

1	Multiple Proxy Estimates of <i>p</i> CO ₂ in the Hauterivian–Barremian of the Laiyang Basin,
2	Eastern China
3	Peihong Jin ^{1,2} , Mingzheng Zhang ^{1,*} , Xiangtong Lei ³ , Baoxia Du ^{2,4} , Junling Dong ⁵ , Bainian Sun ^{2,3}
4	¹ Key Laboratory of Petroleum Resources, Northwest Institute of Eco-Environment and Resources,
5	Chinese Academy of Sciences, Gansu Province, Lanzhou 730000, China
6	² State Key Laboratory of Paleobiology and Stratigraphy, Nanjing Institute of Geology and
7	Paleontology, CAS, Nanjing 210008, China
8	³ Yunnan Key Laboratory for Palaeobiology, Institute of Palaeontology, Yunnan University,
9	Yunnan Province, Kunming 650000, China
10	⁴ School of Earth Science, Lanzhou University and Key Laboratory of Mineral Resources in
11	Western China (Gansu Province), Lanzhou 730000, China
12	⁵ State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Institute of Sedimentar
13	y Geology, Chengdu University of Technology, Chengdu 610059, China
14	* Corresponding author.
15	E-mail address: zhangmzh08@lzb.ac.cn (M. Z. Zhang)

16

17 Abstract: In recent decades, several proxies have been developed to reconstruct atmospheric paleo- CO_2 concentrations (p CO_2). The confidence in paleo- CO_2 estimates can be increased by 18 comparing results from multiple proxies with multiple species at a single site. Here we present a 19 20 new pCO_2 record for the Hauterivian–Barremian using three methods based on two fossil coniferous species (Cupressinocladus sp. and Brachyphyllum obtusum) collected from Laiyang 21 Basin, eastern China. The pCO2 values were approximately 579-663 ppmv (recent standardization) 22 and 966-1106 ppmv (carboniferous standardization) based on the stomatal ratio (SR)-based 23 method, and about 472-525 ppmv based on the mechanistic model. Both of these two methods 24 were highly coincident with other SR-based and geochemical reconstructions for the early stage of 25 the Early Cretaceous. The pCO_2 value estimated using the carbon isotopes model was 26 approximately 472–525 ppmv, which is generally lower than the pCO_2 valueestimated using the 27 other methods. The mechanistic model may be widely applied to more fossil taxa than the SR-28 based method and retains sensitivity at high pCO2. Furthermore, by comparing with other pCO2 29 30 records and Weissert event in the Early Cretaceous, the pCO_2 values obtained from this study 31 indicate a relatively low atmospheric CO₂ concentration during the Hauterivian-Barremian, and reflect the cooling event in the last stage of the Weissert event. 32

33

34 Keywords: Hauterivian–Barremian, Cuticle, Stomatal ratio, Mechanistic model, Carbon isotope
35 model, Weissert event

36

37 1. Introduction

The Early Cretaceous was a critical period for the globe to enter a typical greenhouse climate period in geological history. During this period, major changes occurred in the marine and terrestrial environment, a large number of rift basins were formed, large igneous provinces and oceanic anoxic event (OAE) frequently occurred, and the global climate fluctuated between arid and humid climates (Skelton et al., 2003; Föllmi, 2012; Jenkyns, 2010). These events have greatly affected the development and evolution of marine and terrestrial organisms (Skelton et al., 2003; Föllmi, 2012; Jenkyns, 2010).

Atmospheric CO₂ is one of the most important greenhouse gases and it is considered to be a
major factor in global warming (Boucot and Gray, 2001; Royer, 2006; Fletcher et al., 2008; Wang

47 et al., 2014). Fluctuations in atmospheric CO_2 concentrations have a significant impact on the 48 carbonate saturation state in the oceans and the weathering rate of the continental surface, further 49 leading to the mass extinctions of marine and terrestrial species (Li et al., 2019). As a result, a 50 more complete understanding of atmospheric paleo-CO₂ concentration (pCO_2) variations during 51 the Early Cretaceous could potentially provide us with a good reference for reconstructing the past 52 climate environment and predicting the response of climate to future elevated atmospheric CO_2 53 levels.

54 In addition to early long-term atmospheric carbon cycle models (such as GEOCARB, GEOCARB II, GEOCARB III, GEOCARBSULF and COPSE), several proxies have been 55 developed to reconstruct pCO_2 in recent decades, including stable carbon isotopes of paleosols, 56 boron isotope pH derived from marine carbonate microfossils and marine alkenones, stable carbon 57 58 isotopes of fossil liverworts, and stomatal parameters from terrestrial vascular plant fossils (Mcelwain and Chaloner, 1995; Pearson and Palmer, 2000; Beerling et al., 2001; Beerling and 59 60 Royer, 2002a, 2002b; Retallack, 2005; Fletcher et al., 2005; Wang et al., 2014). Among these methods, the fossil plant stomatal ratio (SR)-based method has been widely used in CO₂ estimates 61 reconstruction from Paleozoic to Cenozoic. In recent years, an increasing number of mathematical 62 63 models for pCO_2 reconstruction have been proposed and widely used, such as the mechanistic CO_2 model proposed by Franks (2014) (Konrad et al., 2008; Franks et al., 2014; Konrad et al., 2017). 64 65 The advantage of this mechanism model is that it can be used to estimate the paleo-CO₂ in any period from the Devonian to the present, and it is considered to be more sensitive at high pCO_2 66 (Franks et al., 2014; Royer et al., 2019). Furthermore, with the continuous updating of the 67 methods, increasing attention has been given to the error analysis, and the requirements for the 68 69 pCO_2 reconstruction accuracy are also increasing. The pCO_2 estimates based on multiple species are generally thought to be more effective than the pCO_2 estimates based on single species to 70 reduce the range of error (Reichgelt and D'Andrea, 2019). 71

