and the pollen sample resolution 573 (Allen et al., 2002). The closer the core to the center of the lake (dark blue, Fig. 9I), the better 574 the regional vegetation record and therewith a possible regional climate signal (Peyron et al., 575 2005). Between latitude 41°N and 36°N, sea-surface temperatures (SSTs) were reconstructed

- from foraminifera and/or alkenones analyzed from marine cores (Sbaffi et al., 2004; Sicre et al., 2013). Alkenone-based SSTs show a low amplitude of 2-3°C between the B/A and the YD periods, whereas foraminifera-based reconstruction of seasonal temperature show differences of 5-10°C between the B/A and the YD. The differences are linked to their respective methods: For alkenones, the estimation of SSTs are based on the molecular biomarker as the C₃₇ alkenone unsaturation ($U_{37}^{K_1}$), whereas, for foraminifera, they are calculated with the MAT method and depend on the occurrence of modern analogues (Sicre et al., 2013).
- 583
- 584 <u>5.3 Climate changes during the Lateglacial in Italy</u>
- 585

586 5.3.1 Bølling–Allerød warming

587 The age of transition between the OD and the Bølling-Allerød Interstadial is estimated 588 at around 14,700 cal BP based on the NGRIP ice-core chronology (Rasmussen et al., 2014). In 589 Italy, an abrupt warming is evidenced at ca 14,700 cal BP (Fig. 9). The differences between the 590 different reconstructions seem related to the type of proxy used rather than latitude. The 591 transition is not obvious in the temperature reconstructions based on alkenones (Fig. 9MO; 592 Sbaffi et al., 2004; Sicre et al., 2013), whereas it is well marked in reconstructions based on 593 foraminifera (Fig. 9N; Sicre et al., 2013) and pollen assemblages (Desprat et al., 2013) from 594 the same cores. According to Sicre et al. (2013), alkenones-inferred SSTs could be biased 595 during the Early deglaciation due to water stratification inducing warming of the thin surface 596 water layers where small size nanophytoplankton grow. Except for temperature reconstructions 597 based on alkenones, all the records show an increase of the temperature at the transition OD-B/A (Larocque and Finsinger, 2008; Sicre et al., 2013; Heiri et al., 2014; Marchegiano et al., 598 599 2020). The transition, although marked, seems more progressive in the Italian records than in 600 Greenland ice-core but the low resolution of some records can favor this trend. In terms of 601 precipitation (Fig. 10), few records are available in Italy but no significant changes are recorded 602 around 14,700 cal BP by δ^{18} O G. bulloides (Sicre et al., 2013) and pollen transfer functions 603 (Desprat et al., 2013; this study).

The Bølling–Allerød interstadial is a warm interstadial period interrupted by several cold climate oscillations (Rasmussen et al., 2014). According to the synthesis by Moreno et al. (2014), the Bølling was cooler than the Allerød in the Southern Mediterranean compared to the warmer Northern Mediterranean. In Italy, above 42°N, temperature trends are complex to interpret: some records show an increase of temperature (Fig. 9B; Heiri et al., 2014) whereas other records show a decline (Fig. 9CE; Larocque and Finsinger, 2008; Marchegiano et al.,

610 2020). At Matese, pollen and brGDGTs inferred temperatures decrease (Fig. 9F-H), whereas in 611 the southern part of Italy, there are no significant changes during the B/A (Fig. 9I-O; Allen et 612 al., 2002; Sbaffi et al., 2004; Sicre et al., 2013). Temperature reconstructions in Italy show no 613 distinct difference between the Bølling and the Allerød with respect to the latitude. In terms of 614 amplitude, several studies (Renssen and Isarin, 2001; Heiri et al., 2014; Moreno et al., 2014) 615 suggests that there were less contrasts in temperatures during the B/A in Southern Europe in 616 comparison with Northern Europe. Once again, this difference is not clear in Italy (Fig. 9). At Matese, a significant decrease of brGDGTs-inferred temperature is recorded at 13,700-13,200 617 618 cal BP cal BP (Fig. 9H). This change could be attributed to a colder period such as the Older 619 Dryas or the Inter-Allerød cold period, two short periods characterized by colder conditions in 620 the Greenland ice-core records at 14,000 and 13,100 cal BP, respectively (Rasmussen et al., 621 2014). However, this cooling event do not appear at the same time in the Matese climate curve based on pollen, and it is only vaguely recorded in other Italian records (Fig. 9). We suggest 622 623 that this change could be attributed to changes of local conditions that are visible in a lithology 624 change (sedimentary Unit 2, Fig. 4). Indeed, brGDGT distribution and origin can differ 625 according to the type of wetland, water level or vegetation changes (Martínez-Sosa et al., 2021; 626 Robles et al., 2022). In terms of precipitation (Fig. 10), no significant changes occur during the B/A in Italy as suggested previously by Renssen and Isarin (2001) for Southern Europe. The 627 628 Alpine region seems instead to record wetter conditions during the B/A (Barton et al., 2018; Li 629 et al., 2021).

630

631 5.3.2 A marked Younger Dryas cold event throughout Italy

632 The onset of the YD is estimated around 12,900 cal BP according to the Greenland ice-633 core chronology (Rasmussen et al., 2014). In Italy, above 42°N, the transition between the B/A and the YD is progressive in terms of temperatures except for chironomid records (Fig. 9B; 634 Heiri et al., 2014). At Matese, pollen-based reconstructions show a progressive decline of 635 temperatures with all methods except the MAT (Fig. 9FG). For this method, the transition is 636 637 more abrupt, but this difference can be attributed to the application of the biome constraint. 638 BrGDGT-based reconstructions record a steady decrease during the YD or no significant 639 changes according to the calibrations used (Fig. 9H). For southern Italian records, the transition 640 is more abrupt and particularly marked in the foraminifera record in contrast to alkenones-based 641 reconstructions (Fig. 9J-O; Sbaffi et al., 2004; Sicre et al., 2013). In terms of precipitation (Fig. 642 10), the northern Italian speleothems records show an abrupt transition (Regattieri et al., 2014;

643 Li et al., 2021) whereas the southern Italian pollen and isotopes records do not reveal significant 644 changes (Sicre et al., 2013; Combourieu-Nebout et al., 2013; Desprat et al., 2013). 645 The YD is characterized by cold conditions in the Northern Hemisphere from 12,900 to 646 11,700 cal BP (Rasmussen et al., 2014). As previously mentioned for the B/A, several studies 647 (Renssen and Isarin, 2001; Heiri et al., 2014; Moreno et al., 2014) suggest that temperatures during the YD are less contrasted in the South of Europe in comparison with the North. In Italy 648 649 as a whole (Fig. 9), a decline in temperatures is recorded in all records. At Matese, a decrease 650 of temperatures is evidenced by the pollen-based reconstructions, but it is less clear from the 651 brGDGT-based reconstructions. The difference of climate signals may be related to different 652 sources between both proxies. Pollen record local, extra-local and regional vegetation 653 (Jacobson and Bradshaw, 1981). The basin size of the Lake Matese is larger than 5 hectares, 654 which suggest a signal of regional vegetation rather than local (Jacobson and Bradshaw, 1981). 655 Moreover, the YD is marked by a large proportion of herbaceous taxa (Fig. 4) and favors the catching of regional pollen (Jacobson and Bradshaw, 1981). On the contrary, brGDGTs are 656 produced in the lake or in the catchment area (Russell et al., 2018; Martin et al., 2019) and thus 657 658 are local contributors. Moreover, the YD is characterized by high erosion rates in the catchment 659 (Fig. 4), which could favor greater soil-derived brGDGTs and induce a warm bias in temperatures (Martínez-Sosa et al., 2021). At Monticchio (Fig. 9I), contrasted trends are also 660 recorded by the three different climate variables used for pollen-based temperature 661 reconstructions: a decrease in winter temperature is reconstructed for two lake cores, while a 662 663 fen core external to the lake, which should record the local vegetation signal, does not reveal 664 the temperature decline during the YD (Allen et al., 2002). However, the two other cores clearly 665 show a temperature decrease, that is why we consider a winter temperature decrease during the YD at Monticchio. In Southern Italian records, temperature reconstructions based on alkenones, 666 foraminifera and pollen (Sbaffi et al., 2004; Desprat et al., 2013; Sicre et al., 2013) show a 667 668 shorter YD than in the north. For alkenones-based reconstructions, even an increase of 669 temperatures is recorded at the end of the YD. In continental records of South Italy (Allen et 670 al., 2002), this trend is only recorded at Monticchio (one core only) and does not appears at 671 Matese. Nonetheless, this hypothesis is only based on marine records and should be investigated 672 through continental records in Southern Italy. In terms of precipitation, the marine cores located south of latitude 42°N record a slight temperature increase based on pollen (Fig. 9GH; 673 Combourieu-Nebout et al., 2013) and δ^{18} O G. bulloides data (Fig. 9FI; Sicre et al., 2013). 674 675 However, no significant change occurs at Matese for PANN (Fig. 10D), and on the contrary a 676 low decline is recorded for Pwinter towards the end of the YD (Fig. 10E). Above latitude 42°N,

