

Response of terrigenous weathering to the African 1 monsoon during the penultimate deglaciation and the last 2

interglacial period 3 4

5 Christopher J. Lepre¹, Clara Chang², Owen Yazzie³

- ¹School of Earth, Environment & Society, Bowling Green State University, Bowling Green OH, 43403, USA
- 6 7 8 ²Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY, 10964, USA
- ³BS program in Geological Sciences, Arizona State University, Tempe, AZ, 85287 USA
- 9 Correspondence to: Christopher J. Lepre (leprecj@bgsu.edu)

10 Abstract. Climates of the last interglacial period (i.e., marine isotope stage 5e; MIS 5e) were associated

11 with hydrographic, ecological, and human expansions across northern Africa. Model simulations and

12 geological proxy data for northern subtropical latitudes resolve a dry penultimate deglaciation (Heinrich

13 stadial 11; HS11) followed by an abrupt increase of African rainfall that predates the orbital insolation

14 maximum of early MIS 5e. These climate changes have been attributed to the equatorward displacement

15 and rebound of the tropical rainbelt in response to glacial reorganizations of Atlantic meridional

16 overturning circulation (AMOC). In this paper, we examine MIS 5e and HS11 paleoenvironments by using

17 X-ray fluorescence measurements to construct a Rb/Sr proxy record of terrigenous delivery to marine core

18 site VM 30-40 (0º 12' S, 20º 09' W, 3,706 m depth) of the Atlantic Ocean. The geochemical timeseries was

19 inferred to represent continental weathering influenced by the African monsoon evolving over the last ~260

20 kyr of the Quaternary. Peak Rb/Sr values were observed at the most recent and penultimate glacial maxima,

21 attributed to different modes of continental weathering or perhaps dissolution of Sr-bearing phases by

22 corrosive deep waters. Spectral coherency results and filtering of the Rb/Sr timeseries demonstrate an

- 23 absence of obliquity yet a predominance of a precession signal that shares the best phase relationships with
- 24 March-April-May insolation at the equator. This vernal signal is interpreted to indicate that the terrigenous
- 25 fraction of the core had low-latitude source areas, where the monsoonal cycle is most sensitive to insolation
- 26 changes about the equinoxes. These data also show a wet climate during HS11 that progresses towards
- 27 peak conditions at ~127 ka, nearly coinciding with the insolation maximum of early MIS 5e. We interpret

28 that latitude plays an important role in determining the outcomes of AMOC forcing, with the low-latitude

- 29 terrigenous sources differing from the northern subtropics because the former was into the (equatorward)
- 30 direction of rainbelt displacement. Lastly, these results suggest a very limited role for obliquity-controlled
- 31 paleoenvironmental changes within Middle Stone Age habitats and may support previous interpretations
- 32 that social networks were enhanced between the west and north African regions during times of increased
- 33 rainfall forced by precession-modulated insolation.

35 1. Introduction

34

36 Terrigenous material transported through Earth's atmosphere influences global biogeochemical cycles, 37 climate conditions, and public health (Prospero et al., 2002). The largest source of this material is the dust

38	particles that emanate from drylands of North Africa and carried aloft by monsoonal winds and related
39	aeolian systems (Fig. 1). A major constituent of dust is weathering products of sediments and soils (Maher
40	et al., 2010). This is readily inferred from the colors of West African dust plumes that carry hematite and
41	goethite derived from the regolith (Formenti et al., 2014; Moskowitz et al., 2016; Oldfield et al., 2014).
42	Studying the conditions under which this dust is produced and transported helps to understand the potential
43	response of African landscapes to vegetation changes and erosion caused by future climates (de Menocal,
44	2015; McGee et al., 2013; Yuan et al., 2020). To study these relationships, geological research has focused
45	on the last interglacial period represented by MIS 5e that lasted from about 129-116 ka (Govin et al., 2015).
46	This interval is characterized by low global ice volume and high sea level, thus providing many proxy
47	records for studying the Earth system under a global warming scenario (Kukla et al., 2002). During MIS 5e,
48	regions of northern Africa were transformed into verdant landscapes associated with enhanced boreal
49	summer insolation (Blanchet et al., 2021; Dupont, 2011; Hooghiemstra et al., 2006). However, there is still
50	much debate about what controls African climate change and the timing/rate of the response to the forcing
51	(Bosmans et al., 2015; Menviel et al., 2021; Shanahan et al., 2015).
52	Marine core records collected off of the West African continental margin provide information for
53	interpreting the paleoclimate context of prehistoric humans. Some hypotheses use these records to suggest
54	that high-latitude glacial cycles driven by obliquity caused cooling and drying effects that impacted major
55	juncture of human origins in Africa (deMenocal, 2004). Contrastingly, low-latitude changes in coupled
56	ocean-atmosphere systems may have been stronger drivers of environmental change within human habitats
57	(Berner et al., 2022; Kaboth-Bahr et al., 2021; Lepre and Quinn, 2022; Trauth et al., 2021; van der Lubbe et
58	al., 2021). Recent West African archaeological work has produced a time-constrained sequence of the
59	Middle Stone Age (MSA) through the last two glacial-interglacial cycles, yet the connections between
60	lithic culture variability and paleoclimate are not well understood (Allsworth-Jones, 2021; Chevrier et al.,
61	2018; Douze et al., 2021; Lespez et al., 2008). Study of West African marine core records during the last
62	interglacial period (Castaneda et al., 2009) suggests that increased rainfall and vegetation may have
63	facilitated the interconnectivity of north African social groups (Drake et al., 2011). Such favorable
64	conditions predictably recurred through the late Quaternary as a consequence of insolation forcing of
65	monsoonal intensities (Grant et al., 2022). However, marine core dust records have been questioned as a

- 66 viable dataset for investigating links between climate and human prehistory of West Africa (Skonieczny et
- al., 2019). Marine dissolution events during glacial epochs, independent of African climate, have been
- 68 recognized throughout the Atlantic Ocean (Verardo and Mcintyre, 1994). These events may have imparted
- 69 the marine core sediments with spurious evidence of obliquity-driven changes to the monsoon (Skonieczny

Figure 1: Map of northwestern Africa showing the location of the studied VM 30-40 marine core and archaeological, meteorological, and physiographic features discussed in the text. Archaeological localities shown as blue inverted triangles (Chevrier et al., 2018). Open arrows indicate trade winds, closed arrows are monsoonal, and large arrow is Harmattan (Trauth et al., 2009). Dust sources indicated in brown and yellow (Muhs et al., 2014; Prospero et al., 2002). Approximate position of the Sahel denoted by stippled area (Nicholson, 2018).

72	To address these issues, we examined the most recent ~ 260 kyr of the Quaternary that is recorded by
73	eastern equatorial Atlantic marine core VM 30-40 (see Fig. 1 for location). We selected this core in
74	particularly because it has a well-resolved marine isotope stage (MIS) record and oxygen-isotope age
75	calibration (McIntyre et al., 1989) and provides a record of precession climate forcing of freshwater
76	lacustrine diatom deposition (Pokras and Mix, 1987). However, there has been little study of other type
77	terrigenous materials in the core (Balsam et al., 1995; Rowland et al., 2021). We developed a new X-ray
78	fluorescence (XRF) record for VM 30-40 to sample a variety of sediment and soil environments different

79	from the lacustrine diatom facies. Rb/Sr measurements on the core (Fig. 2) were used to provide a proxy
80	record of continental weathering (Hemming, 2007). Comparisons with other marine core sediments from
81	the West Africa margin and model simulations (Govin et al., 2014; Menviel et al., 2021) are made to infer
82	different controls of terrigenous production and transport over the late Quaternary. Finally, we use the
83	collected data to suggest a paleoclimate context for MSA West African archaeological sites.
84	
85	2. Materials and methods
86	2.1. Stratigraphy and setting of VEMA core 30-40
87	In this paper, we focus on and provide new data for VEMA core 30-40 (VM 30-40, IGSN number
88	DSR000ZD0). This core was initially split and described in the 1970s and has been housed at the Lamont-
89	Doherty Core Repository. It was obtained from eastern equatorial Atlantic waters (0° 12' S, 20° 09' W) at a
90	depth of 3706 m (Fig. 1). Prior stratigraphic analysis of VM 30-40 (Fig. 2) indicates that the recovered
91	sediment record is 755 cm long, representing the last ~256.7 kyr to MIS 7, with a mean sediment
92	accumulation rate of 1 cm per 340 years (Imbrie et al., 1984; McIntyre et al., 1989).
93	VM 30-40 has the typical sediments of the marine cores of the eastern tropical Atlantic that are
94	dominated by biogenic CaCO3 and a subordinate amount of terrigenous detritus (Bozzano et al., 2002;
95	Bradtmiller et al., 2007; Moreno et al., 2001; Rowland et al., 2021; Skonieczny et al., 2019; Tiedemann et
96	al., 1994). Core records also contain minor fractions of biogenic opal, phytoliths, and may preserve pollen
97	(deMenocal et al., 1993; Hooghiemstra et al., 2006; Leroy and Dupont, 1994; Lézine and Casanova, 1991).
98	Previously, VM 30-40 has been used for paleoceanographic and paleoclimate research, studied for diatoms,
99	phytoliths, CaCO3, color/iron-oxide content, isotopes, and thorium-normalized dust concentrations (Balsam
100	et al., 1995; Bradtmiller et al., 2007; Imbrie et al., 1984; McIntyre et al., 1989; Pokras, 1987; Rowland et
101	al., 2021).
102	VM 30-40 was retrieved at about 1400 km SW from the coast of West Africa and the site lies at the
103	southern part of the winter dust plume (Pokras and Mix, 1985). Input from the seasonal plumes to the
104	marine core sites affords high-resolution paleoclimate records of continental conditions (Adkins et al.,

105 2006; McGee et al., 2013; Mulitza et al., 2010; Palchan and Torfstein, 2019; Trauth et al., 2009).

