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Short Abstract 22 

Quantitative climate reconstructions based on pollen and brGDGTs reveal, for the 23 

Lateglacial, a warm Bølling–Allerød and a marked cold Younger Dryas in Italy, showing no 24 

latitudinal differences in terms of temperatures across Italy. In terms of precipitation, no 25 

latitudinal differences are recorded during the Bølling–Allerød whereas the latitudes 40-42°N 26 

appear as a key junction point between wetter conditions in Southern Italy and drier conditions 27 

in Northern Italy during the Younger Dryas.  28 

 29 

Abstract 30 

 The Lateglacial (14,700-11,700 cal BP) is a key climate period marked by rapid but 31 

contrasted changes in the Northern Hemisphere. Indeed, regional climate differences have been 32 

evidenced during the Lateglacial in Europe and the Northern Mediterranean areas. However, 33 

past climate patterns are still debated since temperature and precipitation changes are poorly 34 

investigated towards the lower European latitudes. Lake Matese in Southern Italy is a key site 35 

in the Central Mediterranean to investigate climate patterns during the Lateglacial. This study 36 

aims to reconstruct climate changes and their impacts at Matese using a multi-proxy approach 37 

including magnetic susceptibility, geochemistry (XRF core scanning), pollen data and 38 

molecular biomarkers like branched Glycerol Dialkyl Glycerol Tetraethers (brGDGTs). 39 
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Palaeotemperatures and -precipitation patterns are quantitatively inferred from pollen 40 

assemblages (multi-method approach: Modern Analogue Technique, Weighted Averaging 41 

Partial Least Squares regression, Random Forest, and Boosted Regression Trees) and brGDGTs 42 

calibrations. The results are compared to a latitudinal selection of regional climate 43 

reconstructions in Italy to better understand climate processes in Europe and in the circum-44 

Mediterranean region. A warm Bølling–Allerød and a marked cold Younger Dryas are revealed 45 

in all climate reconstructions inferred from various proxies (chironomids, ostracods, 46 

speleothems, pollen, brGDGTs), showing no latitudinal differences in terms of temperatures 47 

across Italy. During the Bølling–Allerød, no significant changes in terms of precipitation are 48 

recorded, however, a contrasted pattern is visible during the Younger Dryas. Slightly wetter 49 

conditions are recorded south of latitude 42°N whereas dry conditions are recorded north of 50 

latitude 42°N. During the Younger Dryas, cold conditions can be attributed to the southward 51 

position of North Atlantic sea-ice and of the Polar Frontal JetStream whereas the increase of 52 

precipitation is Southern Italy seems to be linked to relocation of Atlantic storm tracks into the 53 

Mediterranean, induced by the Fennoscandian ice sheet and the North European Plain. By 54 

contrast, during the Bølling–Allerød warm conditions can be linked to the northward position 55 

of North Atlantic sea-ice and of the Polar Frontal JetStream. 56 

 57 

Keywords: Mediterranean region; Palynology; Molecular Biomarker; Paleoclimate; 58 

Transfer functions; Tephra; Younger Dryas; Bølling–Allerød; Lateglacial 59 

 60 

1. Introduction  61 

 62 

In the Northern Hemisphere, the Lateglacial (ca. 14,700-11,700 cal BP) is a period of 63 

special climatic interest characterized by contrasted and rapid climate changes, associated with 64 

the successive steps of the deglaciation and changes in atmospheric and ocean circulation 65 

patterns (e.g., Walker et al., 2012; Rehfeld et al., 2018). Following the cold Oldest Dryas (OD) 66 

period, the Bølling–Allerød (B/A) or Greenland Interstadial-1 (GI-1) began abruptly at 14,700 67 

cal BP with warmer conditions. At 12,900–11,700 cal BP, the Younger Dryas (YD) or Greenland 68 

Stadial-1 (GS-1) was the last main millennial-scale cold event in Europe during the Lateglacial 69 

(Greenland ice-core records; Rasmussen et al., 2014). The YD is characterized by extreme cold, 70 

relative dry and windy climate conditions in northern-central Europe (Hepp et al., 2019). 71 

Climate became distinctly warmer at 11,700 cal BP with the onset of the Holocene Interglacial 72 
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(Rasmussen et al., 2014). These rapid and marked climate oscillations have been observed in 73 

the Greenland ice core records (Rasmussen et al., 2014) and in Europe from various proxies 74 

such as pollen, oxygen isotopes, molecular biomarkers, beetles, and chironomids (e.g. Ammann 75 

et al., 2000; Blaga et al., 2013; Coope and Lemdahl, 1995; Duprat-Oualid et al., 2022; Heiri et 76 

al., 2015; Lotter et al., 2012; Millet et al., 2012; Moreno et al., 2014; Peyron et al., 2005; Ponel 77 

et al., 2022). 78 

Regional climate differences have been evidenced during the Lateglacial, and 79 

temperature trends in Europe and the Mediterranean region are still a matter of active research 80 

and debate. The chironomid-based synthesis of Heiri et al. (2014) suggests that temperature 81 

variations during the Lateglacial tend to be more pronounced in Western Europe (British Isles, 82 

Norway) than in Southwestern Europe, Central and Southeastern regions. This is particularly 83 

true for the Younger Dryas cooling which is not well evidenced in East and Central Southern 84 

Europe (Heiri et al., 2014). These regional differences would be attributed to the changing 85 

position of the North Atlantic sea-ice and the Polar Frontal JetStream (Renssen and Isarin, 86 

2001). 87 

Diverging temperature trends are also reconstructed from different proxies during key 88 

periods of the Lateglacial. Studies suggest that (1) the OD was cooler than the YD in Southern 89 

and Central Europe in comparison with Northern Europe (1-3 °C; Heiri et al., 2014; Moreno 90 

et al., 2014); (2) the Allerød period was warmer than the Bølling in Southwestern Europe and 91 

the Mediterranean area (1°C; Moreno et al., 2014); and (3) temperatures were more contrasted 92 

during the B/A and YD in the Northwest of Europe in comparison to the South of Europe 93 

(Renssen and Isarin, 2001; Moreno et al., 2014; Heiri et al., 2014). In contrast to temperature, 94 

the precipitation signal is poorly known in Europe during the Lateglacial because few proxies 95 

are available to quantitatively reconstruct precipitation change. Climate models (GCMs) 96 

simulate significant hydrological changes during the B/A and contrasted North-South patterns 97 

during the YD (Renssen and Isarin, 2001; Rea et al., 2020). They simulate drier conditions in 98 

Northern Europe and wetter conditions in Southern Europe, i.e. in the South of Italy, the Dinaric 99 

Alps, and Northern Turkey (Rea et al., 2020). Climate changes during the YD are attributed to 100 

a weak Atlantic Meridional Overturning Circulation (AMOC) and a southward shift of the Polar 101 

Frontal JetStream (PFJS), linked to the elevation of the ice sheet, in particular the Laurentide 102 

ice sheet (Renssen and Isarin, 2001; Renssen et al., 2015; Rea et al., 2020). Rea et al. (2020) 103 

also explains the regional climate patterns in Europe by a relocation of Atlantic storm tracks 104 

along the western European margin and into the Mediterranean.   105 
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The understanding of climate processes in Europe and Mediterranean regions during the 106 

Lateglacial still needs to be improved. The majority of climate reconstructions are focused on 107 

temperatures, and changes in precipitation remain elusive. The “key” junction area between 108 

Northern and Southern Europe and regional climatic patterns also needs to be better defined. 109 

Moreover, the proxies used to reconstruct climate changes (e.g., coleoptera, chironomids, 110 

pollen, ostracods, speleothems) can show differences in terms of amplitudes or patterns which 111 

are not only affected by temperatures, but also by precipitation or effective moisture (Moreno 112 

et al., 2014; Samartin et al., 2017). For these reasons, more reliable temperature reconstructions, 113 

especially from Western Europe and the Mediterranean region are required to test diverging 114 

trends during the Lateglacial. The proxies largely used to quantitatively reconstruct past climate 115 

changes are often a single proxy approach (e.g. Heiri et al., 2015; Gandouin et al., 2016; Peyron 116 

et al., 2017; Marchegiano et al., 2020; Duprat-Oualid et al., 2022). Multiproxy approaches on 117 

the same sedimentary record, including independent climate proxies, are necessary to better 118 

understand the climate processes in Europe during the Lateglacial (Lotter et al., 2012; Ponel et 119 

al., 2022). Pollen-based reconstructions have the advantage of reconstructing temperatures, 120 

precipitation, and seasonality, however, the climate signal can be perturbed by other factors 121 

such as CO2 changes and human impact influencing vegetation development (Peyron et al., 122 

2005). Over the last decades, novel proxies based on molecular geochemistry have been 123 

developed and molecular biomarkers are being increasingly used to reconstruct temperatures 124 

and represent a complementary proxy for lake sediments (Castañeda and Schouten, 2011). In 125 

particular, branched Glycerol Dialkyl Glycerol Tetraethers (brGDGTs) are ubiquitous organic 126 

compounds synthesized by bacteria (Weijers et al., 2006) which have been useful for 127 

reconstructing environmental parameters. To date, the actual producers of brGDGTs remain 128 

elusive although it is proposed they come from the phylum Acidobacteria (Weijers et al., 2009; 129 

Sinninghe Damsté et al., 2018). The relationship, however, between brGDGT distribution and 130 

environmental changes, in particular pH and temperature, are well established (Naafs et al., 131 

2017b, 2017a; Dearing Crampton-Flood et al., 2020; Martínez-Sosa et al., 2021; Raberg et al., 132 