In this study, we selected the well-preserved leaves of *Brachyphyllum* and *Cupressinocladus* from the Lower Cretaceous of the Laiyang Basin, and used three methods: the *SR*-based method, mechanistic model and carbon-isotope model, to reconstruct the pCO_2 during the Hauterivian– Barremian (Early Cretaceous). Moreover, a greater insight into the relationship between the pCO_2 concentration and the Weissert event during the Early Cretaceous is discussed.

77 2. Material and methods

78 2.1. Geological and stratigraphical settings

79 The Laiyang Basin refers to the Mesozoic depression in the Laiyang area of Shandong 80 Province, and this Mesozoic depression is located on the north side of the Sulu orogenic belt and the east of the North China Craton (Luo et al., 1990; Li and Zhang, 2000; Jin et al., 2018; Fig. 1A, 81 B). The Cretaceous strata from this basin are well-developed, continuously exposed and complete 82 and contain abundant and various fossil categories (Luo et al., 1990; Li and Zhang, 2000; Jin et al., 83 2018). This area is one of the most desirable areas for studying the geologic evolution of Asia in 84 the Cretaceous (Luo et al., 1990; Li and Zhang, 2000). The Laiyang Basin developed mainly the 85 Lower Cretaceous Laiyang Formation, the Qingshan Formation, and the Upper Cretaceous 86 Wangshi Formation, which do not conform to the underlying strata of the Proterozoic Jingshan 87 Group, the Archean Jiaodong Group or the overlying strata of Paleogene (Luo et al., 1990; Fig. 1A, 88 B). According to the various lithological characteristics, sedimentary cycles and fossil beds, the 89 90 Laiyang Formation is divided into four members (Luo et al., 1990). The third member is the main fossiliferous layer of the Laiyang Formation. The total thickness of this member is 181 to 472 91 metres, and most of the area is approximately 400 m, which is composed mainly of shale and 92 93 sandstone and contains small amounts of carbonate sediments (Fig. 1C). Current fossils have also 94 been collected from this member in the Huangyadi-Beibozi profile (Fig. 1C).

96 Fig. 1. A) Location of the fossil site and the tectonic units of the Laiyang Basin; B) Stratigraphic
97 section of the Early Cretaceous Laiyang Formation, Laiyang Basin and the fossil-bearing horizon.
98

99 Various paleoentomologists have conducted detailed studies on the geological age of the 100 Laiyang Formation (Luo et al., 1990; Lin, 1995; Hong, 1998; Ren and Hong, 1998; Zhang, 2003; Grimaldi and Engel, 2005; Zhang and Rasnitsyn, 2006). Now the point of view that the Laiyang 101 102 Formation belongs to the Early Cretaceous has been accepted by most researchers (Chen et al., 103 1980; Luo et al., 1983). The significant SHRIMP U-Pb age shown by the tuff in the basal 104 conglomerates of the Laiyang Group confirms that the age of the Laiyang Group is in the range of 105 120-149 Ma (Early Cretaceous) (Zhang et al., 2018). According to the ⁴⁰Ar/³⁹Ar age of 106 hornblende and the U-Pb dating of zircons by many researchers, the maximum deposition age of 107 the Laiyang Formation is approximately 130 Ma in the Hauterivian-Barremian (the early stage of 108 the Early Cretaceous) (Ling et al., 2007; Zhang et al., 2008; Xie et al., 2012; Huo et al., 2015; 109 O'Reilly et al., 2015). Therefore, the Laiyang Formation belongs to the Early Cretaceous, and the 110 stratigraphic position of the current fossils is assigned to the Hauterivian-Barremian.

111 2.2. Fossil materials and living relatives

112 2.2.1 Description of the fossil species

113	In our study, two fossil species from two plant families were recorded in the Laiyang
114	Formation in the Laiyang Basin: Brachyphyllum obtusum Chow et Tsao (family Cheirolepidiaceae)
115	and Cupressinocladus sp. (family Cupressaceae). Brachyphyllum obtusum is characterized by
116	incomplete twigs up to 3-4 mm wide with spirally disposed scale-like leaves (Fig. 2F-I). Leaves
117	are adpressed and imbricate, broad rhomboidal in face view, approximately 2.5-2.7 mm wide and
118	2-3.4 mm long (Fig. 2F-I). The leaf margin is entire, and the apex is relatively obtuse, with a
119	mucro at the top. A single midvein is prominent on the abaxial leaf surface. The leaf cuticles are
120	amphistomatic (Fig. 2F-I). The abaxial cuticle is very thick, and the stomata are arranged in
121	longitudinal rows all over the surface (Fig. 3F-I). Each row is separated by 5-10 abaxial epidermal
122	cells. Ordinary epidermal cells are rectangular or irregular polygonal, with strongly thickened and
123	straight anticlinal walls and well-developed papillae. Stomatal complexes are rounded or narrowly
124	rounded in outline, haplocheilic and monocyclic. The guard cells are sunken and generally
125	surrounded by 4-6 subsidiary cells that form a ring. The epidermal cells and stomata of the adaxial
126	cuticle are similar to those of the abaxial cuticle.

