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Abstract. Three different climate field reconstruction (CFR) methods emploved to reconstrsct Nogth Adlantic-European
(NAE) and Northern Hemisphere (NH) surmmer season temperature over the past millenmum from proxy records are tested in
the framework of psewdoproxy experments decived from three climate simulations with Eanth System Models, Two of these
methods are traditional multivariate lingar methoeds (Prncipal Components Regression, PCR and Canonical Correlation
Amnalysis, CCA), whereas the third method (Bidirectional Long-Shont-Term Memory Newral Network, Bi-LSTM) belongs to
the category of machine learning methods. The Bi-LSTM method does oot need 1o assume Hnear and empogally stable
relatkonships between the underlying proxy network and the wargeted climate field. in contrast to PCR and CCAL In addition,
Bi-LATM incorporates information on the serlal correlation of the tme series. All three methods tested herein achieve
reasonable reconstruction performance in botl spatial and temporal scale. Generally, the reconstruction skill is kigher in
regions with denser proxy coverage, but reconstruction skill is also achieved in proxy-free areas dise to climate teleconnectbons.
All theee CFR methodobogies generally tend to more strongly underestimate the target temperature variations as moee molse |5
introduced into the pseudoproxies. The Bi-LSTM method tested in our experiments shows relatively worse reconstructbon
akills compared o PCR and CCA, yet it brings some encouraging resulis on capiuring extreme cooling clinate signals. This
indicates that this nonlingar CFR method coold be a potential methodobogy for past climate extremes analysis.

1 Introduction

The reconstruction of past climates helps to better understand past climate vasiability and pose the projected future climate
eviplutbon against the backdrop of natural climate vardability (PAGES 2k Consortiur, 2003, 2007, 2019 PAGES Hydro2k
Consortium, 2007, Schode, 2000 Evans et al., 20014; Christiansen and Ljunggvist, 2006). Paleoclimate reconstrection also
provide us with a deeper perspective to better understand the effect of external forcing on climsate {Smerdon et al., 200 1. 2006
Smerdon, 2002 Wang et al., 200 7). However, systematic observationallinstrumental climate secords are only available staning
from the middle of the 1%th century, which hinders 1o capture the full spectrum of past climate variations. Consequenty, our
undesstanding of climate variations in earlier centuries is mainly based on indirect proxy reconds (such as tee rings, ice cones),
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Abstract. Theee different climate field reconstruction (CFR) methods are employed 1o reconstruct spatially resolved North
Adlantic-Evropean {NAE) and Northern Hemisphere (MH) summer temperature over the past millennium from proxy records
These are tested in the framework of psevdoproxy experiments derived from two climate simulations with comprehensive
Earth System Models. Two of these methods are traditional multivariate linear metheds (Principal Componenis Regression,
PCR and Canonical Correlation Analysis, CCA), whereas the third method {Bidirectional Long-Shori-Term Mermory Mewral
Metwork, Bi-LSTM) belongs to the category of machine leaming methods. In contrast to PCR and CCA, the Bi-LSTM does
not imeed 10 assume a lincar and temmporally stable relationships between the underlyving proxy network and the farget climate
field,. In addition, Bi-LSTM natueally incorporates information of the serial correlation of the time series. Our working
hypothesis is that the Bi-L3TM method will achieve a better reconstruction of the amplitude of past temperature variability.
In all tests, the calibration period was set o the observational period, and the validation period was set o the pre-industrial
centuries. All three methods tested herein achieve reasonable reconstruction performance on both spatial and temporal
scabes, with the exception of an overestimation of the imerannual variance by PCR, which may be due to overfitting resulting
from the rather shost length of calibration period and the large mumber of predictors. Generally, the reconstruction skill is
higher in regions with demser proxy coverage, but it is also reasonable high in proxy-free areas due to climate
teleconnections. All three CFR methodologies generally tend to more strongly underestimate the variability of spatially
aweraged temperature indices a3 more noise 8 infroduced into the pseudoproxies. The Bi-LSTM method tested in our
experiments using & limited calibration dataset shows relatively worse reconstruction skills compared to PCR and CCA and,
therefore, our working hypothesis that a more complex machine-learning method would provide better reconstructions fior

temperature fiebds was not confirmed.

1 Imtroduction

The reconstruction of past climates helps o better understand past climate variability and pose the projected future climate
evolution against the backdrog of natural climate variability (Mann and Jones, 2003; Jones and Mann, 2004; Jones et al.,
2004; Frank et al., 2000; Schenidt, 2010; Christiansen and Ljunggvist, 2002; Evans et al., 2004; Smerdon and Pollack, 2016;
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The reconstnaction of past climates based on proxy data requires the application of statistical methods o translate the
information contained in the proxy records inte climate vartables such as temperature. These methods add an additional layer
of statlstical uncenainty and bias o the final reconstruction, in sddition to the ancenainties originating in the sparse data
coverage and in the presence of non-climatic varisbility in the proxy records. All these sources of error tmpact the quality of
climate reconstructions. One way o estimate this (mpact i5 the est of reconstrection methods in the controlled conditions
provided by climate simulations with state-of-the-an Earth System models. These models provide vinual clinsate trajectories.,
which although possibly not completely realistie, are from the model’s perspective physically consistent. The skill of the
statistical method, the impact of proxy network coverage and of the amownt of climate signal present in the proxy records can
thus be evaluated in that virual reality of climate models, once adeguate synthetic proxy records are constracted, These tesis
are generally denoted peeudo-proxy experiments (PPEs, Smerdon, 2002, Gomez-Navarro et al, 2017).

Many scientific stadies that employ pseudo-proxies and real proxies have focused on global and hemisphere climate field o
climate index reconstructions (Manm et al., 2002, 2003 von Storch et al.. 2004: Smerdon, 200 2: Michel et al., 2020: Herndndez
et al., 2020 Theae studies have identified several deficlencies that ase cornmon o most climate reconstrsctbons methods, such
as a general tendency to “regress to the mean”, which results in an underestimation of the reconstructed climate vardability.
This underestimation becomes mose evident when the available proxy information becomes of less quality - diminishing the
climate signal contaimed by the proxy records. In additon, sparser networks - shrinking proxy network coverage - may lead w
baased reconstractions {Wamng et al., 200 4; Evans et al., 2004; Amchein et al., 20205 Po-Chedley e al., 20200 Thus, significant
seppe still remaing for further developing and evaluating CFR methodologies and in designing msethods that are less prone to
thise common defictencles {Christiansen and Ljunggvist, 2006).

In the present study, we test a new non-linear CFR method that belongs o the machine learndng family. a Bidirectional Long-
Short-Term Meural MNetwork (BI-LSTM). We compare the performance of this method with two well-established classical
milti-variate linear regresston methods, Principal Component Regression {PCR) and Canonbeal Correlation Analysis (OCA).
Traditbenal CFRs uaually assume linear and emporally stable relationships between the local varfables captured by the proxy
netwaork and the target climate field. Likewise, the spatial patterns of climate variability are considered as stationary (Pyrina
et al, B0IT: Wang et al.. 2004; Smerdon et al.. 2006). However, elimate change is dynande and chaotie, and many links
between climate fields can be non-linear (Schneider et al., 2018; Dueben and Baver, 2008; Huntingford en al., 2019 Nadiga.
20200, Monlinear machine leaning-based CFR methods (for instance, Astificial Neural Metworks-ANN) could help capluse
capture underlying linear and nonlinear relationships between proxy records and the large-seale climate as realistieally as
poasible (Rasp and Lerch, 200 8; Schoewder e al., 20018 Rolnick et al., 2019 Huang et al_, 2020; Madiga, 2020 Chattopadhyay
et al, 2020; Lindgren et al., 2021} Moreover, maschine-leaming methods do not necedsarily rely on statistical methods v ficst
obtain the principal spatial climate patierns, such as Principal Component Analysis-PCA. The full inherent variability in the
original dataset is sequentially and dynamdcally adjusted and captured with optimized hyper-parameters during the model
training process (Goodfellow et al., 2016). The classical recurrent newral network (RNN) and Long Short-Term Memory
Metwork { LSTM) can usually only receive and process information from peios forward inference steps, whereas the Bi-LSTM
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Christiansen and Ljunggvist, 2017). Paleoclimate reconstructions also provide us with a deeper perspective to better
understand the effect of external forcing on climate (Heger! et al., 2006, 2007; Schurer et al., 2013, 2014, Anchukaitis et al.,
2012, 2007, Tejedor et al., 2021). However, systematic observational/instrumental climate records are only available starting
from the middle of the 19th eentury, which fails to capture the full spectrum of past climate variations. Consequently, our
understanding of climate variations prior to 1850 is mainly based on indirect proxy records {such as tree rings, ice cones, efc.
Jones and Mann, 2004). The reconstruction of past climates based on proxy data requises the application of statistical
methods to translate the information contained in the proxy records into climate variables such as temperature. These
methods add an additional layer of statistical uncerainty and bias to the final reconstruction, in addition to the uncertaintics
ariginating in the sparse data coverage and in the presence of non-climatic variability in the proxy records. All these sources
of ervor impact the quality of elimate reconstructions. Cne way to estimate this impact is the test of reconstraction methods
in the controlled conditions provided by climate simulations with state-of-the-art Earth Svstem Maodels. These models
provide virtual climate trajectories, which although pessibly not completely realistic, are from the model's pesspective
physically consistent. The skill of the statistical method, the impact of progy network coverage and of the amount of elimate
signal present in the proxy recosds can thus be evaluated in that viral reality of climate models, once adequate synthetic
proxy records are constracted. These tesis are generally denoted pseudo-proxy experiments (PPEs; Smerdon, 2012 Godmez-
Mawarro et al., 2007)

Many scientific studies that employ psewdo-proxies and real proxies have focused on global, hemispheric climate field or
climate index reconstructions (MMann et al, 2002, 2005; von Storch et al, 2004; Smerdon, 2002 Michel et al, 20240;
Hemdndez et al., 2020} These studies have identified several deficiencies that are common te most climate reconstructions
methods, such a5 a general tendency to ‘regress to the mean’, which results in an underestimation of the reconstructed
climate variability. This underestimation becomes mose evident when the available proxy information becomes of less
quality - diminishing the climate signal contained in the proxy records. In addition, sparser metworks - shrinking proxy
network coverage - may lead 1o biased reconstructions (Wang et al., 2004; Evans et al., 2004; Amrhein et al, 2020; Po-
Chedley et al., 20200, Thus, sigrificant scope stll remaing for further developing and evaluating elimate field reconstructions
(CFR) methodologies and in designing methods that are less prone to these common deficiencies (Christiansen and
Lijungqvist, 2001 7).

In the present study, we test a non-linear CFR method that belongs to the machine leaming family, a Bidirectional Long-
Short-Tenm Meural Metwork (Bi-LSTM) and that, to our knowledge, has not been applied to CFR yet. We compare the
performance of this method o two well-established classical multi-variate linear regression metheds, Principal Componsent
Regression (PCR) and Canonical Correlation Analyais (CCA). Traditional CFRs usually assume linear and temporally stable
relationships between the local variables captured by the proxy network and the target climate field. Likewise, the spatial
patterns of climate variability are considered as stationary (Coats et al., 2003; Pyrina et al, 2017; Wang et al., 20014;
Smerdon et al., 2006; Yun et al., 2021). However, links between climate fields can be non-linear {Schneider et al., 2018,
Drueben and Baver, 20018; Humtingford et al, 2009; Madiga, 2020). Moalinsar machine leaning-hased CFR methods (for
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handles information from both forward and backward temporal directbons {Graves amd Schmddhuber, 20085, It has been
demonsteated that the Bi-L3TM model can achigve better performance for some classificatbon and prediction tasks (Su et al.,
2021; Biswas and Sinha, 2021; Biswas e al, 20215 Since climate dynamdcs wsually exhibit iemporal dependencies, the Bi-
LETM method might bearny these dependencies better, which can provide another advantage to capture the time evolutbon of
the reconstructed climate fiebd. To our knowledge, Bi-LSTM method is applied for the firss time in the context of paleo CFRs.
In this evaluation of climate reconstruction metheds, we focus on the whole Morthern Hemdsphere temperatuse ficld and on
the temperature fleld of the Morh Atlantic European region. In the Morth Adlantic region, the most imponant mode of
emperature variatbons at lenger time series s the Atlantic Multidecadal Yariability (AMY). The index of the AMY iz defined
as decadal filtered surface temperatare anomaly owver MNorth Adlantic reglons (95°W-30FE, 0-70°N, excluding the
Mediterranean and Hudson Bay following Knight et al.. 2006). It has been shown that AMY (s related to many prominent
examples of regional or even hemispherie moltiidecadal elimate variability, for example BEuropean and North Amerbea summer
climate variability (Knight et al., 2006; Qasmi et al., 2007). In this context, we test the reconstruction skill for the spatial
resolved summer seasonal temperature anomalies over NH and NAE, as well as for the spatlally averaged AMVY and NH
summer temperature ancmalies, caloulated from the spatially resolved reconstrected fields. The reconstruction of mean
temperature series could provide a general assessment of the skill to reconstruct extreme temperature phases (e.g. related o
voleanle eruptions or changes in solar sctivity) serving as benchmarks to test the potential capability of different CFR methods
on those anomalies,

Regarding the networks of real proxies used so far, 51 George and Esper (2019) reviewsd comemporary studies on previous
MH emperature reconstructions based on tree ring proxies (Mann et al., 1998, 2008, 2007, 2009a, 2009h; PAGES2k
Consortium}). St George and Esper conclueded that the present-day generation of tree ring proxy based reconstrsctions exhibic
high correlations with seasonal hemispheric sumimer iemperatures and display relatively becer skills in tracking vear-to-year
climatie variabilities and decadal Auctuations than former proxy networks, as found by Wilson et al, (2016) and Anchuokaltis
et al, (2007). Thus, we test NH summer temperature CFRs employing a pseudo-proxy continental network that is the result of
blending two networks: the PAGES2E Consomiomn multiproxy network, and the climate-tree-ring metwork of St George
(2014).