2021). The degree of methylation of brGDGTs (MBT; methylation of branched GDGTs) varies 133 

depending on the mean annual air temperature (MAAT) and higher fractional abundance of 134 

hexa- (III) and penta- (II) methylated brGDGTs are recorded in colder environments (Weijers 135 

et al., 2007). Branched glycerol dialkyl glycerol tetraether (brGDGT) membrane lipids are 136 

increasingly used as a temperature proxy: in Europe, brGDGTs have been used to reconstruct 137 

the Mid to Late Holocene temperature changes in the Carpathians (Ramos-Román et al., 2022), 138 

the last 36,000 years in the Southern Iberian Peninsula (Rodrigo-Gámiz et al., 2022), the 139 
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Holocene temperatures in France (Martin et al., 2020), and in the Eastern Mediterranean over 140 

the last deglaciation (Sanchi et al., 2014; Stockhecke et al., 2021). The association in the same 141 

core between brGDGTs and other proxies such as pollen for climate reconstructions are still 142 

rare (Watson et al., 2018; Panagiotopoulos et al., 2020; Martin et al., 2020; Dugerdil et al., 143 

2021a, 2021b; Ramos-Román et al., 2022; Robles et al., 2022; Rodrigo-Gámiz et al., 2022) and 144 

no studies are yet available for the circum-Mediterranean region during the Lateglacial. 145 

This study presents a high-resolution climate reconstruction for the Lateglacial period in 146 

South Central Europe, inferred from multi-proxy data of the Lake Matese sedimentary record 147 

(Southern Italy). In detail, the aims of this study are to:  148 

 1) establish reliable and independent quantitative climate reconstructions based on 149 

molecular biomarkers (brGDGTs) and pollen data to help identify potential biases of currently 150 

used proxies and thus improve the reliability of each proxy-inferred climate record; 151 

2) compare these reconstructions with regional climate reconstructions and in the light of 152 

other South European records; 153 

3) better understand the climate processes in Europe and Mediterranean during the 154 

Lateglacial period. 155 

 156 

2. Study site  157 

 158 

Lake Matese (41°24’33.3”N, 14°24'22.1"E, 1012 m a.s.l.) is located in the Caserta 159 

province in the Campania region, Southern Italy, approximately 60 km north of the city of 160 

Naples and the active Campanian volcanoes (Vesuvius, Campi Flegrei, Ischia) (Fig. 1). The 161 

lake is situated in the Matese karst massif in the Southern Apennines, which extends over 30 162 

km from the NE to the SW and is composed of Late Triassic-Miocene limestones and dolomites 163 

(Fiorillo and Doglioni, 2010). The present formation of the massif was the result of an extension 164 

by strike-slip faults during the Quaternary, and several strong earthquakes were recorded in the 165 

massif (Ferranti et al., 2015; Ferrarini et al., 2017; Galli et al., 2017; Valente et al., 2019). Lake 166 

Matese is the highest karst lake of Italy and is surrounded by the two highest peaks of the massif, 167 

Mount Miletto (2050 m a.s.l.) and Mount Gallinola (1923 m a.s.l.), which feed the lake by their 168 

snowmelt. Along the southern side of the lake, two sinkholes named the ‘‘Brecce’’ and 169 

‘‘Scennerato’’ are present (Fiorillo and Pagnozzi, 2015). In the 1920s, hydraulic works were 170 

conducted to isolate the bottom of the lake and the main sinkholes by earthen dams (Fiorillo 171 

and Pagnozzi, 2015). The water level of the lake improved from 1007-1009 m a.s.l. to 1012 m 172 

a.s.l. with a volume of 15 Mm3 (Fiorillo and Pagnozzi, 2015). A part of the lake water is 173 
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transported to the hydroelectric power station of Piedimonte Matese at the bottom of the 174 

mountain massif.  175 

The Matese Mountains are characterized by a Mediterranean warm-temperate, humid 176 

climate (Aucelli et al., 2013). The southeastern part of the massif, including Lake Matese, have 177 

the highest precipitation with a maximum of 2167 mm at Campitello Matese (1400 m a.s.l.) 178 

(Fiorillo and Pagnozzi, 2015). Lake Matese shows an annual precipitation of 1808 mm with a 179 

maximum in November (290 mm) and December (260 mm) and a minimum in July (50 180 

mm) (Fiorillo and Pagnozzi, 2015). The annual temperatures correspond to 9.3°C with a 181 

minimum in January (2°C) and a maximum in July (19°C) (Fiorillo and Pagnozzi, 2015).  182 

The vegetation of the Matese massif is dominated by deciduous Quercus and Ostrya 183 

carpinofolia, while the highest altitudes at the northern flank also show an exposure of Fagus 184 

sylvatica and the lower altitudes of the southern flank includes Mediterranean taxa such as 185 

Quercus ilex (Taffetani et al., 2012; Carranza et al., 2012; Guarino et al., 2015). The 186 

hygrophilous vegetation at Lake Matese is distinguished by the presence of woody (e.g. Salix 187 

alba, S. caprea, S. cinerea subsp. cinerea, Populus nigra, P. alba), helophytes (e.g. Phragmites 188 

australis, Schoenoplectus lacustris, Typha angustifolia, T. latifolia) and hydrophytes species 189 

(Myriophyllum spicatum, Persicaria amphibia). 190 
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 191 

Figure 1. Location of the Lake Matese and Lateglacial paleoclimate records : Hölloch (Li et al., 2021), 

Maloja Riegel (Heiri et al., 2014), Lago di Lavarone (Heiri et al., 2014), Lago Piccolo di Avigliana 

(Larocque and Finsinger, 2008), Lago Gemini (Samartin et al., 2017), Lago Verdarolo (Samartin et al., 

2017), Corchia cave (Regattieri et al., 2014), Lake Trasimeno (Marchegiano et al., 2020), Lago Grande 

di Monticchio (Allen et al., 2002), MD90-917 (Combourieu-Nebout et al., 2013; Sicre et al., 2013), 

BS7938 (Sbaffi et al., 2004), MD04-2797 (Desprat et al., 2013; Sicre et al., 2013). Dotted line indicates 

latitude 42°N. Location of active Campanian volcanoes (Vesuvius, Campi Flegrei, Ischia).  

 192 

3. Material and methods 193 

 194 

3.1 Coring retrieval  195 

Coring of Lake Matese was performed in July 2019 in the southwestern part of the lake 196 

(41°24’33.3”N, 14°24'22.1"E, 1012 m a.s.l.). Core occurred on a floating raft composed of Salix 197 

spp. and Phragmites spp., naturally present in the eastern part of the lake. Three parallel cores 198 

(cores A, B and C) were taken with a 1 m Russian corer with a chamber diameter of 6.3 cm. 199 

The composite core, measuring 535 cm, was constructed from sections of parallel cores and is 200 

based on the lithology and XRF data.  201 

 202 
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3.2 Chronology and age-depth model 203 

Several methods have been used to build the chronology of the core including 204 

radiocarbon dating, and tephrochronology. The regional pollen stratigraphy is used to validate 205 

this age-depth model. Twelve accelerator mass spectrometry (AMS) 14C dates were measured 206 

at Poznań Radiocarbon Laboratory and at the Radiocarbon Dating Center in Lyon. Plant 207 

macrofossils (plant fibers, wood) and charcoal were selected for four samples, and bulk 208 

sediment was used for eight samples according to the sediment type. Radiocarbon ages were 209 

calibrated in years cal BP using the Calib 8.2 software with the IntCal20 calibration curve 210 

(Reimer et al., 2020).  211 

Visible tephra layers and cryptotephra layers, detected by magnetic susceptibility and 212 

XRF core scanning data, were subsampled and processed for geochemical analysis. 213 

Cryptotephra was extracted using H2O2 and HCl to remove organic matter and carbonates, 214 

sieved at 20 and 100 microns, volcanic glass shards were embedded in resin, sectioned and 215 

polished for electron probe microanalysis. A JEOL-JXA8230 probe the Helmholtz Centre 216 

Potsdam (Germany) was used with a 15kV accelerating voltage, 10 nA beam current, and a 15 217 

micron beam size. Analytical count times were 20 seconds for all elements except for K and 218 

Na, measured first at 10 s. International glass standards such as the Max Planck Institute (MPI-219 

glasses) ATHO-G, StHs6/80 and GOR-132 (Jochum et al., 2006) and the natural Lipari obsidian 220 

(Hunt and Hill, 1996; Kuehn et al., 2011) were measured prior to sample analysis for data 221 

quality insurance. Glass geochemical data of Matese tephras are normalized on an anhydrous, 222 

volatile-free basis and compared with published tephra glass datasets (Wulf et al., 2008; Smith 223 

et al., 2011; Tomlinson et al., 2012). 224 

The age-depth model based on based on one radiocarbon date and correlated tephra ages 225 

was constructed using an interpolated linear curve with the R ‘Clam’ program with 95% 226 

confidence intervals (Blaauw, 2010). In order to validate the age depth models, the pollen 227 

stratigraphy of the regional sites was compared with pollen data of Matese. The pollen 228 

stratigraphy of Pavullo di Frignano (Vescovi et al., 2010), Lakes Accesa (Drescher-Schneider 229 

et al., 2007), Albano (Mercuri et al., 2002), Mezzano (Sadori, 2018), Monticchio (Allen et al., 230 