127

- 129 Cretaceous of the Laiyang Basin. A-E, Cupressinocladus sp. (Specimen No: A, LDGSW-2016-
- 130 508A; B, LDGSW-2016-1401; C, LDGSW-2015-501A; D, LDGSW-2016-462A; E, LDGSW-
- 131 2015–907); F-I, Brachyphyllum obtusum (Specimen No: F, LDGSW-2015–154A; B, LDGSW-
- 132 2015–159B; C, LDGSW–2015–162A; D, LDGSW–2015–178A).

133

134 Fig. 3. Cuticular structures of Cupressinocladus and Brachyphyllum from the Lower Cretaceous

135 of the Laiyang Basin. A, B, Abaxial cuticle of Cupressinocladus sp. under stereomicroscope

136 showing epidermal cells and stomata; scale bar 100 µm; C, The detail of stomatal showing guard

137 and subsidiary cells of Cupressinocladus sp. abaxial cuticle; scale bar 50 µm; D-F, Abaxial leaf

138 cuticle of Cupressinocladus sp. under fluorescence microscope showing epidermal cells and

139 stomata; scale bar 200 μ m; G, H, Adaxial cuticle of Cupressinocladus sp. under SEM showing

140 epidermal cells and stomata; scale bar 200 µm; I, The detail of stomatal under SEM showing

- 141 guard and subsidiary cells of Cupressinocladus sp. adaxial cuticle; scale bar 50 µm; J, K, Abaxial
- 142 cuticle of *Brachyphyllum obtusum* under stereomicroscope showing epidermal cells and stomata;
- 143 scale bar 100 µm; I, The detail of stomatal under stereomicroscope showing guard and subsidiary
- 144 cells of Brachyphyllum obtusum abaxial cuticle; scale bar 50 µm; M–O, Adaxial cuticle of
- 145 Brachyphyllum obtusum under stereomicroscope showing epidermal cells and stomata; M, Scale
- 146 bar 200 $\mu m;$ N, O, Scale bar 100 $\mu m.$
- 147

Cupressinocladus sp. preserved as last-second or last-third leafy twigs. The leaves on 148 149 ultimate leafy shoots are sessile, decussate and imbricate arranged. The base of the leaves is decurrent and partly concealed by the leaves of the lower pair. The lateral leaves are conduplicate 150 151 and oval, with the entire margin and obtuse apical tip, approximately 1.7-2.5 mm long and 0.8-1.2 152 mm wide in the exposed part. The facial leaves are rhombic at the exposed part, without keels, appressed to the shoot axis. The leaves on last-third leafy shoots are ovate to broadly lanceolate, 153 approximately 2.3-5.2 mm long and 1-1.4 mm wide. The leaf cuticles are amphistomatic. The 154 155 stomata on the adaxial cuticle are arranged in longitudinal rows all over the surface. Each row is 156 separated by 4-6 epidermal cells, and a small number of stomata are irregularly distributed. The epidermal cells between the two bands are rectangular, with straight anticlinal walls and well-157 158 developed papillae, approximately 65-89 µm long and 27-41 µm wide. The epidermal cells in 159 rows are short rectangular or irregular polygonal with papillae. Stomatal complexes are rounded or 160 elliptic, haplocheilic, monocyclic. The guard cells are sunken and generally surrounded by 5-6 subsidiary cells with papillae. The abaxial cuticle epidermal cells and stomata are similar to those 161 162 of the adaxial cuticle.

163

164 2.2.2. Selection of nearest living equivalents (NLEs)

165 Numerous studies have already discussed the nearest living equivalent species (NLEs) of 166 Brachyphyllum (Cheirolepidiaceae), the most common of which are Athrotaxis cupressoides (9.0 \pm 1.5), Tetraclinis articulate (11.7 \pm 1.1), Calocedrus decurrens (9.9 \pm 1.4), Callitris columnaris 167 (8.9 ± 1.6) , and Callitris rhomboidea (8.2 ± 1.4) as NLEs of Brachyphyllum to restore the pCO₂ 168 during the Cretaceous period (McElwain and Chaloner, 1996; Haworth et al. 2005; Haworth et al., 169 170 2010). Hence, we also selected these five species as NLEs of B. obtusum, and took their average value of 9.5 ± 1.4 as the stomatal index (SI) of NLEs of B. obtusum. 171 172 Many leafy-shoots assignable to the Cupressinocladus have been reported from the Mesozoic strata in Europe and Asia (Florin, 1958, 1963; Harris, 1969; Miller, 1977; Shi et al., 2011; Jin et 173