a precipitation decrease during the YD is recorded by two sites at Hölloch and Corchia caves
(Fig. 10BC; Regattieri et al., 2014; Li et al., 2021). According to the model outputs of Rea et
al. (2020), drier conditions occurred in Northern Europe whereas wetter conditions prevailed in
Southern Europe, mainly during winter and in the South of Italy, the Dinaric Alps and Northern
Turkey. This pattern is consistent with our reconstruction but the limit between the North and
the South is closer to latitude 42°N.

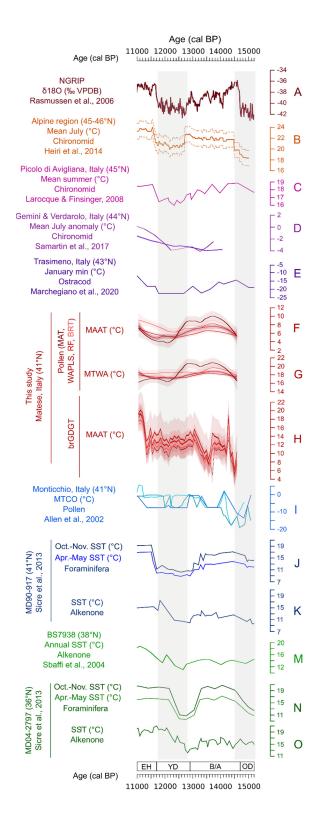
The transition between the YD and the Holocene is recorded around 11,700 cal BP by Greenland ice-core records (Rasmussen et al., 2014). In Italy, an important increase of temperature is recorded in all records (Fig. 9) which appears earlier (700-400 years) in southern sites (Sbaffi et al., 2004; Sicre et al., 2013). In terms of precipitation, marine records south of latitude 42°N continue to record a slight increase of precipitation (Fig. 10F-I; Combourieu-Nebout et al., 2013; Sicre et al., 2013), and in northern sites an abrupt increase of precipitation is recorded (Fig. 10B-E; Regattieri et al., 2014; Li et al., 2021; this study).

690

691 <u>5.4 Atmospheric processes during the Lateglacial in central Mediterranean</u>

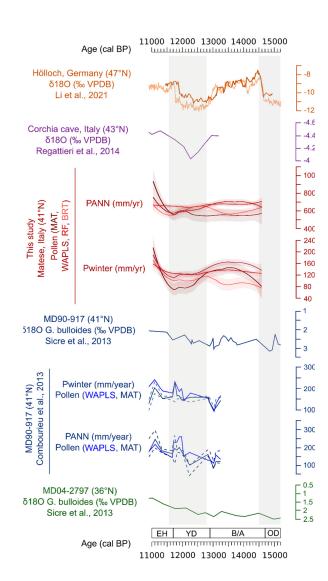
According to several studies, climate changes during the Lateglacial show differences 692 693 in temperatures between Southern and Central Europe (Heiri et al., 2014; Moreno et al., 2014; 694 Renssen and Isarin, 2001). In Italy (Fig. 9), climate reconstructions do not show latitudinal 695 differences in terms of temperature. The B/A is marked by warm conditions and the YD by cold 696 conditions even in Southern Italy. Climate reconstructions of Heiri et al., (2014) are not 697 consistent with our results probably because (1) they are based only on two chironomid records 698 located in North Italy, (2) they do not include records from Central and South of Italy, and (3) 699 their reconstructions are also influenced by a record from Bulgaria which can potentially biased 700 the signal of Southern Europe. In the study of Moreno et al. (2014), only the record of 701 Monticchio is used for the South of Italy during the Lateglacial, which may explain the differences in our study. Considering precipitation, several studies suggest no significant 702 703 changes during the B/A but drier conditions in Northern Europe and wetter conditions in 704 Southern Europe during the YD. In Italy (Fig. 10), we observe the same dynamics during the 705 B/A and the YD.

Several studies (Renssen and Isarin, 2001; Moreno et al., 2014; Rea et al., 2020) explain
that during cold periods of the Lateglacial (OD, YD) the Polar Frontal JetStream moved
southward with a weak Atlantic Meridional Overturning Circulation (AMOC) (Moreno et al.,
2014; Rea et al., 2020; Renssen and Isarin, 2001). The incursion of cold air masses is recorded
until the South of Italy, however, during the YD, dry conditions are not reconstructed in this



711 region. According to Rea et al. (2020), a relocation of Atlantic storm tracks into the 712 Mediterranean is induced by the Fennoscandian ice sheet and the North European Plain which 713 created a topographic barrier and a high pressure region during the YD. The presence of Atlantic 714 storm tracks into the Mediterranean could have favored wetter conditions in the South of Italy 715 during the YD. Our study suggests a limit around latitude 42°N with drier conditions in 716 Northern Italy and slightly wetter conditions in Southern Italy during the YD. A latitude limit 717 at 40°N was previously discussed by Magny et al. (2013) for the Holocene. These echoing 718 limits over time in Italy inevitably reinforce Italy's key position to archive proxies catching 719 atmospheric patterns.

720 On the contrary, during the B/A, the North Atlantic sea-ice has a more northerly position 721 inducing a northward shift of the Polar Frontal JetStream (Renssen and Isarin, 2001). The 722 incursion of warm air masses is recorded in all of Italy, however, no significant changes in 723 annual precipitation occur. Our study does not suggest the location of Atlantic storm tracks in 724 Italy during the B/A, although at Matese winter precipitation was higher in most pollen-based 725 climate reconstructions. However, very few records and climatic models reconstructing precipitation are available in Europe and the Mediterranean region for this period. Further 726 727 investigations are necessary to fully understand the atmospheric processes and precipitation 728 dynamic in Europe, mainly during the B/A.



730

Figure 9. Synthesis of temperature records inferred from different proxies in Italy from 15,000 to 11,000 cal BP and comparison with the NGRIP ice core record. MAAT: mean annual air temperature. MTWA: mean temperature of the warmest month. MTCO: mean temperature of the coldest month. OD: Oldest Dryas. B/A: Bølling–Allerød. YD: Younger Dryas. EH: Early Holocene.

731

Figure 10. Synthesis of precipitation records inferred from different proxies in Italy 15,000 to 11,000 cal BP. PANN: mean annual precipitation. P_{winter}: winter precipitation. OD: Oldest Dryas. B/A: Bølling–Allerød. YD: Younger Dryas. EH: Early Holocene.