2002), and Trifoglietti (De Beaulieu et al., 2017) were used to identify the OD-B/A, B/A-YD 231 

and YD-Holocene transitions. We used the median age for each transition. 232 

 233 

3.3 Magnetic susceptibility and geochemistry 234 

Magnetic susceptibility (MS) was measured with a MS2E1 surface scanning sensor 235 

from Bartington Instruments on a Geotek Multi-Sensor Core logger based at the Chrono-236 
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environment laboratory (UMR CNRS - University of Franche-Comté). An interval of 3 mm or 237 

5 mm was applied depending on the type of sediment.  238 

Geochemical analyses were performed at high resolution by X-ray Fluorescence (XRF) 239 

with an AVAATECH core scanner at the EDYTEM laboratory (University Savoie Mont 240 

Blanc). A continuous 5 mm step measurement was applied with a run at 10 kV and 0.1 mA for 241 

15 s to detect lightweight elements, such as Al, Si, K, Ca, Ti, Mn, Fe and a second run at 30 kV 242 

and 0.15 mA for 20 s to detect Br, Rb, Sr and Zr. The XRF core scanning provides an estimate 243 

of the geochemical composition, and the results are semi-quantitative and expressed as peak 244 

intensities counts i.e. counts per second (cps). 245 

 246 

3.4 Pollen analyses  247 

A total of 56 samples from the Matese core were collected at 4 cm or 6 cm resolution 248 

for pollen analysis. For each sample, 1 cm3 of sediment was processed and 3 Lycopodium tablets 249 

were added to estimate pollen concentration. Samples were treated following the standard 250 

procedure (Faegri et al., 1989; Moore et al., 1991) including HCl, KOH, sieving, acetolysis and 251 

HF. The pollen concentrates were analyzed with a Leica DM1000 LED microscope at a 252 

standard magnification of 400x. Pollen taxa were identified using photo atlases (Beug, 2004; 253 

Reille, 1998; Van Geel, 2002) and a modern reference collection (ISEM, University of 254 

Montpellier). Each slide was counted with a minimum of 300 terrestrial pollen grains, excluding 255 

aquatic plants such as Cyperaceae, aquatic taxa, and fern spores. A simplified pollen diagram 256 

was constructed (Fig. 2) with the R package Rioja (Juggins and Juggins, 2020). This study 257 

presents the main pollen taxa and is not focused on variations of individual species. 258 

 259 

3.5 Pollen-inferred climate reconstruction 260 

 A multi-method approach was used to reconstruct climate parameters from pollen data 261 

with greater reliability than reconstructions based on a single climate reconstruction method 262 

(Peyron et al., 2013, 2011, 2005; Salonen et al., 2019). We have selected here the Modern 263 

Analog Technique (MAT; Guiot, 1990), Weighted Averaging Partial Least Squares regression 264 

(WAPLS; ter Braak and van Dam, 1989; ter Braak and Juggins, 1993), and the most recent 265 

machine-learning methods : Random Forest (RF; Breiman, 2001; Prasad et al., 2006) and 266 

Boosted Regression Trees (BRT; De’ath, 2007; Elith et al., 2008).  267 

The MAT is an assemblage approach, based on the measure of the degree of 268 

dissimilarity (squared chord distance) between fossil and modern pollen assemblages (Guiot, 269 

1990). Fossil pollen assemblages are compared to a set of modern assemblages (modern 270 
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dataset), each one associated with climate estimates. The closest modern samples are retained 271 

and averaged to estimate past climate conditions (annual and seasonal temperature and 272 

precipitation). WAPLS is a non-linear regression technique that models the relationships 273 

between the climate parameters and the pollen taxa from a modern pollen dataset, before 274 

applying these relationships to fossil pollen assemblages (ter Braak and Juggins, 1993; ter Braak 275 

and van Dam, 1989). WAPLS and MAT methods are applied with the R package Rioja (Juggins 276 

and Juggins, 2020). RF and BRT, based on machine learning, utilizes regression trees 277 

developed with ecological data, and has been used recently to reconstruct palaeoclimatic 278 

changes (Salonen et al., 2019; Robles et al., 2022). These classification trees are used to 279 

partition the data by separating the pollen assemblages based on the relative pollen percentages. 280 

RF is based on a large number of regression trees, each tree being estimated from a randomized 281 

ensemble of different subsets of the modern pollen dataset by bootstrapping (Breiman, 2001; 282 

Prasad et al., 2006). Finally, the RF prediction is applied to the fossil pollen record. BRT is also 283 

based on regression trees (De’ath, 2007; Elith et al., 2008); it differs from RF in the definition 284 

of the random modern datasets. In RF, each sample gets the same probability of being selected, 285 

while in BRT the samples that were insufficiently described in the previous tree get a higher 286 

probability of being selected. This approach is called ‘boosting’ and increases the performance 287 

of the model over the elements that are least well predicted (Breiman, 2001; Prasad et al., 2006; 288 

De’ath, 2007; Elith et al., 2008). RF is applied with the R package randomForest (Liaw and 289 

Wiener, 2002) and BRT with the R package dismo (Hijmans et al., 2021). 290 

 The modern pollen dataset (n = 3373 sites) used for the calibration of the methods is 291 

based on the large Eurasian/Mediterranean dataset compiled by Peyron et al. (2013, 2017) and 292 

completed by Dugerdil et al. (2021a) and Robles et al. (2022). In our study, we added pollen 293 

data of 92 surface lake sediments from Italy (Finsinger et al., 2007) and 15 moss polsters from 294 

the Matese massif (Robles, 2022). Then, a biome constraint (Guiot et al., 1993), based on the 295 

pollen-Plant Functional Type method and following the biomization procedure (Peyron et al., 296 

1998; Prentice et al., 1996) was applied to modern and fossil pollen samples. The modern pollen 297 

dataset finally selected for the calibration of the different methods contains 1018 samples 298 

belonging to 3 biomes depicted in the fossil core: “warm mixed forest” (WAMX), “temperate 299 

deciduous” (TEDE) and “cold steppe” (COST). Performance of each method and calibration 300 

training was statistically tested (for more details, see Dugerdil et al., 2021a) to determining if 301 

modern samples are suitable for quantitative climate reconstructions. The Root Mean Square 302 

Error (RMSE) and the R2 are presented in the Supplementary Table S1. Five climate parameters 303 

were reconstructed, mean annual air temperature (MAAT), mean temperature of the warmest 304 
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month (MTWA), mean temperature of the coldest month (MTCO), mean annual precipitation 305 

(PANN), and winter precipitation (Pwinter = December, January, and February). For each climate 306 

parameter, the methods fitting with the higher R2 and the lower RMSE were selected. 307 

Cyperaceae and ferns in the Matese record have been excluded because they are associated with 308 

local dynamics. 309 

 310 

3.6 BrGDGT analyses  311 

A total of 56 samples from the Matese core (4 cm or 6 cm resolution) were used for 312 

GDGT analysis (same as for pollen analysis). The samples were freeze-dried, powdered and 313 

subsampled (1 g for clay and 0.4 g for gyttja). Lipids were extracted from the sediment using a 314 

microwave oven (MARS 6; CEM) with dichloromethane:methanol (3:1). Then, the internal 315 

standard was added (C46 GDGT, Huguet et al., 2006). The total lipid extracts were separated 316 

into apolar and polar fractions using a silica SPE cartridge with hexane:DCM (1:1) and 317 

DCM:MeOH (1:1). The polar fractions containing brGDGTs were analyzed using a High-318 

Performance Liquid Chromatography Mass Spectrometry (HPLC-APCI-MS, Agilent 1200) 319 

with detection via selective ion monitoring (SIM) of m/z 1050, 1048, 1046, 1036, 1034, 1032, 320 

1022, 1020, and 1018 in the LGL-TPE of ENS Lyon (Hopmans et al., 2016; Davtian et al., 321 

2018). GDGT concentrations were calculated based on the internal standard (C46 GDGT, 322 

Huguet et al., 2006). The analytic reproducibility was assessed by regularly processing a lab-323 

internal sediment sample (Vaux Marsh; 45°57’21.1”N, 5°35’32.42”E). Analytical precision is 324 

based on duplicate injections of one sample of each Matese core lithological types (n=4). 325 

Respective analytical 1-sigma standard deviations are then applied to each measurement within 326 

one lithology. 327 

 328 

3.7 GDGTs annual temperature reconstruction  329 

The proportion of tetra- (I), penta- (II) and hexa- (III) methylated brGDGTs includes 330 

the fractional abundances of the 5-methyl (X), 6-methyl (X’) and 7-methyl (X7) brGDGTs 331 

(Ding et al., 2016). The CBT (cyclization ratio of branched tetraethers) and MBT indexes were 332 

defined by Weijers et al. (2007) and the MBT’5me, only based on the 5-methyl brGDGTs, by 333 

De Jonge et al., (2014). The Mean Annual Air Temperature (MAAT) was reconstructed with 334 

global (Sun et al., 2011) and East African (Russell et al., 2018) lacustrine calibrations. The 335 

mean temperature of Months Above Freezing (MAF) was reconstructed with a lacustrine 336 

calibration based on Bayesian statistics (Martínez-Sosa et al., 2021; 337 

https://github.com/jesstierney/BayMBT) and a global lacustrine calibrations with revised 338 
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compound fractional abundances based on methylation and cyclization number and methylation 339 

position (Raberg et al., 2021). Synthesis of the formulae for the main brGDGT indices are 340 

presented in Table 1. Modern MAAT and MAF of the Lake Matese corresponds to 9.3 °C. 341 

The analytic reproducibility corresponds to ±0.040 for CBT, ±0.0167 for MBT, ±0.0206 342 

for MBT’5me, ±0.8566 °C for MAAT developed by Sun et al. (2011), ±0.6672 °C for MAAT 343 

developed by Russell et al. (2018), and ±0.5403 °C and ±1.1258 °C for MAFMeth and MAFFull 344 

developed by Raberg et al. (2021).   345 

 346 

Table 1. Synthesis of the formulae for the main brGDGT indices. For acronym explanation of MAFMeth 

and MAFFull, see Raberg et al. (2021).  For more information about the Bayesian statistics see Martínez-

Sosa et al., 2021 and references therein.  