In the oceanic realm in the Morth Atlantic. additional marine proxy records based on molluse shell bands (Pyrina et al., 2007)
have been also used for climate reconstrsctions. These records, similarly 1o the dendroclimatslogical reconds, are based on
annual growth bamds, are annually resolved, and wsually represent surface or subsurfaee water temperature. Compelling
evidence has already been provided by earlier studies that Adantic Ocean varfability is an impostant driver of Evropean summer
climate variability (Jacobedt et al., 2003 Soon and Hodson, 2005; Folland et al_, 2009}, Thos, we also employ an updated
proxy metwork by combining the locations of marine proxies and ee ring proxies {Pyrina et al., 201 7; PAGES 2k consortium,
2017, Luterbacher et al., 2006) to test the NAE summer seasonal temperatun: reconstructions.

The chdee of climate model to non paewdo-experinsents may plausibly have an impact on e estimation of method skills, since
the spatial and temporal cross-cormelations between climate varlables may be model dependent. Thus, it 15 advisable 1o use
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ingtance, Artificial Neural Metworks-ANN) could help eapture underlying linear and nonlinear relationships between proxy
records and the large-scale climate more possible (Rasp and Lerch, 2018; Schneider et al, 2008; Rolnick et al., 2019; Huang
et al., 2020, Madiga, 2020; Chattopadhyay et al., 2020; Lindgren et al., 2021). Moreover, machine-learning methods do not
necessarily rely on statistical methods to first obtain the principal spatial climate pattems, such as Principal Component
Analysis-PCA. The full inherent variability in the original dataset is sequentially and dynamically adjusted and captured with
optimized hyper-parammeters during the model training process (Goodfellow et al., 2016}

Within the family of machine leaming methods, recurrent neural networks (RNN) and Long Shon-Term Memory networks
(LSTM) are characterized by specifically incorporating the sequential structure of the predictors to estimate the predictand
(Bengio et al. 1994). This property makes them  promising methods o ameliorate the underestimation of variability that
affects many other methods. Our assumption here s that the methods would be able to better capture epizodes of larger
deviations from the mean, especially those that streteh  over several time steps. However, this assumpiion is not guaranteed
to be realistic in practical situations and needs to be tested. The classical recurrent neural network and Long Short-Term
Memory Metwork can usually only receive and process information from prior forward inference steps. A variant of the
LSTM network is the bidirectional Bi-LSTM. It handles information from both forward and backward temporal directions
(Giraves and Schmidhuber, 2005). It has been demonsirated that the Bi-LSTM medel is capable of leaming and capluring
from a sequential dataset (Hochreiter and Schmidhuber, 1997) and that it achieves better
performance for some classification and prediction tasks (Su et al, 2021; Biswas and Sinha, 2021; Biswas et al, 20201)

long-term  depend
Since climate dynamics usually exhibit temporal dependencies, the Bi-LSTM method might learn these dependencies betier,
which can provide another advantage to capture the time evolution of the reconstructed climate field.

The Bi-LSTM combines two independent L3TMs wogether, which allows the network 1o incosporate both backwand and
forward information for the sequential time series at every time step. Our working hypothesis is, that a more sophisticated
type of RMM could better replicate the past variability, and perhaps even more so for extrerne values. Thus, we would like o
test whether this property of the Bi-LSTM iz useful for paleo climate research in the future based on owr experiments,
especially by emploving only a limited calibrationfraining dataset that could also be a challenge for training deep neural
networks (Majafabadi et al. 20015)

This calibration period, which is usually chosen in the real reconstructions as the observational period {or the overlap period
between observations and proxy records) can represent a challenge not only for a parameter-rich method such as the Bi-
LSTH, but also fior the wswal linear methods. For instance, a global or hemispheric prosy network may span of the order of
100 gites, and a regional proxy network may span a few tenths of gites. I the calibration period spans at most 130
independent time steps, a method like Principal Component Regression, in which one principle component is predicted by
the whole proxy network, is rather close to overfitting conditions, especially in a global or hemispheric case. Canonical
Correlation Analysis with a PCA-prefiltering would be much more robust o the potential overfitting if only a few leading
PCs are retained in the prefiltering step (sse Methods), Here, we test the methods in our pseudo-proxy experiments in the
conditions as they are wsually applicd in real reconstructions, in which overfitting may be a real risk.
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several ‘numerical laboratories’ and employ several comprehensive Barth System Models (ESMz) to evaluate reconstructions
methods. Besides, constructing PPEs based on different ESMa will highlight model-based impacts on the reconstnucted
magnitude and spatial patterns (Smerdon et al., 2001, Smerdon, 20012: Amrhein et al, 2020). Accosdingly. in this study three
different comprehensive Barth System Models are employed as ‘surrogate climate database for setting up PPEs: the
Community Climate System Maodel CCSMA. the Max-Planck-Institute climate model MPL-ESM-P and the Community Barth
System Model CESMI1-CAMS. Armong the models providing climate simulations of the past millennium, these thiee models
are the ones with the highest bortzontal resolation.

1 Data and Method
1.1 Data
2.1.1 Proxy data locations

The paeudeproxies are constructed from the simulated grid-cell summer mean temperature sampled from three climate model
shmulations over the past millennium (see following subsections). In this context, 11 real proxy locations in the North Addantic-
European reghon (Pyrina et al.. 2007 PAGES 2k consortium. 2017 Luterbacher et al., 2016} are selected for regional NAE
(BFW-30°E, (-88°N) PPEs and 48 proxy locations across the Northern Hemdsphere are chosen from the PAGES 2k network.
The original North Hemisphere PAGES network was trimmed down by removing proxies that may show a combined
emperature-moisture response and by selecting only one proxy among those deemed 1o be oo closely located (and thus
redundant from the climate model perspective). Specifically. the 48 dendrochronology locations are selected according to
Figure 4 of St. George, S (20014) which shows the cormrelation coefficient between the dendroclimatological proxy records and
AUIIMEr season emperature. At most of the retained locations, the correlation between the dendroclimatological record and
reghomal temperature is higher than (L5

2.1.2 Climate Models

O of the climate models wtilized in our study is the Max-Planck-Instioute Eanth Systemn model MPI-ESM-P with a spatial
horizontal resolution of about 1.9 degree in bongitode and 1.9 degree in latimode. The simolation covers the period from 100
BC o 2000 CE. The madel MPL-BSM-P consists of the spectral atmaspherse model ECHAMG (Stevens et al., 2003), the ocean
model MPI-OM (Jungelaus et al, 2013). the land model ISBACH (Reick et al., 2003) and the bio-geophysical model
HAMOOC (Ilyina et al, 2003). The sewp of our simulations corresponds o the MPI-ESM-P LR sewp in the CMIPS
stmulations suite. However, since the present simulations does not belong o the CMIPS peoject. the forcings used in this
stmulation and additional technbeal details are shown in the Appendix A

The second climate model §s the Community Earth System Model CESMI Paleoclimate mosdiel CAMS from the Mational
Centre fior Atmospheric Research (NCAR) (Oto-Bliesner et al.. 20065 with a spatial resolution of 2.5 degree in longiude and
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Faor the sake of completeneas, we briefly mention here reconstruction methods that combine information from proxy and
from climate simulations - data assimilation (Steiger et al., 20014; Carrassi et al, 20018y, The family of data-assimilation
methods consteain or modify the spatially complete cutput of climate simulations conditional on the available locally sparse
information provided by proxy records. Therefore, they are not =0 strongly constrained, in principle, by the assumption that
the spatial covariance is stationary over time. Another advantage is that they provide estimation of reconstrsction
uncerainties in a more straightforward way, especially those methods formally based on a Bayesian framework. On the
other hand, the underlying data-assimilation equations do require the estimation of large cross-covariance matrices, e.g2.,
based on Kalman Filters, and this usually makes necessary the application of some sort of, subjective, regularization of the
ermof-covariance matrices (Harlim, 2007; Janjié et al,, 2008} They alzo might be computationally much more demanding
than purely data-driven methods. Considering the replication of the amplitude of past varations, it depends on factors that
are independent of the methed itself, such as the variance generated by the climate model and also on the inberent
uncertainties of the proxy data. Therefore, an under- or overestimation of reconstructed variance cannot be as characterized
as a systemic property of these methods. They have the very important advantage in that they combine all the available
information about past climate {simulations, forcings, proxy data) into a powerful tool. Howewver, the prior use of
information from climate models precludes & posterior critical comparison between simulations and reconstructions, and
thereby the resulting reconstructions lose one appeal of climate reconstructions in general.

In this evaluation of three climate reconstruction metheds, we focus on the whole Northern Hemisphere terperature field
and on the temperature ficld of the North Atlantic European region. In the Morth Atlantic region, the most important mode of
temperature variations at longer time series is the Atlantic Multidecadal Variahility (AMVY). The index of the AMVY is
defined as decadal filtered surface temperature anomaly over North Adlantic regions 95°W-30°E, 0-70°N, excluding the
Moediterranean and Hudson Bay following Knight et al. (2006). It has been shown that AMY i3 related to many prominent
features of regional or even hemispheric multidecadal elimate variability, for example European and Morth America summer
climate variability (Knight et al., 2006; Qasmi et al, 2007). In this context, we test the reconstruction skill for the spatial
resolved summer temperature anomalics over Morthem Hemisphere-WH (1807W-1B0°E, 0-90°N) and North Adlantic
European region-MAE (60°W-30°E, 0-88°N), as well as for the spatially averaged AMY and NH summer temperature
anomalies, ealculated from the spatially resolved reconstrucied fields. The reconstruction of mean temperature series could
provide a general assessment of the skill to reconstruct extreme temperature phases (e.g. related to volcanic eruptions or
changes in solar activity) serving as benchmarks to test the potential capability of different CFR methods on those
anommalies.

Regarding the networks of real proxies used so far, St. Goorge and Eaper (20019) reviewed conternporary stadies on previous
NH temperature reconstructions based on tree ring proxies (Mann et al., 1998, 2004, 2007, 20092, 2009k, Ermile-Geay et al.,
20017y St George and Eaper (2019) concluded that the present-day generation of tree-ring proxy-based reconstructions
exhibit high correlations with seasonal hemispheric summer temperatures and display relatively better skill in tracking year-
to-year climatic variabilities and decadal fluctuations than former proxy networks, as found by Wilson et al., (2016} and

4




DiffPDF « /home/zorita/MANUSCRIPTS/ZEGUO/CP_manu_ZZ_original_version.pdf mit /home/zorita/MANUSCRIPTS/ZEGUO/CP_revision3_ZG.pdf « 2022-07-29

135

145

155

1.9 degree in latitude (htps 2w cesm. wear sdw'projectscommunity-projecta LMES). The CESM-CAMS-LME simulation
extends from 850 CE 1o 2006 CE using CMIPS climate forcing reconstructions { Schimidt et al. 200 1) and reconstiructed forcing
for the ransient evolution of aerosols, solar irradiance, land we conditions, greeshowse gases, orbital parameters, and voleanic
emdsslons. The atmosphere model employed in CESMI i3 CAMS (Hurrell et al., 2003), which is a significant advancement of
CAM (Meale et al., 200 3), whereas OCSMA uses CAMY as s atmospheric component. The CESMI1-CAMS uses the same
ocean, lamd and sea ice models as COCSM4 (Hurell et al.. 2003) does. We use one simolation form the Last Milkennium
Ensemble (LME).

The third climate maodel s the Community Climate Sysiem Model CCSM4 model (Gent et al., 2001), also from MCAR, which
uses the land (CLMAY Lawrence et al., 2002), the oczan model{ POPXSmilth e al., 20100he stmosphere (CAMAMNeale et al.,
20013 and the sea lce model {CICEAHunke e al.. 2008) components. CCEM4 s modelled with a spatial resolution of 1.25
degree in longitude and 0.9 degree in latiude. Here, we use the simulations labelled past 1000 and historical and labelled clilpl
fromm the CMIPS data set. The past L0 simulatkon spans the period from 850 CE to 1849 CE. The historical simulations covers
the period 1850 CE 1o 2005 CE. We concatenate both simulations together for this stady. The boundary conditions and forcings
follow the PMIP3S (Paleoclimate Modelling Intercomparison Project Phase 1) protocols (Schmide et al. 200 1), The Lean e al.
{20005 ) peconstruction of the total solar rradiance (TSI combined with the YWiebra et al (200 1) ks employed to describe the TS1
The volbeandc forcing s presceibed by using the fce-core-bazed index of Gao et al. (2008). The Pongratz et al. {2008)
reconstruction of land use clhange merged with that of Hort et al. {2009) is used to describe seambessly land use changes.