733 6. Conclusions

155	
734	This study provides a quantitative climate reconstruction for the Lateglacial period in
735	South Central Europe, inferred from a multi-proxy and multi-method approach based on the
736	Lake Matese record. The comparison of the Lake Matese climate reconstructions based on
737	brGDGTs and pollen and their comparison with regional terrestrial/marine climate
738	reconstructions show the following:
739	• For the first time, pollen and brGDGTs were combined to reconstruct climate
740	changes in the Mediterranean region during the Lateglacial. Temperature trends
741	reconstructed with these proxies are consistent except during the YD. Both proxies
742	show a marked cold OD, an increase of temperatures during the B/A, and an abrupt
743	transition to warmer conditions for the Holocene. During the YD, pollen-based
744	reconstructions show a decrease of temperatures, whereas brGDGT-based
745	reconstructions show no significant changes.
746	• Comparison with regional climate records of Italy reveals that there are no
747	latitudinal differences during the B/A and the YD in terms of temperatures. The B/A
748	is marked by an increase of temperature and the YD is characterized by cold
749	conditions in all Italy. On the contrary, precipitation does not show changes during
750	the B/A, and a slight increase of precipitation during the YD is recorded in Southern
751	Italy below latitude 42°N.
752	• Cold conditions during the YD in Italy may be linked to the southward position of
753	North Atlantic sea-ice and of the Polar Frontal JetStream. The low increase of
754	precipitation during the YD may be linked to relocation of Atlantic storm tracks into
755	the Mediterranean, induced by the Fennoscandian ice sheet and the North European
756	Plain. We identified the latitude 42°N as a limit between dry conditions in northern
757	Italy and slightly wetter conditions in Southern Italy during the YD. On the contrary,
758	warm conditions during the B/A may be linked to the northward position of North
759 760	Atlantic sea-ice and of the Polar Frontal JetStream.
760 761	In summary, this study allowed us to document and discuss past climate changes in Italy
762	while contributing to the debate about the atmospheric processes in Southern Europe. The
763	latitudes 40-42°N appear as a key junction point between wetter conditions in Southern Italy
764	and drier conditions in Northern Italy during the YD but also during the Early-Mid Holocene

765 (Magny et al., 2013). However, further robust paleoclimate studies are needed to provide 1)
766 high-resolution reconstructions based on several proxies in Northern Italy, 2) new records for

central Italy (between 41-43°N), 3) new continental records for Southern Italy (below 41°N)
and 4) more model outputs at regional scales with transient simulations, if possible, mainly
during the B/A and the YD.

770

771 Author contribution

MR: Conceptualization, Field work, Laboratory work, Formal analysis, Writing draft
manuscript, Review, Funding acquisition. SJ, OP and EB: Conceptualization, Field work,
Supervision, Review, Funding acquisition. GM: Conceptualization, Supervision, Review,
Funding acquisition. SW: Laboratory work, Formal analysis, Review, Funding acquisition. OA
and MB: Laboratory work. BV: Supervision of laboratory work, Review. BP: Field work. SAA:
Coordination of laboratory work. LC and SG: Conceptualization, Review. J-LB, LD and AC:
Review.

779

780 Declaration of competing interest

The authors declare that they have no known competing financial interests or personalrelationships that could have appeared to influence the work reported in this paper.

783

784 Funding

This research was co-founded by the International PhD course "Agriculture Technologies and Biotechnologies" (34° Cycle, Code: DOT1339335). Financial support for this study was provided by EFFICACE project from EC2CO INSU CNRS (PI: Odile Peyron) and ERJ ClimMatese from LabEx CeMEB (PI: Mary Robles). The travels between Italy and France were financed by VINCI founding of the Università Italo Francese (UIF). The conference funding was provided by the Association des Palynologues de Langue Française (APLF).

792

793 Acknowledgements

The authors would like to thank Julien Didier for magnetic susceptibility measurements, Laurent Bouby and Isabelle Figueral for seed and wood identifications used for radiocarbon dating. The authors would like to express their appreciation to Gwenaël Magne, Thierry Pastor and Benoît Brossier for logistical support during fieldwork, and Anne-Lise Develle and Claire Blanchet for help during XRF analysis. We would like to thank Sandrine Canal and Sylvie

799 Rouland for support during pollen sample preparation. This is an ISEM contribution N° XXXX-

800 XXX.

801

802 References

803	Allen, J.R.M., Watts, W.A., McGee, E., Huntley, B., 2002. Holocene environmental variability-
804	the record from Lago Grande di Monticchio, Italy. Quaternary International 88, 69-80.
805	Ammann, B., Birks, H.J.B., Brooks, S.J., Eicher, U., von Grafenstein, U., Hofmann, W.,
806	Lemdahl, G., Schwander, J., Tobolski, K., Wick, L., 2000. Quantification of biotic
807	responses to rapid climatic changes around the Younger Dryas — a synthesis.
808	Palaeogeography, Palaeoclimatology, Palaeoecology 159, 313-347.
809	https://doi.org/10.1016/S0031-0182(00)00092-4
810	Aucelli, P.P.C., Cesarano, M., Di Paola, G., Filocamo, F., Rosskopf, C.M., 2013.
811	Geomorphological map of the central sector of the Matese Mountains (Southern Italy):
812	an example of complex landscape evolution in a Mediterranean mountain environment.
813	Journal of Maps 9, 604-616. https://doi.org/10.1080/17445647.2013.840054
814	Barton, C.M., Aura Tortosa, J.E., Garcia-Puchol, O., Riel-Salvatore, J.G., Gauthier, N., Vadillo
815	Conesa, M., Pothier Bouchard, G., 2018. Risk and resilience in the late glacial: A case
816	study from the western Mediterranean. Quaternary Science Reviews 184, 68-84.
817	https://doi.org/10.1016/j.quascirev.2017.09.015
818	Beug, HJ., 2004. Leitfaden der Pollenbestimmung für Mitteleuropa und angrenzende Gebiete.
819	Friedrich Pfeil, München.
820	Blaauw, M., 2010. Methods and code for 'classical' age-modelling of radiocarbon sequences.
821	Quaternary Geochronology 5, 512–518. https://doi.org/10.1016/j.quageo.2010.01.002
822	Blaga, C.I., Reichart, GJ., Lotter, A.F., Anselmetti, F.S., Sinninghe Damsté, J.S., 2013. A
823	TEX 86 lake record suggests simultaneous shifts in temperature in Central Europe and
824	Greenland during the last deglaciation: A SWISS TEX 86 LAKE RECORD. Geophys.
825	Res. Lett. 40, 948–953. https://doi.org/10.1002/grl.50181
826	Breiman, L., 2001. Random Forests. Machine Learning 45, 5–32.
827	https://doi.org/10.1023/A:1010933404324
828	Bronk Ramsey, C., Albert, P.G., Blockley, S.P.E., Hardiman, M., Housley, R.A., Lane, C.S.,
829	Lee, S., Matthews, I.P., Smith, V.C., Lowe, J.J., 2015. Improved age estimates for key
830	Late Quaternary European tephra horizons in the RESET lattice. Quaternary Science
831	Reviews 118, 18-32. https://doi.org/10.1016/j.quascirev.2014.11.007
832	Carranza, M.L., Frate, L., Paura, B., 2012. Structure, ecology and plant richness patterns in
833	fragmented beech forests. Plant Ecology & Diversity 5, 541-551.
834	https://doi.org/10.1080/17550874.2012.740509
835	Castañeda, I.S., Schouten, S., 2011. A review of molecular organic proxies for examining
836	modern and ancient lacustrine environments. Quaternary Science Reviews 30, 2851-
837	2891. https://doi.org/10.1016/j.quascirev.2011.07.009
838	Chevalier, M., Davis, B.A.S., Heiri, O., Seppä, H., Chase, B.M., Gajewski, K., Lacourse, T.,
839	Telford, R.J., Finsinger, W., Guiot, J., Kühl, N., Maezumi, S.Y., Tipton, J.R., Carter,
840	V.A., Brussel, T., Phelps, L.N., Dawson, A., Zanon, M., Vallé, F., Nolan, C., Mauri, A.,
841	de Vernal, A., Izumi, K., Holmström, L., Marsicek, J., Goring, S., Sommer, P.S.,
842	Chaput, M., Kupriyanov, D., 2020. Pollen-based climate reconstruction techniques for
843	late Quaternary studies. Earth-Science Reviews 210, 103384.
844	https://doi.org/10.1016/j.earscirev.2020.103384
845	Combourieu-Nebout, N., Peyron, O., Bout-Roumazeilles, V., Goring, S., Dormoy, I., Joannin,
846	S., Sadori, L., Siani, G., Magny, M., 2013. Holocene vegetation and climate changes in