Indice Formula Reference 

%𝑡𝑒𝑡𝑟𝑎 
𝐼𝑎 + 𝐼𝑏 + 𝐼𝑐

𝛴𝑏𝑟𝐺𝐷𝐺𝑇𝑠
 Ding et al., 2016  

%𝑝𝑒𝑛𝑡𝑎 
𝐼𝐼𝑎 + 𝐼𝐼𝑎′ + 𝐼𝐼𝑎7 + 𝐼𝐼𝑏 + 𝐼𝐼𝑏′ + 𝐼𝐼𝑏7 + 𝐼𝐼𝑐 + 𝐼𝐼𝑐′ + 𝐼𝐼𝑐7

𝛴𝑏𝑟𝐺𝐷𝐺𝑇𝑠
 Ding et al., 2016 

%ℎ𝑒𝑥𝑎 
𝐼𝐼𝐼𝑎 + 𝐼𝐼𝐼𝑎′ + 𝐼𝐼𝐼𝑎7 + 𝐼𝐼𝐼𝑏 + 𝐼𝐼𝐼𝑏′ + 𝐼𝐼𝐼𝑏7 + 𝐼𝐼𝐼𝑐 + 𝐼𝐼𝐼𝑐′ + 𝐼𝐼𝐼𝑐7

𝛴𝑏𝑟𝐺𝐷𝐺𝑇𝑠
 Ding et al., 2016 

𝐶𝐵𝑇 −𝑙𝑜𝑔
𝐼𝑏 + 𝐼𝐼𝑏

𝐼𝑎 + 𝐼𝐼𝑎
 

Weijers et al., 

2007 

𝑀𝐵𝑇 
𝐼𝑎 + 𝐼𝑏 + 𝐼𝑐

𝛴𝑏𝑟𝐺𝐷𝐺𝑇𝑠
 

Weijers et al., 

2007 

𝑀𝐵𝑇′5𝑚𝑒  
𝐼𝑎 + 𝐼𝑏 + 𝐼𝑐

𝐼𝑎 + 𝐼𝑏 + 𝐼𝑐 + 𝐼𝐼𝑎 + 𝐼𝐼𝑏 + 𝐼𝐼𝑐 + 𝐼𝐼𝐼𝑎
 

De Jonge et al., 

2014a  

𝑀𝐴𝐴𝑇 (°𝐶) 

3.949 − 5.593 × 𝐶𝐵𝑇  + 38.213 × 𝑀𝐵𝑇  

(𝑛 = 100, 𝑅2 = 0.73, 𝑅𝑀𝑆𝐸 = 4.27°𝐶) 
 

Sun et al., 2011 

𝑀𝐴𝐴𝑇 (°𝐶) 
−1,21 + 32.42 × 𝑀𝐵𝑇′

5𝑚𝑒  

(𝑛 = 65, 𝑅2 = 0.92, 𝑅𝑀𝑆𝐸 = 2.44 °𝐶) 
 

Russell et al., 

2018 

𝑀𝐴𝐹𝑀𝑒𝑡ℎ(°𝐶) 

92.9 + 63.84 × 𝑓𝐼𝑏𝑀𝑒𝑡ℎ
2 − 130.51 × 𝑓𝐼𝑏𝑀𝑒𝑡ℎ

− 28.77 × 𝑓𝐼𝐼𝑎𝑀𝑒𝑡ℎ
2 − 72.28 × 𝑓𝐼𝐼𝑏𝑀𝑒𝑡ℎ

2

− 5.88 × 𝑓𝐼𝐼𝑐𝑀𝑒𝑡ℎ
2 + 20.89 × 𝑓𝐼𝐼𝐼𝑎𝑀𝑒𝑡ℎ

2

− 40.54 × 𝑓𝐼𝐼𝐼𝑎𝑀𝑒𝑡ℎ − 80.47 × 𝑓𝐼𝐼𝐼𝑏𝑀𝑒𝑡ℎ 

(𝑛 = 182, 𝑅2 = 0.90, 𝑅𝑀𝑆𝐸 = 2.14 °𝐶) 
 

Raberg et al., 

2021 

𝑀𝐴𝐹𝐹𝑢𝑙𝑙(°𝐶) 

−8.06 + 37.52 × 𝑓𝐼𝑎𝐹𝑢𝑙𝑙 − 266.83 × 𝑓𝐼𝑏𝐹𝑢𝑙𝑙
2

+ 133.42 × 𝑓𝐼𝑏𝐹𝑢𝑙𝑙 + 100.85 × 𝑓𝐼𝐼𝑎′
𝐹𝑢𝑙𝑙
2

+ 58.15 × 𝑓𝐼𝐼𝐼𝑎′
𝐹𝑢𝑙𝑙
2

+ 12.79 × 𝑓𝐼𝐼𝐼𝑎𝐹𝑢𝑙𝑙  

Raberg et al., 

2021 
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(𝑛 = 182, 𝑅2 = 0.91, 𝑅𝑀𝑆𝐸 = 1.97 °𝐶) 

𝑀𝐴𝐹 (°𝐶) 

𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 𝑓𝑟𝑜𝑚 𝑡ℎ𝑒 𝐵𝑎𝑦𝑒𝑠𝑖𝑎𝑛 𝑚𝑜𝑑𝑒𝑙 ∶  

𝑀𝐵𝑇′5𝑚𝑒 =  0.030(±0.001)𝑀𝐴𝐹 + 0.075(±0.012) 

(𝑅2 = 0.82, 𝑅𝑀𝑆𝐸 = 2.9 °𝐶) 

Martínez-Sosa et 

al., 2021 

 347 

 348 

4. Results 349 

 350 

4.1 Lithology, magnetic susceptibility, XRF and pollen 351 

The lithology of the Matese core (Fig. 2) is mainly composed of gray clay sediment with 352 

vivianite from the base to 350 cm, interrupted by an organic layer between 477-484 cm 353 

(sedimentary Unit 2) and a macroscopically visible tephra layer (Fig. 2) between 476-437 cm 354 

(sedimentary Unit 3). This part contains few plant fibers, which are essentially vertically 355 

oriented in the core. From 349 to 320 cm, the lithology is formed by a mix of clay sediment and 356 

gyttja (sedimentary Unit 5). This part is mostly composed by roots and fine rootlets.  357 

Magnetic susceptibility (MS) and Potassium (K) peaks of XRF core scanning are used 358 

to detect tephra layers (Fig. 2). MS and Potassium contents show increased values at 516-502 359 

cm, 482-437 cm and 366-338 cm, which correspond to the deposition of tephra material 360 

(macroscopic visible tephra and cryptotephra of primary and secondary deposition). Small 361 

peaks are also visible in MS between 430 and 360 cm but they are not associated with any 362 

observed tephra. Potassium content is also marked by an increase between 536-526 cm which 363 

corresponds to tephra of primary deposition. Titanium (Ti) content, on the other hand, is 364 

representative for terrigenous input which is prevailing in sedimentary Unit 4 (Fig. 2).  365 

The main pollen taxa diagram (Fig. 2) shows the dominance of herbaceous taxa 366 

(Poaceae, Artemisia) and a small proportion of arboreal taxa at the base of the sequence. From 367 

520 to 425 cm, the period is marked by three expansion phases of arboreal taxa, followed 368 

between 438 to 354 cm by a large increase of Artemisia and a drop of AP taxa starting at 422 369 

cm. Finally, from 354 to 338 cm AP and Poaceae increase, whereas Artemisia significantly 370 

decline.  371 

 372 
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 373 

Figure 2. Sediment lithology, magnetic susceptibility, geochemical data and selected terrestrial pollen 

taxa of Matese. Arboreal Pollen (AP; green) and Non Arboreal Pollen (NAP; yellow-orange) are 

expressed in percentages of total terrestrial pollen. 