 $\mathbf{x}_{\mathbf{r}} = \mathbf{x}_{\mathbf{r}} + \mathbf{x}_{\mathbf{r}} +$

174 al., 2017). These leafy shoots resemble in external appearance the leafy shoots of extant

175 Cupressaceae, but as far as their leaf-cuticle is concerned, many of the leafy shoots belong to the

176 extinct family Cheirolepidiaceae, such as Cupressinocladus obatae and Cupressinocladus ramonensis (OKUBO and KIMURA, 1991; Srinivasan, 1995). The external appearances of the 177 present species Cupressinocladus sp. is very similar to the external appearances of Cupressaceae, 178 179 whereas the stomata are distributed all over the surface of the leaves, and the leaves do not form 180 stomatal bands. Such stomatal distribution has also has been seen in the Cheirolepidiaceae 181 conifers. In addition, two adjacent stomata often share a single subsidiary cell in cupressaceous 182 conifers, but such characteristics have has not been observed in the present species C. sp. and other cheirolepidiaceous conifers (except in Pseudofrenelopsis parceramosa, Glenrosa 183 184 pagiophylloides, Glenrosa texensis, Glenrosa falcate and Glenrosa virginiensis) (Watson, 1977; 185 Watson and Fisher, 1984; Srinivasan, 1992; Gomez et al., 2012). To date, as far as the cuticular features mentioned above are concerned, the present species more resembles to Cheirolepidiacea. 186 Based on the similarities of ecology and morphology, the extant Athrotaxis cupressoides, 187 Tetraclinis articulate, Calocedrus decurrens, Callitris columnaris, Callitris rhomboidea and 188 189 Salicornia virginica have been selected as the NLEs of the extinct Cheirolepidiaceae conifers by numerous researchers (McElwain and Chaloner, 1996; Haworth et al. 2005; Haworth et al., 2010). 190 191 Among these conifers, Tetraclinis articulate, Calocedrus decurrens, Callitris columnaris, Callitris rhomboidea also belong to Cupressaceae, and the external appearance of these four speciesis are 192 193 similar to the external appearance of the present leafy-shoots. Therefore, we select these four 194 species as NLEs of C. sp., and take their average value 9.7 ± 1.5 as the SI of NLEs of C. sp..

195

196 2.3. Proxy models and methods

197 2.3.1 SR-based method

198 McElwain and Chaloner (1995) proposed the SR-based method and the conception of "the 199 nearest living equivalent (NLE)". NLE refers to the living species that share similar 200 ecoenvironments and functional structures with fossil plants (McElwain, 1998; Chen et al., 2001). NLE is applied mainly in the comparison of the stomatal parameters between living and fossil 201 202 plants and then to reconstruct the pCO_2 semiquantitatively (McElwain, 1998; Chen et al., 2001). Four parameters need to be calculated when using SR-based method in pCO_2 reconstruction: 203 204 stomatal density (SD), epidermal density (ED), SI and SR, and detailed descriptions of all the parameters and equations involved are listed in Table 1. This method was standardized by 205 McElwain and Chaloner (1996) and McElwain (1998) with two standardizations: carboniferous 206 standardization (1SR=2RCO₂) and recent standardization (1SR=1.2RCO₂). Carboniferous 207 208 standardization has been found to be most appropriate for pCO_2 reconstruction based on the 209 Paleozoic and Mesozoic taxa, whereas recent standardization is more applicable to the pCO_2

- 210 reconstruction of Cenozoic taxa (Steinthorsdottir et al., 2011; Steinthorsdottir et al., 2013;
- 211 Steinthorsdottir and Vajda, 2015). Here, we used both standardizations to obtain the minimum and
- 212 maximum paleo-CO2 estimates. The relation between pCO2 and stomatal parameters can be
- 213 expressed by the equation pCO_2 (ppmv) =*SR*×300.

Parameter	Unit	Description							
SD	mm ⁻²	Stomatal density, the number of stomata in unit area (mm ²)							
ED	mm ⁻²	Epidermal density, the number of epidermic cells in unit area (mm ²)							
SI	%	Stomatal index, the percentage of stomata to the total number of stomata							
		and epidermal cells, SI=SD/(SD+ED)×100							
SR	-	Stomatal ratio, the stomata index ratio between the NLEs and fossil							
		species, SR=SI _{NLEs} /SI _{fossil}							
SI _{NLEs}	%	The stomatal index of the NLEs							
SI _{fossil}	%	The stomatal index of the fossil species							
RCO_2	-	The ratio of the paleo-CO2 concentration over the pre-industrial							
		revolution level (approximately 300 ppmv)							