847 848	the central Mediterranean inferred from a high-resolution marine pollen record (Adriatic Sea). Clim. Past 9, 2023–2042. https://doi.org/10.5194/cp-9-2023-2013
849	Coope, G.R., Lemdahl, G., 1995. Regional differences in the Lateglacial climate of northern
850	Europe based on coleopteran analysis. Journal of Quaternary Science 10, 391–395.
851	https://doi.org/10.1002/jqs.3390100409
852	Davtian, N., Bard, E., Ménot, G., Fagault, Y., 2018. The importance of mass accuracy in
853	selected ion monitoring analysis of branched and isoprenoid tetraethers. Organic
854	Geochemistry 118, 58–62. https://doi.org/10.1016/j.orggeochem.2018.01.007
855	De Beaulieu, JL., Brugiapaglia, E., Joannin, S., Guiter, F., Zanchetta, G., Wulf, S., Peyron,
855	O., Bernardo, L., Didier, J., Stock, A., Rius, D., Magny, M., 2017. Lateglacial-Holocene
850	abrupt vegetation changes at Lago Trifoglietti in Calabria, Southern Italy: The setting
858	of ecosystems in a refugial zone. Quaternary Science Reviews 158, 44–57.
859	https://doi.org/10.1016/j.quascirev.2016.12.013
860	De Jonge, C., Stadnitskaia, A., Hopmans, E.C., Cherkashov, G., Fedotov, A., Sinninghe
861	Damsté, J.S., 2014. In situ produced branched glycerol dialkyl glycerol tetraethers in
862	suspended particulate matter from the Yenisei River, Eastern Siberia. Geochimica et
863	Cosmochimica Acta 125, 476–491. https://doi.org/10.1016/j.gca.2013.10.031
864	Dearing Crampton-Flood, E., Tierney, J.E., Peterse, F., Kirkels, F.M.S.A., Sinninghe Damsté,
865	J.S., 2020. BayMBT: A Bayesian calibration model for branched glycerol dialkyl
866	glycerol tetraethers in soils and peats. Geochimica et Cosmochimica Acta 268, 142–
867	159. https://doi.org/10.1016/j.gca.2019.09.043
868	De'ath, G., 2007. Boosted trees for ecological modeling and prediction. Ecology 88, 243–251.
869	https://doi.org/10.1890/0012-9658(2007)88[243:BTFEMA]2.0.CO;2
870	Desprat, S., Combourieu-Nebout, N., Essallami, L., Sicre, M.A., Dormoy, I., Peyron, O., Siani,
871	G., Bout Roumazeilles, V., Turon, J.L., 2013. Deglacial and Holocene vegetation and
872	climatic changes in the southern Central Mediterranean from a direct land-sea
873	correlation. Clim. Past 9, 767–787. https://doi.org/10.5194/cp-9-767-2013
874	Ding, S., Schwab, V.F., Ueberschaar, N., Roth, VN., Lange, M., Xu, Y., Gleixner, G., Pohnert,
875	G., 2016. Identification of novel 7-methyl and cyclopentaryl branched glycerol dialkyl
876	glycerol tetraethers in lake sediments. Organic Geochemistry 102, 52–58.
877	https://doi.org/10.1016/j.orggeochem.2016.09.009
878	Drescher-Schneider, R., de Beaulieu, JL., Magny, M., Walter-Simonnet, AV., Bossuet, G.,
879	Millet, L., Brugiapaglia, E., Drescher, A., 2007. Vegetation history, climate and human
880	impact over the last 15,000 years at Lago dell'Accesa (Tuscany, Central Italy). Veget
881	Hist Archaeobot 16, 279–299. https://doi.org/10.1007/s00334-006-0089-z
882	Dugerdil, L., Joannin, S., Peyron, O., Jouffroy-Bapicot, I., Vannière, B., Boldgiv, B.,
883	Unkelbach, J., Behling, H., Ménot, G., 2021a. Climate reconstructions based on GDGT
884	and pollen surface datasets from Mongolia and Baikal area: calibrations and
885	applicability to extremely cold-dry environments over the Late Holocene. Clim. Past
886	17, 1199–1226. https://doi.org/10.5194/cp-17-1199-2021
887	Dugerdil, L., Ménot, G., Peyron, O., Jouffroy-Bapicot, I., Ansanay-Alex, S., Antheaume, I.,
888	Behling, H., Boldgiv, B., Develle, AL., Grossi, V., Magail, J., Makou, M., Robles, M.,
889	Unkelbach, J., Vannière, B., Joannin, S., 2021b. Late Holocene Mongolian climate and
890	environment reconstructions from brGDGTs, NPPs and pollen transfer functions for
891	Lake Ayrag: Paleoclimate implications for Arid Central Asia. Quaternary Science
892	Reviews 273, 107235. https://doi.org/10.1016/j.quascirev.2021.107235
893	Duprat-Oualid, F., Bégeot, C., Peyron, O., Rius, D., Millet, L., Magny, M., 2022. High-
894	frequency vegetation and climatic changes during the Lateglacial inferred from the
895	Lapsou pollen record (Cantal, southern Massif Central, France). Quaternary
896	International \$1040618222001537. https://doi.org/10.1016/j.quaint.2022.04.012

- Elith, J., Leathwick, J.R., Hastie, T., 2008. A working guide to boosted regression trees. J Anim
 Ecology 77, 802–813. https://doi.org/10.1111/j.1365-2656.2008.01390.x
- Faegri, K., Kaland, P.E., Krzywinski, K., 1989. Textbook of pollen analysis. John Wiley &
 Sons, Chichester.
- Ferranti, L., Milano, G., Burrato, P., Palano, M., Cannavò, F., 2015. The seismogenic structure
 of the 2013–2014 Matese seismic sequence, Southern Italy: implication for the
 geometry of the Apennines active extensional belt. Geophysical Journal International
 201, 823–837. https://doi.org/10.1093/gij/ggv053
- Ferrarini, F., Boncio, P., de Nardis, R., Pappone, G., Cesarano, M., Aucelli, P.P.C., Lavecchia,
 G., 2017. Segmentation pattern and structural complexities in seismogenic extensional
 settings: The North Matese Fault System (Central Italy). Journal of Structural Geology
 908 95, 93–112. https://doi.org/10.1016/j.jsg.2016.11.006
- Finsinger, W., Heiri, O., Valsecchi, V., Tinner, W., Lotter, A.F., 2007. Modern pollen
 assemblages as climate indicators in southern Europe. Global Ecology and
 Biogeography 16, 567–582. https://doi.org/10.1111/j.1466-8238.2007.00313.x
- Fiorillo, F., Doglioni, A., 2010. The relation between karst spring discharge and rainfall by
 cross-correlation analysis (Campania, southern Italy). Hydrogeol J 18, 1881–1895.
 https://doi.org/10.1007/s10040-010-0666-1
- Fiorillo, F., Pagnozzi, M., 2015. Recharge processes of Matese karst massif (southern Italy).
 Environ Earth Sci 74, 7557–7570. https://doi.org/10.1007/s12665-015-4678-y
- Galli, P., Giaccio, B., Messina, P., Peronace, E., Amato, V., Naso, G., Nomade, S., Pereira, A.,
 Piscitelli, S., Bellanova, J., Billi, A., Blamart, D., Galderisi, A., Giocoli, A., Stabile, T.,
 Thil, F., 2017. Middle to Late Pleistocene activity of the northern Matese fault system
 (southern Apennines, Italy). Tectonophysics 699, 61–81.
 https://doi.org/10.1016/j.tecto.2017.01.007
- Gandouin, E., Rioual, P., Pailles, C., Brooks, S.J., Ponel, P., Guiter, F., Djamali, M., AndrieuPonel, V., Birks, H.J.B., Leydet, M., Belkacem, D., Haas, J.N., Van der Putten, N., de
 Beaulieu, J.L., 2016. Environmental and climate reconstruction of the late-glacialHolocene transition from a lake sediment sequence in Aubrac, French Massif Central:
 Chironomid and diatom evidence. Palaeogeography, Palaeoclimatology, Palaeoecology
 461, 292–309. https://doi.org/10.1016/j.palaeo.2016.08.039
- Guarino, R., Bazan, G., Paura, B., 2015. Downy-Oak Woods of Italy: Phytogeographical Remarks on a Controversial Taxonomic and Ecologic Issue, in: Box, E.O., Fujiwara, K. (Eds.), Warm-Temperate Deciduous Forests around the Northern Hemisphere, Geobotany Studies. Springer International Publishing, Cham, pp. 139–151. https://doi.org/10.1007/978-3-319-01261-2 7
- Guiot, J., 1990. Methodology of the last climatic cycle reconstruction in France from pollen
 data. Palaeogeography, Palaeoclimatology, Palaeoecology, Methods for the Study of
 Stratigraphical Records 80, 49–69. https://doi.org/10.1016/0031-0182(90)90033-4
- Guiot, J., de Beaulieu, J.L., Cheddadi, R., David, F., Ponel, P., Reille, M., 1993. The climate in
 Western Europe during the last Glacial/Interglacial cycle derived from pollen and insect
 remains. Palaeogeography, Palaeoclimatology, Palaeoecology 103, 73–93.
 https://doi.org/10.1016/0031-0182(93)90053-L
- Heiri, O., Brooks, S.J., Renssen, H., Bedford, A., Hazekamp, M., Ilyashuk, B., Jeffers, E.S.,
 Lang, B., Kirilova, E., Kuiper, S., Millet, L., Samartin, S., Toth, M., Verbruggen, F.,
 Watson, J.E., van Asch, N., Lammertsma, E., Amon, L., Birks, H.H., Birks, H.J.B.,
 Mortensen, M.F., Hoek, W.Z., Magyari, E., Muñoz Sobrino, C., Seppä, H., Tinner, W.,
 Tonkov, S., Veski, S., Lotter, A.F., 2014. Validation of climate model-inferred regional
 temperature change for late-glacial Europe. Nat Commun 5, 4914.
 https://doi.org/10.1038/ncomms5914