 

4.2 Age-depth model 374 

The age-depth model is based on 14C dates and tephrochronology, and then pollen 375 

stratigraphy was used to validate the age-depth model (Fig. 3). Based on their typical phono-376 

trachytic and bimodal tephri-phonolitic to trachytic major element glass composition Matese 377 

tephras at 530 cm and 346 cm depth can be correlated with distal Monticchio tephras TM-8 and 378 

TM-6-2, respectively (Fig. 4; Table 2). Tephra TM-8 has been correlated with the Neapolitan 379 

Yellow Tuff (NYT) eruption (Wulf et al., 2004) which has an age of 14,194 ± 172 cal BP (Bronk 380 

Ramsey et al., 2015). The tephra layer at 530 cm corresponds to the primary deposition and 381 

secondary deposition of remobilised tephras that were identified at 510 cm and 475 cm. TM-6-382 

2 most likely are derived from the Early Holocene Casale eruption from Campi Flegrei (Smith 383 

et al., 2011) which is varve dated in Monticchio at 11,210 ± 224 cal BP (Wulf et al., 2008). The 384 

tephra layer at 346 cm corresponds to a primary deposition.  385 

The ages obtained with the regional pollen stratigraphy show an OD-B/A transition at 386 

14,500 ± 93.7 cal BP, a B/A-YD transition at 12,800 ± 57.7 cal BP and a YD-Holocene 387 

transition at 11,575 ± 103.1 cal BP (Allen et al., 2002; Mercuri et al., 2002; Drescher-Schneider 388 

et al., 2007; Vescovi et al., 2010; De Beaulieu et al., 2017; Sadori, 2018). Pollen stratigraphy of 389 
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the regional sites were compared with pollen data of Matese and the ages obtained show a good 390 

correspondence with the ages of tephra samples but a poor correspondence with the 14C dates. 391 

Therefore, most of the 14C dates (Table 3) are not included in the age-depth model (except the 392 

date at the base of the core). The organic matter extracted from sediment was essentially 393 

composed of rootlets, that explains the rejuvenation of the 14C ages. 394 

 395 

Figure 3. Age-depth model is based on calibrated AMS radiocarbon dates (red points; Table 3) and 

tephra ages (orange points; Table 2). The grey band is the 95% confidence interval. Blue triangles are 

the median of ages of the vegetation transition compiled with the regional pollen stratigraphy. This 

pollen stratigraphy includes the sites of Pavullo di Frignano (Vescovi et al., 2010), Accesa (Drescher-

Schneider et al., 2007), Albano (Mercuri et al., 2002), Mezzano (Sadori, 2018), Monticchio (Allen et 

al., 2002), and Trifoglietti (De Beaulieu et al., 2017). AP/Artemisia ratio (blue line) is expressed on a 

logarithmic scale. AP: Arboreal Pollen.  

 

Table 2. Tephra samples from Matese cores (MC) and correlation with tephra samples from Lago 

Grande di Monticchio (Wulf et al., 2008) and proximal eruptive sources. 

Sample 

ID 
Depth MC (cm) 

Tephra 

Monticchio 
Eruption Age (cal BP)  Age reference 

C1 96-97 346 TM-6-2 Casale 11,210 ± 224 Wulf et al., 2008 

A5 75-77 475 (reworked) 
TM-8 

  

Neapolitan Yellow 

Tuff (NYT) 

  

14,194 ± 172 

  

  

Bronk Ramsey et al., 

2015 

  

C3 83-84 510 (reworked) 

B5 95-96 530  

 396 
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 397 

Figure 4. Bivariate plot of selected major elements (SiO2 vs. total alkalis and SiO2 vs. Cl) of Matese 

tephras and potential proximal and Monticchio tephra correlatives. Data from: TM-6-2 (Monticchio, 

Wulf et al., 2008; this study); TM-8 (Monticchio, Tomlinson et al., 2012; this study); Casale, Fondi di 

Baia (proximal; Smith et al., 2011); APP/Agnano Pomici Principali and NYT/Neapolitan Yellow Tuff 

(proximal; Tomlinson et al., 2012). 

 

Table 3. AMS-radiocarbon dates (Radiocarbon Laboratory, Poznań), calibrated median ages, with 2 σ 

range of calibration from Matese cores (MC). 

Sample ID 

Depth MC 

(cm) Lab code Material 

AMS 14C age 

(BP) 

Age (cal BP) (2 

σ) 

Median age 

(cal BP) 

 A4 40-41 340 Poz-128971 Bulk 3425 ± 30  3573 - 3822 3668 

 A4 60-61  360 Poz-138111 Bulk 7850 ± 40  8540 - 8968 8631 

 A4 80-81  380 Poz-138112 Bulk 7640 ± 50  8370 - 8541 8432 

 B4 50-51 400 Poz-128972 Bulk 7580 ± 60  8206 - 8519 8385 

 A5 20-21  420 Poz-138113 Bulk 7570 ± 50  8206 - 8512 8379 

 A5 60-61 460 Poz-128976 Bulk 10020 ± 50  11280 - 11743 11519 

 A6 52-53 
479 

Poz-119283 
Plant fibers, wood fragments, 

charcoals 
6730 ± 40  

7513 - 7669 7596 

 A5 96-97  496 Poz-137155 Wood fragments 10870 ± 60  12728 - 12903 12799 

 B5 64-65 500 Poz-128973 Bulk 11000 ± 60  12769 - 13078 12925 

 A6 98-99 525 Poz-119284 Plant fibers 6060 ± 35  6795 - 7147 6912 

 B5 97-98  533 60747 Plant fibers 5430 ± 30  6190 - 6295 6236 

 B5 98-99 534 Poz-128975 Bulk 12650 ± 130 14331 - 15477 15027 
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 398 

4.3 Pollen-inferred climate reconstructions 399 

Pollen-inferred climate reconstructions at Matese show similar trends for all methods 400 

(Fig. 5). The MAT and the BRT methods show higher sample-to-sample variability than the 401 

WAPLS, and RF appears as the less sensitive method. Statistical results of the model 402 

performance (Supplementary Table S1) show the better values for R2 and RMSE for the BRT 403 

method (all climatic parameters). 404 

Temperature trends show two cold periods (phases 1 and 3) and two warm periods 405 

(phases 2 and 4). The reconstructed values (MAAT and MTWA) during the warm periods are 406 

close to modern values whereas the values of MTCO are lower than the modern values. Annual 407 

precipitation (PANN) shows few variations and the values of PANN and Pwinter are lower than 408 

modern values, with all methods. Phase 1 (535-530 cm; 14,600-14,500 cal BP) is characterized 409 

by cold conditions and low precipitation during winter. Phase 2 (530-436 cm; 14,500-12,800 410 

cal BP) is a warm period characterized by strong warming and punctuated by three colder events 411 

at 14,000 cal BP, 13,500-13,350 cal BP and 13,000 cal BP. Mean annual precipitation shows 412 

little variation whereas Pwinter shows higher values than during the phase 1. Phase 3 (436-367 413 

cm; 12,800-11,570 cal BP) is a strong event marked by cold conditions, a slight decline in Pwinter 414 

and few changes for PANN. At the transition with phase 4, a significant decrease in the 415 

precipitation parameters is recorded. Phase 4 (367-338 cm; 11,570-11,000 cal BP) is 416 

characterized by a well-marked temperature increase (MAAT and MTCO) associated with wet 417 

conditions (hydrological parameters reach their maximum value).  418 
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 419 

 420 

 421 
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Figure 5. Lake Matese pollen-inferred climate reconstruction based on four methods against age: MAT 422 

(Modern Analogue Technique), WAPLS (Weighted Averaging Partial Least Squares regression), RF 423 

(Random Forest) and BRT (Boosted Regression Trees). Large lines correspond to loess smoothed 424 

curves, shaded areas to the 95% confidence interval and dashed lines to modern climate values of Lake 425 

Matese. MAAT: mean annual air temperature. MTWA: mean temperature of the warmest month. 426 

MTCO: mean temperature of the coldest month. PANN: mean annual precipitation. Pwinter: winter 427 

precipitation. OD: Oldest Dryas. B/A: Bølling–Allerød. YD: Younger Dryas. EH: Early Holocene. 428 

 429 

4.3 BrGDGT-inferred climate reconstruction 430 

 431 

4.3.1 Concentration and distribution of brGDGTs 432 

The total concentration of brGDGTs ranges between 0.06 and 8.63 μg.g-1 dry sediment. 433 

The fractional abundances of brGDGTs (Fig. 6A) show a dominance of pentamethylated 434 

brGDGTs (II, 46%), especially brGDGT IIa (23%), brGDGTs IIa’ (7%) and brGDGTs IIb 435 

(6%). The relative abundance of tetramethylated brGDGTs (I, 33%) is mainly explained by 436 

brGDGT Ia (20%) and brGDGTs Ib (9%). The relative abundance of hexamethylated brGDGTs 437 

(III, 21%) is mainly explained by brGDGT IIIa (11%) and brGDGTs IIIa’ (6%). The relative 438 

abundances of tetra, penta- and hexamethylated brGDGTs of Matese core are compared to 439 

global datasets (Fig. 6B). Sediment samples of the Matese core show a good correspondence 440 

with global lake and soil samples, except for some samples from sedimentary Unit 1 and 5. 441 

Samples of sedimentary Unit 5, characterized by a mix of clay and gyttja, are more similar to 442 

global soil and peat samples.  443 

 444 
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 445 

Figure 6. A) Fractional abundance of tetra-, penta-, and hexamethylated brGDGTs for Matese core. B) 

Ternary diagram showing the fractional abundances of the tetra-, penta-, and hexamethylated brGDGTs 

for Matese core (black points) and global lake (blue points; Martínez-Sosa et al., 2021), peat (yellow 

circles; Naafs et al., 2017a), and soils (gray circles; Yang et al., 2014; Naafs et al., 2017b). 