1.2 Methods
221 Constroction of psendo-proxies

To test the statistical reconstruction methods in te vinuoal laboratories of climate model simulations, we need records that
mimde the statistical properties of real proxy records. The most important propenties are their correlatlon o the local
temperature and their bocation in a proxy network. A third important characteristic s the retwork size and temporal coverage.
The usual method 1o produce peeudo-proxy records in climate simolations 5 o sample the simulated temperature at the grid-
cell en-located with the real proxy record and contaminate the simulated emperature with added seatistical nolse. so that the
correlations between the original temperature and the contaminated temperamre resembles the typical temperature-proxy
cirmelatbons. The real correlation is of the order of (L5 or above for good proxy records. This parameter can be modulated in
the pseudo-proxy record by the amount of nodse added to the simulated tensperature, and different proxy nevworks will help us
o reveal how and to what extent degradations and effects would be expressed amongst methods and amongst climate models.
ldeal pseudo-proxies contain only the temperature signal subsampled from the climate model. We then perturb the ideal
paeudo-proxies with Gawssfan white noise. Gaussian white noise with signal-to-nodse ratio (SNR) values of 0.25, 0.3 and | is
in general widely employed for contaminating the ideal preadogrosy dataset (Smerdon, 20012, Wang et al., 2004). The nokse
level can be defived using variows criteria including SNE, varance of pure white nolse (NVAR). and percent nolse by variance
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Anchukaitis et al., (2017). Thus, we test NH summer temperature CFRs employing a preudo-proxy continental network that
is the result of blending two networks: the PAGES2k Consortium (Emile-Geay et al, 2007) multiproxy network, and the
climate-tree-ring network of 51 George (2014).

In the oceanie realm in the Nosth Atlantic, additional marine proxy records based on molluse shell bands {Pyrina et al., 20017}
have been also used for climate reconstructions. These records, similarly to the dendroclimatological records, are based on
annual growth bands, are annually resolved, and wsually represent surface of subsurface water temperature. Therefore, they
are technically rather similar to dendroclimatological records. Compelling evidence has already been provided by carlier
studies that Atlantic Ocean variability is an important driver of European summer climate variability (Jacobeit et al., 2003;
Sutton and Hodson, 2005; Folland et al., 2009). Thus, we alse employ an updated proxy network by combining the locations
of marine proxies and tree ring proxies (Pyrina et al, 20017, Emile-Geay et al., 2017, Luterbacher et al., 20016) to test the
MAE summer temperature reconstructions.

The choice of climate models to run pseudo-experiments will have an impact on the estimation of method skills (Smerdon et
al., 2001, 20015; Parsons et al, 2021}, since the spatial and temporal cross-correlations between climate variables are usually
model dependent. Thus, it is advisable to use several ‘numerical laboratories’ and employ several comprehensive Earth
System Models (ESMs) to evaluate reconstructions methods. Constructing PPER based on different ESMs will highlight
model-based impacts on the reconstructed magnitude and spatial pattemns (Smerdon et al., 2001, Smerdon, 2012; Amrhein et
al., 20200, Accordingly, in this study two different comprehensive Earth System Models are employed as “surrogate climate
database for setting up PPER: the Max-Planck-Institate Earth Systein Model model MPI-ESM-P and the Community Earth
System Model CESM [-CAMS.

I Data and Methods
1.1 Data
2.1.1 Proxy data locatbons

The psendoproxies are constructed from the simulated grid-cell surmmer mean temperatune sampled from two climate model
simulations ower the past millennium (see following subsections). In this comtext, |1 real prosy locations in the Morth
Atlantic-Evuropean region {Pyrina et al., 2017; Emile-Geay ef al., 2007; Luterbacher et al., 2016) are selected for regional
MAE (60°W-30°E, 0-88°N) PPEs and 48 proxy locations across the Northern Hemdsphere are chosen from the PAGES 2k
network. The original Nosthern Hemisphere PAGES network was timmed down by removing proxics that may show a
combined temperature-moisture response and by selecting only one proxy among these deemed to be too closely located
(and thus redundant from  the climate model perspective). Specifically, the 48 dendrochronology locations are selected
according 1o Figure 4 of St George, (2014) which shows the correlation coefficient between the dendroclimatological prosy
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(PNW) and s0 on {(Smesdon, 2002). We employ here the PNV 1o define the noise level conventbon; The PNV expresses the
ratho between the added molse varance and the otal variance of resulting the prewdo-proxy time series.

Although individual real proxies contain different amounts of nolse {ron-climatic varlabiling, we assume bere a uniform level
of malse throughout the whole pseudo-proxy network. In addition, real proxy reconds comalin temporal gaps, and mot all records
span the same period. For the sake of simplicity, we assume in our psesdo-procies network that the data have no temporal
gaps and all records cover the whole period of the gimulations

The dataset ernployed bereln for constructing PPEs database i3 split inte a calibration period that spans 830-1425AD, and a
validation period that spans 1426-2000 AD. All the validastion statistics of the CFR resulis are derived against the reconstruction
period of 1426-2000 AD. MNote that here we just split the entire temporal interval into two equal pans, while, in reality, the
instrumental period only covers the most recent 150 years. It reans that in reality, only the most recent 150 years can be used
fior training of the statistical msodels. The reconstruction skill derived in this study will, all other faciors being equal, be larger
than the real reconstruction skill, since the data available for calibration are less and the calibration period containg diffesent
climate regirves, e.g. the strong anthropogente warming signal which ks not present in the preindustrial period. On the other
hand, we exclude the period of strong anthropogente warming from the calibration data, so that we present 1o the methods the
clear challenge of reconstructing the temperature beyond the range of variations seen in the calibration pertod. expecting that
the possible deficlencies of the reconstruction metheds become more apparent with this set-up.

222 Principal component regression

Principal component analysis (s emploved to construct a few new varlables that are a linear combdnation of the components of
the original climate field, and that ideally describe a large part of the total varability. The linear combinations that define the
new varlables ane the elgenvectors of the cross-covariance matrix of the field. Associated to each varlable (eigenvector), a
principal component time series (seones) describes its iemporal varistion. In the PCR. the predictands are those scores identifled
by PCA of the climate field (Hotelling, 1957; Luterbacher et al., 200; Pyrina et al., 2017). This resulis in a reduction of
dimenstonality without losing too much informatkon, and reduces the risk of over-fitting. In the present study. the retained PCa
capture at beast 90% of the cumulative temporal variance of climate field. Afier selecting the empirical orthogonal functions-
EOFs and principal components-PCs based on the calibration dataset and establishing the desired linear regression
relationships between the PCx and the proxy dataset ipredictors). the PCs in the validation perlod are reconstmocted using the
eatimated regression coefficients. The full climate field is then reconstructed by the linear combination of the reconstmucted
PCs and their corresponding BOFs. A glven climate field x,. at time step § can be decomposed as follows:

Xyr = Eﬁ-:f’ﬁ'm EGFJ.I.I,H i

where m b5 the grid index of the fleld. ¢ s the hme index, and & denotes the wotal numbers of retained PCs.
The linear relationship between proxies and targeted climate field is established by the regression equation:

Plye= EL-: iy o PIOXY o + E [ea)

[
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records and summer termperature. At most of the retained locations, the correlation between the dendroclimatological recond
and regional temperature is higher than 0.5

1.1.2 Climate Models

Cme of the climate models wtilized in our study is the Max-Planck-Institute Earth System model MPL-ESM-P with a spatial
horizontal resolution of about 1.9 degree in longitude and 1.9 degree in latitude. The simulation covers the period from 100
BC w 20y CE. The mode] MPI-ESM-P consists of the spectral atmospheric model ECHAMG (Stevens et al, 20013}, the
ocean model MPI-OM (Jungelaus et al., 2003), the lasd medel ISBACH (Reick et al, 2003) and the bio-geophysical model
HAMOCC {Ilyina et al, 2013). The setup of our simulations corresponds to the MPI-ESM-F LR setup in the CMIP3S
simulations suite, However, since the present simulations does not belong te the CMIPS project, the forcings used in this
sirmulation and additional technical details are shown in the Appendix A,

The second climate model is the Community Earth System Model CESM Paleoclimate model CAMS from the MNational
Centre for Atmospheric Research (WCAR) (Ono-Bliesner et al., 2016) with a spatial resolution of 2.3 degree in longitude
amd 1.9 degree in latitade (hrtps:asew cesmucar.edu projects/community-projects LMED,  The CESM-CAMS-LME
simulation extends from 850 CE to 2006 CE uwsing CMIPS climate forcing reconstructions (Schmidt et al. 2011} and
reconstructed forcing for the transient evolution of acrosols, solar irradiance, land use conditions, greenhouse gases, orbital
parameters, and voleanic emisaions. The atmesphere model employed in CESMI i CAMS (Hurrell et al., 2013), which is a
significant advancement of CAM4 (Meale et al, 2013), whereas CCSM4A uses CAM4 as its stmospheric component. The
CESMI-CAMS uses the same ocean, land and sea ice models as CCSM4 (Hurvell et al., 2003) does. We use the last one
enseimble simulation member 13 from the Last Millennium Ensemble (LME).

1.2 Methods
121 Construction of psendo-progles

To test the satistical reconstnuction methods in the virial labosatories of climate model simulations, we need records that
mimic the statistical properties of real proxy recosds. The most important propertics are their comelation to the local
temperature and their location in a proxy network. A third important characteristic is the network size and temporal
COWErage.

The usual methed to produce psesdo-proxy reconds in climate simulations is to sample the simulated temperature at the grid
cell that containg the proxy location and contaminate the simulated temperatune with added statistical noise, so that the
correlations between the original temperature and the contaminated temperature resembles the typical temperature-proxy
correlations. The real correlation is of the erder of 0.3 or above for good proxy records. This parameter can be modulated in
the pacudo-proxy record by the amount of noise added to the simulated temperature, and different proxy networks will elp
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where the index m runs over the proxies, § denotes the total nombers of proxies, o s the linear function coeffictent. and £
demetes a residual terme Thee o parameters are estimated by Ordinary Least Squares. Here, it s assumed that climate sensitive
prosies are Unearly related with the climate PCs. Based on Eq. (3) using the PCR method. the PCs during the validation interval
will be reconstructed assuming that the linear coefflcients derived in Bg. (3) are constant in tose:

L= T e POXY 3

The final reconstructed feld  will be derived by the linear combination of the reconstructed PE with the EOFs derived from
the calibration dataset, thereby assunung that the EOF patterns remain constant in time (Gamez-Navareo et al., 2017, Pyrina
et al, 2007

1230 lcal correlatl lysl

o

Canonical Correlation Analysis CCA 15 also an eigenvector method. Similarly wo PCA, CCA decomposes the variance of the
fields as a linear combination of spatial patterns and their corresponding amplitude time serdes. In contrast o PCA, where the
target is o maximize the explained variance with a few new varlables, CCA construscts pairs of predicior-predictand variables
that maximize the temporal comelation of the corresponding amplitude time series. The paies of vartables are dentified by
solving an eigenvalue problem that requires the caleulation of the inverse of the covariance matrices of each field. These
mairices can be pseudo-degensrate (one cigenvalue much smaller than the largest elgenvalue) and therefore the caleulation of
thedr inverse s, without regularization, numerkeally unstable. This regularization can be inroduced by first projecting the
original fields onto their leading EOFs (Widmann, 2005; Pyrina et al., 2007}, This also reduces the number of degrees of
freedom - thus hindering overfifting - and eliminate potential modse varance. After the dimensional transformation, a small
number of pairs of patterns with high temporal correlation will be retained. In the present study. the nomber of retained PCs
capture at least 90% cumulative variance of predictand climate field. Then these retained PC time series will be used as input
variables of CCA to calculate the canonical correlation patterns {OCPs) and canonical coefficients (CCs) time series for both
prony and temperature fleld. The reconstructed climate field can be caleulated by a linear eombination of the OCPs with OCs
fior each time step 1

¥y m¥L_ el pEp St i
Proxy,, =T._ cch ™ coplin® (5
Praxy denotes the reconstructed proxy field, and { is the number of CCA pairs. The correlation between each pair OC {proxy.
field) are the canonical comelations, which are the square reot of the CCA-elgenvalues, Therefore, once sach O™ is
calculated from the proxy data theough the validation period. the corresponding CC™ i) can be easily estimated as
proportional to OO |, since the correlation between the different OO (1) 15 2ero. The final reconstruction of targe
climate field will be derived by linear combination of CCPY¥(1) and CO®1), assuming again that the dominani canonical

correlatbon patterns of climate variability are statbonary in tine.
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us to reveal how and to what extent degradations of reconstruction skill cawsed by the amount of non-climatic signals present
in the paewdo-proxies.

Ideal pseudo-proxies contain only the ternperature signal subsampled from the climate model. We then perturh the ideal
paeudo-proxies with Gaussian white noise, and also with red noize for a more realistic noise contamination experiment. We
generate two fypes of pseudoproxies by adding Gaussian white noise and red noise (refer 1o Pyrina et al., 2007) to the
subsampled summer-temperatuse time series at the tree ring proxy-based locations,

The noise level can be defined using varows criteria including signal to noise ratio (SNR), varance of noise (NVAR), and
percent of noise by variance (PMV) (Smerdon, 20012; Wang et al., 20014). We employ here the PNV to define the noise level
convention, The PNY expresses the ratio between the added noise varance and the total vasiance of resulting the pseudo-
proxy time series. Without loss of generalization we assume that the ideal procy has unit variance, and thus

PNV =NVAR/ 1+NVAR | in
Red noise for a specific PNV could be defined by:
Red = Red, +White, (i)

where Red, represents red noise time series, O jindicates the damping coefficient, here in our study it is equal to 0.4 [Larsen
and MacDonald, 1995; Bintgen et al, 2000; Pyrina et al, 2007), and Whife, is a random white noise time series
correspondingly.

Although individual real proxies contain different amounts of noise {non-climatic variahility), we assume here an uniform
level of nodse throughout the whole psewdo-proxy network. In addition, real proxy records contain temporal gaps, and not all
records span the same period. For the sake of simplicity, we assume in our pseudo-proxies network that the data have no
temporal gaps and all records cover the whole period of the simulations.