947	Heiri, O., Ilyashuk, B., Millet, L., Samartin, S., Lotter, A.F., 2015. Stacking of discontinuous
948	regional palaeoclimate records: Chironomid-based summer temperatures from the
949	Alpine region. The Holocene 25, 137–149. https://doi.org/10.1177/0959683614556382
950	Hepp, J., Wüthrich, L., Bromm, T., Bliedtner, M., Schäfer, I.K., Glaser, B., Rozanski, K.,
951	Sirocko, F., Zech, R., Zech, M., 2019. How dry was the Younger Dryas? Evidence from
952	a coupled $\delta^2 H$ – $\delta^{18} O$ biomarker paleohygrometer applied to the Gemündener Maar
953	sediments, Western Eifel, Germany. Climate of the Past 15, 713-733.
954	https://doi.org/10.5194/cp-15-713-2019
955	Hijmans, R.J., Phillips, S., Elith, J.L. and J., 2021. dismo: Species Distribution Modeling.
956	Hopmans, E.C., Schouten, S., Sinninghe Damsté, J.S., 2016. The effect of improved
957	chromatography on GDGT-based palaeoproxies. Organic Geochemistry 93, 1-6.
958	https://doi.org/10.1016/j.orggeochem.2015.12.006
959	Huguet, C., Hopmans, E.C., Febo-Ayala, W., Thompson, D.H., Sinninghe Damsté, J.S.,
960	Schouten, S., 2006. An improved method to determine the absolute abundance of
961	glycerol dibiphytanyl glycerol tetraether lipids. Organic Geochemistry 37, 1036–1041.
962	https://doi.org/10.1016/j.orggeochem.2006.05.008
963	Hunt, J.B., Hill, P.G., 1996. An inter-laboratory comparison of the electron probe microanalysis
964	of glass geochemistry. Quaternary International 34-36, 229-241.
965	https://doi.org/10.1016/1040-6182(95)00088-7
966	Jacobson, G.L., Bradshaw, R.H.W., 1981. The Selection of Sites for Paleovegetational Studies.
967	Quat. res. 16, 80-96. https://doi.org/10.1016/0033-5894(81)90129-0
968	Joannin, S., Brugiapaglia, E., Vanniere, B., 2012. Pollen-based reconstruction of Holocene
969	vegetation and climate in southern Italy: the case of Lago Trifoglietti. Clim. Past 24.
970	Jochum, K.P., Stoll, B., Herwig, K., Willbold, M., Hofmann, A.W., Amini, M., Aarburg, S.,
971	Abouchami, W., Hellebrand, E., Mocek, B., Raczek, I., Stracke, A., Alard, O., Bouman,
972	C., Becker, S., Dücking, M., Brätz, H., Klemd, R., de Bruin, D., Canil, D., Cornell, D.,
973	de Hoog, CJ., Dalpé, C., Danyushevsky, L., Eisenhauer, A., Gao, Y., Snow, J.E.,
974	Groschopf, N., Günther, D., Latkoczy, C., Guillong, M., Hauri, E.H., Höfer, H.E.,
975	Lahaye, Y., Horz, K., Jacob, D.E., Kasemann, S.A., Kent, A.J.R., Ludwig, T., Zack, T.,
976	Mason, P.R.D., Meixner, A., Rosner, M., Misawa, K., Nash, B.P., Pfänder, J., Premo,
977	W.R., Sun, W.D., Tiepolo, M., Vannucci, R., Vennemann, T., Wayne, D., Woodhead,
978	J.D., 2006. MPI-DING reference glasses for in situ microanalysis: New reference values
979	for element concentrations and isotope ratios: MPI-DING REFERENCE GLASSES.
980	Geochem. Geophys. Geosyst. 7, n/a-n/a. https://doi.org/10.1029/2005GC001060
981	Juggins, S., Juggins, M.S., 2020. Package 'rioja.'
982	Kuehn, S.C., Froese, D.G., Shane, P.A.R., 2011. The INTAV intercomparison of electron-beam
983	microanalysis of glass by tephrochronology laboratories: Results and recommendations.
984	Quaternary International, Enhancing tephrochronology and its application (INTREPID
985	Project): Hiroshi Machida commemorative volume 246, 19–47.
986	https://doi.org/10.1016/j.quaint.2011.08.022
987	Larocque, I., Finsinger, W., 2008. Late-glacial chironomid-based temperature reconstructions
988	for Lago Piccolo di Avigliana in the southwestern Alps (Italy). Palaeogeography,
989	Palaeoclimatology, Palaeoecology 257, 207–223.
990	https://doi.org/10.1016/j.palaeo.2007.10.021
991	Li, H., Spötl, C., Cheng, H., 2021. A high-resolution speleothem proxy record of the Late
992	Glacial in the European Alps: extending the NALPS19 record until the beginning of the
993	Holocene. J. Quaternary Sci 36, 29–39. https://doi.org/10.1002/jqs.3255
994	Liaw, A., Wiener, M., 2002. Classification and Regression by randomForest 2, 5.
995	Lotter, A.F., Heiri, O., Brooks, S., van Leeuwen, J.F.N., Eicher, U., Ammann, B., 2012. Rapid
996	summer temperature changes during Termination 1a: high-resolution multi-proxy