Figure 2: Stratigraphic information for VM 30-40 marine core. Black dots indicate MIS positions and dates listed in Table 1. Lithological symbols: (1) interbedded layers of foraminiferal ooze and foraminiferal marl ooze, (2) foraminiferal marl, (3) foraminiferal ooze, and (4) foraminiferal marl ooze. Lithostratigraphic description from https://www.ngdc.noaa.gov/mgg/curator/data/vema/vm30/040/. Oxygen isotope data retrieved from https://doi.org/10.1594/PANGAEA.56361. Dashed box denotes the interval pictured in Fig. 3.

107	Winter dust plumes are carried by the trade winds as they move through the Sahara-Sahel region
108	(Schwanghart and Schütt, 2008). The position of the trade winds follows the migration of the Intertropical
109	Convergence Zone (ITCZ) in response to the seasonal location of maximum insolation across the African
110	landmass. Through the summer-winter transition in the Northern Hemisphere, the ITCZ migrates towards
111	the equator and the trade winds follow south to generate the winter dust plume at 10-20° N (Prospero et al.,
112	2014).
113	
114	There are several potential source areas that may contribute to the dust plumes (Heinrich et al., 2021;
115	Jewell et al., 2021; Moreno et al., 2006; Oldfield et al., 2014; Scheuvens et al., 2013; Stuut, 2005). One of
116	the more important sources is thought to be the Bodélé Depression (Washington et al., 2006), effectively
117	the footprint of the now-exposed lake beds for mega-Lake Chad (Armitage et al., 2015). Lacustrine
118	deposits of the Bodélé Depression are suggested to be high-yielding sources not only for the plumes but
119	also for the Earth's global dust budget (Maher et al., 2010; Moskowitz et al., 2016; Prospero et al., 2014,
120	2002; Washington et al., 2006). Lacustrine freshwater diatoms are present within VM 30-40 but a specific
121	geographic provenance on the continent is uncertain (Pokras, 1987; Pokras and Mix, 1987, 1985).
122	
123	2.2. XRF measurements
124	Before the scanning of core VM 30-40, the surfaces of its sections were scraped clean as standard
125	protocol. The core sections were scanned lengthwise along the center of the core surface using an Itrax
126	Core Scanner (Cox Analytical Systems, Mölndal, Sweden) at the Lamont-Doherty Earth Observatory.
127	Analyses were performed using settings of 30 kV and 30 mA with a Mo tube, a step size of 5mm and an
128	exposure time of 5 seconds. The XRF data were collected in total counts (Croudace and Rothwell, 2010)
129	and we transformed the Rb and Sr data by calculating the log-ratios of the element intensities. Log-ratios
130	have been shown to be simple linear functions of log-ratios of concentrations that minimize biases
131	introduced by analytical conditions of XRF measurements (Hodell et al., 2015; Weltje and Tjallingii,
132	2008). We use the ratio between Rb and Sr to interpret weathering, and infer terrigenous deposition and
133	paleoclimate change (Hemming, 2007). Rb/Sr ratios in West African marine core sequences have been
134	used as proxy indictors of continental weathering rates and late Quaternary paleoclimate (Cole et al., 2009).

- 135 Sr-bearing phases tend to break down early on and Rb is retained in K-rich mineral phases (White et al.,
- 136 2001). Within monsoon soils, the variations in the Rb/Sr ratio may be controlled by the relative durability
- 137 of the K-bearing materials and the amount of strontium loss during weathering (Chen et al., 1999).
- 138
- 139 Table 1: VM 30-40 core chronology*

MIS substage [‡]	Age (ka)	Depth (cm)
nr	1.5	0
1.1	6.5	12
2.0	12	33
2.22	17.8	58.5
2.24	21.4	75
3.0	24	91.5
3.3	53	162
4.0	59	183
4.2	65	195
5.0	71	208
5.1	80	241.5
5.2	87	261
5.3	99	297
5.5	122	370.5
6.0	128	387
6.2	135	399
6.4	151	462
6.5	171	522
nr	176	540
6.6	183	555
7.0	186	567
7.1	194	606
7.2	205	627
nr	212	633
7.3	216	642
7.4	228	666
7.5	238	705
nr	257	753

140

- 141 * based on the SPECMAP oxygen isotope age model (McIntyre et al., 1989)
- 142 $\ddagger nr = not reported$
- 143

144 2.3. Interpreting paleoclimate data from the XRF measurements

145 We constrain the terrigenous fraction that accumulated during HS11 and the early part of MIS 5e with

146 the established d^{18} O record of the core between 370 and 400 cm (Fig. 2). Depth positions of MIS datums

147	6.2 (135 ka), 6.0 (128 ka), and 5.5 (122 ka) were used to construct a linear regression age model and scale
148	the log(Rb/Sr) depth series to time. The log(Rb/Sr) timeseries for the HS11 to early MIS 5e interval was
149	then compared directly to the astronomical solution of insolation at 23° N for boreal summer (Fig. 3). Other
150	intervals of the log(Rb/Sr) timeseries were calibrated using the mean sedimentation rate of 1 cm per 340
151	years (Fig. 2). The core's d ¹⁸ O record is from the planktonic foraminifera <i>Globigerinoides sacculifer</i>
152	(Imbrie et al., 1984) and the data reported in Table B1 of McIntyre et al. (McIntyre et al., 1989) provides 28
153	core depths matched to 28 dates based on the SPECMAP oxygen isotope stratigraphy and marine isotope
154	stages (Fig. 2 and Table 1).
155	Pokras and Mix (Pokras and Mix, 1987) resolved a record of climatic precession and its harmonics
156	from the spectral analysis of the freshwater lacustrine diatoms preserved in VM 30-40. Eolian-transported
157	diatoms in marine sediment cores of West Africa derive from the deflation of diatomaceous deposits in dry
158	North African lake beds (deMenocal et al., 1993). Thus, the diatom increases within marine core sequences
159	are traditionally thought of as indirect indicators of lake levels and aridity. Pokras and Mix (Pokras and
160	Mix, 1987, 1985) interpreted that major peaks in the VM 30-40 diatom record correlated to the early
161	phases of insolation minima for boreal summer (Appendix Fig. A1); however, these authors also noted that
162	diatom maxima were approximately in phase with spring insolation minima (Appendix Fig. A1).
163	To assess if other components of the terrigenous fraction carry orbital forcing, the log(Rb/Sr) depth
164	(cm) series was scaled to time by using the core's overall sedimentation rate of 1 cm = 0.34 kyr and then
165	resampled to every 0.17 kyr, which was the median/mean sample interval (0.5 cm) of XRF measurements.
166	We then treated the log(Rb/Sr) timeseries to coherency analysis with the AnalySeries software (Paillard et
167	al., 1996). Spectral coherency comparisons were made with eccentricity-tilt-precession (ETP) (Laskar et
168	al., 2004) and the astronomical solution of ETP was generated with Acycle software (Li et al., 2019). The
169	Blackman–Tukey cross spectrum method was used with a Bartlett window and zero-coherency set to 0.5
170	(80%) level of significance.
171	
172	3. Results and interpretations

173 3.1. Variations in Rb/Sr ratios

174	The log(Rb/Sr) ratios reveal no long-term directional trends over the last ~257 kyr; however, recurring
175	through the timeseries are evident cycles with durations of 1000s and 10,000s years (Fig. 2). The two
176	largest values of the log(Rb/Sr) timeseries are observed at about 135 ka and 18 ka. These approximately
177	correlate with glacial maxima of MIS 6 and 2, respectively (Fig. 2). Most studies suggest that potential
178	West African dust sources were arid during MIS 6 and 2 (Gasse, 2000; Kim et al., 2008; Menviel et al.,
179	2021). Therefore, the chronostratigraphy suggests that the largest values of log(Rb/Sr) correlate with two
180	substantially dry phases of the North African monsoon over the last ~150 kyr. Cole et al. (Cole et al., 2009)
181	also studied Rb/Sr ratios in marine core sediments of West Africa and found larger Rb/Sr ratios at the
182	glacial maximum of MIS 2 as compared to the early-middle Holocene African Humid Period (AHP). These
183	authors and others (Cole et al., 2009; Jung et al., 2004) explained the differences by inferring that the Rb/Sr
184	ratios during glacial aridity is controlled by less water available for hydrolysis and a predominance of
185	physical over chemical weathering. During MIS 2 aridity, alkaline mineral deposits were generated when
186	North African soils and lakes desiccated (Gasse, 2000). Under such dryness, the precipitation of caliches
187	and evaporites causes Ca- and Na-rich minerals to become sequestered into deflation-resistant horizons
188	(Mabbutt, 1977). This may decrease the amount of Sr-bearing minerals available for aeolian mobilization
189	and transport, increasing the Rb/Sr ratios of the dust plumes. Alternatively, high Rb/Sr ratios at glacial
190	epochs may indicate that in-situ dissolution has affected the terrigenous carbonate fraction of the marine
191	sediments. During glacial epochs, deep ocean circulation changes bring corrosive Antarctic Bottom Water
192	to near West African margin (Bozzano et al., 2002; Skonieczny et al., 2019). This may have removed some
193	of the Sr carried by the terrigenous Ca-bearing fraction.
194	Rb/Sr ratios may increase with increasing continental weathering (Hemming, 2007). An increase in
195	continental weathering is typically associated with the available moisture and thus wetter climates (Kelly et
196	al., 1998). Under wet monsoon conditions, soils may become enriched in Rb through weathering processes
197	that remove "softer" minerals that bear Sr (Chen et al., 1999). In African environments, the distribution of
198	Rb and Sr is link to a number of interrelated factors of mineral substrate, geological setting, and
199	hydroclimate (Cole et al., 2009; Janzen et al., 2020; Jewell et al., 2021; Jung et al., 2004; Moreno et al.,
200	2006). Sr commonly infiltrates into many types of geologic and biotic systems because it easily substitutes
201	for Ca or Na due to their similar ionic radii (Blum and Erel, 1997; Koch et al., 1992). Mineral phases that

- 202 carry Sr are soluble carbonates/sulfates or unstable plagioclase. In comparison, K-rich micas and feldspars
- are less reactive and tend to be retained within soils and saprolites during weathering (Blum et al., 1994;
- 204 White et al., 2001). Rb substitutes for K and is thus associated with the more stable mineral phases (Blum
- 205 and Erel, 1997).