The dataset employed here for constructing the according PPEs database is split into a calibration period that spans [900-
199940, and a validation period that spans 850-1899 AD. This calibration period would represent the tvpical perod of
calibration of real proxy records. All the validation statistics of the CFR results are derived against the reconstruction period
of 850-1 89 AD.

1.2.1 Principal component regression

Principal component analysis is employed 1o construct a few new variables that are a lincar combination of the components
of the original climate field, and that ideally describe a large pan of the total variability. The lincar combinations that define
the new variables are the eigenvectors of the cross-covariance matrix of the field. Associated to each variable {eigenvector],
a principal component time series (scores) describes its temporal variation. In the PCR, the predictands are those scores
identified by PCA of the climate field (Hotelling, 1957; Luterbacher et al., 2004; Pyrina et al, 20017). This results in a
reduction of dimensionality without lesing too much information, and reduces the risk of over-fitting. In the present study,

7
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224 Bidirectional Long Short-term memory neural network

Aa a non-linear machine learning method. we test here a Bidirectional Long short-term memory neural nevwork (Bi-LSTM).
The LSTM networks, in contrast o the more iraditional newral networks, also capiure the information of the serlal co-variability
present in the data, and therefore ane suitable to tackle data with a emporal structure. They are usually applied o the analysis
of speech and of tme serles. The rationale of wsing these type of networks for climate reconstructions is the aforementioned
underestimation of the past climate variations by most linear methods (“regression 1o the mean'). In principle, a LSTM network
could explodt the temporal autocorrelation present inthe time series o ameliorate this underestinsation and perhaps also provide
mire pealistic spectral properties of the reconstrected tme series

The structure of LSTM metwork is more complicated than the strocture of a raditional newral network. The LSTM estimates
a hidden variable Jijr) that encapsulates the state of the system at time ¢ The computation of the new system state at time 41,
hir+d ), depends on the value of the predictoss at r+J but also on the value of the hidden state st tme 1, ). The training of the
LETM can be accomplished sequentially by assimilating the information present in the training data from tme steps in the
past of the present time step. In some loose sense, a LSTM network would be the machine-leaming equivalent of a linear auto-
FegrEsaiVe Process.

The training of the network is sccomplished by feeding it with sequential data iteratively, forwards towards the future and
backwards towards the past. Both forward and backward assimilations are processed by two separated LSTM neural layers,
which are conmected 1o the same output layer. Figure | flustrates the bdiveetonal strocture of the Bi-LETM nevwork. Given
a set of predicioe-predictand variables (X ¥i), our goal i2 to train a ponlinear function:

E=FXx) (61
The structure of this complex non-linear function F is defined as follows:
fi= ﬂ'[ w.r[hl:-lvx-rl - -E,r} (n

e = o (W;lh;oq. 2] + B;) (&)
A, = tanh(W,[h_,. x.] + B,) o
C= feleoy + LA, (m
oy = a(Walkyo 2] + B, ay
h, = o,tank(c,) 2y

where Wy, W, W and W, represent several weight matrioes and B B, B, and 8, represent different bias matrices. & §s the gate
activation function, here we utilize the Rectified Linear Unit function-RelU (Ramachandran et al, 2007) .

Artime step -4, the hidden state of LSTM cell's hidden layer is preserved as k., and this vector is combined with the vector
of current input variables X to obtain the state of the forget gate, f (equation 7). the input gate 5 (equation 8) and the state of
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the retained PCs capture at least 90% of the cumulative temporal variance of climate field. Afier selecting the empirical
orthogonal functions-EQFs and principal components-PCs based on the calibration dataset and establishing the desired linear
regression relationships between the PCs and the proxy dataset (predictors), the PCs in the wvalidation peried are
reconstructed wsing the estimated regression coefficients. The full climate field is then reconstructed by the linear
combination of the reconstructed PCs and their corresponding EOFs. A given climate field x, at fire step ¢ can be
decomposed as follows:

k
meE‘: PC, ,EOF, , &R
=

where st is the grid index of the feld, ¢ is the time index, and & denotes the tofal numbers of retained PCs.
The linear relationship between proxies and targeted climate field iz established by the regression equation:

BC,.= i @, Proxy, -+ 4y

m=1
where the index m runs over the proxies, [ denotes the total members of proxies, @ is the linear function coefficient, and £
denotes a residual term. The residual could be an unobserved random variable that adds noise to the linear relationship
between the dependent variable (PC) and the targeted regressors (proxy of pseudoproxy) and includes all effects on the
targeted regressors not related to the dependent variable (Christiansen, 200 1.
The ¢ parameters are estimated by Ordinary Least Squares. Here, it is assumed that climate sensitive proxies are linearly
related with the climate PCs. Based on Eq. (5) vsing the PCR method, the PCs during the validation interval will be
reconstructed assuming that the linear coefficients derived in Eq. (5) are constant in time:
F'E'" ¥ ="§ @,  Proxy, i5)
The final reconstructed fizld X will be derived by the linear combination of the reconstructed B with the EOFs desived
from the calibration dataset, thereby assuming that the EOF patterns remain constant in time {Gdmez-Mavarro et al., 20017,
Pyrina et al., 2017).

113 Canonical correlation analysis

Canomical Cosrelation Analysis CCA is also an eigenvector method. Similady to PCA, CCA decomposes the variance of the
fields as a linear combination of spatial patterns and their corresponding amplitude time series. In contrast to PCA where the
farget is o maximize the explained variance with a fow new varables, CCA constructs pairs of predictor-predictand
variables that maximize the temporal corelation of the corresponding amplitude time series. The pairs of variables are
identified by solving an eigenvalue problemn that requires the caleulation of the inverse of the covariance matrices of cach
field. These matrices can be pseudo-degenerate (one eigenvalue much smaller than the largest eigenvalue) and therefore the
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memory cell A, {equation 9p. This memory cell state A, is linearly combined with the previous state of the cell owiput . to
update the value of s state. The weights of this linsar combinations are the states of the forget gate f and of the pot gate J§,
(equation 1. The state of the output gate o is caleulated from the previows hidden state and the cument input variables
{equation 11} This output {5 used to compute the updated hidden state b using the state of the cell owtput C; (equation 12)
(Huang et al., 2020; Chattopadhyay et al., 2020)

In the present application to climate reconstructions, we have a set of input pseudoproxy data X = [4....., %o Jand an output
target temperature tme seeles ¥1' = [¥,..., %], The forward LSTM hidden state sequenr:eE (note the arrow direction) s
calbeulated employing inputs information in a positive directbon from time ¢-1 to time f-n teratively, and for backward LSTM
cell, the hidden state sequence Rt is computed using the inpur within a reverse direction from time ¢-n to time -1 iteratively.
The final cutputs from the forward and backward LSTM cells are calculated atilizing the caleulation equation (Cul et al, HLE,
Jahangir et al., 2020):

¥, = concar(R,. ;) (13

where cevreat i5 the function used to concatemsate the two output sequem:esE and B {Cul et al., 2008, Jahangir et al.. 2020).
During training process, the calibration dataset are fed imo LSTM cell, and it will map the potential latent relationships (both
limear and nonlinear) between inpat and owtput variables by updating its weight and threshold matrices. The object function
fior BI-LETM to be mintrdzed during training is the Huber loss that expresses the mismatch between the reconstructed climate
field and the ‘real” climate field from model simulations. Object loss |s optimized by gradient descent {Goodfellow et al.,
204é). Huber boss has a key advantage of being less sensitive to outlier values:

2
S(¥ - fix))
S|¥ - Fx| - 282
where [ denotes the neural network and the brackets denote the Evclidean norm. The Huber loss function changes from a

Lg[¥, F(X)) = { 14

quaadratic to linear when & (a positive real number) varies from small o big (Meyer, 20200, Huber loss will approach L2 loss
when & tends 1o be 0, and approach L1 when § ends to be positive infinity. here we test iis value and finally set § 1.35. L2 s
the square root of the sum of squared deviations and L1 is the sum of absolute deviations.

The msain mechanizm of LSTM is that the LSTM block manages to develop a regulated information flow by controlling which
proportion of data information should be “remembered’ or should be “forgotten. By controlling the regulation of the
information flow, LSTM will manage to learn and preserve temporal characteristics and dependencies of the specific time
serles.

In this particular application. we have used two hidden Bi-LSTM layers with 700 neurons each (some additional tests on
selecting the number of newrons inothe hidden layer are shown in Appendix B). The optimization function 15 Adam with the
learning rate of 0.0 (Kingma and Ba, 20140 After training the model, the optimal network hyper-parameters, including
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caleulation of their inverse is, without regularization, numerically unstable. This regularization can be introduced by first
projecting the eriginal fields onto their leading EOFs {(Widmann, 2005, Pyrina et al., 2017). This also reduces the number of
degrees of freedom - thus hindering overfitting - and eliminate potential noise variance. After the dimensional

h

transformation, & small

number of retained PCs capture at least 20% cumulative variance of predictand climate field. Then these retained PC time

of pairs of pait with high temporal coreelation will be retained. In the present study, the

series will be used as input variables of CCA to calculate the canonical comelation patterns (CCPs) and canonical
cocfficients (CCs) time series for both proccy and temperature field. The reconstructed climate field can be caleulated by a
linear combination of the CCPs with CCs for each time step 2

L)
J"_"I‘=Z C‘C‘I‘;'I':dCCPﬂ‘IT ()
=1
]
Proxy, =¥, CCy}" CCPLLY M
a=l

Proxy denotes the reconstructed proxy field, and [ is the number of CCA pairs. The correlation between each pair CC (proxy,
field) are the canonical correlations, which are the square root of the CCA-egigenvalues. Therefore, once each CCF9r) is
caleulated from the proxy data through the validation period, the corresponding CC™™{#) can be easily estimated as
propaortional to OC™ (1) | since the comelation between the different CC™(#) is zero. The final reconstruction of tapget
climate field will be derived by linear combination of CCP4(r) and CC™Y1), assuming again that the dominant canonical
correlation patiermns of climate variability are stationary i fime.

The CCA method maximizes the comelation that can be attained with a linear change of variables, i.e. with a linsar
combination of the grid-cell series in each of the twoe felds. In the following, admittedly anificial, example, the resulting
canonical cormelation can be very high and yet the reconstruction skill in general can remain low. If one grid cell in cach of
the two fields are very highly comelated to each other (and assuming here no PCA pre-filtering), COCA will pick those two
cells as the first CCA pair (ie., a pattern in each field with very high loadings only on those cells). The rest of the cells will
not contribute to the OCA pattern. The reconstruction skill will therefore generally be very low in all those cells, despite the
canonical comelation being very high. In general, the reconstruction skill will be a monotonic function of the canonical
correlation coefficient and the variance explained by the canonical predictand pattern. If the latter is low, the reconstruction
akill will be bow in large areas of the predictand field, even when the canonical correlation may be high.

1.2.4 Bidirectional Long Short-term memory neural network

As a non-linear machine learning method, we test here & Bidirectional Long short-tenm memory newral network (Bi-LSTM )
The LSTM networks, in contrast to the more traditional neural networks, also capture the information of the serial co-
variahility present in the data, and therefore are suitable o fackle data with a temporal structure. These methods are wsually
applied to the analysis of sequential data, such as speech and time series. The rationale of using these type of netwaorks fior
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welghts and threshold matrices, are estimated. The validation psesdoproxy dataset is then used 1o reconstruct the target
temperature field in the validation directly.

3 Results

We evaluate the reconatmuction skill of the different methods based on the Pearson correlation coefficient (co ) between each
rarget series and the corresponding reconstructed series, and their Standard deviation ratio (SD ratio, SD ratie =
S0 consmaciinad S D). ALl the evaluation metrics are calculated in the valldation period from 1426-2000 AD. High values of
derived co indicate better temporal covariance between target and reconstructed results, a high SD ratio denotes that more
variance is preserved in the reconstrections, Usually, the reconstructed vartance is smaller than the target varlanee and thus

thedr ratio 15 uswally smalles than unity.

3.1 Morth Atlantic-Europe CFRs

Fig. 2 (Hustrates the CFR results for the Mosh Atlantie-European region employing the 11 ideal-noise-free psesdoproxies
baszed on the three CFR methodologies and the theee climate model simulations. When comparing the reconstruetion skills
across these three CFR methods derived with the same climate model (for example, MPL CAMS or CCSM correspondingly),
all the spatial cc patterns exhibit similarities. This indicates that all three CFR methods show generally reasonable spatial
reconstruction skills {mean ce's over the entire MAE are bigger than 0.45). In addidon, ce maps show higher valoes over
reghons where more psesdoproxies are located. This confinms the well-decumented tendency amongst different multivariste
limzar based regression methads to better reconstruction skill in the sub-regions with denser pseudoproxy sampling than in
reghons with sparser networks (Stelger et al., 2014; Evans et al., 2004; Wang et al., 2004} The ce pattern of the nonlinear
method Bi-LSTM i very similar to that of the lingar methods, even though the sreciure of the statistical models ks very
different. This shows that the nonlinear method employed berein has the simdlar endency as linear models o obtain better
reconstruction skill over denser proxy sampling reghons.

The pheture that emerges from the SD ratio 15 also very similar for the twee methods (Fig. 20, In te regions with a ligh pseudo
proay density. the I ratio is high, but outside of the densely sampled areas. all three CFR methods experbence a similar degree
of varlance loss.