997	climate reconstructions from Gerzensee (Switzerland). Quaternary Science Reviews,
998	The INTegration of Ice core, Marine and TErrestrial records of the last termination
999	(INTIMATE) 60,000 to 8000 BP 36, 103–113.
1000	https://doi.org/10.1016/j.quascirev.2010.06.022
1000	Magny, M., Combourieu-Nebout, N., de Beaulieu, JL., Bout-Roumazeilles, V., Colombaroli,
1002	D., Desprat, S., Francke, A., Joannin, S., Ortu, E., Peyron, O., Revel, M., Sadori, L.,
1003	Siani, G., Sicre, M.A., Samartin, S., Simonneau, A., Tinner, W., Vanniere, B., Wagner,
1003	B., Zanchetta, G., Anselmetti, F., Brugiapaglia, E., Chapron, E., Debret, M., Didier, J.,
1005	Essallami, L., Galop, D., Gilli, A., Kallel, N., Millet, L., Stock, A., Turon, J.L., Wirth,
1006	S., 2013. North-south palaeohydrological contrasts in the central Mediterranean during
1007	the Holocene: tentative synthesis and working hypotheses. Clim. Past 30.
1008	Marchegiano, M., Horne, D.J., Gliozzi, E., Francke, A., Wagner, B., Ariztegui, D., 2020. Rapid
1009	Late Pleistocene climate change reconstructed from a lacustrine ostracod record in
1010	central Italy (Lake Trasimeno, Umbria). Boreas 49, 739–750.
1011	https://doi.org/10.1111/bor.12450
1012	Martin, C., Ménot, G., Thouveny, N., Davtian, N., Andrieu-Ponel, V., Reille, M., Bard, E.,
1013	2019. Impact of human activities and vegetation changes on the tetraether sources in
1014	Lake St Front (Massif Central, France). Organic Geochemistry 135, 38–52.
1015	Martin, C., Ménot, G., Thouveny, N., Peyron, O., Andrieu-Ponel, V., Montade, V., Davtian,
1016	N., Reille, M., Bard, E., 2020. Early Holocene Thermal Maximum recorded by branched
1017	tetraethers and pollen in Western Europe (Massif Central, France). Quaternary Science
1018	Reviews 228, 106109. https://doi.org/10.1016/j.quascirev.2019.106109
1019	Martínez-Sosa, P., Tierney, J.E., Stefanescu, I.C., Dearing Crampton-Flood, E., Shuman, B.N.,
1020	Routson, C., 2021. A global Bayesian temperature calibration for lacustrine brGDGTs.
1021	Geochimica et Cosmochimica Acta 305, 87–105.
1022	https://doi.org/10.1016/j.gca.2021.04.038
1023	Mercuri, A.M., Accorsi, C.A., Bandini Mazzanti, M., 2002. The long history of Cannabis and
1024	its cultivation by the Romans in central Italy, shown by pollen records from Lago
1025	Albano and Lago di Nemi. Veget Hist Archaeobot 11, 263–276.
1026	https://doi.org/10.1007/s003340200039
1027	Millet, L., Rius, D., Galop, D., Heiri, O., Brooks, S.J., 2012. Chironomid-based reconstruction
1028	of Lateglacial summer temperatures from the Ech palaeolake record (French western
1029	Pyrenees). Palaeogeography, Palaeoclimatology, Palaeoecology 315-316, 86-99.
1030	https://doi.org/10.1016/j.palaeo.2011.11.014
1031	Moore, P.D., Webb, J.A., Collinson, M.E., 1991. Pollen Analysis, Subsequent edition. ed.
1032	Blackwell Science Inc, Oxford.
1033	Moreno, A., Svensson, A., Brooks, S.J., Connor, S., Engels, S., Fletcher, W., Genty, D., Heiri,
1034	O., Labuhn, I., Perșoiu, A., Peyron, O., Sadori, L., Valero-Garcés, B., Wulf, S.,
1035	Zanchetta, G., 2014. A compilation of Western European terrestrial records 60–8 ka BP:
1036	towards an understanding of latitudinal climatic gradients. Quaternary Science Reviews
1037	106, 167–185. https://doi.org/10.1016/j.quascirev.2014.06.030
1038	Naafs, B.D.A., Gallego-Sala, A.V., Inglis, G.N., Pancost, R.D., 2017a. Refining the global
1039	branched glycerol dialkyl glycerol tetraether (brGDGT) soil temperature calibration.
1040	Organic Geochemistry 106, 48–56. https://doi.org/10.1016/j.orggeochem.2017.01.009
1041	Naafs, B.D.A., Inglis, G.N., Zheng, Y., Amesbury, M.J., Biester, H., Bindler, R., Blewett, J.,
1042	Burrows, M.A., del Castillo Torres, D., Chambers, F.M., Cohen, A.D., Evershed, R.P.,
1043	Feakins, S.J., Gałka, M., Gallego-Sala, A., Gandois, L., Gray, D.M., Hatcher, P.G.,
1044	Honorio Coronado, E.N., Hughes, P.D.M., Huguet, A., Könönen, M., Laggoun-
1045	Défarge, F., Lähteenoja, O., Lamentowicz, M., Marchant, R., McClymont, E.,
1046	Pontevedra-Pombal, X., Ponton, C., Pourmand, A., Rizzuti, A.M., Rochefort, L.,

1047	Schellekens, J., De Vleeschouwer, F., Pancost, R.D., 2017b. Introducing global peat-
1048	specific temperature and pH calibrations based on brGDGT bacterial lipids. Geochimica
1049	et Cosmochimica Acta 208, 285–301. https://doi.org/10.1016/j.gca.2017.01.038
1050	Peyron, O., Bégeot, C., Brewer, S., Heiri, O., Magny, M., Millet, L., Ruffaldi, P., Van Campo,
1051	E., Yu, G., 2005. Late-Glacial climatic changes in Eastern France (Lake Lautrey) from
1052	pollen, lake-levels, and chironomids. Quat. res. 64, 197–211.
1053	https://doi.org/10.1016/j.yqres.2005.01.006
1054	Peyron, O., Combourieu-Nebout, N., Brayshaw, D., Goring, S., Andrieu-Ponel, V., Desprat, S.,
1055	Fletcher, W., Gambin, B., Ioakim, C., Joannin, S., Kotthoff, U., Kouli, K., Montade, V.,
1056	Pross, J., Sadori, L., Magny, M., 2017. Precipitation changes in the Mediterranean basin
1057	during the Holocene from terrestrial and marine pollen records: a model-data
1058	comparison. Clim. Past 13, 249–265. https://doi.org/10.5194/cp-13-249-2017
1059	Peyron, O., Goring, S., Dormoy, I., Kotthoff, U., Pross, J., de Beaulieu, JL., Drescher-
1060	Schneider, R., Vannière, B., Magny, M., 2011. Holocene seasonality changes in the
1061	central Mediterranean region reconstructed from the pollen sequences of Lake Accesa
1062	(Italy) and Tenaghi Philippon (Greece). The Holocene 21, 131–146.
1063	https://doi.org/10.1177/0959683610384162
1064	Peyron, O., Guiot, J., Cheddadi, R., Tarasov, P., Reille, M., de Beaulieu, JL., Bottema, S.,
1065	Andrieu, V., 1998. Climatic Reconstruction in Europe for 18,000 YR B.P. from Pollen
1066	Data. Quat. res. 49, 183–196. https://doi.org/10.1006/qres.1997.1961
1067	Peyron, O., Magny, M., Goring, S., Joannin, S., de Beaulieu, JL., Brugiapaglia, E., Sadori, L.,
1068	Garfi, G., Kouli, K., Ioakim, C., Combourieu-Nebout, N., 2013. Contrasting patterns of
1069	climatic changes during the Holocene across the Italian Peninsula reconstructed from
1070	pollen data. Clim. Past 9, 1233–1252. https://doi.org/10.5194/cp-9-1233-2013
1071	Ponel, P., Guiter, F., Gandouin, E., Peyron, O., de Beaulieu, JL., 2022. Late-Glacial
1072	palaeotemperatures and palaeoprecipitations in the Aubrac Mountains (French Massif
1073	Central) reconstructed from multiproxy analyses (Coleoptera, chironomids and pollen).
1074	Quaternary International. https://doi.org/10.1016/j.quaint.2022.02.005
1075	Prasad, A.M., Iverson, L.R., Liaw, A., 2006. Newer Classification and Regression Tree
1076	Techniques: Bagging and Random Forests for Ecological Prediction. Ecosystems 9,
1077	181–199. https://doi.org/10.1007/s10021-005-0054-1
1078	Prentice, C., Guiot, J., Huntley, B., Jolly, D., Cheddadi, R., 1996. Reconstructing biomes from
1079	palaeoecological data: a general method and its application to European pollen data at
1080	0 and 6 ka. Climate Dynamics 12, 185–194. https://doi.org/10.1007/BF00211617
1081	Raberg, J.H., Harning, D.J., Crump, S.E., de Wet, G., Blumm, A., Kopf, S., Geirsdóttir, Á.,
1082	Miller, G.H., Sepúlveda, J., 2021. Revised fractional abundances and warm-season
1083	temperatures substantially improve brGDGT calibrations in lake sediments.
1084	Biogeosciences 18, 3579-3603. https://doi.org/10.5194/bg-2021-16
1085	Ramos-Román, M.J., De Jonge, C., Magyari, E., Veres, D., Ilvonen, L., Develle, AL., Seppä,
1086	H., 2022. Lipid biomarker (brGDGT)- and pollen-based reconstruction of temperature
1087	change during the Middle to Late Holocene transition in the Carpathians. Global and
1088	Planetary Change 215, 103859. https://doi.org/10.1016/j.gloplacha.2022.103859
1089	Rasmussen, S.O., Bigler, M., Blockley, S.P., Blunier, T., Buchardt, S.L., Clausen, H.B.,
1090	Cvijanovic, I., Dahl-Jensen, D., Johnsen, S.J., Fischer, H., Gkinis, V., Guillevic, M.,
1091	Hoek, W.Z., Lowe, J.J., Pedro, J.B., Popp, T., Seierstad, I.K., Steffensen, J.P., Svensson,
1092	A.M., Vallelonga, P., Vinther, B.M., Walker, M.J.C., Wheatley, J.J., Winstrup, M.,
1093	2014. A stratigraphic framework for abrupt climatic changes during the Last Glacial
1094	period based on three synchronized Greenland ice-core records: refining and extending
1095	the INTIMATE event stratigraphy. Quaternary Science Reviews 106, 14-28.
1096	https://doi.org/10.1016/j.quascirev.2014.09.007