206

Figure 3: Paleoenvironmental information for the penultimate deglaciation and interglacial. The resolved log(Rb/Sr) variations for marine core VM 30-40 (this study) plotted with June solstice insolation at 23° N indicated by red dashed line. Note ~2 kyr interval of no data. Stable oxygen isotope data for VM 30-40 from https://doi.org/10.1594/PANGAEA.56361. Horizonal dashed line across the log(Rb/Sr) graph is placed to guide the eye towards values greater than -1.5. Position of the MIS 5e interval after Govin et al. (Govin et al., 2015).

207	3.2. The last deglaciation and interglacial period
208	During MIS 5e, log(Rb/Sr) variations are close to being in phase with summer insolation variations at
209	23° N (Fig. 3). Following the penultimate glacial maximum at ~135 ka, the VM 30-40 core demonstrates
210	increasing log(Rb/Sr) values during HS11. The small yet initial increase occurs over a ~1000 yr interval
211	from about 133-132 ka (Fig. 3) and the log(Rb/Sr) values suggest that peak interglacial conditions were
212	attained by \sim 127 ka, nearly coincident with the timing of the summer insolation maximum at 23°N. After
213	\sim 127 ka the terrigenous record indicates a trend of decreasing values that follow declining insolation (Fig.
214	3). This decreasing trend is interrupted by two brief returns to humidity/warmth, one constrained to 125-
215	124 ka and the second at 122 ka. Drier climates are indicated by comparatively smaller log (Rb/Sr) values
216	between 122-110 ka coincident with low insolation.
217	
218	3.3. Spectral analysis of orbital climate forcing
219	Blackman-Tukey coherency results for the log(Rb/Sr) timeseries compared against ETP (Fig. 4A)
220	show significant frequencies approximating climatic precession (~20 kyr). These data also indicate the
221	presence of eccentricity (~100 kyr); however, the chronostratigraphy of VM 30-40 (~0-257 ka) may be too
222	brief for attaching significance to low-frequency cycles. The coherency spectra (Fig. 4A) also has
223	significance at ~54 kyr, which is an obliquity harmonic (Zeeden et al., 2019). Another obliquity harmonic
224	might be represented by a small peak at \sim 28 kyr but it does not achieve the 0.5 (80%) statistical
225	significance. To explore these possible obliquity indications, we conducted spectral coherency analysis of
226	the log(Rb/Sr) timeseries in comparison to the astronomical solution of obliquity (Laskar et al., 2004), the
227	LR04 stack (Lisiecki and Raymo, 2005), and high-latitude (65° N) summer insolation (Laskar et al., 2004).
228	The \sim 28 kyr period is significant only with obliquity, and the \sim 54 kyr period has evident significance with
229	the comparisons of obliquity and high-latitude insolation (Fig. 4B). These results suggest an absence of the
230	main period of obliquity (~41 kyr) within the log(Rb/Sr) timeseries.

232 Spectral analysis of the log(Rb/Sr) time series with EPT indicates significant cross-coherency 233 frequencies of ~ 0.044 (k = 0.84) and 0.055 (k = 0.56) that we correlate with climatic precession cycles of 234 23 and 18 kyr, respectively (Fig. 4A). Precession is an important orbital control on insolation budgets of 235 the tropics (Clement et al., 2004). It determines the timing and position of the seasons within the elliptical 236 path of Earth's orbit (Berger and Loutre, 1997). Most rainfall over the northern West African tropics is 237 derived from summer monsoonal winds that advect Atlantic Ocean moisture to the continent (Nicholson, 238 2018). When precession places the summer solstice at perihelion, a smaller Earth-Sun distance is coupled 239 to summer insolation (Short and Mengel, 1986), resulting in an associated increase of sensible heating of 240 the African landmass that drives the deep tropical convergence of the monsoon (Kutzbach and Liu, 1997). 241 This is thought to result in wetter summer monsoon seasons for North Africa every ~20 kyr (Grant et al., 242 2022; Rossignol-Strick, 1985). 243 244 4. Discussion 245 4.1. Orbital climate forcing of the terrigenous record 246 The presence of an obliquity signal within northern African paleoclimate records of the Quaternary is 247 well documented by studies of marine core sediments near the West African margin (Bloemendal et al., 248 1988; Bloemendal and deMenocal, 1989). Similarly, eastern Mediterranean sapropel-bearing sequences 249 indicate that North African paleoclimate has had an obliquity component that persists back to before the 250 Plio-Pleistocene intensification of Northern Hemisphere glaciation (Lourens et al., 1996). Some research 251 has suggested that the obliquity signal in these records may derive from low latitude insolation budgets 252 rather than glacial forcing (de Boer et al., 2020; Tuenter et al., 2003). Model simulations suggest that 253 obliquity signals in low-latitude paleoclimate records of Africa may be generated by the cross-equatorial 254 insolation gradient (Bosmans et al., 2015) which also has an effect on the intensity of the winter Hadley 255 cells (Mantsis et al., 2014). These winds are notable for VM 30-40 because the winter plumes carried by 256 the northeast trade winds are thought to contribute dust to this marine site (Pokras and Mix, 1985). 257 Obliquity signals within the dust records of marine cores from the West African margin have recently 258 been described as spurious evidence of a high-latitude glacial forcing of the North African monsoon 259 (Skonieczny et al., 2019). African dust studies from marine core records (Adkins et al., 2006; Tisserand et

260	al., 2009) measure the concentrations of terrigenous material relative to carbonate (CaCO ₃). In-situ
261	carbonate dissolution may impart the marine sediment with a glacial-interglacial signal (Bozzano et al.,
262	2002). VM 30-40 isotopic data demonstrate $d^{18}O_{ben}$ enrichment and $d^{13}C_{ben}$ depleted waters for the LGM
263	(Oppo and Fairbanks, 1987; Sarnthein et al., 1994). This may suggest that eastern tropical Atlantic near
264	VM 30-40 was intruded by corrosive deep water at MIS 2 (Skonieczny et al., 2019). However, the results
265	of spectral analyses suggest that few if any of the variations recorded by the log(Rb/Sr) timeseries are
266	attributable to glacial-obliquity forcing (Fig. 4A and B). Farthermore, we conducted spectral coherency
267	analysis of the CaCO ₃ [%] from VM 30-40 using EPT. The results indicate a precession signal at 23 kyr
268	and 18 kyr frequencies, yet the main period of obliquity (~41 kyr) is absent (Fig. 4C).
269	Pokras and Mix's study of VM 30-40 (Pokras and Mix, 1987) interpreted that the lacustrine diatom
270	peaks of the core and thus increased aridity were approximately in phase with spring insolation minima
271	(Appendix Fig. A1). However, instead of correlating the two directly, the authors used a nonlinear
272	diagrammatic model to explain how diatom peaks originated from rapid deflation of dust sources in
273	response to the earliest part of summer insolation minima (Appendix Fig. A1). Our focused analysis of the
274	MIS 5e interval (Fig. 3) suggests that the log(Rb/Sr) values of VM 30-40 are being forcing at least in part
275	by summer insolation, as the largest values rise to the insolation maximum at \sim 127 ka. To explore these
276	patterns, the precession signal was filtered from the entire log(Rb/Sr) timeseries and directly compared
277	against summer (June, July, August) insolation at 23° N and spring (March, April, May) insolation at the
278	equator. We selected these latitudes because of the strong climate effects received from variations in
279	summer and spring insolation (Berger et al., 2006; Prell and Kutzbach, 1987). The log(Rb/Sr) timeseries
280	has a much better phase relationship with spring insolation (Fig. 5A) as compared to summer (Fig. 5B).
281	A spring insolation component to the log(Rb/Sr) timeseries is unexpected given the greatest contrasts
282	of the West African monsoon are at the solstices (Nicholson, 2018). The ITCZ over Africa migrates
283	northward from winter to spring to summer and progressively displaces the northeast trade winds towards
284	subtropical latitudes (Sultan and Janicot, 2003). In autumn, the ITCZ moves south and the trade winds
285	settle over \sim 20-10° N to generate dust plumes that peak in the winter months (Prospero et al., 2002). The
286	VM 30-40 core site of the eastern equatorial Atlantic is thought to receive terrigenous input mostly from
287	the winter dust plumes (Pokras and Mix, 1985). However, it has been shown that significantly large

- amounts of West African dust is transported across the Atlantic during the springtime (Barkley et al., 2019;
- 289 Prospero et al., 1981). March and April deposition of dust in South American originates from fast-traveling
- 290 West African plumes, on the order of days, that are initially carried aloft by the Sahara Air Layer (Prospero
- et al., 2020, 2014). Back trajectories suggest that the dust takes a transatlantic equatorial path emanating
- from low-latitude African sources (Swap et al., 1992) but also from a wider region in West Africa including
- the Sahel and the southern Sahara (Prospero et al., 2020).
- Bozzano et al. (Bozzano et al., 2002) has suggested that efficient dust uplift and injection into the
- troposphere occurs just before the onset of rainy seasons. These authors argued that greater precession
- insolation exacerbates dust mobilization by increasing the storminess and turbulence at the monsoon-trade
- 297 wind front. Possible vernal locations for this to occur is the onset of the April rainy season along the
- 298 Guinean Coast (Janicot et al., 2011) and the beginning of the May rainy season over Sudano–Sahelian areas
- (Sultan and Janicot, 2003).
- 300