More realistic preudo-proxies are those comtalning B0% Gausslan white noise contamination. This amount of noise |8
comstructed and added to the ideal temperature signal of the 11 psendoproxies subsampled from MPIL CAMS and OCSM
misdels. The cormesponding spatial cc and SD patlo patterns are displayed in Fig. 3, Compared 10 reconstrsctions with ideal
pseudo proxies (Fig. 2), a strong degradation of reconstruction skill amongst all CFR methods occurs over the entire NAE
The degradation s especially profound in the reghons where denser pseadopeoxies exist {the mean cc s reduced from 0.8 in
the ideal PPEs to approximately 0.3 in the nodsy PPEs). Weak reconstruction skill (approximarely mean cc 1s 003, and SI ratio
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climate reconstructions is the hypothesis that a better representation of the serial correlation could ameliosate the
aforementioned underestimation of the past climate variations by most data-driven methods (‘regression o the mean’,
Smerdon, 200 2).

The structure of LSTM network is more complex than the structure of a traditional neural network. The LSTM estimates a
hidden variable &y} that encapsulates the state of the system at time ¢. The computation of the new system state at time ¢+J,
hfr+1), depends on the value of the predictors at 1+1 but also on the value of the hidden state at time ¢, A3 The iraining of
the LSTM can be accomplished sequentially by
the past of the present time step. In some boose sense, a LSTM network would be the machine-learning equivalent of a linear

ilating the information present in the training data from time steps in

AULO-TEETERAIVE PIOCESS,

A Bi-LSTM network, the training of the network is accomplished by feeding it with sequential data iteratively, forwards
tovvards the future and backwards tewards the past. Both forward and backward assimilations are processed by two separated
LSTM neural layers, which are connected to the same sutput layver. Figure | illustrates the bidirectional structure of the Bi-
LETH network. Given a set of predictor-predictand variables (X, F), our goal is to train a nonlinear function:

¥.=F|x] (#)

where, F, =F{X} iz a close as possible to ¥, The similarity between ¥, omd ¥, is defined by a cost function. The structure of
this complex non-linear function F is defined as follows:

fr=a|W[h . x]+B| o)
i,=a|W,|h_,x|+8] (160
A= tanh | W, [h, ,,x,]—l—ﬂ,,:l (i
C.=f,C,_+i A, {12)
o,=a|wu[h,.l,x,]+3,| (13
h=o,tanh|C,| (14}

where W, W, W, and W, represent several weight matrices and 8. B B, and 8, represent different bias matrices. o is the
gate activation function, here we utilize the Rectified Linear Unit function-RelLI (R handran et al., 2017) .
At time step -4, the hidden state of LSTM cell's hidden layer is preserved as J.,, and this vector is combined with the vector

of current input variables X, to obtain the state of the forget gate, f (equation 9) , the input gate §, (equation 10} and the state
of memory cell A, (equation 11). This memory cell state 4, is linearly combined with the previous state of the cell output &,
o update the value of its state. The weights of this linear combinations are the states of the forget gate [ and of the input gate

10
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is (L6) exists over reglons where proxies are avadlable, together with a small surrounding reglon. These nolse contamination
results shown in Fig. 3 demonstrate again that the nonlinear method exhibit CFR similasities te the linear methods.

3.2 Morthern Hemisphere CFRs

MH summer emperatare anomalies reconstructions based on PPEs wsing three CFR methadologies and the three climate
misdels are displayed in Fig. 4-3.

Table 1. Skill reconstruction statistics for the Morth Hemisphere mean temperature in the verlfleation period for ideal PPEs.
The table shows the result for three CFR methods (PCR, OCA and Bi-LSTM) and three climate models (MPL CAM and
CCSM). The nombers in paremthesis indicate the skill statistics of 804 noise contaminated PPEs.

5D Ratio =4
Bethod
MFI1 CAM CCsM MFL CAM CCSM
PCR 642(00427)  OTI30486) O732(0.483) 05%40.333) 0A360.372)  0.709(0467)
oCA OLS5T(0388)  0612(0457)  O6040443)  0565(0.333) DQI8T0.3T0)  Q.648(045T)
Bi-LSTM (Le0HITS)  (RTI9(0425)  OTI%0412) 05560319 061000371 (ue6000.4356)

The spatial cc maps and ST patio distribations for the ideal PPES in NH are shown in Fig. 4. Again, all theee CFR methodologies
yield relatively similar spatial patterns of skill for each of the climate models employed here. Skilful reconstructions are again
achieved over regions with a denser pseudoproxy petwork (over Morth American and Eurasia regions). In addition, relatively
large S50 ratio and high ce values also occur in tropdeal reglons. These regions barely contain any pseudoproxies, indicating
that the climate teleconnectbons berween troples and mid-latitede reglons could be responsible for the reconstruction skill in
tropical reglons.

All derived CFRs suffer from varance losses as shown in Fig. 4 and in Table 1. The spatial distributkons of the 3D ratio vary
between climate models and CFR methodologies. They also are spatially beterogeneous. The most important factor affecting
the ratio of standard deviations seem to be again the chosen climate model. Por instance, comparing the spatial patierns of 5D
rathe in Fig. 4 across the three models, more variance in the high-density psewdoproxy sampling and the tropieal regions ane
preserved in the high-resolution OCSM mode] seross all CFR methods, whereas, CAMS and MPL model suffer from relatively
mire vartance logs over these areas. In addition, the highest mean ce is obtained by all three methods in the CCSM simulation
(See Table 1).

The Bi-LSTM and PCR methods exhibit relatively consistent patterns with simdlar 8D ratios. The CCA methodology seems
o suffer mone strongly from varance losaes (see Table 1) over the entire MH compared to PCR and Bi-LSTM.

The MH resulis obtained from the 80 nolse comaminated PPEs are displayed in Fig. 5. The performance deterioration is
expected and again significant. The reduction of reconstruction skill also sccurs over regions where dense psewdoproxies ane
located. The nonlinear method Bi-LSTM seems to suffer more strongly from varlance losses over the NH (see Table 1),
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i, (equation 12). The state of the owtput gate o, is calculated from the previous hidden state and the current input variables
{equation 13). This output is used to compute the updated hidden state & using the state of the cell output O (equation |4)
(Huang et al., 2020; Chattopadhyay et al., 2020).

In the present application to climate reconstructions, we have a set of input pseudoprony data X 1= [x.,,. .., xqJand an output
farget temperaure time series 1’:‘ = [#eh--» ¥a1]- The foreard LSTM hidden state sequence El;nuir: the arrow direction) is
caleulated employing input information in a positive direction from time -r to time -7 iteratively, and for backward LETM
cell, the hidden state sequence hl'r is computed using the input within a reverse direction from time -7 to time - iteratively.

The final outputs frem the forward and backward LSTM cells are caleulated wtilizing the caleulation equation (Cui et al.,
2018, Jahangir et al., 2020):

¥, =concat [, h| (13)

where concat is the function used to concatenate the twie output sequences hand h (Cui et al., 20018, Jahangir et al_, 2020).
Druring training process, the calibration dataset are fod into LSTM cell, and it will map the potential latent relationships (both
linear and nonlinear) between input and output variables by updating its weight and threshold matrices. The objective cost
function for Bi-LSTM to be minimized during training is the Huber loss that expresses the mismatch between the
reconstructed climate field and the ‘real” climate field from model simulations. We minimize the loss with gradient descent
(Goodfiellow et al., 2016). Huber loss has a key advantage of being less senaitivie o outlier values:

1 :
—fF=Flxlf

L_,.:Y,fll’ll:l L p {14)
‘5|¥—f|x_-|—55“

where  denotes the newral network and the brackets denote the Evclidean norm. The Huber loss function changes from a
quadratic to linear when 8(a positive real number) varies from small to big (Meyer, 20200, Huber loss will approach L2 loss
when &tends to be 0, and approach L1 when Stends to be positive infinity. here we test its value and finally set §1.35. L2 is
the square root of the sum of squared deviations and L1 is the sum of abselute deviations.

The main mechanism of LSTM is that the LSTM block manages 1o develop a regulated information flow by controlling
which proportion of information from the past should be ‘remembered” or should be ‘forgotien” as time advances. By
controlling the regulation of the information flow, LETM will manage to beamn and preserve temporal characteristics and
dependencies of the specific time series.

Mewral network is generally composed of one input layer, several hidden layers and one output layer. Many hyper-
parameters in the neural network wsually need to be initialized and tuned for obtaining reasonable resulis within specific
tasks, for instance, activation functions in each laver, objective function for minimizing the lesa of the network model, and

11
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eapecially over the North Atlantic reglon (Fig. 5) across all three madels. This might indicae that the nonlinear method could
be more sensitive 1o the nodse contamdnation than the other methods.

In additbon, a relatively better performance ks derived. also in the case of nolsy pseudoproxies. from the CCSM using all CFR
miethods {gee the spatial oo patterns shown in Fig. 5 and mean oc values in Table 1)

Consldering the general methodelogical skill, as indicated by the derived cc and SIY ratio values in Table 1, the Bi-LSTM
miethod presents relatively worse performance with lower mean ce and 50 ratio. The methods PCR and Bi-LSTM generally
outperform the CCA methodology with higher mean co with ideal PPEs. Overall, PCR generally outperforms CCA and Bi-
LETM with highest mean ce and SD ratio values across all PPEs in all three model simuolations.

3.3 Morthern Hemisphere and AMY lndices

The evelution of the decadal MH mean temperature anomalies reconstructed by the three CFR methodobogies and using perfiect
peeudoproxies from three models (s lustrated in Fig. 6 on the left pasel. All indices have been smoothed wsing a Butterworth
loww-pass filter o remove temporal luctuations shorter than 10 years. The reconstrection performance varies amongst different
CFR methedologies.

Table 2. RMSE (K) and ce during the verificathon interval for decadal MH mean temperature derived from ideal PPEs. The
numbers in parenthesis indicate the RMSE (K) and ec of 80% molse contaminated PPEs.

RMSE =4
bethod
MPI CAM CCEM MPI CAaM CCSM
PCR 0LI02021T) O066(0.11% OO06X0.186) O09740872) 09130691 0.99000.938)
oCA (L124{00.226)  (OTS01200 010802000  09670.867) O397000669)  097600.931)
Bi-LSTM LI23(0.230)  OO06TI1L6)  O.10W0.222)  09410.797)  D90R(0.698)  0.9T1(0LETT)

Table 3. The same as Table 2, bt for decadal AMY index

RMSE =4
Method
MPI CAM CCEM MPI CamM CCSM
PCR 01060209  0O7TH0L114)  OOTHOATS)  O95H0.847)  DQER30.691)  0.97900.933)
oCA LIZO(021T)  OOTEOLLLE)  OLIT0185)  0%46(0844) DETH0665)  0.95900092%)
Bi-LSTM (LIZ3(0.230)  ROBL0C1LS)  OU09B(0.204) 09270769  O843000682)  (L969(0.883)

The temporal evolution of the AMY index (the right panel in Fig. ) differs among the simulations, reflecting the different
forcings used in each stmulation and the model specific contribution of internal variability to the index variations (Wagner and
Fogita, 2005; Schmdde et al.. 2001). Constdering the methodological performance, all theee metheds generally achieve good
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learning rate for controlling the convergence spead of the network model (Goodfellow et al, 2006). In our specific CFR
experiments, we have explored a range of Bi-LSTM architeciures, including  different network depths, imtroducing dropout
layers, using different leaming rates, and ernploying different loss functions to provide a more comprehensive evaluation of
the Bi-LETM performance and effectiveness (these tests are shown in Appendix B). These hyper-parameters within Bi-
LSTH are finally selected and employed based on our experimental tests ( Knerr, et, al. 1990; Kingma and Ba, 2014; Yu, et,
al. 2019).

3 Results

W evaluate the reconstruction skill of the different methods based on the Peasson comrelation coefficient (o) between each
target series and the corresponding reconstructed series, and their Standard deviation ratio (8D ratio, SD eatio =
Al a3 D). All the evalustion metrics are caleulated in the validation period from 850-189% AD. High values of
derived oo indicate better teimporal covariance between target and reconstructed results, a high 5D ratio denotes that mwere

varianee is preserved in the reconstructions.

3.1 North Atlantic-Europe CFRs

Fig. 2 illustrates the CFR results for the North Atlantic-European region employing the 11 ideal-noise-free psesdoproxies
based on the three CFR methodologies and the two climate model simulations. When comparing the reconstruction skills
across these three CFR methods derived with the same climate model (for example, MPI and CAMS correspondingly), the
spatial ec patterns caleulated between targets and derived reconstructions amongst three CFR methods genesally exhibit
sirnilarities, This indicates that all three CFR methods show generally reasonable spatial reconstruction skills {mean cc's
over the entire NAE are bigger than 0.4) In addition, o maps in Fig. 2 show higher values over regions with a denser
pacudo-proxy network. This eonfirms the well-documented tendency amongst different multivariate linear based regression
methods for better reconstruction skill in the sub-regions with denser pseudoproxy sampling than in regions with sparser
networks {Smerdon, 2000, 2001; Steiger et al_, 2004; Evans et al_, 2014; Wang et al., 2014). The cc pattern of the nonlinear
method Bi-LSTM i very similar to that of the linear methods, even though the stracture of the statistical models is very
different. This shows that the nonlinear method employed herein has the similar tendency as lingar models 1o obtain better
reconstruction skill over regions with denser proxy sampling.

The picture that emerges from the SD ratio is also very similar for the theee methods (Fig. 2} In the regions with a high
paewdo proxy density, the 3D ratio is high, but outside of the densely sampled areas, all three CFR methods experience a
similar degree of interannual varnance underestimation. Appendix C displays the ratio of S0 after applying a 30-yvear filier to
the reconstructions and the target fields. The underestimation of varance is larger at these time scale, but the overall

conclusion for all three methods remains.
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AMVY index reconstructions when using perfect pseudo-proxies, as shown in each subfigures of Pig. 6, and also refer the RMSE
in Tahle 3.