 446 
4.3.2 Indices of brGDGTs  447 

 The relative abundance of tetra-, penta-, and hexamethylated brGDGTs changes along 448 

Matese core (Fig. 7). The fractional abundance shows a dominance of pentamethylated 449 

brGDGTs except at 518 cm depth, and during the last phase (Phase 4). The fractional abundance 450 

of hexamethylated brGDGTs shows higher values between 535-502 cm and 490-466 cm and 451 

becomes dominant at 486 cm. The fractional abundance of tetramethylated brGDGTs shows 452 

higher values between 502-490 cm and 466-352 cm and is dominant at 518 cm and 352-338 453 

cm (Phase 4).  454 

The degree of methylation (MBT, MBT’5Me) and the cyclisation ratio (CBT) also shows 455 

variation along Matese core (Fig. 7). The MBT and the MBT’5Me show similar trends but 456 
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different absolute values; they vary between 0.17 and 0.52 and between 0.20 and 0.63, 457 

respectively. The degree of methylation remains relatively stable except during two phases of 458 

decrease between 534-522 cm and 486-458 cm, and two phases with higher values at 518 cm 459 

depth and during the Phase 4. The CBT varies between 0.27 and 0.74. Phase 1 (535-530 cm) is 460 

characterized by high values of CBT following by a decline until reaching a minimum between 461 

494-482 cm. Then, the CBT slightly increases; at 382 cm a slow decline is recorded, and a 462 

strong increase marks Phase 4.  463 

 464 

 465 

  466 
 467 
 468 
 469 
 470 
 471 
 472 
 473 
 474 
 475 
 476 
 477 
 478 
 479 

 480 
 481 

 482 

4.3.3 Temperature reconstructions based on brGDGTs 483 

The brGDGT inferred reconstructed MAAT using global (Sun et al., 2011) and East 484 

African (Russell et al., 2018) lacustrine calibrations show similar trends than MAF 485 

reconstructed using a Bayesian statistical model (Martínez-Sosa et al., 2021) and global (Raberg 486 

et al., 2021) lacustrine calibrations (Fig. 8). The values are higher than modern values, 487 

especially the values for the MAFFull (Raberg et al., 2021). During Phase 1 (535-530 cm; 488 

14,600-14,500 cal BP), all calibrations show cold temperatures. Phase 2 (530-436 cm; 14,500-489 

12,800 cal BP) is marked by an abrupt temperature increase or a stabilization for MAFMeth or a 490 

decline for MAFFull. Between 13,700 and 13,200 cal BP, lower temperatures are recorded with 491 

all calibrations and from 13,100 cal BP, temperatures slowly decrease until 11,300 cal BP 492 

Figure 7. Fractional abundance of tetra-, 

penta-, and hexamethylated brGDGTs 

degree of methylation (MBT, MBT’5Me), 

cyclisation ratio (CBT) against depth for 

the Matese core. 
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although a slight increase is recorded between 11,900-11,500 cal BP. Phase 4 (367-338 cm; 493 

11,570-11,000 cal BP) is characterized by a significant increase of temperature.  494 

 495 

 496 

 497 

Figure 8. Mean Annual Air Temperature (MAAT) based on global (Sun et al., 2011) and East African 

(Russell et al., 2018) lacustrine calibrations and Mean temperature of Months Above Freezing (MAF) 

based on Bayesian statistics (Martínez-Sosa et al., 2021) and global (Raberg et al., 2021) lacustrine 

calibrations against age for the Matese core. Shaded areas correspond to the error associated with 

calibrations and dashed lines correspond to modern climate values of Lake Matese. B/A: Bølling–

Allerød. YD: Younger Dryas. EH: Early Holocene. 

 

5. Discussion 498 

 499 

5.1 Validation of age-depth model 500 

The compilation of ages derived from the Italian pollen stratigraphy into the Matese 501 

age-model is based on the main vegetation changes identified in the area during the Lateglacial. 502 

In summary, the OD in Italian pollen records (and in the present study, Fig. 4) is characterized 503 

by an open vegetation dominated by Poaceae, Artemisia, with a few arboreal pollen such as 504 

Pinus and Juniperus appearing (Allen et al., 2002; Vescovi et al., 2010; Drescher-Schneider et 505 

al., 2007; De Beaulieu et al., 2017; Sadori, 2018). During the B/A, a significant increase of 506 

arboreal pollen taxa, including deciduous Quercus deciduous, is recorded, and in the majority 507 

of records Betula appears (Allen et al., 2002; Drescher-Schneider et al., 2007; Vescovi et al., 508 

2010; Sadori, 2018; this study). During the YD, an increase of Poaceae and Artemisia (Allen et 509 

al., 2002; Mercuri et al., 2002; Drescher-Schneider et al., 2007; Vescovi et al., 2010) and an 510 
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overall decrease of arboreal pollen taxa, except in Southern Italy, (Allen et al., 2002; Beaulieu 511 

et al., 2017; this study) are documented.  512 

The ages of tephra samples and ages constrained from the pollen stratigraphy are in 513 

good agreement, contrasting results from the 14C dates which are randomly scattered and 514 

systematically too young (Fig. 2). The sediments of the Matese core are mainly composed of 515 

clay with only few plant fibers. Considering the recurrence of radiocarbon dates between 7570 516 

and 7850 cal BP in the core interval between 420 and 360 cm depth (see Table 1), it is 517 

hypothesized that the dated organic matter may have partly originated from penetrating rootlets 518 

of plants growing during sedimentary Unit 5’s deposition (Fig. 4). Indeed, aquatic plants of 519 

sedimentary Unit 5, identified with pollen, evidence a shallow water body and the development 520 

of tree species that typically grow in wetland.  521 

Therefore, the overall age-depth model of the Matese core is based on imported, well-522 

accepted tephra ages and one 14C date of a bulk sediment sample from the bottom of the core 523 

at 534 cm (Fig. 2). 524 

 525 

5.2 Influence of proxies and methods on climate reconstructions 526 

 527 

5.2.1 Lake Matese climate signal reliability 528 

Climate reconstructions are based both on pollen and brGDGTs, and some temperature 529 

discrepancies (absolute values or amplitudes) are depicted depending on the proxies (Fig. 9). 530 

The temperature amplitudes and absolute values are higher for brGDGTs (5-20°C) than the 531 

pollen (4-10°C) reconstructions. Pollen-inferred temperature values depend heavily on the 532 

quality of the modern pollen dataset including the number of samples, the diversity of samples 533 

in terms of biomes, and the similarity with the fossil samples (Chevalier et al., 2020). In our 534 

study, the modern database includes several modern samples from the Matese massif, and 95 535 

samples from Italy were added to complete the dataset. Moreover, the spatial autocorrelation is 536 

low for MAT (Moran’s I<0.34, p-value<0.01), and climate trends are consistent between 537 

methods. Reconstructed values for temperatures are close to modern values during the warmest 538 

periods, however, precipitation is largely underestimated by all methods for the recent time 539 

period (Fig. 5). The same observation was made in Calabria in Southern Italy (Trifoglietti; 540 

Joannin et al., 2012), a region also characterized by precipitation above 1700 mm. The 541 

underestimation of precipitation is certainly linked to the lack of modern samples located in 542 

very wet Mediterranean areas. Considering the brGDGT climate signal, the reconstructed 543 

temperatures are overestimated in comparison with modern values (Fig. 8). For shallow 544 
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temperate lakes (< 20 m), like Lake Matese, our brGDGT reconstructions suggest values 545 

anomalously higher than the expected temperature due to thermal variability (seasonal and 546 

diurnal; Martínez-Sosa et al., 2021). Lake Matese is located at an altitude of 1012 m a.s.l. and 547 

the strong seasonal variability may have influenced the brGDGT distribution. Moreover, the 548 

Lake Matese climate reconstructions are based on several global lacustrine calibration datasets, 549 

which may not be well adapted to reconstruct paleotemperatures in the Mediterranean region. 550 

According to Dugerdil et al. (2021a), local calibrations perform better to reconstruct more 551 

reliable absolute values. Unfortunately, at date, only a few global lacustrine calibrations are 552 

available, and a local calibration dataset for the Mediterranean region is still missing. 553 

 554 

5.2.2 Regional climate signal reliability depending on the proxy 555 

Climate reconstructions inferred from Lake Matese are compared to key terrestrial and 556 

marine temperature and precipitation records (Fig. 9, 10) in a latitudinal transect in central 557 

Mediterranean. These reconstructions for the Mediterranean region are based on different 558 

proxies. Most of those are indicators of annual temperatures, but some of them are indicators 559 

of seasonal temperature changes. For example, transfer functions based on chironomid 560 

assemblages provide estimates of mean July air temperatures (Larocque and Finsinger, 2008; 561 

Heiri et al., 2014; Samartin et al., 2017), while ostracod assemblages allow quantitative 562 

reconstruction of both January and July palaeotemperatures (Marchegiano et al., 2020). 563 

Planktonic foraminifera provide estimates of spring and autumn sea surface temperatures (SST) 564 

(Sicre et al., 2013). Depending on the production and deposition settings, molecular biomarkers 565 

are considered as indicators of annual or seasonal temperatures like brGDGTs  or alkenones 566 

(Sbaffi et al., 2004; Sicre et al., 2013; Zhang et al., 2013; Max et al., 2020; Martínez-Sosa et 567 

al., 2021; this study). For precipitation (Fig. 10), fewer reconstructions are available and they 568 

are mainly based on records of pollen (Combourieu-Nebout et al., 2013), δ18O G. bulloides in 569 

marine sediments (Sicre et al., 2013), and δ18O in speleothems (Regattieri et al., 2014). Pollen 570 

enable the reconstruction of both annual and seasonal temperatures and precipitation (e.g. Allen 571 

et al., 2002; Tarroso et al., 2016). 572 

The comparison between climate reconstructions inferred from different proxies allows 573 

us to identify reliable regional climate signals and to reduce the bias linked to each proxy. 574 

Indeed, differences may appear for the timing or amplitudes of changes according to the type 575 

of proxy. These differences may be amplified by the proxy provenance, either marine or 576 

continental. In Figure 9, the temperature reconstructions above 42°N are mainly based on 577 

chironomids, and the climate signal reconstructed is consistent between the sites. In South Italy, 578 
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at Monticchio, climate reconstructions are based on three pollen records from the same site and 579 

differences in terms of amplitude and trend are clearly evidenced (Fig. 9I). These differences 580 

are linked to the differences in the core location in the lake and the pollen sample resolution 581 