301 4.2. Paleoclimate during MIS 5e and HS11

302 Insolation-driven monsoonal simulations coupled to an Al/Si proxy record of terrigenous runoff have 303 provided a high-resolution reconstruction for northern African climate during the last interglacial (Fig. 304 6). These studies reported an abrupt increase in precipitation at 128.4 to 127 ka associated with an interval 305 of wet conditions that lasted until ~124 ka (Menviel et al., 2021). After which, the climate experienced a 306 gradual drying through the later part of MIS 5e. The log(Rb/Sr) values of VM 30-40 generally agree with 307 the interpretation of a wetter climate at 128-124 ka, in addition to progressive drying from 127 to 120 ka 308 (Fig. 6). Significantly different, however, the log(Rb/Sr) timeseries does not reveal the drought-like climate 309 during Heinrich stadial 11 (HS11) (Govin et al., 2014). These very dry conditions terminate at the afore 310 mentioned abrupt increase of precipitation at the end of HS11, with maximum rainfall reached at ~128.4 ka 311 during the early part of MIS 5e (Menviel et al., 2021). Because the abrupt rainfall increase predates the 312 summer insolation maximum by almost 1400 years, it was attributed to Northern Hemisphere deglaciation 313 effects on AMOC that causes ocean-atmosphere feedbacks over northern Africa (Menviel et al., 2021). The 314 log(Rb/Sr) timeseries lacks both the dry conditions and abrupt increase, and instead suggests a progressive

- 315 increase in rainfall end of HS11 to early MIS 5e that appears to follow rising insolation to its maximum at
- 316 ~127 ka (Fig. 6).

317

Figure 5: Paleoclimate conditions through the penultimate deglaciation and the previous interglacial. The log(Rb/Sr) timeseries and summer insolation curve is the same as in Fig. 3 (this study). Model simulations for West Sahara precipitation, middle graph (green data), from Menviel et al. (Menviel et al., 2021). Marine core geologic data showing changes in the Al and Si ratio of subtropical West African core GeoB7925-1 (Govin et al., 2014). Gray shading and dashed box indicate the main phase of Heinrich stadial 11 (HS11).

- To explain the drought-like conditions during HS11, it has been suggested that deglaciation may have
- 319 changed AMOC strength leading to variations in the mean annual position of the ITCZ rainfall (Castaneda
- 320 et al., 2009; Menviel et al., 2021; Mulitza et al., 2008). Weakened AMOC may result in a warmer south
- 321 than north Atlantic Ocean(Chadwick et al., 2020), displacing the ITCZ and trade winds to the south
- 322 (Schneider et al., 2014). Shifting the mean annual position of the ITCZ causes the dust-flux records of
- 323 different marine core sites to vary according to latitude (Jacobel et al., 2016).
- 324 A southward shift of the ITCZ over northern Africa may have had a limited drought effect on low-
- 325 latitude dust sources. Alternatively, northern African sites nearer to 20° N experienced drier conditions
- during HS11 (Govin et al., 2014) as a consequence of the ITCZ being located farther south during the
- 327 summer (Menviel et al., 2021). A spring insolation component to the log(Rb/Sr) timeseries of VM 30-40
- 328 (Fig. 5A) may suggest that some of the terrigenous source areas were in the low latitudes. The monsoon of
- 329 low latitude Africa is most sensitive to insolation forcing during spring and autumn. This is due to the sun
- passing over the equator twice a year at each equinox (Berger and Loutre, 1997). Within the low-latitude
- intertropical zone, two rainy seasons occur in spring and autumn, and the solstices are dry (Verschuren et

333

4.3. Possible implications for the West African MSA

The late Pleistocene witnessed the emergence and dispersal of *Homo sapiens* populations across northern and eastern Africa (Hublin et al., 2017; McDougall et al., 2005; Vidal et al., 2022), as well as

337 genetic divergences at ~80-20 ka across sub-Saharan regions (Lipson et al., 2022). In West Africa, most 338 evidence of late Pleistocene H. sapiens is known from MSA sites from a few well-studied localities in 339 Senegal and Mali. Their assemblages include typical artifacts made by bifacial, retouched, and bipolar 340 percussive techniques (Allsworth-Jones, 2021). Artifact assemblages from earlier part of MIS 5 are some of 341 the oldest MSA from West Africa (Douze et al., 2021). The younger part of the sequence is constrained by 342 OSL to about 75-25 ka, yet several of the dates are considered to be only minimum possible ages (Chevrier 343 et al., 2018). 344 The dissimilarities in the MSA archaeology across western to northern Africa has led some to suggest 345 that a cultural frontier existed between the regions (Chevrier et al., 2018). However, Levallois core 346 reduction is one of the few techniques shared between the West African MSA and lithic assemblages from 347 North Africa and the Sahara (Allsworth-Jones, 2021). During wet/warm phases, Levallois culture may have 348 been transmitted across the frontier, assisted by the expansion of waterways that extended social routes 349 through northern Africa (Drake et al., 2011). 350 Unlike other studies, we do not find a spurious (Skonieczny et al., 2019) or paleoclimatic (deMenocal, 351 2004) obliquity component to the African monsoon. Precession, however, may have been primarily 352 responsible for monsoonal changes that impacted MSA cultures. Of the older assemblages, unidirectional 353 Levallois cores of the Falémé Valley (Douze et al., 2021) were recovered from horizons that formed 354 during wet-warm conditions of MIS 5e and the transition to 5d. Younger archaeological sites constrained to 355 MIS 4 and 3 have Levallois debitage patterns that are correlated to warm/wet intervals (Chevrier et al., 356 2018). Levallois technological characteristics appear to be absent from intervals with low precession-357 derived insolation associated with the dry-cold phases of MIS 5, 4, and 3 (Douze et al., 2021; Rasse et al., 358 2020; Schmid et al., 2021; Hawkins et al., 1996). 359 360 5. Conclusions 361 We constructed a new XRF-measured Rb/Sr record for eastern equatorial Atlantic marine core 362 sediments of VM 30-40 and performed spectral coherency analysis that demonstrated a record of climatic 363 precession carried by terrigenous material. However, the largest Rb/Sr ratios of the entire record were 364 observed at glacial maxima of MIS 6 and 2. We also suggest a correlation between climatic precession

365	cycles and Levallois archaeological patterns. Based on the collected data and interpretations, the main
366	conclusions of the research are summarized as:
367	• The partitioning of Rb- and Sr-bearing terrigenous fractions of the core appears to be free of successive
368	dissolution cycles caused by obliquity-paced glacial modification of Atlantic bottom waters. This is in
369	contrast to West African marine sediment cores from subtropical latitudes (Skonieczny et al., 2019).
370	However, glacial epochs may be responsible for changes of physical versus chemical weathering on
371	the continent that manifest in the Rb/Sr ratios. Anomalously high Rb/Sr values at MIS 6 and 2 may be
372	a product of this differential weather or glacial bottom water dissolution that preferentially attacked Sr-
373	bearing phases.
374	• Over the last ~260 kyr, the filtered precession timeseries from the Rb/Sr record show better phase
375	relationships with spring (March, April, May) insolation at the equator as compared to summer (June,
376	July, August) insolation at the northern subtropics. This is unexpected because the largest convectional
377	changes of the West African monsoon are associated with the summer and winter months. However,
378	modern observations document sizable West African dust plumes that emanate from the low latitudes
379	during March and April. A spring moisture signal in the Rb/Sr timeseries may be indicative of
380	turbulence and storminess that accompanies the pre-onset rainy seasons of the West African monsoon.
381	The spring insolation component to the terrigenous record may also suggest that some of the Rb and Sr
382	sources were situated within the low latitudes, where the monsoonal cycle is most sensitive to
383	insolation changes about the equinoxes.
384	• The Rb/Sr timeseries of early MIS 5e indicates that warm, wet conditions developed in concert with
385	rising insolation and reached a maximum at ~127 ka. Contrastingly, model simulation results and
386	terrigenous proxy data for 20° N (Govin et al., 2014; Menviel et al., 2021) demonstrate a dry HS11
387	followed by an abrupt increase in rainfall that peaks ~ 1.4 kyr before the insolation maximum of MIS
388	5e. These subtropical patterns derived from Northern Hemisphere glacial modification of AMOC that
389	shifted the latitudinal range of the seasonal rainfall belt. We explain the differences by assuming the
390	Rb and Sr had low-latitude source areas that were buffered from AMOC effects because the sources
391	were into the direction of the southward displacement of the ITCZ.