The MH and AMY indices derived from more realistic 0% nodse contaminated CFRs are shown in Fig. 7. The larger noise
comamination results in substantal skill deterioration (RMSD and ce displayed within brackets in Table 2 and 3). All three
miethods fail to capture the warming rend over the most recent century, and the magnide of streng cooling events is strongly

undesestimated.

3.4 Probahility distributions of reconstructed variables

Table 4. Kolmogorov-Smimov test statistie and p-value for guantifving the histogram distributions bevween model and
reconatructed NH decadal pseans. Low values of the KS statistic indicate larges similarity between the two disteibutions. The
numbers in parenthesis indicate te K3 statistic and p-value of 805 nodse contaminated PPEs.

K& statisthe pvalue
Method
MFI CAM CCsM MFL CAM CCSM
FCR 09200213 (Ll l0246)  0.05300.128) le-2{te-12) le-3{8e-16) Je-1ile-3)
CCA LIDN0246) (o I42(0.252) 0070149  2e-3(8e-16) le-5ile-16) Qe-2(5e-b)
BI-LSTM 0.135(0.269) G I26(0253) 01250229  de-5(8e-19) le-di le-16) 2e-3(1e-13)
Table 5. The same as Table 4, but for AMY index.
K8 statistle pvalue
Method
MFI CAM CCSM MFL CAaM CCSM
FCR LEG(022) (LZ30L198)  Oud6(0.126)  Se-dide-13) Je-d(2-eli Se-112e-4)
CCA (II6(0.248)  OLIB0215) 00760145  Be-d(5e-16) Ge-dde-12) fhe-2( G-t}
Bi-LSTM OI510.262)  (LI250.212) 009300197 Je-6(Te-18)  2e-4i12e-12) le-2{3e-10)

Even though the three reconstructions methods tend to underestimate the overall variability when wsing nolsy pseudoproxies,
an interesting question s thedr skill in reproducing the probability distributions of the climate indices. In particular, a relevant
question s whether the methods are able to captuse extreme phases of those indices.

Fig. % and 9 display the histogram for decadal NH mean and AMVY index, respectively. Each subfigure represents the
histegrams of reconstrected temperature indices across the three methods, compared with the histograms of the ange
emperatune index.

Far perfect preadoproxies, the PCR reconstrsction seems 1o capture the overall targer distributbon best. It captures the lower
il better than CCA and the upper tail better than OCA and Bi-LSTM. The differences between the methods become smaller
fior the reconstructions with nolsy pseudo proies, with the PCR still being better than the other two methods (subfigures for
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Graussian white and red noise is constructed and added to the ideal temperature signal of the 11 psewdoproxies subsampled
from the MPI and CAMS models. The corresponding spatial oo and SI ratio patterns are displayed in Fig. 3 and 4
correspondingly. Compared to reconstructions with ideal pseudo proxies (Fig. 2, a strong degradation of reconstraction skill
amangst all CFR methods ocewrs over the entire NAE. The reduction in skill is especially profound in the regions where the
paeudo-proxy network is denser. Weak reconstruction skill exisis over regions where proxies are available and in within their
proximity. These noise contamination results shown in Fig. 3 and 4 demonstrate again that the nonlinear method exhibit CFR
similarities to the linear methods, whereas, the Bi-LSTM show relatively worse reconstruction skills, with variance
underestimation compared to the other two methods in CAMS baged PPEs (referring to the spatial ST ratio in Fig. 4).

The ratic of reconstructed to target varance after 30-year low-pass filtering is also larger than for the interannual variance,
but otherwise the patterns share the same properties with the ratios of interanmeal SD (ot shown for the sake of brevity ).

In general, all three CFR methods exhibit similar reconsiruction performance. Specifically, better skills over regions where
denser pseudoproxies exist indicates that the spatial covariance patterns learned from the training data (in the 20th century)

are stationary enough to represent the covariance during the reconstruction period over NAE domain.

3.2 Northern Hemisphere CFRs

MH summer temperature anomalies reconstructions based on PPEs using three CFR methodologies and the three climate
models are displayed in Fig. 3-7.

Table 1. Skill reconstruction statistics for the Mosthern Hemisphere mean temperatine in the verification period for ideal
PPEs. The table shows the result for three CFR methods (PCR, CCA and Bi-LSTM) and two climate models (MP1 and
CAM). The numbers in parenthesis indicate the skill statistics of white noise and red noise (italics) contaminated PPEs.

SD Ratie ee
blethod
MPI CAM MFI CAM
PCR ORTROS040077)  O8THORITOIT 04000006900 F35) 04900216/ 2is)
oCA 06030 706/0 694 065107500778y 040600065/ 137 0.507(0.2290 21 5)
Bi-LSTM O.71006RH0A6  OTTNOTI40 732y 03470004500 125)  0.462(0.21000.191)

The spatial cc maps for the kdeal PPEs in MH are shown in Fig. 5. Again, all three CFR methodelogies yield relatively
similar spatial e patterns of skill for each of the climate models emploved here. Skilful reconstructions are again achieved
over regions with a denser pseudoproxy network (over Monh American and Eurasia regions). In addition, relatively high oo
values also occur in tropical regions. A relatively high-reconstrocted skill is achieved over regions with eas or without
pacudoproxics, indicating that climate teleconnections between trogics and mid-latiude regions could be responsible for the

reconstruction skill in tropical regions.
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the contaminated PPEs in Fig. & and 9). The Bi-LETM captures the lower talls of distribution svsch better than the wpper tails,
both for the NH mean and the AMVY index.

W also quantify the distribution similarity between reconstracted and target distributions for boeth NH and AMY indices using
the two-sample Kolmogorov-Smimoy test as a metric (Hodges, 1958) {see Table 4-5). The smallest KS smatistie s achieved
by the PCR method (see Table 4-5), confirming the impression that the PCR owiperforms the other two methods in both the
ideal and noise contaminated PPEs.

d Discussions
d.1 Monlinear method performance

Ag the Bi-LSTM method s the most complex of the three tested in this study, iis reasonable to expect a beter reconstnuction
skill. Howewer, this is mot the case in our pseadoproxy experiments. Por the spatially resolved NAE and NH flelds, the
nonlinear Bi-LSTM method achieves a similar skill as the linear PCR and CCA methods. Whereas the spatial 5D ratko and oc
present CFR are generally very similar, the PCR is gemerally the best method among the three methods, with the nonlinear Bi-
LETM as second best method (see mean skill statistics in Table ).

Far the area-mean indices, all three methods exhibit again simdlar skill. The BI-LSTM is able to capture pertods of extneme
cpoling better than the other two methods but strongly usderestimates the recent warming trend. The inability to capiure the
warming trend indicates that the Bi-LSTM is not good at extrapolating to temperature ranges beyond the training set.
Mometheless. even though the traditional PCR seems to display the overall best performance, the fact that the Bi-LSTM s able
o capture some extremes better (s encouraging. This indicates that there may pot be one sole reconstruction methaed which
captures the mean and the extremes equally well. In addition, Guilkot et al. (2015) constructed different CFR methods for
exploring the disagrecment between climate feld reconstrections and area mean index reconstructions. They demonsirated
that the skill for the regionally averaged time series is a relatively poor indicator of the spatial performance.

Monlinear methods are usually capable of mapping complex systems with high nonlinearity. Here, we employ one nonlinear
neural network method Bi-LETM 1o et its performance on CFR reconstructions. Compared with linear methods PCR and
CCA, newral network model did not show clear advantages, except for capturing extremes in the lower 1ail of the distribution.
It ks possible that the performance of the Bi-LSTM could be further impeoved by optimizing the architecture and parameters
of the network, including the type of object function, type of neural activation function, retwork optimization function, number
of hidden lavers, the model-learning rate ete. At this point, it would be quite natural to consider whether the selectionfsenings
of these hyper-paraneters in our study s optimal, and also o what extent the reconstmaction skill is sensitive o changes in the
hypes-parameters. Nadiga (20200 pointed out that the skill of some machine learming-rmethods are strongly dependent on these
hypes-parameters. Machine leaming methods include an extensive range of complexity, and therefore it remains an open isswe
as to which ML technigues are most or relatively suitable for paleoclimate. It is ot clear bow the stracture of the machine-
leamning methods can be systematically optimized. At the moment, there is still a considerably amount of 'trial and error” in
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All derived CFRs suffer from underestimation of interannual variance, as shown in Fig. 5 and in Table |, except that the
PCE. method presents a clearly interannual variance overestimation referring te the specific spatial 8D ratio map in Fig. 5.
This owerestimation may be impacted by overfitting, since the number of predictors is 47 psesdo-proxies and the calibration
period spans 100 time steps. The spatial distributions of the 5D ratio also vary between climate models and CFR
methodologies. They also are spatially heterogeneous. The CCA method and Bi-LSTM generally preserve more variance
over regions with denser pacudoproxies in both CAM and MP1 model, and a relatively higher 3D ratio appeared in tropical
regions within Bi-LSTM based PPEs shown in Fig. 5.

The CCA methodology seems to suffer more strongly from variance losses (see Table 1) over the entire NH compared to
PCR and Bi-LSTM.

Considering the general methodological skill, as indicated by the derived spatial mean cc and SD ratie values in Table 1, the
Bi-L5TM method presents relatively worse performance with lower mean ee. The methods PCR and Bi-LSTM generally
outperform the CCA methodology with higher mean SD ratio within ideal PPEs.

3.3 Spatially variability patterns of the reconstructed fields

In this section, we test the skill of the CFR in replicating the leading spatial patterns of variability, conducting an EOF
analysis of the reconstructed temperature fields and compare them with the patterns derived from the target climate
simulations. This type of comparison follow the tests performed by (Yan et al, 2021} In this comparison, the PCA and CCA
methods have a clear buili-in advantage relative to the Bi-LETM network, since these two methods operate by design in the
space spanned by the leading EOFs of the temperature field. In the case of PCR, these reconstructed fiekds are a linear
combination of the EOF patterns themselves. Therefore, in a8 much the reconstructed PC series remain uncorrelated, the
EOFs of the reconstructed field will be exactly equal to the BEOFs of the target climate simulations. Deviations from this
behaviour may be caused by the lack of strict orthogenality between the reconstructed PC series caused by the relationship
between proxy (predictorsy and the PC series (predictands). However, it is reasonably to think that it would not be o prios
surprising that the EOFs of the PCR-reconstructed fizlds would be similar to the original EOFs. The case for OCA is
thearetically similar, but there are some potentially important points to bear in mind. The CCA patterns, which serve as a
basis for the reconstructed field, are linear combinations of the original EOFs. These lincar combinations may, for instance,
not include the leading EOF of the original field, and thus, the EQFs of the reconstructed field sill not replicate the original
leading EOF, even if the CCA series can be perfectly reconstructed by the proxy series. The third methed Bi-LSTM is in this
sense at disadvantage relative to PCR and OCA, since the spatial covariance of the original field is not technically
incarporated in its machinery. If the EOF patterns of the reconstructed field resemble the original EOF patterns, this would
b an indication that the method itself is able to capture the main covarianes patterns of the original field.

In order fo have a deeper insight for the reconstruction performance of three CFR methods, we calculated the four leading
EOF patterns, and their proportion of explained variance of the reconstructed field, derived from the three reconstruction
methods wsing the CAMS pseudo-proxies. The EOF patterns represented in Figure & confirm the suggestions that the
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the deslign and connection of the neural layers. Here, we have tested the Bi-LSTM network with a relatively simgple architeciune
of twir separated hidden layers, and evaluated its performances on CFR experiments, which could be a prelimisary wy. It ks,
however possible that more complex models or architectures (Kadow et al., 20300 might achieve better or comparahle skill in
CFR experiments. Thus, more different theory-based and architecture-based machine leaming methods might be worth
exploring in future studies.

4.2 Model and pseudoproxy experiment dependency

The evaluation of the reconstruction skill seems o depend ag moch on the reconstruction methsed as on the undedying climate
misde] stmulation from which the paeudoproxies were generated. The differences in <kill for the same method with different
climate model data is of the same order as the diffesences in skill for the different methods with the same climate model data.
The performance of the methed does not seem to depend on the domain of the reconstrsction. The reconstructions behave very
atrndlar fior both the MAE and the NH test cases.

Consldering the effects of nodse contamination on the methodologieal performance, all three methods display similar skills o
the ideal PPEs, but all methods suffer from variance underestimation and lower correlation coefficients in the more realistic
PPEs (80Mh noise contaminated PPE:). The nonlinear Bi-LETM is mose strongly impacted by the nofse contamination (Tahle
1)

From the perspective of the spatial coverage of the proxy network, the spatial cc and 5D ratio patterns reveal reconstruction
skill over the entire MH regions, although this skill is weaker in areas more poorly sampled by the pseado-proxy meiwork.
Interestingly, the tropleal regions do show some reconstruction skill, although almost ot pseudo-proxies are located in the
Troples. In addition, the reconstruction metheds achieve better reconstruction skill when evaluated with the climate model
with lighest (most realistbe ) spatial resolution. This result indicates the climate eleconnections between tropics and mid-
larinwde reglons could lesd to some indirect skill, and that in the real world this indirect reconstruction skill could be lasger
than that obained in our pseudo-proxy experiments. However, the proxy networks and noise scenarios constructed in the
cpniext ane cenalnly not able to mimic/simulate the full range of characteristics completely for climatic proxies in the feal

wingld.