214 Table 1 Parameters required by the SR-based method.

215

216

217

218 2.3.2 The mechanistic model

219 Recently, the mechanistic model based on leaf gas exchange has been widely applied to obtain the pCO_2 during the Mesozoic and Paleozoic (Konrad et al., 2008; Franks et al., 2013; 220 Franks et al., 2014; Konrad et al., 2017; Du et al., 2018; Li et al., 2019; Zhou et al., 2020). The 221 222 precondition of mechanistic model is to assume that the exchange conditions and forms of gases in 223 the photosynthesis of the ancient forest are the same as those of the living forest (Franks et al. 2014). The change in paleoatmospheric CO₂ concentration (C_a) would influence the diffusion rate 224 225 of the CO₂ from the atmosphere to the fixation part (stomata) in the leaf (Franks et al. 2014). In turn, the diffusion rate influences the CO₂ assimilation rate (A_n) in organisms (Franks et al. 2014). 226 This mechanistic model estimates the concentration of atmospheric CO₂ by iteratively solving the 227 228 equations (1)–(7) in Fig.4 based on three parameters, including A_n (the assimilation rate of plant leaves towards CO₂, which can be calculated by estimating A_0 , $g_{c(tot)}$ (the total operational 229 conductance to CO₂ diffusion) and C_i/C_a (the ratio of leaf internal CO₂ concentration to C_a) 230 (Farquhar et al., 1980; Farquhar et al., 1982; Farquhar et al., 1989; Franks et al., 2009; Franks et al. 231 232 2013; Franks et al. 2014).

- 234 Fig. 4. The main equation and procedures of the mechanistic model based on Franks et al. (2014).
- 235 All parameters and their description are listed on Table 2.
- 236

237 **Table 2** Parameters required by the mechanistic model based on Franks et al. (2014)

Parameter	Unit	Description
Ci	mol m ⁻³	Leaf internal CO ₂
C_a	ppmv(mol m ⁻³)	Atmospheric CO ₂
A_n	μ mol m ⁻² s ⁻¹	The CO ₂ assimilation rate
$g_{c(tot)}$	mol m ⁻² s ⁻¹	The total operational conductance to CO ₂ diffusion
~	$m_{0}1 m^{-2} q^{-1}$	Leaf boundary layer conductance to CO2, 2.0 mol $m^{-2}\ s^{-1}$
g _{cb}	mor m - s -	(Collate et al., 1991)
$g_{c(op)}$	mol m ⁻² s ⁻¹	Operational stomatal conductance
a	$m_{0}1 m^{-2} c^{-1}$	The mesophyll conductance, derived from Epron et al. 1995,
g_m	mor m - s -	Evans and Von Caemmerer, 1996
$g_{c(max)}$	mol m ⁻² s ⁻¹	The Maximum of $g_{c(op)}$ (When the stomata opening is the largest)
<i>y</i> -		The ratio of operational stomatal conductance to maximum
ç	—	stomatal conductance, 0.2 (Franks et al., 2009)
a_{max}	m ²	Maximum area of stomatal pore for maximally open stoma
l	μm	Stomatal pore depth
р	μm	Stomatal pore length
d/v	$mol m^{-1} c^{-1}$	The ratio of diffusivity of CO ₂ in air to molar volume of air,
u/ v	mor m s	$9.40096 \times 10^{-5} \mbox{ mol }m^{-1} \mbox{ s}^{-1}$ (Franks and Beerling, 2009)
SD	mm ⁻²	Stomatal density
0		Maximum pore area/area of circle with diameter, 0.5 (Franks et
ρ	-	al., 2014)
sl3C	0/	Carbon isotope composition of fossil leaves, measurements on
0 ¹³ C _{leaf}	700	fossil leaves
$\delta^{I3}C_{air}$	‰	Carbon isotope composition of palaeoatmosphere
Δ_{leaf}	‰	The carbon isotope discrimination by the plant
	0/	The carbon isotope fractionation due to diffusion of CO ₂ in air,
а	700	4.4‰ (Von Caemmerer, 2000)

Ь	‰	The fractionation associated with RuBP carboxylase, 30% (Von					
		Caemmerer, 2000)					
4.	$1 \text{ mol } \text{m}^{-2} \text{ s}^{-1}$	Reference CO_2 assimilation rate at ambient, 10µmol m ⁻² s ⁻¹					
A_0	µmor m s	(Franks et al. 2014)					
C	nnmy	Assigned to correspond approximately with A_0 , 360 ppmv					
C_{a0}	ppinv	(Franks et al., 2014)					
<i>Г</i> *	umol mol-l	CO_2 compensation point in the absence of dark respiration, 40					
1	μποι ποι	μmol mol ⁻¹ (25°C) (Franks et al., 2014)					