392	•	The precession cycle of isolation was inferred to have modulated moisture change through Middle
393		Stone Age paleoenvironments. Levallois stone artifacts are currently only known from the
394		wetter/warmer phases of the climate cycles through MIS 5, 4 and 3. Because this debitage type is one
395		of the few techniques shared between west and northern Africa, these observations may support
396		previous hypotheses that suggest social networks were enhanced between the regions during times of
397		increased rainfall.
398		
399		
400		
401		
402		
403		
404		
405		
406		
407		
408		
409		
410		
411		
412		
413		
414		
415		
416		
417		
418		
419		

420 Appendix A

422 Fig. A1: (upper panel) Cartoon of Pokras and Mix (Pokras and Mix, 1987) to show how diatom input 423 (Melosira) to the marine realm my predate maximum aridity over a precession cycle of insolation. In time 424 a, lake level is high and diatomite cannot be eroded. In time b, lower lake level and significant erosion 425 occurs, which supplies the marine site with ample diatomite. By time c, diatomite sources have been 426 427 depleted during continued fall in lake level. Smaller areas of sediment are exposed and the formation of soils or crusts on dry lake beds inhibit further aeolian transport despite ongoing aridity. (middle panel) 428 Alignment of the Pokras and Mix (Pokras and Mix, 1987) diatom maximum at ~77 ka to the June solstice 429 insolation minimum center between ~60-83 ka (Laskar et al., 2004). (lower panel) Alignment of the Pokras and Mix (Pokras and Mix, 1987) diatom maximum at ~77 ka to the March equinox insolation minimum 430 431 center between ~66-89 ka (Laskar et al., 2004). Note the insolation scales are inverted. 432

- 434 Sample availability
- 435 VM 30-40 is available for inspection at the Lamont-Doherty Earth Observatory Core Repository 436

437 Supplement link

438 A link to the XRF data used for this study will be provided by Copernicus 439

440 Author contribution

441 The research paper was conceived and written by the primary author. The other authors contributed to the 442 manuscript by reviewing and editing. The primary author conducted the formal analysis and investigations, 443 with respect to the geological and paleoclimatic implications. The secondary and tertiary authors were 444 responsible for the curation and collection of the XRF measurements and the first-order interpretation of

- 444 responsible for the curation and collection of the XRF measurements and the first-order interpretation of 445 these data.
- 446

447 Competing interests

448 The authors declare that they have no conflict of interest

449 450 Acknowledgements

We thank Maureen Raymo and Nichole Anest for access to the Lamont-Doherty Core Repository. Paul
Olsen, Michael Kaplan, and Dallas Abbott helped organize the research cohort from which this work grew.
Funding for this work was contributed by NSF award #1818805 (Lepre) and the NSF REU award #
1757602 (Abbott and Kaplan) to Columbia University.

455 456 **References**

100	iterer energy
457	Adkins, J., deMenocal, P., Eshel, G., 2006. The "African humid period" and the record of marine upwelling
458	from excess ²³⁰ Th in Ocean Drilling Program Hole 658C: Th NORMALIZED FLUXES OFF
459	NORTH AFRICA. Paleoceanography 21. https://doi.org/10.1029/2005PA001200
460	Allsworth-Jones, P., 2021. The West African Stone Age, in: Oxford Research Encyclopedia of
461	Anthropology. Oxford University Press. https://doi.org/10.1093/acrefore/9780190854584.013.55
462	Armitage, S.J., Bristow, C.S., Drake, N.A., 2015. West African monsoon dynamics inferred from abrupt
463	fluctuations of Lake Mega-Chad. Proc Natl Acad Sci USA 112, 8543–8548.
464	https://doi.org/10.1073/pnas.1417655112
465	Balsam, W.L., Otto-Bliesner, B.L., Deaton, B.C., 1995. Modern and Last Glacial Maximum eolian
466	sedimentation patterns in the Atlantic Ocean interpreted from sediment iron oxide content.
467	Paleoceanography 10, 493–507. https://doi.org/10.1029/95PA00421
468	Barkley, A.E., Prospero, J.M., Mahowald, N., Hamilton, D.S., Popendorf, K.J., Oehlert, A.M., Pourmand,
469	A., Gatineau, A., Panechou-Pulcherie, K., Blackwelder, P., Gaston, C.J., 2019. African biomass
470	burning is a substantial source of phosphorus deposition to the Amazon, Tropical Atlantic Ocean,
471	and Southern Ocean. Proc Natl Acad Sci USA 116, 16216–16221.
472	https://doi.org/10.1073/pnas.1906091116
473	Berger, A., Loutre, M.F., 1997. Intertropical Latitudes and Precessional and Half-Precessional Cycles.
474	Science 278, 1476–1478. https://doi.org/10.1126/science.278.5342.1476
475	Berger, A., Loutre, M.F., Mélice, J.L., 2006. Equatorial insolation: from precession harmonics to
476	eccentricity frequencies. Clim. Past 7.
477	Berner, N., Trauth, M.H., Holschneider, M., 2022. Bayesian inference about Plio-Pleistocene climate
478	transitions in Africa. Quaternary Science Reviews 277, 107287.
479	https://doi.org/10.1016/j.quascirev.2021.107287
480	Blanchet, C.L., Osborne, A.H., Tjallingii, R., Ehrmann, W., Friedrich, T., Timmermann, A., Brückmann,
481	W., Frank, M., 2021. Drivers of river reactivation in North Africa during the last glacial cycle.
482	Nat. Geosci. 14, 97–103. https://doi.org/10.1038/s41561-020-00671-3
483	Bloemendal, J., deMenocal, P., 1989. Evidence for a change in the periodicity of tropical climate cycles at
484	2.4 Myr from whole-core magnetic susceptibility measurements. Nature 342, 897–900.
485	https://doi.org/10.1038/342897a0
486	Bloemendal, J., Lamb, B., King, J., 1988. Paleoenvironmental implications of rock-magnetic properties of
487	Late Quaternary sediment cores from the eastern equatorial Atlantic. Paleoceanography 3, 61–87.
488	https://doi.org/10.1029/PA003i001p00061

489	Blum, J.D., Erel, I.Y., Brown, K., 1994. 878r/S6Srratios of Sierra Nevada stream waters: Implications for
490	relative mineral weathering rates 7.
491	Blum, J.D., Erel, Y., 1997. Rb Sr isotope systematics of a granitic soil chronosequence: The importance of
492	biotite weathering. Geochimica et Cosmochimica Acta 61, 3193–3204.
493	https://doi.org/10.1016/S0016-7037(97)00148-8
494	Bosmans, J.H.C., Hilgen, F.J., Tuenter, E., Lourens, L.J., 2015. Obliquity forcing of low-latitude climate.
495	Clim. Past 11, 1335–1346. https://doi.org/10.5194/cp-11-1335-2015
496	Bozzano, G., Kuhlmann, H., Alonso, B., 2002. Storminess control over African dust input to the Moroccan
497	Atlantic margin (NW Africa) at the time of maxima boreal summer insolation: a record of the last
498	220 kyr. Palaeogeography, Palaeoclimatology, Palaeoecology 183, 155–168.
499	https://doi.org/10.1016/S0031-0182(01)00466-7
500	Bradtmiller, L.I., Anderson, R.F., Fleisher, M.O., Burckle, L.H., 2007, Opal burial in the equatorial
501	Atlantic Ocean over the last 30 ka: Implications for glacial-interglacial changes in the ocean
502	silicon cycle: EQUATORIAL ATLANTIC OPAL BURIAL, Paleoceanography 22, n/a-n/a
503	https://doi.org/10.1029/2007PA001443
504	Castaneda I.S. Mulitza S. Schefuss F. Lones dos Santos R.A. Sinninghe Damste I.S. Schouten S.
505	2000 Wet phases in the Sahara/Sahel region and human migration patterns in North Africa
505	Proceedings of the National Academy of Sciences 106 20150 20163
507	https://doi.org/10.1073/page.0005771106
508	Chadwing M. Allon C.S. Sima L.C. Hillanbrand C.D. 2020 Analysing the timing of neak warming
500	chadwick, M., Anen, C.S., Sine, E.C., finiteholatid, CD., 2020. Analysing the thing of peak warming and minimum within and ice automic in the Southarn Ocean during MIS 50. Outomory Science
509	Bayisma 220, 106124, https://doi.org/10.1016/j.space.spar.2010.106124
510	Reviews 229, 100134, https://doi.org/10.1010/j.duascirev.2019.100134
511	Chen, J., An, Z., Head, J., 1999. Variation of Ro/Sr Ratios in the Loess-Pateosol Sequences of Central
512	China during the Last 130,000 Years and Their Implications for Monsoon Paleoclimatology. Quat.
513	res. 51, 215–219. https://doi.org/10.1006/qres.1999.2038
514	Chevrier, B., Huysecom, E., Soriano, S., Rasse, M., Lespez, L., Lebrun, B., Tribolo, C., 2018. Between
515	continuity and discontinuity: An overview of the West African Paleolithic over the last 200,000
516	years. Quaternary International 466, 3–22. https://doi.org/10.1016/j.quaint.2017.11.027
51/	Clement, A.C., Hall, A., Broccoli, A.J., 2004. The importance of precessional signals in the tropical
518	climate. Climate Dynamics 22, 327–341. https://doi.org/10.1007/s00382-003-0375-8
519	Cole, J.M., Goldstein, S.L., deMenocal, P.B., Hemming, S.R., Grousset, F.E., 2009. Contrasting
520	compositions of Saharan dust in the eastern Atlantic Ocean during the last deglaciation and
521	African Humid Period. Earth and Planetary Science Letters 278, 257–266.
522	https://doi.org/10.1016/j.epsl.2008.12.011
523	de Boer, B., Peters, M., Lourens, L.J., 2020. The transient impact of the African monsoon on Plio-
524	Pleistocene Mediterranean sediments (preprint). Feedback and Forcing/Marine
525	Archives/Pleistocene. https://doi.org/10.5194/cp-2020-97
526	de Menocal, P.B., 2015. End of the African Humid Period. Nature Geosci 8, 86–87.
527	https://doi.org/10.1038/ngeo2355
528	deMenocal, P.B., 2004. African climate change and faunal evolution during the Pliocene–Pleistocene.
529	Earth and Planetary Science Letters 220, 3–24. https://doi.org/10.1016/S0012-821X(04)00003-2
530	deMenocal, P.B., Ruddiman, W.F., Pokras, E.M., 1993. Influences of High- and Low-Latitude Processes
531	on African Terrestrial Climate: Pleistocene Eolian Records from Equatorial Atlantic Ocean
532	Drilling Program Site 663. Paleoceanography 8, 209–242. https://doi.org/10.1029/93PA02688
533	Douze, K., Lespez, L., Rasse, M., Tribolo, C., Garnier, A., Lebrun, B., Mercier, N., Ndiave, M., Chevrier,
534	B., Huysecom, E., 2021. A West African Middle Stone Age site dated to the beginning of MIS 5:
535	Archaeology, chronology, and paleoenvironment of the Ravin Blanc I (eastern Senegal). Journal
536	of Human Evolution 154, 102952, https://doi.org/10.1016/j.jhevol.2021.102952
537	Drake, N.A., Blench, R.M., Armitage, S.J., Bristow, C.S., White, K.H., 2011, Ancient watercourses and
538	biogeography of the Sahara explain the peopling of the desert. Proceedings of the National
539	Academy of Sciences 108, 458–462, https://doi.org/10.1073/nnas.1012231108
540	Duport L. 2011. Orbital scale vegetation change in Africa. Quaternary Science Reviews 30, 3589–3602
541	https://doi.org/10.1016/j.massirev.2011.09.019