5 Conclusions

A nonlingar Bi-LSTM neural network method to reconstruct Mosth Atlantic-Burope and Mosthermn Hemisphere temperatune
fields was tested with climate surrogate data generated by simalations with three different elimate models. Compared o the
miore classical methods of linear Principal Composents Regression and Canonical Correlation Analysis, the MAE and NH
summer emperature fleld could be reasonably reconstnucted using both linear and nonlinear methodologies. All three methods
show skill similarities in both NAE and NH PPEs.
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temperature reconstracted by the PCR and OCA methods (two lower rows in Figure 8) replicate very closely the three
leading patterns. The fourth EQF patitern displays some divergences from the original fourth pattern, but ag we will show
later, the variance explained by this fourth EOF is already rather low, so that the spatial pattern may be subject 1o statistical
noise. More imponantly, the BE-LETM method {second row) does produce EOF patterns than closely resemble the ones
derived from the original field. This supports the idea that the method is able to replicate the spatial cross-covariance of the
temperature field.

The comesponding spectrum of explained varance is displayed in Figure 9. Here, the percentage of explained vanance is
calculated relative to the total variance of the original field. We deviate here from the analysis of Yun et al. (2021), whe
according 1o their methodological description caleulate the portion of variance relative to the total variance of the respective
field {targetor reconstructed). The reason for our choice is 1o avoid statistical artefacts. For instance, when using the PCR
regression method, we would choose o reconstruct only the leading EOF pattern. This pattern will explain 100% of the
reconstructed variance, but this result would be obvicusly not informative.

34 An alternative pseado-proxy network

In this section, we summarize a few additional experiments using the original locations of the PAGES network (Emile-Geay
et al., 2007) instead of the filiered network used in previous experiments. In this section, we show only one model test-bed,
for ideal, white-nokse and red-noise psewdo-proxics. The results obained with the MPI-ESM-M model are similar and are,
omitted here for the sake of brevity.

The reconstruction skill measured by e and 5D ratie display similar spatial patterns as those obtained with network pre-
selected according to the criteria of 3t George (2014). As shown in Fig. 10, the derived comelations are generally higher
over regions whene denser pseudoproxy exits across both ideal and neisy PPEs, and weakly reconstructed correlations
appeared over psewdoproxies-free regions. The PCR method presents a distinet inferannual variance overestimation as shown
in the specific spatial SD ratio map in Fig. 10 amongst ideal and nodisy PPEs, while a clearly interannual variance
overestimation also occurs in CCA-based CFRs in the noisy PPEs. A relatively reasonable SD ratio is revealed in tropical
regions within Bi-LSTM based PPEs shown in Fig. 10, In general, high reconstruction skills remain over regions whene
denser preudoproxy exists based on this additional PAGES 2k preudoproxy network.

3.5 Northern Hemisphere and AMY indices

The evolution of the decadal MH mean terperature anomalies reconstructed by the theee CFR methodologies and using
paeudoproxies from two models is illustrated in Fig. 8. All indices have been smoothed using a Butter worth low-pass filter
o remove temporal fluctuations shorter than 10 years. The reconstruction performance varies amongst different the CFR
methodologies. We will employ the correlation coefficient-cc, standard deviation-50 and roof mean sguare ermor-RMSE as
evaluation metrics for NH and AMY indices.
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In general, all three methods display similar skills when using ideal (nodse-free) preudoprosies, while in the more realistic
PPEs {B0% noise contaminated PPEs), the Nonlinear Bi-LSTM seems to suffer more strongly from variance losses. This might
indicate that the nonlinear method would be more sensitive to the noise contamination than the other methods.

The peeudoproxy networks used in this stsdy were mostly located i the extratropical reglons with only three proxies in the
wropical area. All CFR methodelogies produce generally good reconstructions in regions where dense preadoproxy networks
are available. Maoreover, telecomnections are explosed by these CFR methodologies, leading to some weak spatial
reconstruction skills cutside of the proxy-sampled reglons, for instance the wropical region.

The classical linear-based PCR method generally outperforms the BELSTM and CCA method in bodh spatial and index
reconatmictions. However, the BIi-LSTM seems to be able to capiure extreme cooling events better than the other two methods,
while failing to capture the warm tails of the temperature. In particalar, this §s reflected in the inability of the on-lisear method
o replicate the 20™ century warming trend.

Here, we could draw a general conclusion that nonlinear antificial neural network method Bi-LSTM employed herein is not
superior for CFR reconstructions, at beast in our PPEs. In general, BI-LSTM show warse skill in spatial and temporal CFRs
than PCR and OCA, also in captoring extremes. Yet, it is essential to employ a large range of nonlinear CFR methods w
evaluate different model stractures, and further test thelr performance on CFRs. For example, additional nonlisear-based
regresion methodologles, convolutional neural metwork and one of the widely implemented Reservolr Computing methods-
Echi State Network, could be technbgues with powerful non-linear regression capability for palsosclimate field reconstroctions.

Appendix A

The simulation with the model MPI-ESM-P is not part of the standard CMIPS simulation suite. In the following, we include
additional technical details on this simulation, The MPL simalation was staried from the year of 100 BC sith restart filles from

@ 500-year spin-down simulation experdments forced with constant external conditions representing the year 100 of BC. After
100} BC, variation in volcanke, solar, orbital, and GHG concentrations are implemented. Land usage was held constant untl]
B350 AD with conditions representing those for vear 850 AD. The vartatbon of orbital parameters ane calculated after the PMIP3-
protocol (Schmidt et al. 2001). The solar activity has been rebuilt on the basis of the reconstruction of Vieira et al. 2011
employing the algorithm and scaling outlined in Schmidt ex al. 200 | which corresponds to a difference in short-wave top of
the atmosphere Insolation of 1.25 Wm-2 (- 0.1%) between the 2nd half of the 20th century (1950 — 20000 and the Maunder
Mindmum (1645 — 1715). Varations in greenhouse gas concentrations related o CO2. N20 and CH4 are afier the
reconstruction of the PMIP3 protocol — The concentrations were held constant to the values of year 1 AD between L) BC and
1 AD because the law Dome records does not extend bevond year 1 AD. Afrer 1550 AD also a reconstrected acrosol loading
after Stine et al. 2008 were employed o account for transient anthropogenic serosol emissions. The extension and
reconstruction of the volcanke forcing is related to a rescaling of the newly available Sigl et al. (2015) dataset o the
reconstruction of Crowley and Unterman (2003). The large volcanoes for different latitedinal bands are rescaled according to

1t

Table 2. ee, 8D and RMSE (K} during the verification interval for decadal MH mean terperature derived from ideal PPEs.
The numbers in parenthesis indicate skill statistics of white and red (italics) noise contaminated PPEs.

o SD RMSE
Method

(X131 CAM NP CAM MPI CAM

LBRD 0871 0821 0763 0EG 0.072
(0.632/0.302) (0.5300.435) (08068837 (0.502/0.688) (0.143/0.202) (0.122/0.135)

— 0.ERZ 08353 0.704 360 009l 0.086
(0.664/0.203) (0.536/0262) (0647 FIEY (04640680 (01350 /87) (0L122/0.041)

0873 0901 0561 0597 0104 0.076

Bi-lsim
' (0.593/0.350) (0550394 (0513005400 (03980470 (01460 473) (0L122/0.033)
460
Table 3. The same as Table 2, but for decadal AMY index
oo =0 RMSE
Moethod

MPI CAaM MPI CAM NP CAM

0&19 0738 0831 0.753 0108 0.091
(0577403367 (0354/0.429)  (0R26/0.961) (06020437  (0161AL213)  (0L13500139)

0822 o777 0689 0591 0110 0082

CCA

(063102887 (D45T/0424) (06600740 (05410766 (0146002000 (0L125/0.138)

D846 0.E2Y 0.623 0600 0108 0.084

Bi-latm

(O.5730.344)  (DA3S0.450)  (0.530/0.576) (044000536 (0.1540183)  (D12600135)

The temporal evolution of the original AMY indices (Fig. 12) differs among the simulations, reflecting the different forcings

used in each simulation and the model specific contribution of intemal wvariability o the index variations {Wagner and Zorita,
465 2005; Schmidi et al., 2011). Considering the methodological performance, all three methods generally achieve good AMY

index reconstructions when using perfect preado-proxies, as shown in each subfigures of Fig. 11 and in Table 3.

The NH and AMY indices derived from more realistic noise contaminated CFRs are shown in Fig. 11 and Fig. 12

comespondingly. The larger noise contamination results in substantial skill deteroration (ec, S0 and RMED displayed within

brackets in Table 2 and 3} All theee methods generally fail to captuse the complete variance of the target indices, and the
470 magnitude of strong cooling phases is strongly underestimated.

Fig. 13 illustrates the comparison of Northern Hemisphere indices power spectral demsity for both, ideal and noise-

contaminated PPEs between reconstructions and target models. As indicated in Figo 13, all three methods generally

underestimate the power density, whereas this underestimation is more significant for the noise-contaminated derived PPE.
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sulfate concentrations and eventually the Crowley algorithm was applied w yield aerosol optical depths and effective radius
fior fiour latitudinal bands separated by 307

Appendix B

Table BIl. Skill reconstruction statistics for the Morth Hemisphere mean temperatare in the verdfication period for noise-
comaminated PPEs based on OCSM using different newron numbers in hidden layers of Bi-LSTM method.

Mumber of neurons SD Ratio cc
50 neurons 0289 (1443
2{) ncurons (1515 (1461
500 neurons (1.339 1467
T neurons (0412 (0456

In order o check whether the number of neurons by the hidden layer will substantial impact the CFR skills. We also conducted
additional tests for our Bi-LSTM model structures with different peurons in the hidden laver based on one of the seitings for
PPEs. Table | indicates that, when we fix the rest of the hyper-parameters, ete. optimization function and leaming rate, of the
Bi-LSTM structure, just toning the nurber of neurons in the hidden layer does not yield a too strong impact on the mean
cirmelatbon coefficients, but it results in an obyious impact on the 50 ratie. Considering the variability capturing performance,
it seems that the hidden Layer with 700 newrons structure outperforms the hidden layer with less neurons structure, whereas the
emporal covariance bevween target and reconstructed results does not change too much amongst these four different hidden
layer structures. In our PPE tests on paleo CFRx, i seems that there (s no specific neural network siructure could universally

outperform another one.

Drata availabdlity

The CCEM4 and MPI-ESM-P model outpet that was emploved for this study is publicly acoessible and can be downloaded by
the Earth System Grid Federation (ESGF): hitpsifesgf-data dkrz defprojectsfesgf-dkez!. The CESMI model data can be
dowmloaded: hitps:fawow.cesm.ucaredu’projects’'community-projects/LMES.

Author contributhons

The analysls was performed by Z2Z with the consultation of 3W. MK and BZ. ZZ prepared the paper with contributions from
all co-authors.
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3.6 Probability distributions of reconstructed varlables

Even though the three reconstructions methods tend to underestimate the overall variability when using noisy pseadoproxies,
an interesting queation is their skill in reproducing the probability distributions of the climate indices. In particular, a relevant
question is whether the methods are able 1o capture extreme phases of those indices.

Fig. 14 and 15 display the histegram for the decadal NH mean and AMY indices, respectively. Each subfigure represents the
histograms of reconstructed temperature indices across the three methods, compared with the histograms of the target
temperature index.

Faor perfiect pseudoproxics, the PCR reconstruction seems fo capiture the overall target distribution best. It captures the lower
tail better than CCA and the upper tail better than CCA and Bi-LSTM. The differences between the methods become smaller
fior the reconstructions with noisy pseudo proxies, with the PCR still being better than the other two methods (subfigures for
the contaminated PPEs in Fig. 14 and 15} The Bi-LSTM performs worst in capturing the lower and upper tails of
distribution amongst the three methods, both for the NH mean and the AMY index.

Table 4. Koelmogorov-Smimow test statistic and p-value for quantifying the histogram distributions between model and
reconstructed WH decadal means. Low valses of the KS statistic indicate larger similarity between the two distributions. The

numbers in parenthesis dicate the KS statistic and p-valwe of white and red (italics) noise contaminated PPEs.

K5 sratistic pvalue
Method
WP CAM MP1 CAM
PCR 004300740003 0000 19350 1 11) Je-1{be-3/2e-4) le-d(le-17/4e-8)
CCA 00680081073 071019701 3a) le-2( le-3/7e-1) fe- 14 2e-18/3e-5)
Bi-lstm O 1200014200017 0.1T78(0. 24150 2000y Se-T(%e-11e-6) Se-15(2e-27/52-1%)
Table 5. The same as Table 4, but for AMY index.
K5 aratistic p-value
bethod
MPI CAM MP1 CAM
PCR 0.052(0.050 0086 010100, 143/0.085) le-2{ le-1/7e-4) le-5(be-10/8e-4)
CCA O.O082(0.088/0083  0L15N0. 1630 105) le-3(5e-4/fe-3) Se-12{1e-12/2e-5)
Bi-lstm O 540.0207 01720022400 194) le-6(2e-11/4e-4) 4e-14(1c-23/3e-17)

We also quantify the distribution similarity between reconstructed and target distributions for both NH and AMVY indices
uging the two-sample Kolmogosoyv-Smimoy test a3 a metric (Hodges, 1938) (see Table 4-5). A smaller value of the K5
statistic indicates a stronger overall similarity between the two probability distributions. The smallest K statistic is achieved
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by the PCR method (see Table 4-3), confirming the impression that the PCR outperforms the other two methods for indices

reconstructions in both the ideal and noise contaminated PPEs.