238

239

 A_n can be obtained by equation (2), which is derived from an expression for Ru-BP 240 241 regeneration-limited photosynthesis (Farquhar et al., 1980). In this equation, A_0 and C_{a0} are the reference values of A_n and C_a of the four groups under general environmental conditions. The 242 plants analysed in this paper all belong to the conifer group. Therefore, A_0 and C_{a0} take values of 243 10 μ mol m⁻²s⁻¹ and 360 ppmv respectively (Franks et al. 2014). $g_{c(tot)}$ is composed of three main 244 components: g_{cb} (2 mol⁻¹s⁻¹), $g_{c(max)}$ and g_m . For trees that grow naturally under external conditions, 245 the ζ value is usually approximately 0.2. Equation (4) is the standard form for $g_{c(tot)}$ of 246 247 hypostomatous leaves (Franks et al. 2014). For amphistomatous leaves the term $((1/g_{cb}) +$ 248 $(1/\zeta g_{c(max)})^{-1}$ must be calculated separately for the adaxial and abaxial leaf surfaces ($g_{c(max)}$ adaxial 249 and $g_{c(max)}$ abaxial are the maximum stomatal conductance to CO₂ of the adaxial and abaxial leaf surfaces, respectively), added together in parallel, and then added in series with gm to obtain gc(tot) 250 (equation (5); Franks et al. 2014; Fig.4). $g_{c(max)}$ is obtained by basic diffusion equations (6) by 251 252 measuring l (stomatal pore depth) and SD (stomatal density) of the fossil plant. a_{max} determines the 253 length of the stomatal pore (p): $a_{max} = \beta(\pi p^2/4)$, in which the β values of pteridophytes and gymnosperms are usually 0.5 (Franks et al., 2014). C_{l}/C_{a} can be obtained by measuring the relative 254 carbon isotope composition of the fossil leaves ($\delta^{I3}C_{leaf}$) (see equations (3) and (7)). In equation 255 (7), Δ_{leaf} (‰) can be obtained by the analysis of $\delta^{I3}C_{\text{leaf}}$ and translation of $\delta^{I3}C_{\text{air}}$, both of which 256 257 were introduced later in this study.

This model has been described and discussed in detail by Franks et al. (2014). Thus, only a brief introduction is presented here, and detailed descriptions of all the parameters involved are listed in Table 2. The calculation of *Ca* (pCO_2) and other variables was performed by the R program, which was provided by Franks et al. (2014).

262

263 2.3.3 Carbon isotope model

Carbon isotopes of plant fossils are relevant tools for describing past carbon cycle and CO₂ dynamics (Schubert and Jahren, 2012; Franks et al., 2014; Barral et al., 2017b; Barral et al., 266 2017a). Atmospheric CO_2 is the main source of carbon assimilated by plants via photosynthesis

267 (Barral et al., 2017a). These theories make it possible to use the carbon isotope composition of 268 plant fossils to analyse the evolution of atmospheric pCO_2 during past periods. Schubert and 269 Jahren (2012) established a carbon isotope model (equation (8), r=0.9) relating pCO_2 to $\delta^{I3}C_{leaf}$ to 270 reconstruct the pCO_2 concentration.

271

272
$$\Delta^{13}C_{leaf} = \frac{(28.26)(0.22)(pCO_2 + 23.9)}{28.26 + (0.22)(pCO_2 + 23.9)}$$
(8)

273 $\Delta^{I3}C_{leaf}$ values (carbon isotope fractionation by plants) were estimated from $\delta^{I3}C_{leaf}$ and 274 concomitant $\delta^{I3}C_{CO2}$ values by using equation (9) (Farquhar et al., 1982).

275
$$\Delta^{13}C_{leaf} = \frac{\delta^{3}C_{co_2} - \delta^{3}C_{leaf}}{1 + \delta^{13}C_{leaf}/1000}$$
(9)

276 Where $\delta^{I3}C_{leaf}$ is the carbon isotope composition of leaves of fossil plants and $\delta^{I3}C_{CO2}$ is the 277 carbon isotope composition of atmospheric CO₂ during the geological period (Farquhar et al., 278 1982). The $\delta^{I3}C_{CO2}$ during the Hauterivian–Barremian is taken as an average value of -5.78‰ in 279 this paper, which is based on the $\delta^{I3}C_{CO2}$ reconstructed by Barral et al (2017a) from the carbon 280 isotope value of marine carbonate.

281

282 2.3.4. Fossil cuticle proxy measurements

283 The fossil cuticles were removed from rock using tweezers and a needle and then immersed 284 in a 10% hydrochloric acid (HCl) solution for 24 h. After being washed a few times with distilled water, the cuticle samples were immersed in a 50% hydrofluoric acid (HF) solution for 24 h and 285 then treated with Schulze solution for a few minutes to hours until the cuticle turned yellow and 286 287 translucent. The abaxial and adaxial cuticles were separated using a needle under a dissection microscope. The isolated cuticles were washed with distilled water and gently brushed several 288 times until the cuticle was clean. Some cuticle samples were mounted on slides, embedded in 289 glycerin jelly, and sealed with Canadian balsam. The cuticle slides were observed under a Zeiss 290 291 AXO-40 microscope, and some cuticle samples were mounted on stubs, coated with gold and 292 examined under an SEM (scanning electron microscope, JEOL JSM-5600LV) at Lanzhou 293 University, China.

We used 16 cuticle samples of *Cupressinocladus* sp. and 14 cuticle samples of *B. obtusum* (120 samples in total) for paleo-CO₂ analysis. All cuticle parameters (e.g. stomatal density, stomatal index, stomatal/pore length, stomatal width) were counted within 0.09 mm₂ squares, and Photoshop CS8 software was used for at least 5 counts for each specimen. All leaf-level measurements and paleo-CO₂ estimates are presented Table 3–5. For each proxy method, 95% confidence intervals for estimated CO₂ were determined using 10,000 Monte Carlo simulations

300 (Table 3–5, Fig. 6) to propagate uncertainties in all input parameters.