542 543

https://doi.org/10.1016/j.quascirev.2011.09.019
 Formenti, P., Caquineau, S., Chevaillier, S., Klaver, A., Desboeufs, K., Rajot, J.L., Belin, S., Briois, V., 2014. Dominance of goethite over hematite in iron oxides of mineral dust from Western Africa:

544	Quantitative partitioning by X-ray absorption spectroscopy. J. Geophys. Res. Atmos. 119, 12,740-
545	12,754. https://doi.org/10.1002/2014JD021668
546	Gasse, F., 2000. Hydrological changes in the African tropics since the Last Glacial Maximum. Quaternary
547	Science Reviews 19, 189–211. https://doi.org/10.1016/S0277-3791(99)00061-X
548	Govin, A., Capron, E., Tzedakis, P.C., Verhevden, S., Ghaleb, B., Hillaire-Marcel, C., St-Onge, G., Stoner,
549	J.S., Bassinot, F., Bazin, L., Blunier, T., Combourieu-Nebout, N., El Quahabi, A., Genty, D.,
550	Gersonde, R., Jimenez-Amat, P., Landais, A., Martrat, B., Masson-Delmotte, V., Parrenin, F.,
551	Seidenkrantz M -S. Veres D. Waelbrock C. Zahn B. 2015 Sequence of events from the
552	onset to the demise of the Last Interclacial. Evaluating strengths and limitations of chronologies
553	used in climatic archives. Outernary Science Reviews 129, 1–36
554	https://doi.org/10.1016/j.guacciney.2015.00.018
554	Covin A. Vormes V. Drages M. 2014. Actronomically forged variations in voctors: A fricon minfull
555	Govin, A., valna, v., Frange, M., 2014. Astronomican voice variations in western African raiman
550	(21°N-20°S) during the Last interglacial period: Govin et al.: Last interglacial Arrican
55/	precipitation. Geophys. Res. Lett. 41, 211/–2125. https://doi.org/10.1002/2013GL058999
558	Grant, K.M., Amarathunga, U., Amies, J.D., Hu, P., Qian, Y., Penny, T., Rodriguez-Sanz, L., Zhao, X.,
559	Heslop, D., Liebrand, D., Hennekam, R., Westerhold, T., Gilmore, S., Lourens, L.J., Roberts,
560	A.P., Rohling, E.J., 2022. Organic carbon burial in Mediterranean sapropels intensified during
561	Green Sahara Periods since 3.2 Myr ago. Commun Earth Environ 3, 11.
562	https://doi.org/10.1038/s43247-021-00339-9
563	Heinrich, H., Schmidt, C., Ziemen, F., Mikolajewicz, U., Roettig, CB., 2021. Massive deposition of
564	Sahelian dust on the Canary Island Lanzarote during North Atlantic Heinrich Events. Quat. res. 1–
565	16. https://doi.org/10.1017/qua.2020.100
566	Hemming, S.R., 2007. Terrigenous Sediments, in: Encyclopedia of Ouaternary Science. Elsevier, Oxford,
567	UK, pp. 1776–1785.
568	Hodell, D., Lourens, L., Crowhurst, S., Koniinendiik, T., Tiallingii, R., Jiménez-Espeio, F., Skinner, L.,
569	Tzedakis PC Abrantes F Acton G D Alvarez Zarikian C A Bahr A Balestra B
570	Barrance, F.L. Carrara, G. Ducassou, F. Flood, R.D. Flores, L.A. Furota, S. Grimalt, I.
571	Grunert, P. Hermandez, Molina I. Kim, I.K. Krissek, I.A. Kuroda I. Li, B. Lofi I. Margari
572	V Martrat B Miller MD Nanyama F Nichida N Richter C Bodrigues T Rodriguez-
572	Taylor E L Dogia A C E Sanchaz Golf M E Siaro Sánchaz E L Singh A D Slose C D
574	Stay, D A V Talashinizi V Tanaya A Valler A Van C Williams T 2015 A
575	Slow, D.A. V., Lakasiminzu, L., Lzanova, A., Vocikel, A., Auai, C., Winianis, L., 2015. A
575	Pleastery Charge 122, 40, 64 Marsulla ing 10, 1016, a leader 2015 07, 002
570	Finite and the second s
5//	Hoogniemstra, H., Lezine, AM., Leroy, S.A.G., Dupont, L., Marret, F., 2006. Late Quaternary palynology
5/8	in marine sediments: A synthesis of the understanding of pollen distribution patterns in the NW
5/9	African setting. Quaternary International 148, 29–44. https://doi.org/10.1016/j.quaint.2005.11.005
580	Hublin, JJ., Ben-Ncer, A., Bailey, S.E., Freidline, S.E., Neubauer, S., Skinner, M.M., Bergmann, I., Le
581	Cabec, A., Benazzi, S., Harvati, K., Gunz, P., 2017. New fossils from Jebel Irhoud, Morocco and
582	the pan-African origin of Homo sapiens. Nature 546, 289–292.
583	https://doi.org/10.1038/nature22336
584	Imbrie et al., J., 1984. The orbital theory of Pleistocene climate: support from a revised chronology of the
585	marine δ 180 record.
586	Jacobel, A.W., McManus, J.F., Anderson, R.F., Winckler, G., 2016. Large deglacial shifts of the Pacific
587	Intertropical Convergence Zone. Nat Commun 7, 10449. https://doi.org/10.1038/ncomms10449
588	Janicot, S., Lafore, JP., Thorncroft, C., 2011. THE WEST AFRICAN MONSOON 25.
589	Janzen, A., Bataille, C., Copeland, S.R., Ouinn, R.L., Ambrose, S.H., Reed, D., Hamilton, M., Grimes, V.,
590	Richards, M.P., le Roux, P., Roberts, P., 2020, Spatial variation in bioavailable strontium isotope
591	ratios (87Sr/86Sr) in Kenva and northern Tanzania: Implications for ecology, naleoanthronology
592	and archaeology. Palaeogenerathy. Palaeoclimatology. Palaeocology. 100957
592	https://doi.org/10.1016/j.palaeo.2002.100957
594	levell A M Drake N Crocker A I Bakker N Kunkelova T Bristow C S Cooper M I Milton
595	LA Breaze DS Wilson DA 2021 Three North African dust source areas and their
596	apphanial finanzariat Earth and Dipatary Spinoal Laters 554 11665
590	geochemical inigerprint. Earli and raneary Science Letters 534, 110043.