- 1097Rea, B.R., Pellitero, R., Spagnolo, M., Hughes, P., Ivy-Ochs, S., Renssen, H., Ribolini, A.,1098Bakke, J., Lukas, S., Braithwaite, R.J., 2020. Atmospheric circulation over Europe1099during the Younger Dryas. Sci. Adv. 6, eaba4844.1100https://doi.org/10.1126/sciadv.aba4844
- 1101 Regattieri, E., Zanchetta, G., Drysdale, R.N., Isola, I., Hellstrom, J.C., Dallai, L., 2014. 1102 Lateglacial to Holocene trace element record (Ba, Mg, Sr) from Corchia Cave (Apuan Alps, central Italy): paleoenvironmental implications: Trace element record from 1103 1104 Corchia Cave, central Italy. J. Quaternary Sci. 29, 381-392. 1105 https://doi.org/10.1002/jqs.2712
- Rehfeld, K., Münch, T., Ho, S.L., Laepple, T., 2018. Global patterns of declining temperature
 variability from the Last Glacial Maximum to the Holocene. Nature 554, 356–359.
 https://doi.org/10.1038/nature25454
- Reille, M., 1998. Reille, Maurice, 1995. Pollen et spores d'Europe et d'Afrique du Nord,
 Supplément 1 . Éditions du Laboratoire de botanique historique et palynologie,
 Marseille, 327 p., 800 FF. / Reille, Maurice, 1998. Pollen et spores d'Europe et
 d'Afrique du Nord, Supplément 2 . Éditions du Laboratoire de botanique historique et
 palynologie, Marseille, 530 p., 1600 FF. gpq 52, 0–0. https://doi.org/10.7202/004885ar
- Reimer, P.J., Austin, W.E.N., Bard, E., Bayliss, A., Blackwell, P.G., Ramsey, C.B., Butzin, M., 1114 1115 Cheng, H., Edwards, R.L., Friedrich, M., Grootes, P.M., Guilderson, T.P., Hajdas, I., Heaton, T.J., Hogg, A.G., Hughen, K.A., Kromer, B., Manning, S.W., Muscheler, R., 1116 Palmer, J.G., Pearson, C., Plicht, J. van der, Reimer, R.W., Richards, D.A., Scott, E.M., 1117 Southon, J.R., Turney, C.S.M., Wacker, L., Adolphi, F., Büntgen, U., Capano, M., 1118 1119 Fahrni, S.M., Fogtmann-Schulz, A., Friedrich, R., Köhler, P., Kudsk, S., Miyake, F., 1120 Olsen, J., Reinig, F., Sakamoto, M., Sookdeo, A., Talamo, S., 2020. The IntCal20 1121 Northern Hemisphere Radiocarbon Age Calibration Curve (0-55 cal kBP). Radiocarbon 1122 62, 725-757. https://doi.org/10.1017/RDC.2020.41
- 1123Renssen, H., Isarin, R.F.B., 2001. The two major warming phases of the last deglaciation at
~14.7 and ~11.5 ka cal BP in Europe: climate reconstructions and AGCM experiments.1125Global and Planetary Change 30, 117–153. https://doi.org/10.1016/S0921-
8181(01)00082-0
- Renssen, H., Mairesse, A., Goosse, H., Mathiot, P., Heiri, O., Roche, D.M., Nisancioglu, K.H.,
 Valdes, P.J., 2015. Multiple causes of the Younger Dryas cold period. Nature Geosci 8,
 946–949. https://doi.org/10.1038/ngeo2557
- Robles, M., 2022. Vegetation, climate, and human history of the Mediterranean basin: A LateGlacial to Holocene reconstruction from Italy (Lake Matese) to Armenia (Lake Sevan)
 inferred from a multi-proxy approach (pollen, NPPs, brGDGTs, XRF) (PhD thesis).
 University of Molise, University of Montpellier, Campobasso, Montpellier.
- Robles, M., Peyron, O., Brugiapaglia, E., Ménot, G., Dugerdil, L., Ollivier, V., Ansanay-Alex,
 S., Develle, A.-L., Tozalakyan, P., Meliksetian, K., Sahakyan, K., Sahakyan, L., Perello,
 B., Badalyan, R., Colombié, C., Joannin, S., 2022. Impact of climate changes on
 vegetation and human societies during the Holocene in the South Caucasus (Vanevan,
 Armenia): A multiproxy approach including pollen, NPPs and brGDGTs. Quaternary
 Science Reviews 277, 107297. https://doi.org/10.1016/j.quascirev.2021.107297
- Rodrigo-Gámiz, M., García-Alix, A., Jiménez-Moreno, G., Ramos-Román, M.J., Camuera, J.,
 Toney, J.L., Sachse, D., Anderson, R.S., Sinninghe Damsté, J.S., 2022. Paleoclimate
 reconstruction of the last 36 kyr based on branched glycerol dialkyl glycerol tetraethers
 in the Padul palaeolake record (Sierra Nevada, southern Iberian Peninsula). Quaternary
 Science Reviews 281, 107434. https://doi.org/10.1016/j.quascirev.2022.107434
- Russell, J.M., Hopmans, E.C., Loomis, S.E., Liang, J., Sinninghe Damsté, J.S., 2018.
 Distributions of 5- and 6-methyl branched glycerol dialkyl glycerol tetraethers