(Allen et al., 2002). The closer the core to the center of the lake (dark blue, Fig. 9I), the better 582 

the regional vegetation record and therewith a possible regional climate signal (Peyron et al., 583 

2005). Between latitude 41°N and 36°N, sea-surface temperatures (SSTs) were reconstructed 584 

from foraminifera and/or alkenones analyzed from marine cores (Sbaffi et al., 2004; Sicre et 585 

al., 2013). Alkenone-based SSTs show a low amplitude of 2-3°C between the B/A and the YD 586 

periods, whereas foraminifera-based reconstruction of seasonal temperature show differences 587 

of 5-10°C between the B/A and the YD. The differences are linked to their respective methods: 588 

For alkenones, the estimation of SSTs are based on the molecular biomarker as the C37 alkenone 589 

unsaturation (𝑈37
𝐾′), whereas, for foraminifera, they are calculated with the MAT method and 590 

depend on the occurrence of modern analogues (Sicre et al., 2013). 591 

 592 

5.3 Climate changes during the Lateglacial in Italy 593 

 594 

5.3.1 Bølling–Allerød warming  595 

The age of transition between the OD and the Bølling–Allerød Interstadial is estimated 596 

at around 14,700 cal BP based on the NGRIP ice-core chronology (Rasmussen et al., 2014). In 597 

Italy, an abrupt warming is evidenced at ca 14,700 cal BP (Fig. 9). The differences between the 598 

different reconstructions seem related to the type of proxy used rather than latitude. The 599 

transition is not obvious in the temperature reconstructions based on alkenones (Fig. 9MO; 600 

Sbaffi et al., 2004; Sicre et al., 2013), whereas it is well marked in reconstructions based on 601 

foraminifera (Fig. 9N; Sicre et al., 2013) and pollen assemblages (Desprat et al., 2013) from 602 

the same cores. According to Sicre et al. (2013), alkenones-inferred SSTs could be biased 603 

during the Early deglaciation due to water stratification inducing warming of the thin surface 604 

water layers where small size nanophytoplankton grow. Except for temperature reconstructions 605 

based on alkenones, all the records show an increase of the temperature at the transition OD-606 

B/A (Larocque and Finsinger, 2008; Sicre et al., 2013; Heiri et al., 2014; Marchegiano et al., 607 

2020). The transition, although marked, seems more progressive in the Italian records than in 608 

Greenland ice-core but the low resolution of some records can favor this trend. In terms of 609 

precipitation (Fig. 10), few records are available in Italy but no significant changes are recorded 610 

around 14,700 cal BP by δ18O G. bulloides (Sicre et al., 2013) and pollen transfer functions 611 

(Desprat et al., 2013; this study). 612 
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The Bølling–Allerød interstadial is a warm interstadial period interrupted by several 613 

cold climate oscillations (Rasmussen et al., 2014). According to the synthesis by  Moreno et al. 614 

(2014), the Bølling was cooler than the Allerød in the Southern Mediterranean compared to the 615 

warmer Northern Mediterranean. In Italy, above 42°N, temperature trends are complex to 616 

interpret: some records show an increase of temperature (Fig. 9B; Heiri et al., 2014) whereas 617 

other records show a decline (Fig. 9CE; Larocque and Finsinger, 2008; Marchegiano et al., 618 

2020). At Matese, pollen and brGDGTs inferred temperatures decrease (Fig. 9F-H), whereas in 619 

the southern part of Italy, there are no significant changes during the B/A (Fig. 9I-O; Allen et 620 

al., 2002; Sbaffi et al., 2004; Sicre et al., 2013). Temperature reconstructions in Italy show no 621 

distinct difference between the Bølling and the Allerød with respect to the latitude. In terms of 622 

amplitude, several studies (Renssen and Isarin, 2001; Heiri et al., 2014; Moreno et al., 2014) 623 

suggests that there were less contrasts in temperatures during the B/A in Southern Europe in 624 

comparison with Northern Europe. Once again, this difference is not clear in Italy (Fig. 9). At 625 

Matese, a significant decrease of brGDGTs-inferred temperature is recorded at 13,700-13,200 626 

cal BP cal BP (Fig. 9H). This change could be attributed to a colder period such as the Older 627 

Dryas or the Inter-Allerød cold period, two short periods characterized by colder conditions in 628 

the Greenland ice-core records at 14,000 and 13,100 cal BP, respectively (Rasmussen et al., 629 

2014). However, this cooling event do not appear at the same time in the Matese climate curve 630 

based on pollen, and it is only vaguely recorded in other Italian records (Fig. 9). We suggest 631 

that this change could be attributed to changes of local conditions that are visible in a lithology 632 

change (sedimentary Unit 2, Fig. 4). Indeed, brGDGT distribution and origin can differ 633 

according to the type of wetland, water level or vegetation changes (Martínez-Sosa et al., 2021; 634 

Robles et al., 2022). In terms of precipitation (Fig. 10), no significant changes occur during the 635 

B/A in Italy as suggested previously by Renssen and Isarin (2001) for Southern Europe. The 636 

Alpine region seems instead to record wetter conditions during the B/A (Barton et al., 2018; Li 637 

et al., 2021). 638 

 639 

5.3.2 A marked Younger Dryas cold event throughout Italy 640 

The onset of the YD is estimated around 12,900 cal BP according to the Greenland ice-641 

core chronology (Rasmussen et al., 2014). In Italy, above 42°N, the transition between the B/A 642 

and the YD is progressive in terms of temperatures except for chironomid records (Fig. 9B; 643 

Heiri et al., 2014). At Matese, pollen-based reconstructions show a progressive decline of 644 

temperatures with all methods except the MAT (Fig. 9FG). For this method, the transition is 645 

more abrupt, but this difference can be attributed to the application of the biome constraint. 646 
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BrGDGT-based reconstructions record a steady decrease during the YD or no significant 647 

changes according to the calibrations used (Fig. 9H). For southern Italian records, the transition 648 

is more abrupt and particularly marked in the foraminifera record in contrast to alkenones-based 649 

reconstructions (Fig. 9J-O; Sbaffi et al., 2004; Sicre et al., 2013). In terms of precipitation (Fig. 650 

10), the northern Italian speleothems records show an abrupt transition (Regattieri et al., 2014; 651 

Li et al., 2021) whereas the southern Italian pollen and isotopes records do not reveal significant 652 

changes (Sicre et al., 2013; Combourieu-Nebout et al., 2013; Desprat et al., 2013). 653 

The YD is characterized by cold conditions in the Northern Hemisphere from 12,900 to 654 

11,700 cal BP (Rasmussen et al., 2014). As previously mentioned for the B/A, several studies 655 

(Renssen and Isarin, 2001; Heiri et al., 2014; Moreno et al., 2014) suggest that temperatures 656 

during the YD are less contrasted in the South of Europe in comparison with the North. In Italy 657 

as a whole (Fig. 9), a decline in temperatures is recorded in all records.  658 

At Matese, a decrease of temperatures is evidenced by the pollen-based reconstructions, 659 

but it is less clear from the brGDGT-based reconstructions. The difference of climate signals 660 

may be related to different sources between both proxies. Pollen record local, extra-local and 661 

regional vegetation (Jacobson and Bradshaw, 1981). The basin size of the Lake Matese is larger 662 

than 5 hectares, which suggest a signal of regional vegetation rather than local (Jacobson and 663 

Bradshaw, 1981). Moreover, the YD is marked by a large proportion of herbaceous taxa (Fig. 664 

4) and favors the catching of regional pollen (Jacobson and Bradshaw, 1981). By contrast, 665 

brGDGTs are produced in the lake or in the catchment area (Russell et al., 2018; Martin et al., 666 

2019) and thus are local contributors. Moreover, the YD is characterized by high erosion rates 667 

in the catchment (Fig. 4), which could favor greater soil-derived brGDGTs and induce a warm 668 

bias in temperatures (Martínez-Sosa et al., 2021). Indeed, the distribution of brGDGTs differ 669 

according to sample type and could differ between lake sediments and catchment soils (Loomis 670 

et al., 2011, 2014; Buckles et al., 2014; Russell et al., 2018; Martin et al., 2019; Martínez-Sosa 671 

et al., 2021; Raberg et al., 2022). Soil sediments generally exhibit less hexamethylated 672 

brGDGTs and more tetramethylated brGDGTs than lake sediments (Loomis et al., 2011, 2014; 673 

Buckles et al., 2014; Russell et al., 2018; Martin et al., 2019; Martínez-Sosa et al., 2021). 674 

However, an increase of tetramethylated brGDGTs is mainly associated with an increase in 675 

temperatures in soils and lake sediments (Russell et al., 2018). At Matese, the YD is 676 

characterized by a decrease in hexamethylated brGDGTs and a slight increase in 677 

tetramethylated brGDGTs. These differences may have affected the annual temperature 678 

reconstructions by inducing a warm bias in temperatures during the YD. Furthermore, soil-679 

derived brGDGTs may also be affected by changes in pH, moisture, soil compounds and 680 
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vegetation in the catchment of Lake Matese (Davtian et al., 2016; Martin et al., 2019; Liang et 681 

al., 2019; Dugerdil et al., 2021a). Furthermore soil samples without vegetation cover are more 682 

sensitive to seasonal changes than that of soil samples with grass and forest cover (Liang et al., 683 

