

Figure S1: Modelling interglacial intensities without $\delta^{18}O_{max}$ term. (a) LR04 $\delta^{18}O$. The red circles indicate the minima of $\delta^{18}O(\delta^{18}O_{min})$ at each interglacial, and the blue triangles the maxima ($\delta^{18}O_{max}$) at glacials. See below for the grey strips and the dashed lines. (b) Caloric summer half-year insolation at 65°N (F_N , black) and 65°S (F_S , green). The average of the two (magenta) is also shown. The blue dashed lines show timings t_s at which the caloric summer half-year insolation at 65°N exceeds average 5.845 GJ m⁻² (black horizontal line) and the red dashed lines show timings t_e at which the insolation falls back below the average. Each termination starts roughly around t_s , and it is completed around t_e . Exceptionally termination III starts after the local insolation minimum at 254 kyr BP (orange dotted line), responding to the second rise in the insolation anomaly between t_s and t_e at 65°N, 10 I_N (black cross), the integral at 65°S for the same period, I_S (green diamond), and the average $I_{AV} = \frac{1}{2}(I_N + I_S)$ (magenta square).

(d) Predictions by linear regression models with explanatory variables in (c): Model 4 with I_N (black cross); model 5 with both I_N and I_S with their own coefficients (blue diamond with cross); model 6 with I_{AV} (magenta squares). See Table S1 for details.

Figure S2: Same as Fig. 4 but with the integral of the insolation below a threshold 5. 785 GJ m⁻² instead of the total time used in Fig. 4. (a) LR04 δ¹⁸O. The red circles indicate the minimum δ¹⁸O_{min} at each interglacial, and the blue triangles the maxima δ¹⁸O_{max} at glacials. The time intervals between them are shaded. Note that the data are plotted inversely to Fig. 2, with glacial maxima above interglacial minima. (b) Caloric summer insolation at 65°N. The grey shading is the same as in (a). (c) δ¹⁸O_{min} for each interglacial. (d) Integral of the caloric summer insolation below a threshold 5. 785 GJ m⁻² between the interglacial peak and the glacial peak:
20 Σ_{t|F_N(t)<5.785}(F_N(t) - 5.785). (e) Time span T between the interglacial peak and the glacial peak. (f) 1 - e^{-T/25}. (g) Prediction of δ¹⁸O_{max} from the linear regression relation with explanatory variables in (d) and (f) (R=0.887).

	$\boldsymbol{\beta}_0$	β_2	β_3	p	R (correlation)	R ²	BIC
Model 4	3.87***	-0.276	$\equiv 0$	0.062	0.58	0.34	-6.7
Model 5	4.00***	-0.275*	-0.225*	0.006	0.85	0.72	-13.8
Model 6	3.96***	-0.487**	$\equiv 0$	0.001	0.84	0.61	-15.9

Table S1: Coefficients and statistics of the regression models without $\delta^{18}O_{max}$ term (corresponding to Fig. S1). Model 4 ($\delta^{18}O_{min} = \beta_0 + \beta_2 I_N$), Model 5 ($\delta^{18}O_{min} = \beta_0 + \beta_2 I_N + \beta_3 I_S$), and Model 6 ($\delta^{18}O_{min} = \beta_0 + \beta_1 \delta^{18}O_{max} + \beta_2 I_{AV}$) are obtained from models 1, 2, and 3, respectively, by removing $\delta^{18}O_{max}$ term. The overall F-test provides a p-value less than 0.05 in each model, which rejects the null hypothesis that none of the variables in the model are significant. The asterisks indicate the significance of each coefficient: * for p $\in (0.01, 0.05]$, ** for p $\in (0.001, 0.05]$, and *** for p $\in [0, 0.001]$.