301 The carbon stable isotopes were measured at Key Laboratory of Petroleum Resources, 302 Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences (Lanzhou, China). The fossil leaf samples were removed and treated with 10% HCl for 24 h and then washed 303 304 multiple times with distilled water until neutral. Next the fossil leaf samples were treated with 50% 305 HF for 24 h and rinsed again. Finally, the fossil leaf samples were dried in a drying oven at 40 °C for 24 h, and their $\delta^{I3}C_{leaf}$ was measured with a Flash 2000 HT Elemental Analyser connected to a 306 307 Thermo Fisher MAT-253 mass spectrometer. The fossil leaf samples were normalized to the Pee Dee Belemnite (PDB) standard with an analysis precision of ±0.3‰, using IAEA-600 caffeine as 308 a certified reference material. The carbon isotopic composition of atmospheric CO₂ ($\delta^{I3}C_{air}$) 309 (which was used in the Franks' model) is obtained by $\delta^{I3}C_{leaf}$ from the equation $\delta^{I3}C_{air} = (\delta^{I3}C_{leaf})$ 310 + 18.67) /1.10 (Arens et al., 2000). 311

312

313 4. Results and Discussion

314 4.1. Results and comparison across methods

315 The pCO_2 in the Laiyang Basin during the Hauterivian–Barremian was reconstructed by two 316 fossil coniferous species (Cupressinocladus sp. and Brachyphyllum obtusum) based on the SR method, mechanistic model and carbon isotope model. Using the SR-based method, the SI and SR 317 values of our fossil specimens were measured and calculated, and the estimated pCO2 results were 318 in the range of 579 to 663 ppmv based on recent standardization and between 966 and 1106 ppmv 319 320 based on carboniferous standardization (Table 3; Fig. 5A). Using the mechanistic model, the mean results of pCO_2 ranged from 472 to 525 ppmv, which is lower than the estimated results based on 321 322 the SR-based method (Table 4; Fig. 5A). The carbon isotope model contributed the lowest value of 323 pCO₂, which ranged from 202 to 409 ppmv (Table 5; Fig. 5A).

Taxon	Specimen	ED	SD	SI	SR	Carbo	niferous	Recent	
	number	(mm ⁻²)	(mm ⁻	(%)		standa	rdization	standard	ization
			2)			RCO	pCO_2	RCO ₂	pCO_2
						2	(ppmv)		(ppmv)
Cupressino	LDGSW-	1619.6	94.6	5.5	1.8	3.5	1054.4	2.1	632.7
cladus sp.	2016–508A	1418.9	77.0	5.1	1.9	3.8	1131.3	2.3	678.8
		1598.7	86.6	5.1	1.9	3.8	1132.7	2.3	679.6
		1591.8	86.4	5.1	1.9	3.8	1130.3	2.3	678.2
	LDGSW-	1316.2	65.0	4.7	2.1	4.1	1236.8	2.5	742.1
	2016–462A	1211.5	68.4	5.3	1.8	3.6	1088.7	2.2	653.2
		1871.2	96.0	4.9	2.0	4.0	1193.1	2.4	715.9
	LDGSW-	2515.0	124.3	4.7	2.1	4.1	1235.6	2.5	741.4
	2016-1401	2477.4	126.6	4.9	2.0	4.0	1196.7	2.4	718.0
		2384.2	118.6	4.7	2.0	4.1	1228.3	2.5	737.0
		2019.0	110.9	5.2	1.9	3.7	1117.4	2.2	670.5
	LDGSW-	1613.7	92.8	5.4	1.8	3.6	1070.4	2.1	642.2
	2015–487A								
	LDGSW-	1213.5	85.6	6.6	1.5	2.9	883.0	1.8	529.8
	2015-501A								
	LDGSW-	1009.1	59.8	5.6	1.7	3.5	1040.3	2.1	624.2
	2015-907	1114.5	76.4	6.4	1.5	3.0	907.3	1.8	544.4
		1978.2	116.6	5.6	1.7	3.5	1045.2	2.1	627.1
	Average	1684.5	92.9	$5.3\pm$	$1.8\pm$	$3.7\pm$	1105.7	$2.2 \pm 0.$	663.4
	value	±216.0	± 9.5	0.2	0.1	0.2	±47.4	1	± 28.4
Brachyphyll	LDGSW-	1878.8	112.7	5.7	1.7	3.4	1007.0	2.0	604.2
um obtusum	2016–162A	1847.8	105.6	5.4	1.8	3.5	1054.5	2.1	632.7
	LDGSW-	1414.6	79.2	5.3	1.8	3.6	1074.9	2.1	644.9
	2016-385	1991.3	111.9	5.3	1.8	3.6	1071.1	2.1	642.7
	LDGSW-	2564.6	131.5	4.9	1.9	3.9	1168.5	2.3	701.1
	2016–154A	1927.7	132.5	6.4	1.5	3.0	886.1	1.8	531.7
		1891.7	122.3	6.1	1.6	3.1	938.7	1.9	563.2
	LDGSW-	1467.2	111.3	7.1	1.3	2.7	808.4	1.6	485.0
	2015-143	1991.3	111.9	5.3	1.8	3.6	1071.1	2.1	642.7
	LDGSW-	1663.9	103.7	5.9	1.6	3.2	971.6	1.9	583.0
	2016–178A	1548.0	139.3	8.3	1.2	2.3	690.3	1.4	414.2
		1772.7	119.8	6.3	1.5	3.0	900.6	1.8	540.4
	LDGSW-	2098.6	118.5	5.3	1.8	3.6	1066.2	2.1	639.7
	2016–159B								
	Average	1823.2	115.1	$6.0\pm$	1.6±	$3.2\pm$	965.5±	1.9±0.	579.3
	value	± 102.3	±4.9	0.3	0.1	0.1	44.5	1	±26.7