1147	(brGDGTs) in East African lake sediment: Effects of temperature, pH, and new
1148	lacustrine paleotemperature calibrations. Organic Geochemistry 117, 56-69.
1149	https://doi.org/10.1016/j.orggeochem.2017.12.003
1150	Sadori, L., 2018. The Lateglacial and Holocene vegetation and climate history of Lago di
1151	Mezzano (central Italy). Quaternary Science Reviews 202, 30-44.
1152	https://doi.org/10.1016/j.quascirev.2018.09.004
1153	Salonen, J.S., Korpela, M., Williams, J.W., Luoto, M., 2019. Machine-learning based
1154	reconstructions of primary and secondary climate variables from North American and
1155	European fossil pollen data. Sci Rep 9, 15805. https://doi.org/10.1038/s41598-019-
1156	52293-4
1157	Samartin, S., Heiri, O., Joos, F., Renssen, H., Franke, J., Brönnimann, S., Tinner, W., 2017.
1158	Warm Mediterranean mid-Holocene summers inferred from fossil midge assemblages.
1159	Nature Geosci 10, 207–212. https://doi.org/10.1038/ngeo2891
1160	Sanchi, L., Ménot, G., Bard, E., 2014. Insights into continental temperatures in the northwestern
1161	Black Sea area during the Last Glacial period using branched tetraether lipids.
1162	Quaternary Science Reviews 84, 98–108.
1163	https://doi.org/10.1016/j.quascirev.2013.11.013
1164	Sbaffi, L., Wezel, F.C., Curzi, G., Zoppi, U., 2004. Millennial- to centennial-scale
1165	palaeoclimatic variations during Termination I and the Holocene in the central
1166	Mediterranean Sea. Global and Planetary Change 40, 201–217.
1167	https://doi.org/10.1016/S0921-8181(03)00111-5
1168	Sicre, MA., Siani, G., Genty, D., Kallel, N., Essallami, L., 2013. Seemingly divergent sea
1169	surface temperature proxy records in the central Mediterranean during the last deglacial.
1170	Climate of the Past 9, 1375–1383. https://doi.org/10.5194/cpd-9-683-2013
1171	Sinninghe Damsté, J.S., Rijpstra, W.I.C., Foesel, B.U., Huber, K.J., Overmann, J., Nakagawa,
1172	S., Kim, J.J., Dunfield, P.F., Dedysh, S.N., Villanueva, L., 2018. An overview of the
1173	occurrence of ether- and ester-linked iso-diabolic acid membrane lipids in microbial
1174	cultures of the Acidobacteria: Implications for brGDGT paleoproxies for temperature
1175	and pH. Organic Geochemistry 124, 63–76.
1176	https://doi.org/10.1016/j.orggeochem.2018.07.006
1177	Smith, V.C., Isaia, R., Pearce, N.J.G., 2011. Tephrostratigraphy and glass compositions of post-
1178	15 kyr Campi Flegrei eruptions: implications for eruption history and
1179	chronostratigraphic markers. Quaternary Science Reviews 30, 3638–3660.
1180	https://doi.org/10.1016/j.quascirev.2011.07.012
1181	Stockhecke, M., Bechtel, A., Peterse, F., Guillemot, T., Schubert, C.J., 2021. Temperature,
1182	precipitation, and vegetation changes in the Eastern Mediterranean over the last
1183	deglaciation and Dansgaard-Oeschger events. Palaeogeography, Palaeoclimatology,
1184	Palaeoecology 577, 110535. https://doi.org/10.1016/j.palaeo.2021.110535
1185	Sun, Q., Chu, G., Liu, M., Xie, M., Li, S., Ling, Y., Wang, X., Shi, L., Jia, G., Lü, H., 2011.
1186	Distributions and temperature dependence of branched glycerol dialkyl glycerol
1187	tetraethers in recent lacustrine sediments from China and Nepal. J. Geophys. Res. 116,
1188	G01008. https://doi.org/10.1029/2010JG001365
1189	Taffetani, F., Catorci, A., Ciaschetti, G., Cutini, M., Di Martino, L., Frattaroli, A.R., Paura, B.,
1190	Pirone, G., Rismondo, M., Zitti, S., 2012. The Quercus cerris woods of the alliance
1191	Carpinion orientalis Horvat 1958 in Italy. Plant Biosystems - An International Journal
1191	Dealing with all Aspects of Plant Biology 146, 918–953.
1192	https://doi.org/10.1080/11263504.2012.682613
1194	Tarroso, P., Carrión, J., Dorado-Valiño, M., Queiroz, P., Santos, L., Valdeolmillos-Rodríguez,
1195	A., Célio Alves, P., Brito, J.C., Cheddadi, R., 2016. Spatial climate dynamics in the

 1196
 Iberian Peninsula since 15 000 yr BP. Climate of the Past 12, 1137–1149.

 1197
 https://doi.org/10.5194/cp-12-1137-2016

- ter Braak, C.J.F., Juggins, S., 1993. Weighted averaging partial least squares regression (WA PLS): an improved method for reconstructing environmental variables from species
 assemblages 18.
- 1201ter Braak, C.J.F., van Dam, H., 1989. Inferring pH from diatoms: a comparison of old and new1202calibrationmethods.Hydrobiologia178,209–223.1203https://doi.org/10.1007/BF00006028
- Tomlinson, E.L., Arienzo, I., Civetta, L., Wulf, S., Smith, V.C., Hardiman, M., Lane, C.S., 1204 1205 Carandente, A., Orsi, G., Rosi, M., Müller, W., Menzies, M.A., 2012. Geochemistry of 1206 the Phlegraean Fields (Italy) proximal sources for major Mediterranean tephras: 1207 Implications for the dispersal of Plinian and co-ignimbritic components of explosive 1208 eruptions. Geochimica Cosmochimica Acta 93. 102-128. et 1209 https://doi.org/10.1016/j.gca.2012.05.043
- Valente, E., Buscher, J.T., Jourdan, F., Petrosino, P., Reddy, S.M., Tavani, S., Corradetti, A., 1210 Ascione, A., 2019. Constraining mountain front tectonic activity in extensional setting 1211 1212 from geomorphology and Quaternary stratigraphy: A case study from the Matese ridge, 1213 Science 47-67. southern Apennines. Quaternary Reviews 219, https://doi.org/10.1016/j.quascirev.2019.07.001 1214
- Van Geel, B., 2002. Non-Pollen Palynomorphs, in: Smol, J.P., Birks, H.J.B., Last, W.M.,
 Bradley, R.S., Alverson, K. (Eds.), Tracking Environmental Change Using Lake
 Sediments, Developments in Paleoenvironmental Research. Springer Netherlands,
 Dordrecht, pp. 99–119. https://doi.org/10.1007/0-306-47668-1 6
- Vescovi, E., Kaltenrieder, P., Tinner, W., 2010. Late-Glacial and Holocene vegetation history
 of Pavullo nel Frignano (Northern Apennines, Italy). Review of Palaeobotany and
 Palynology 160, 32–45. https://doi.org/10.1016/j.revpalbo.2010.01.002
- Walker, M., Lowe, J., Blockley, S.P.E., Bryant, C., Coombes, P., Davies, S., Hardiman, M., Turney, C.S.M., Watson, J., 2012. Lateglacial and early Holocene palaeoenvironmental 'events' in Sluggan Bog, Northern Ireland: comparisons with the Greenland NGRIP GICC05 event stratigraphy. Quaternary Science Reviews 36, 124–138. https://doi.org/10.1016/j.quascirev.2011.09.008
- Watson, B.I., Williams, J.W., Russell, J.M., Jackson, S.T., Shane, L., Lowell, T.V., 2018.
 Temperature variations in the southern Great Lakes during the last deglaciation:
 Comparison between pollen and GDGT proxies. Quaternary Science Reviews 182, 78–
 92. https://doi.org/10.1016/j.quascirev.2017.12.011
- Weijers, J.W.H., Panoto, E., van Bleijswijk, J., Schouten, S., Rijpstra, W.I.C., Balk, M., Stams,
 A.J.M., Damsté, J.S.S., 2009. Constraints on the Biological Source(s) of the Orphan
 Branched Tetraether Membrane Lipids. Geomicrobiology Journal 26, 402–414.
 https://doi.org/10.1080/01490450902937293
- Weijers, J.W.H., Schouten, S., Spaargaren, O.C., Sinninghe Damsté, J.S., 2006. Occurrence
 and distribution of tetraether membrane lipids in soils: Implications for the use of the
 TEX86 proxy and the BIT index. Organic Geochemistry 37, 1680–1693.
 https://doi.org/10.1016/j.orggeochem.2006.07.018
- Weijers, J.W.H., Schouten, S., van den Donker, J.C., Hopmans, E.C., Sinninghe Damsté, J.S.,
 2007. Environmental controls on bacterial tetraether membrane lipid distribution in
 soils. Geochimica et Cosmochimica Acta 71, 703–713.
 https://doi.org/10.1016/j.gca.2006.10.003
- Wulf, S., Kraml, M., Brauer, A., Keller, J., Negendank, J.F.W., 2004. Tephrochronology of the
 100ka lacustrine sediment record of Lago Grande di Monticchio (southern Italy).
 Quaternary International 122, 7–30. https://doi.org/10.1016/j.quaint.2004.01.028

1246 Wulf, S., Kraml, M., Keller, J., 2008. Towards a detailed distal tephrostratigraphy in the Central 1247 Mediterranean: The last 20,000 yrs record of Lago Grande di Monticchio. Journal of 1248 Geothermal Volcanology and Research 177, 118-132. https://doi.org/10.1016/j.jvolgeores.2007.10.009 1249 Yang, H., Pancost, R.D., Dang, X., Zhou, X., Evershed, R.P., Xiao, G., Tang, C., Gao, L., Guo, 1250 Z., Xie, S., 2014. Correlations between microbial tetraether lipids and environmental 1251 variables in Chinese soils: Optimizing the paleo-reconstructions in semi-arid and arid 1252 1253 Geochimica Cosmochimica regions. et Acta 126, 49-69. 1254 https://doi.org/10.1016/j.gca.2013.10.041 1255 1256