2019). Therefore, soils with vegetation cover allow a better reconstruction of global 684 

temperatures (Liang et al., 2019). Since at Matese, the YD is characterized by an open 685 

vegetation, soil-derived brGDGTs could also have been affected by seasonal temperature 686 

changes due to a sparse vegetation and this effect is superimposed to changes in the sources of 687 

brGDGTs in lake sediments. 688 

Contrasted patterns are also recorded at Monticchio (Fig. 9I) by the three different 689 

climate variables used for pollen-based temperature reconstructions: a decrease in winter 690 

temperature is reconstructed for two lake cores, while a fen core external to the lake, which 691 

should record the local vegetation signal, does not reveal the temperature decline during the YD 692 

(Allen et al., 2002). However, the two other cores clearly show a temperature decrease, that is 693 

why we consider a winter temperature decrease during the YD at Monticchio. In Southern 694 

Italian records, temperature reconstructions based on alkenones, foraminifera and pollen (Sbaffi 695 

et al., 2004; Desprat et al., 2013; Sicre et al., 2013) show a shorter YD than in the north. For 696 

alkenones-based reconstructions, even an increase of temperatures is recorded at the end of the 697 

YD. In continental records of South Italy (Allen et al., 2002), this trend is only recorded at 698 

Monticchio (one core only) and does not appear at Matese. Nonetheless, this hypothesis is only 699 

based on marine records and should be investigated through continental records in Southern 700 

Italy.  701 

In terms of precipitation, the marine sequences located south of latitude 42°N record a 702 

slight increase for proxies based on pollen (Fig. 9GH; Combourieu-Nebout et al., 2013) and on 703 

δ18O G. bulloides data (Fig. 9FI; Sicre et al., 2013) during the YD. However, no significant 704 

change occurs at Matese for PANN (Fig. 10C), and on the contrary a low decline is recorded 705 

for Pwinter towards the end of the YD (Fig. 10D). Above latitude 42°N, a precipitation decrease 706 

during the YD is recorded by two sites at Hölloch and Corchia caves (Fig. 10AB; Regattieri et 707 

al., 2014; Li et al., 2021). According to the model outputs of Rea et al. (2020), drier conditions 708 

occurred in Northern Europe whereas wetter conditions prevailed in Southern Europe, mainly 709 

during winter and in the South of Italy, the Dinaric Alps and Northern Turkey. This pattern is 710 

consistent with our reconstruction but the limit between the North and the South is closer to 711 

latitude 42°N. 712 

The transition between the YD and the Holocene is recorded around 11,700 cal BP by 713 

Greenland ice-core records (Rasmussen et al., 2014). In Italy, an important increase of 714 
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temperature is recorded in all records (Fig. 9) which appears earlier (700-400 years) in southern 715 

sites (Sbaffi et al., 2004; Sicre et al., 2013). In terms of precipitation, marine records south of 716 

latitude 42°N continue to record a slight increase of precipitation (Fig. 10E-H; Combourieu-717 

Nebout et al., 2013; Sicre et al., 2013), and in northern sites an increase of precipitation is 718 

recorded (Fig. 10A-D; Regattieri et al., 2014; Li et al., 2021; this study).  719 

 720 

5.4 Atmospheric processes during the Lateglacial in central Mediterranean 721 

According to several studies, climate changes during the Lateglacial show differences 722 

in temperatures between Southern and Central Europe (Heiri et al., 2014; Moreno et al., 2014; 723 

Renssen and Isarin, 2001). In Italy (Fig. 9), climate reconstructions do not show latitudinal 724 

differences in terms of temperature. The B/A is marked by warm conditions and the YD by cold 725 

conditions even in Southern Italy. Climate reconstructions for East-Central Southern Europe 726 

from Heiri et al., (2014) are not consistent with our results probably because while two of their 727 

chironomid records are located in North Italy and one in Bulgaria none consider Southern Italy. 728 

In the study of Moreno et al. (2014), only the record of Monticchio is used for the South of Italy 729 

during the Lateglacial, which may explain the differences in our study. Considering 730 

precipitation, several studies suggest no significant changes during the B/A but drier conditions 731 

in Northern Europe and wetter conditions in Southern Europe during the YD. In Italy (Fig. 10), 732 

we observe the same dynamics during the B/A and the YD.  733 

Several studies (Renssen and Isarin, 2001; Moreno et al., 2014; Rea et al., 2020) explain 734 

that during cold periods of the Lateglacial (OD, YD) the Polar Frontal JetStream moved 735 

southward with a weak Atlantic Meridional Overturning Circulation (AMOC) (Moreno et al., 736 

2014; Rea et al., 2020; Renssen and Isarin, 2001). The incursion of cold air masses is recorded 737 

until the South of Italy, however, during the YD, dry conditions are not reconstructed for this 738 

region. According to Rea et al. (2020), a relocation of Atlantic storm tracks in the Mediterranean 739 

is induced by the Fennoscandian ice sheet and the North European Plain which created a 740 

topographic barrier and a high pressure region during the YD. The presence of Atlantic storm 741 

tracks into the Mediterranean could have favored wetter conditions in the South of Italy during 742 

the YD. Our study suggests a limit around latitude 42°N, with drier conditions in Northern Italy 743 

and slightly wetter conditions in Southern Italy during the YD. A latitude limit at 40°N was 744 

previously discussed by Magny et al. (2013) for the Holocene. These echoing limits over time 745 

in Italy inevitably reinforce Italy’s key position to archive proxies catching atmospheric 746 

patterns. 747 
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By contrast, during the B/A, the North Atlantic sea-ice has a more northerly position 748 

inducing a northward shift of the Polar Frontal JetStream (Renssen and Isarin, 2001). The 749 

incursion of warm air masses is recorded in all of Italy, however, no significant changes in 750 

annual precipitation occur. Our study does not suggest the location of Atlantic storm tracks in 751 

Italy during the B/A, although at Matese winter precipitation was higher in most pollen-based 752 

climate reconstructions. However, very few records and climatic models reconstructing 753 

precipitation are available in Europe and the Mediterranean region for this period. Further 754 

investigations are necessary to fully understand the atmospheric processes and precipitation 755 

dynamic in Europe, mainly during the B/A.   756 
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Figure 9. Synthesis of temperature records inferred from different proxies in Italy from 15,000 to 11,000 

cal BP and comparison with the NGRIP ice core record. MAAT: mean annual air temperature. MTWA: 

mean temperature of the warmest month. MTCO: mean temperature of the coldest month. OD: Oldest 

Dryas. B/A: Bølling–Allerød. YD: Younger Dryas. EH: Early Holocene. 

 758 

 759 

Figure 10. Synthesis of precipitation records inferred from different proxies in Italy 15,000 to 11,000 

cal BP. PANN: mean annual precipitation. Pwinter: winter precipitation. OD: Oldest Dryas. B/A: Bølling–

Allerød. YD: Younger Dryas. EH: Early Holocene. 

  760 
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6. Conclusions 761 

This study provides a quantitative climate reconstruction for the Lateglacial period in 762 

Central-Southern Europe, inferred from a multi-proxy and multi-method approach based on the 763 

Lake Matese record. The comparison of the Lake Matese climate reconstructions based on 764 

brGDGTs and pollen and their comparison with regional terrestrial/marine climate 765 

reconstructions show the following: 766 

• For the first time, pollen and brGDGTs were combined to reconstruct climate 767 

changes in the Mediterranean region during the Lateglacial. Temperature trends 768 

reconstructed with these proxies are consistent except during the YD. Both proxies 769 

show a marked cold OD, an increase of temperatures during the B/A, and an abrupt 770 

transition to warmer conditions for the Holocene. During the YD, pollen-based 771 

reconstructions show a decrease of temperatures, whereas brGDGT-based 772 

reconstructions show no significant changes.  773 

• Comparison with regional climate records of Italy reveals that there are no 774 

latitudinal differences during the B/A and the YD in terms of temperatures. The B/A 775 

is marked by an increase of temperature and the YD is characterized by cold 776 

conditions in all Italy. By contrast, precipitation does not show changes during the 777 

B/A, and a slight increase of precipitation during the YD is recorded in Southern 778 

Italy below latitude 42°N.  779 

• Cold conditions during the YD in Italy may be linked to the southward position of 780 

North Atlantic sea-ice and of the Polar Frontal JetStream. The low increase of 781 

precipitation during the YD may be linked to relocation of Atlantic storm tracks into 782 

the Mediterranean, induced by the Fennoscandian ice sheet and the North European 783 

Plain. We identified the latitude 42°N as a limit between dry conditions in northern 784 

Italy and slightly wetter conditions in Southern Italy during the YD. By contrast, 785 

warm conditions during the B/A may be linked to the northward position of North 786 

Atlantic sea-ice and of the Polar Frontal JetStream. 787 
 788 
In summary, this study allowed us to document and discuss past climate changes in Italy 789 

while contributing to the debate about the atmospheric processes in Southern Europe. The 790 

latitudes 40-42°N appear as a key junction point between wetter conditions in Southern Italy 791 

and drier conditions in Northern Italy during the YD but also during the Early-Mid Holocene 792 

(Magny et al., 2013). However, further robust paleoclimate studies are needed to provide 1) 793 

high-resolution reconstructions based on several proxies in Northern Italy, 2) new records for 794 
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central Italy (between 41-43°N), 3) new continental records for Southern Italy (below 41°N) 795 

and 4) more model outputs at regional scales with transient simulations, if possible, mainly 796 

during the B/A and the YD.  797 
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