3.7 Alternative architectures of the BELSTM method

Although the design of machine-leaming methods may be guided by the physical considerations, machine-leaming methods
are still to a large extent a matter of trial and error. The same complexity of the method hinders the disentangling of the
causes as to why the methods behave in a certain way, Here, we explore altersative architectures of the Bi-L3TM method te
asaess the resoluteness of the conclusions drawn from the basic design. We have explored varying network depths (number
of layers), different leaming rates, and different cost-functions to optimize the network parameters, among others. A
sumimary of the results is included in the Appendiz B,

We could not recognize systematic effects in the skill in this get of different networks designs. The skill varies rather
randomly, and probably the identification of optimal network architectures for this specific reconstruction question may not
be extrapolated to other applications in paleoclimate. We settbed for this application, on a heuristic basis, on an architectuns
with 2 hidden lavers, 400 hidden nodes, with a learning rate of 107, with the activation function lesiy reli, a batchsize of
20 and the Huber loss function.

4 Discussion
A1 Monlinear method performance

Crur initial hypothesis was that a more sophisticated model might be able to better capture relationships that are mone
complex. For instance, a linear model cannot capture non-linear links outside a narrow range of variations. Artificial newral
network is a subset of machine leaming method that can be understood a5 & universal approximator, which can map and
approximate any kind of functions by selecting a suitable set of connecting weights and transfer functions (Hosnik et al.,
1989, Thus, it is reasonable o assume that a better representation of the links between proxy series and climate ficlds, and
thus a better reconstruction performance, might be achieved.

The Bi-LETM method is the most complex of the three fested in this study. Among them, it is also the one that aims at
capturing the serial dependencies. Our hypothesis was that better reconstruction skill could be achieved by the Bi-LSTM
method. However, this is not the case in our pseadoproxy experiments. For the spatially resolved MAE fields, the noalinear
Bi-LETM method achieves a similar skill as the lingar PCR and CCA methods, both with ideal and noisy PPEs (see Fig. 2-
4)

For spatially resolved NH field, the PCR. overestimates the variabilities both in ideal and noisy PPEs (see spatial SD ratio
maps in Fig. 5-7 and mean statistics skills Table 1), and the OCA method shows relatively bower oversstimation in nodisy
PPEs, the Bi-LSTM presents relatively reasonable reconstructions without clearly overestimation both in ideal and noisy
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PPEs {see Fig. 5-7 and Table 1). Amongst ideal PPEs across two models, the PCR is generally the best method among the
three methods, and the nonlinear Bi-LSTM is second best method with higher 8D ratio and worse ce than CCA method (see
Fig. 3-7 and rmean skill statistics in Table 1). Whereas, both PCR and CCA exhibit overestimated reconstructions within
noisy PPEs, the Bi-LSTM presents relatively robust reconstractions especially without overestimations in noisy PPEs (see
Fig. 3-7 and mean skill statistics in Table 1).

Faor the area-mean indices, all three methods exhibit again generally similar skill. Nevertheless, the Bi-LSTM more strongly
underestineates the amplitude of variabilities, and especially over some extreme cooling phases than PCR and CCA. This
underestimation is also generally model dependent (see different reconstructed performances in Fig 11-12). In general, the
PCE methods achieved the best performance both in extreme cooling signal capture and indices reconstructions across twio
models and amongst three methods. The power spectral density plods in Fig. 13 provide a deep insight about these different
reconstruction performances in MH temperature indices,

The general inability to capture the cooling extreme signals prioe to 20 century indicates that the Bi-LSTM is not good at
extrapolating to temperature ranges beyond the training set — a phenomenon that is intrinsic to most ML-based methods.
Therefore, compared with linear methods PCR and OCA, neural network model did not show clear advantages. The
performance of the Bi-LSTM might be further improved by optimizing the architecture and parameters of the network,
including the type of objective function, type of neural activation function, network optimization function, number of hidden
layers, the model-learning rate ete. At this point, it would be quite natural to consider whether the selection/settings of these
hyper-parameters in our siudy is optimal, and also to what extent the reconstruction skill is sensitive to changes in the hyper-
parameters. Nadiga (20200 pointed out that the skill of seme machine leaming-methods are strongly dependent on these
hyper-parameters. Machine leaming methods include an extensive range of complexity, and therefore it remains an open
issue as to which ML techniques are most or relatively suitable for paleoclimate. 1t & not clear how the structure of the
machine-leaming methods can be systematically optimized. At the moment, there is still a considerably amount of *trial and
error” in the design and connection of the neural layers. Here, we have tested the Bi-LSTM network with several different
architecture seftings, and finally decided a relatively optimal architecture with two separated hidden layers, and evaluated is
performances on CFR experiments, which could be a preliminary try. Owr first implementation of the more complex Bi-
LSTM does not show superiority in CFRs, at least in our specific experiments, compared o traditional CFR methods, so we
would like to draw an assumption that more complicated architecture might not be helpful for CFRs. In addition, a
degradation of out-of-sample performance may well be expected when a limited dataset is used fo train a newral network
model (Majafabadi et al, 2005} Mevertheless, we would like to point out to other methods, such as an Echo State Network
(ESM, Lukosevicius and Jaeger, 2009; Nadiga, 2020) for palso climate research. Both ESN and LSTM belong to the family
of RMM, yet ESM is much simpler than LSTM (Lukosevicius and Jaeger 20080, and has outperformed the BNN methods in
other applications (Chattopadhyay et al., 2019; Nadiga, B. 2020).

Anather reason to consider machine-leamning methods is the non-linsarity of the link between proxies and climate fields. In
this particular application with pseudoproxies, the implied link is probably close to linear. Howewver, these can be different
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on other cases. And it might be the case for more complex problems, (ie. the reconstruction of proxy-precipiation fields or
other modes of natural variability such ag the NAC or ENSO). As such, ML methods should not a-prieri be excleded from
the pormtfolio of CFR methods leading to more skilful reconstructions of climate.

4.2 Model and pseudoproxy network dependency

The evaluation of the reconstruction skill seems to depend a5 much on the reconstruction methed as on the underlying
climate model simulation from which the paeudoproxies wene generated. The differences in skill for the same method with
different climate model data is of the same order as the differences in skill for the different methods with the same climate
model data. The performance of the method dees not seem to depend on the domain of the reconstruction. The
reconatructions behave generally similar for the MAE, nevertheless, show some differences in the MH test cases, especially
in the derived SD¥ ratio patterns.

Considering the effects of noise contamination on the methodological performance, both PCR and OCA method exhibit
overestimation (see S0 ratio patters in Fig. 9-10 and mean skills in Table 1). However, all methods suffer from lower
correlation coefficients in the mose realistic PPEs (white and red noise contaminated PPEs). The nonlinear Bi-LSTM is more
strongly impacted by the noise contamination (Table 1).

From the perspective of the spatial coverage of the proxy network, the spatial cc and 8D ratio pattems (except PCR method)
reveal reconstruction skill over the entire NH regions, although this skill is weaker in areas more poorly sampled by the
pacudo-proxy network (spatial oo patterns in Fig. 5-T). Interestingly, the tropical regions do show some reconstruction skill
especially in the derived reconstructions based on Bi-LSTM (spatial SD ratio patterns in Fig. 3-T), although almost no
pacwdo-proxies are located in the Tropics. This result indicates the climate weleconnections bepween tropics and mid-latinude
regions could lead to some indirect skill. However, the proxy nevworks and noise scenarios constructed in the context are

certainly not able to mirmic/simulate the full range of characteristics completely for climatic proxies in the real world.

5 Conclusions

A nonlinear Bi-LSTM neural network method to reconstruct North Atlantic-Europe and Morthern Hemisphere temperature
fields was tested with climate surrogate data generated by simulations with two different climate models. Compared to the
more clasgical methods of linear Principal Components Regression and Canonical Correlation Analysis, the NAE and NH
summer temperature field could be reasonably reconstructed using both linear and nonlinear methodologies referring to
spatial ce metric. In the relatively larger spatial region-NH temperature field, more discrepancies of reconstructions appeared
amppngst different climate models and methods Based on the derived spatial 50 ratio metric. The conclusions drawn from
this study can be summarized as follows:
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1y In general, all three methods display similar skills when using ideal (noise-free) psesdoproxies, while in the more
realistic PPEs (nodse comaminated PPEs), both PCR and CCA methed exhibit an overestimation on temperature
varance preservation, in contrast 1o the nonlinear Bi-LSTM.

2y The preudoproxy networks used in this study were mostly located in the extratropical regions with only three
proxies in the tropical area. All CFR methodologies produce generally good reconstructions in regions where dense
pseudoproxy networks are available. Moreover, teleconnections are explored by these CFR methodologies, leading
o some wieak spatial reconstruction skills outside of the proscy-sampled regions, for instance the troepical region.
The classical linear-based PCR methed generally outperforms the Bi-LSTM and CCA method in both spatial and
index reconstructions.

3y Here, we could draw a general conclusion that nonlinear amtificial neural network method Bi-LSTM employed
herein is not superior for CFR reconstructions, at least in our PPEs. In general, Bi-LSTM show worse skill in spatial
and temporal CFRs than PCR and CCA, also in eapturing extremes. Yet, it is advisable 1o employ a larger set of
nonlinear CFR methods to evaluate different model structures, and further test their performance on CFRs.

Appendix A

The simulation with the model MPI-ESM-P is not pant of the standard CMIPS simulation suite. In the following, we include
additional technical details on this simulation. The MPI simulation was started from the vear of 100 BC with restant files
from a S00-year spin-down simulation experiments forced with constant external conditions representing the year 100 of BC.
After 100 BC, variation in voleanic, solar, arbital, and GHG concentrations are implemented. Land usage was held constant
until 50 AD with conditions representing those for year 850 AD. The variation of orbital parameters are caleulated after the
PMIP3-protocel (Schmide et al. 200 1). The solar activity has been rebuilt on the hasis of the reconstruction of Vieira et al
2011 employing the algorithm and sealing outlined in Schmidt et al. 20011 which corresponds to & difference in shost-wave
top of the atmosphere insolation of 1.25 Wm-2 |~ 0.1%%) between the 2nd half of the 20th century (1950 — 2000} and the
Maunder Minimum (1645 — 1713). Variations in greenhouse gas concentrations related to CO2, MN20 and CH4 are after the
reconstruction of the PMIP3 protocol — The concentrations were held constant to the values of year | AD between 100 BC
and | AD because the law Dome records does not extend beyond year | AD. After 1850 AD also a reconstructed acrosol
loading after Stine et al. 2008 were emploved to account for transient anthropogenic acrosol emissiens. The extension and
reconstruction of the volcanie forcing is related to a rescaling of the newly available Sigl et al. (2015) dataset to the
reconstruction of Crowley and Unterman (2013), The large volcanoes for different latitudinal bands are rescaled according to
sulfate concentrations and eventually the Crowley algorithm was applied to yield aerosol optical depths and effective radius
for four latitudinal bands separated by 307
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Appendix B

We have explored a range of Bi-LSTM architectures, including employing different network depihs, introducing dropout
620 layers, using different leaming rates, and employing different loss functions to provide a more comprehensive evaluation of
the Bi-LSTM performance and effectiveness. Table |B-6B present reconstruction statisties skill for the spatial Morth
Hemisghere mean ternperature in the verification peried for ideal PPEs based on CAMS using different architecture scttings
of Bi-L5TM method. In our PPE tests on paleo CFRs, it seems that in this case we could not univocally identify optinal
neural network structure that could universally outperform all others. And the final Bi-LS3TM architecture emploved in our
625 CFR experiments was finally determined with 2 hidden layers with 4000 hidden nodes, learning rate is 107, activation
fumction is leaky relu, batchsize is 20 and Huber loss function.
Table 1B. Different loss function conditioned on other parameters fixed (2 hidden bvers with 4000 hidden nodes, leaming
rate is 107, activation function is leaky relu, batchsize is 20}

Loss functions ce SD Ratio
MAE 0483 [
MAPE 0.124 0030
MSE 0.465 0759
Huber 0.462 0770

630 MAE: mean abaolutely ervor, MAPE: mean absolutely percentage error, MSE: mean square ervor, Huber: Huber loss

Table 2B. Ddfferent leaming rate using Huber losa, and with the rest parameters fixed as in Table |B

Leaming rates 5 SD Ratio
le-1 =Te-3 le?
le-4 0.462 0770
le-6 0.462 L6T3E
le-B 0012 0271

Table 3B. Different sctivation functions with the rest parameters fixed as in Table 1B

Activation fusetion e 5D Ratio
RelU 0.503 0366
Leaky ReLlU 0.462 0770
ELU 0.529 0617
2
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Table 4B. Different hidden layer number with the rest parameters fixed as in Table 1B

Mumber of layers e 5D Ratio
1 0508 0.733
2 0462 0770
4 0.442 603
& 0.335 0411

Table 5B. Different hidden node numbers in each layer with the rest parameters fixed as in Table 1B

Mumber of hidden nodes e SD Ratio
20d) 0479 (620
1000 0.502 0692
000 0.503 0Tl
4000 0.462 0770

G40 Table 6B. With and without dropout layers conditioned on the rest parameters ane fixed as in Table 1B

Dropout e 5D Ratio
Drvopout 0.462 0770
Mon-dropout 0467 0.T&0

Appendix O

Appendiz C displays the 5D ratios for ideal pseudo-proxies after filtering the reconstructed and target fields with a 30-year

loww pass filier. At these time scale, the 5D ratio is again lewer than for the interannual variance.
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Figure &: Histogram for decadal filtered NH mean index. The x axis denotes temperatare anomaly valees, and y axis is the
number of data i each bin. Totally 30 bins are selected o plot each of the histogram.
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