597 https://doi.org/10.1016/j.epsl.2020.116645

598	Jung, S.J.A., Davies, G.R., Ganssen, G.M., Kroon, D., 2004. Stepwise Holocene aridification in NE Africa
599	deduced from dust-borne radiogenic isotope records. Earth and Planetary Science Letters 221, 27-
600	37. https://doi.org/10.1016/S0012-821X(04)00095-0
601	Kaboth-Bahr, S., Gosling, W.D., Vogelsang, R., Bahr, A., Scerri, E.M.L., Asrat, A., Cohen, A.S., Düsing,
602	W., Foerster, V., Lamb, H.F., Maslin, M.A., Roberts, H.M., Schäbitz, F., Trauth, M.H., 2021.
603	Paleo-ENSO influence on African environments and early modern humans. Proc Natl Acad Sci
604	USA 118, e2018277118. https://doi.org/10.1073/pnas.2018277118
605	Kelly, E.F., Chadwick, O.A., Hilinski, T.E., 1998. The effect of plants on mineral weathering.
606	Biogeochemistry 42, 21–53.
607	Kim, SJ., Crowley, T.J., Erickson, D.J., Govindasamy, B., Duffy, P.B., Lee, B.Y., 2008. High-resolution
608	climate simulation of the last glacial maximum. Clim Dyn 31, 1–16.
609	https://doi.org/10.1007/s00382-007-0332-z
610	Koch, P.L., Halliday, A.N., Walter, L.M., Stearley, R.F., Huston, T.J., Smith, G.R., 1992. Sr isotopic
611	composition of hydroxyapatite from recent and fossil salmon: the record of lifetime migration and
612	diagenesis. Earth and Planetary Science Letters 108, 277–287. https://doi.org/10.1016/0012-
613	821X(92)90028-T
614	Kukla, G.J., Bender, M.L., de Beaulieu, JL., Bond, G., Broecker, W.S., Cleveringa, P., Gavin, J.E.,
615	Herbert, T.D., Imbrie, J., Jouzel, J., Keigwin, L.D., Knudsen, KL., McManus, J.F., Merkt, J.,
616	Muhs, D.R., Müller, H., Poore, R.Z., Porter, S.C., Seret, G., Shackleton, N.J., Turner, C.,
617	Tzedakis, P.C., Winograd, I.J., 2002. Last Interglacial Climates. Quat. res. 58, 2-13.
618	https://doi.org/10.1006/gres.2001.2316
619	Kutzbach, J.E., Liu, Z., 1997. Response of the African Monsoon to Orbital Forcing and Ocean Feedbacks
620	in the Middle Holocene. Science 278, 440–443. https://doi.org/10.1126/science.278.5337.440
621	Laskar, J., Robutel, P., Joutel, F., Gastineau, M., Correia, A.C.M., Levrard, B., 2004. A long-term
622	numerical solution for the insolation quantities of the Earth. Astronomy & Astrophysics 428, 261-
623	285. https://doi.org/10.1051/0004-6361:20041335
624	Lepre, C.J., Quinn, R.L., 2022. Aridification and orbital forcing of eastern African climate during the Plio-
625	Pleistocene. Global and Planetary Change 208, 103684.
626	https://doi.org/10.1016/j.gloplacha.2021.103684
627	Leroy, S., Dupont, L., 1994. Development of vegetation and continental aridity in northwestern Africa
628	during the Late Pliocene: the pollen record of ODP site 658. Palaeogeography, Palaeoclimatology,
629	Palaeoecology 109, 295–316. https://doi.org/10.1016/0031-0182(94)90181-3
630	Lespez, L., Rasse, M., Drézen, Y.L., Tribolo, C., Huysecom, E., Ballouche, A., 2008. L'évolution
631	hydromorphologique de la vallée du Yamé (Pays Dogon, Mali) : signal climatique et
632	hydrosystème continental en Afrique de l'Ouest entre 50 et 4 ka cal. BP. geomorphologie 14, 170-
633	185. https://doi.org/10.4000/geomorphologie.7053
634	Lézine, AM., Casanova, J., 1991. Correlated oceanic and continental records demonstrate past climate and
635	hydrology of North Africa (0-140 ka). Geol 19, 307. https://doi.org/10.1130/0091-
636	7613(1991)019<0307:COACRD>2.3.CO;2
637	Lipson, M., Sawchuk, E.A., Thompson, J.C., Oppenheimer, J., Tryon, C.A., Ranhorn, K.L., de Luna, K.M.,
638	Sirak, K.A., Olalde, I., Ambrose, S.H., Arthur, J.W., Arthur, K.J.W., Ayodo, G., Bertacchi, A.,
639	Cerezo-Román, J.I., Culleton, B.J., Curtis, M.C., Davis, J., Gidna, A.O., Hanson, A., Kaliba, P.,
640	Katongo, M., Kwekason, A., Laird, M.F., Lewis, J., Mabulla, A.Z.P., Mapemba, F., Morris, A.,
641	Mudenda, G., Mwafulirwa, R., Mwangomba, D., Ndiema, E., Ogola, C., Schilt, F., Willoughby,
642	P.R., Wright, D.K., Zipkin, A., Pinhasi, R., Kennett, D.J., Manthi, F.K., Rohland, N., Patterson,
643	N., Reich, D., Prendergast, M.E., 2022. Ancient DNA and deep population structure in sub-
644	Saharan African foragers. Nature. https://doi.org/10.1038/s41586-022-04430-9
645	Lisiecki, L.E., Raymo, M.E., 2005. A Pliocene-Pleistocene stack of 57 globally distributed benthic δ^{16} O
646	records: PLIOCENE-PLEISTOCENE BENTHIC STACK. Paleoceanography 20, n/a-n/a.
64/	https://doi.org/10.1029/2004PA001071
048	Lourens, L.J., Antonarakou, A., Hilgen, F.J., Van Hoof, A.A.M., Vergnaud-Grazzini, C., Zachariasse, W.J.,
649 (F0	1996. Evaluation of the Plio-Pleistocene astronomical timescale. Paleoceanography 11, 391–413.
050	https://doi.org/10.1029/96PA01125
051	Mabbutt, J.A., 19//. Desert landforms. Australian National University Press, Canberra.

652	Maher, B.A., Prospero, J.M., Mackie, D., Gaiero, D., Hesse, P.P., Balkanski, Y., 2010. Global connections
653	between aeolian dust, climate and ocean biogeochemistry at the present day and at the last glacial
654	maximum. Earth-Science Reviews 99, 61–97. https://doi.org/10.1016/j.earscirev.2009.12.001
655	McDougall, I., Brown, F.H., Fleagle, J.G., 2005. Stratigraphic placement and age of modern humans from
656	Kibish, Ethiopia. Nature 433, 733–736. https://doi.org/10.1038/nature03258
657	McGee, D., deMenocal, P.B., Winckler, G., Stuut, J.B.W., Bradtmiller, L.I., 2013. The magnitude, timing
658	and abruptness of changes in North African dust deposition over the last 20,000yr. Earth and
659	Planetary Science Letters 371–372, 163–176. https://doi.org/10.1016/j.epsl.2013.03.054
660	McIntyre, A., Ruddiman, W.F., Karlin, K., Mix, A.C., 1989. Surface water response of the equatorial
661	Atlantic Ocean to orbital forcing. Paleoceanography 4, 19–55.
662	https://doi.org/10.1029/PA004i001p00019
663	Menviel, L., Govin, A., Avenas, A., Meissner, K.J., Grant, K.M., Tzedakis, P.C., 2021. Drivers of the
664	evolution and amplitude of African Humid Periods. Commun Earth Environ 2, 237.
665	https://doi.org/10.1038/s43247-021-00309-1
666	Moreno, A., Targarona, J., Henderiks, J., Canals, M., Freudenthal, T., Meggers, H., 2001. Orbital forcing of
667	dust supply to the North Canary Basin over the last 250kyr. Quaternary Science Reviews 20,
668	1327–1339. https://doi.org/10.1016/S0277-3791(00)00184-0
669	Moreno, T., Ouerol, X., Castillo, S., Alastuey, A., Cuevas, E., Herrmann, L., Mounkaila, M., Elvira, J.,
670	Gibbons, W., 2006. Geochemical variations in acolian mineral particles from the Sahara–Sahel
671	Dust Corridor. Chemosphere 65, 261–270. https://doi.org/10.1016/j.chemosphere.2006.02.052
672	Moskowitz, B.M., Revnolds, R.L., Goldstein, H.L., Berquó, T.S., Kokaly, R.F., Bristow, C.S., 2016. Iron
673	oxide minerals in dust-source sediments from the Bodélé Depression, Chad: Implications for
674	radiative properties and Fe bioavailability of dust plumes from the Sahara. Aeolian Research 22.
675	93–106. https://doi.org/10.1016/j.acolia.2016.07.001
676	Mulitza, S., Heslop, D., Pittauerova, D., Fischer, H.W., Meyer, I., Stuut, JB., Zabel, M., Mollenhauer, G.,
677	Collins, J.A., Kuhnert, H., Schulz, M., 2010. Increase in African dust flux at the onset of
678	commercial agriculture in the Sahel region. Nature 466, 226–228.
679	https://doi.org/10.1038/nature09213
680	Mulitza, S., Prange, M., Stuut, JB., Zabel, M., von Dobeneck, T., Itambi, A.C., Nizou, J., Schulz, M.,
681	Wefer, G., 2008, Sahel megadroughts triggered by glacial slowdowns of Atlantic meridional
682	overturning: SAHEL DROUGHT AND ATLANTIC OVERTURNING, Paleoceanography 23,
683	n/a-n/a, https://doi.org/10.1029/2008PA001637
684	Nicholson, S.E., 2018, Climate of the Sahel and West Africa, in: Oxford Research Encyclopedia of Climate
685	Science, Oxford University Press, https://doi.org/10.1093/acrefore/9780190228620.013.510
686	Oldfield, F., Chiverrell, R.C., Lvons, R., Williams, E., Shen, Z., Bristow, C., Bloemendal, J., Torrent, J.,
687	Boyle, J.F., 2014. Discriminating dusts and dusts sources using magnetic properties and
688	hematite:Goethite ratios of surface materials and dust from North Africa, the Atlantic and
689	Barbados, Aeolian Research 13, 91–104, https://doi.org/10.1016/i.aeolia.2014.03.010
690	Oppo, D.W., Fairbanks, R.G., 1987. Variability in the deep and intermediate water circulation of the
691	Atlantic Ocean during the past 25.000 years: Northern Hemisphere modulation of the Southern
692	Ocean 15.
693	Palchan, D., Torfstein, A., 2019. A drop in Sahara dust fluxes records the northern limits of the African
694	Humid Period. Nat Commun 10, 3803. https://doi.org/10.1038/s41467-019-11701-z
695	Pokras, E.M., 1987, Diatom record of Late Ouaternary climatic change in the eastern equatorial Atlantic
696	and tropical Africa. Paleoceanography 2, 273–286. https://doi.org/10.1029/PA002i003p00273
697	Pokras, E.M., Mix, A.C., 1987. Earth's precession cycle and Quaternary climatic change in tropical Africa.
698	Nature 326, 486–487. https://doi.org/10.1038/326486a0
699	Pokras, E.M., Mix, A.C., 1985. Eolian Evidence for Spatial Variability of Late Quaternary Climates in
700	Tropical Africa. Quat. res. 24, 137–149. https://doi.org/10.1016/0033-5894(85)90001-8
701	Prell, W.L., Kutzbach, J.E., 1987. Monsoon variability over the past 150,000 years. Journal of Geophysical
702	Research 92 8411 https://doi.org/10.1029/ID092iD07p08411
703	$Research y_2, 0+11. https://doi.org/10.1029/JD0921D0/p00+11$
105	Prospero, J.M., Barkley, A.E., Gaston, C.J., Gatineau, A., Campos y Sansano, A., Panechou, K., 2020.
703	Prospero, J.M., Barkley, A.E., Gaston, C.J., Gatineau, A., Campos y Sansano, A., Panechou, K., 2020. Characterizing and Quantifying African Dust Transport and Deposition to South America:
703 704 705	Prospero, J.M., Barkley, A.E., Gaston, C.J., Gatineau, A., Campos y Sansano, A., Panechou, K., 2020. Characterizing and Quantifying African Dust Transport and Deposition to South America: Implications for the Phosphorus Budget in the Amazon Basin. Global Biogeochemical Cycles 34.

707	Prospera I.M. Collard F. Y. Molinić I. Jaannot A. 2014 Characterizing the annual avala of African
708	Hospero, J.M., Contact, TA., Monne, J., Jeanhot, A., 2014. Characterizing the annual cycle of Anitean dust transport to the Caribbean Basin and South America and its impact on the environment and
700	air guilter African dust transport to South America, Global Biogeochem, Cycles 28, 757, 773
705	https://doi.org/10.1002/2013GB004802
711	Prospect IM Gingury P. Torres O. Nicholson S.E. Gill T.F. 2002 ENVIRONMENTAL
712	CHARACTERIZATION OF GLOBAL SOURCES OF ATMOSPHERIC SOIL DUST
713	IDENTIFIED WITH THE NIMBUS 7 TOTAL OZONE MAPPING SPECTROMETER (TOMS)
714	ABSORBING AEROSOL PRODUCT: GLOBAL SOURCES OF ATMOSPHERIC SOIL DUST
715	Rev. Geophys. 40. 2-1-2–31. https://doi.org/10.1029/2000BG000095
716	Prospero, J.M., Glacum, R.A., Nees, R.T., 1981. Atmospheric transport of soil dust from Africa to South
717	America. Nature 289, 570–572. https://doi.org/10.1038/289570a0
718	Rasse, M., Lespez, L., Lebrun, B., Tribolo, C., Chevrier, B., Douze, K., Garnier, A., Davidoux, S., Hadias,
719	I., Ollier, C., Camara, A., Ndiaye, M., Huysecom, E., 2020. Synthèse morpho-sédimentaire et
720	occurences archéologiques dans la vallée de la Falémé (de 80 à 5 ka ; Sénégal oriental) : mise en
721	évidence d'une permanence des occupations à la transition Pléistocène-Holocène. quaternaire 71-
722	88. https://doi.org/10.4000/quaternaire.13181
723	Rossignol-Strick, M., 1985. Mediterranean Quaternary sapropels, an immediate response of the African
724	monsoon to variation of insolation. Palaeogeography, Palaeoclimatology, Palaeoecology 49, 237-
725	263. https://doi.org/10.1016/0031-0182(85)90056-2
726	Rowland, G.H., Robinson, L.F., Hendry, K.R., Ng, H.C., McGee, D., McManus, J.F., 2021. The Spatial
727	Distribution of Aeolian Dust and Terrigenous Fluxes in the Tropical Atlantic Ocean Since the Last
728	Glacial Maximum. Paleoceanogr Paleoclimatol 36. https://doi.org/10.1029/2020PA004148
729	Sarnthein, M., Winn, K., Jung, S.J.A., Duplessy, JC., Labeyrie, L., Erlenkeuser, H., Ganssen, G., 1994.
730	Changes in East Atlantic Deepwater Circulation over the last 30,000 years: Eight time slice
731	reconstructions. Paleoceanography 9, 209–267. https://doi.org/10.1029/93PA03301
732	Scheuvens, D., Schütz, L., Kandler, K., Ebert, M., Weinbruch, S., 2013. Bulk composition of northern
/33	African dust and its source sediments — A compilation. Earth-Science Reviews 116, 170–194.
/34 725	https://doi.org/10.1016/j.earscirev.2012.08.005
735	Schmid, V.C., Douze, K., Iribolo, C., Martinez, M.L., Rasse, M., Lespez, L., Lebrun, B., Herisson, D.,
/30	Ndiaye, M., Huysecom, E., 2021. Middle Stone Age Bilacial Technology and Pressure Flaking at
/3/ 720	https://doi.org/10.1007/s0427.021.00462.5
730	https://doi.org/10.100///s1045/-021-09405-5
739	Schneider, L., Bischoll, L., Hadg, G.H., 2014. Migrations and dynamics of the interfutorical convergence
740	Zoher Nature 515, 45–55. https://doi.org/10.1056/nature15050
742	Geomorphology 95 412–428 https://doi.org/10.1016/j.geomorph.2007.07.002
743	Shanahan T.M. McKay, N.P. Hughen K.A. Overneck, I.T. Otto-Bliesner, B. Heil, C.W. King, I.
744	Scholz CA Peck I 2015 The time-transversive termination of the African Humid Period
745	Nature Geosci 8 40–144. https://doi.org/10.1038/ngeo2329
746	Short, D.A., Menzel, J.G., 1986. Tropical climatic phase lass and Earth's precession cycle. Nature 323, 48–
747	50. https://doi.org/10.1038/323048a0
748	Skonieczny, C., McGee, D., Winckler, G., Bory, A., Bradtmiller, L.I., Kinsley, C.W., Polissar, P.J., De Pol-
749	Holz, R., Rossignol, L., Malaizé, B., 2019. Monsoon-driven Saharan dust variability over the past
750	240,000 years. Sci. Adv. 5, eaav1887. https://doi.org/10.1126/sciadv.aav1887
751	Stuut, JB., 2005. Provenance of present-day eolian dust collected off NW Africa. J. Geophys. Res. 110,
752	D04202. https://doi.org/10.1029/2004JD005161
753	Sultan, B., Janicot, S., 2003. The West African Monsoon Dynamics. Part II: The "Preonset" and "Onset" of
754	the Summer Monsoon. J. Climate 16, 3407–3427. https://doi.org/10.1175/1520-
755	0442(2003)016<3407:TWAMDP>2.0.CO;2
756	Swap, R., Garstang, M., Greco, S., Talbot, R., Kallberg, P., 1992. Saharan dust in the Amazon Basin.
757	Tellus B 44, 133–149. https://doi.org/10.1034/j.1600-0889.1992.t01-1-00005.x
/58	Tiedemann, R., Sarnthein, M., Shackleton, N.J., 1994. Astronomic timescale for the Pliocene Atlantic δ^{18}
/59	O and dust flux records of Ocean Drilling Program Site 659. Paleoceanography 9, 619–638.
/00 761	nttps://doi.org/10.1029/94PA00208
/01 760	i isserand, A., ivialaize, B., Jullien, E., Zaragosi, S., Charlier, K., Grousset, F., 2009. African monsoon
/02	ennancement during the penultimate glacial period (MIS 6.5 \sim 1/0 ka) and its atmospheric

763	impact: GLACIAL AFRICAN MONSOON AND ITCZ. Paleoceanography 24, n/a-n/a.
764 765	https://doi.org/10.10/29/2008PA001630
765	Iraum, M.H., Asral, A., Berner, N., Biol, F., Foerster, V., Grove, M., Kaboth-Banr, S., Masim, M.A., Mudalesa, M., Sakibitz, E. 2021. Northern Humisphere Glassitican African alimetet and human
767	Mudersee, M., Schaoliz, F., 2021. Normern Hennisphere Graciation, African eminate and numan
768	bittes://doi.org/10.1016/j.ungegiray.2021.107095
769	Trauth M H J arrange I C Mudelsee M 2000 Trands that have and events in Plic Plaistocene
770	African climate Outdernary Science Paviaws 28, 300, 411
771	https://doi.org/10.1016/j.ungscirgy.2008.11.003
772	Tuenter F. Weber ST. Hilden F. L. Jourens I. L. 2003. The response of the African summer monsoon
773	to remote and local forcing due to precession and obliquity. Global and Planetary Change 36, 219_
774	235 https://doi.org/10.1016/S0021.28181(02)00196-0
775	van der Lubbe H II. Hall IR. Barker S. Hemming S.R. Baars T.F. Starr A. Just I. Backeberg
776	BC Loordens ICA 2021 Indo-Pacific Walker circulation drove Pleistocene A frican
777	aridification Nature 508 618-623 https://doi.org/10.1038/e41586-021-03896-3
778	Verardo D I. Mcintyre A. 1994. Production and destruction: Control of biogenous sedimentation in the
779	tronical Atlantic 0, 300 000 years B.P. Paleoceanorranhy 9, 63–86
780	Verschuren D. Sinninghe Damsté, I.S. Moernaut, Kristen I. Blaauw M. Fagot, M. Haug, G.H.
781	CHALLACEA project members, 2009. Half-precessional dynamics of monsoon rainfall near the
782	East African Equator, Nature 462, 637–641, https://doi.org/10.1038/nature08520
783	Vidal, C.M., Lane, C.S., Asrat, A., Barfod, D.N., Mark, D.F., Tomlinson, E.L., Tadesse, A.Z., Yirgu, G.,
784	Deino, A., Hutchison, W., Mounier, A., Oppenheimer, C., 2022, Age of the oldest known Homo
785	sapiens from eastern Africa. Nature 601, 579–583. https://doi.org/10.1038/s41586-021-04275-8
786	Washington, R., Todd, M.C., Engelstaedter, S., Mbainavel, S., Mitchell, F., 2006. Dust and the low-level
787	circulation over the Bodélé Depression, Chad: Observations from BoDEx 2005. J. Geophys. Res.
788	111, D03201. https://doi.org/10.1029/2005JD006502
789	Weltje, G.J., Tjallingii, R., 2008. Calibration of XRF core scanners for quantitative geochemical logging of
790	sediment cores: Theory and application. Earth and Planetary Science Letters 274, 423-438.
791	https://doi.org/10.1016/j.epsl.2008.07.054
792	White, A.F., Bullen, T.D., Schulz, M.S., Blum, A.E., Huntington, T.G., Peters, N.E., 2001. Differential
793	rates of feldspar weathering in granitic regoliths. Geochimica et Cosmochimica Acta 65, 847–869.
794	https://doi.org/10.1016/S0016-7037(00)00577-9
795	Yuan, T., Yu, H., Chin, M., Remer, L.A., McGee, D., Evan, A., 2020. Anthropogenic Decline of African
796	Dust: Insights From the Holocene Records and Beyond. Geophys. Res. Lett. 47.
797	https://doi.org/10.1029/2020GL089711
798	Zeeden, C., Meyers, S.R., Hilgen, F.J., Lourens, L.J., Laskar, J., 2019. Time scale evaluation and the
799	quantification of obliquity forcing. Quaternary Science Reviews 209, 100-113.
800	https://doi.org/10.1016/j.quascirev.2019.01.018
801	