324	Table 3	Stomatal parameters	s of Brachyphyllum	and	Cupressinocladus	from	Laiyang	Basin
325	during Hau	terivian-Barremian, a	nd estimated pCO_2 v	alues	based on the SR-b	ased r	nethod.	

Table 4 Stomatal data and carbon isotope data of *Brachyphyllum* and *Cupressinocladus* from 328 Laiyang Basin, and estimated pCO_2 value based on the mechanistic model. SN=specimen number;

 $l_ad=l_adaxial$ (µm); $el_ad=el_adaxial$ (µm); $p_ad=p_adaxial$ (µm); $ep_ad=ep_adaxial$ (µm);

- $l_ab=l_abaxial$ (µm); $el_ab=el_abaxial$ (µm); $p_ab=p_abaxial$ (µm); $ep_ab=ep_abaxial$ (µm);
- $\delta = \delta^{13}C$ (‰); $\delta_a = \delta^{13}C_{air}$ (‰); SD (mm⁻²); a_{max} (m²); $G = g_{c(max)}$ (mol m⁻² s⁻¹); G1ab= $g_{c(op)}$ _abaxial

552 (morm 5), 62 ζ (morm 5), 6 C (C), m (unorm 5), 1 $Cu / p = 0$ ($p = 0$	332	$(mol m^{-2} s^{-1}); G2=g_{c(tot)}$	$(mol m^{-2} s^{-1});$	$C = C_i/C_a; A_n \text{ (umol})$	$m^{-2} s^{-1}$; P=Ca	pCO_2 (ppmv)
--	-----	--------------------------------------	------------------------	-----------------------------------	------------------------	----------------

Taxon	SN	<i>l_</i>	el_	<i>p</i> _	ер	l_	el	<i>p</i> _	ер	δ	δ_a	SD	a _{max}	G	Gla	G2	С	A_n	Р
		ad	ad	ad	_a	ab	_a	ab	_a						b				
					d		b		b										
Cupre	LDGS	13	1.	19	3.	13	0.	24	6.	26	7.	86.6	1.37×	0.30	0.06	0.06	0.	10.6	441
ssinoc	W-	.0	6	.6	8	.7	8	.4	2	.9	5		10-10	1	8	0	61	4	
ladus	2016-	11	1.	19	3.	15	0.	21	7.	26	7.	86.4	2.38×	0.40	0.07	0.05	0.	10.7	463
sp.	580A	.4	0	.1	3	.7	8	.9	2	.9	5		10-10	8	6	8	61	8	
		12	0.	20	1.	13	2.	26	3.	26	7.	94.6	2.35×	0.51	0.12	0.06	0.	10.3	406
		.0	4	.5	4	.9	2	.2	3	.9	5		10-10	9	1	4	61	8	
		9.	0.	10	2.	12	1.	19	2.	26	7.	77.0	1.12×	0.22	0.04	0.04	0.	11.3	620
		7	1	.7	8	.4	1	.1	0	.9	5		10-10	4	9	6	61	8	
	LDGS	10	1.	25	3.	10	0.	20	4.	26	6.	96.0	2.98×	0.67	0.13	0.06	0.	10.1	368
	W-	.1	6	.2	5	.2	9	.5	0	.3	9		10-10	3	3	5	58	0	
	2016-	9.	0.	18	4.	10	2.	19	1.	26	6.	65.0	1.21×	0.17	0.03	0.05	0.	10.9	503
	462A	4	8	.3	7	.2	6	.1	6	.3	9		10-10	2	6	2	58	3	
		9.	1.	18	4.	9.	1.	21	3.	26	6.	68.4	2.51×	0.43	0.07	0.05	0.	10.6	455
		5	3	.7	1	1	2	.4	7	.3	9		10-10	7	3	6	58	9	
	LDGS	10	1.	28	5.	10	1.	25	3.	27	8.	124.	2.66×	0.88	0.18	0.07	0.	10.0	365
	W-	.5	1	.1	8	.1	3	.8	4	.5	0	3	10-10	8	5	4	63	5	
	2016-	10	0.	29	2.	10	1.	24	3.	27	8.	126.	1.34×	0.52	0.11	0.07	0.	10.0	361
	1401	.2	7	.1	3	.3	2	.7	3	.5	0	6	10-10	9	8	5	63	1	
		9.	1.	20	3.	9.	1.	23	4.	27	8.	118.	3.10×	0.93	0.18	0.07	0.	10.2	391
		7	5	.8	4	0	4	.7	4	.5	0	6	10-10	1	8	0	63	6	
		8.	0.	21	1.	10	0.	25	4.	27	8.	110.	1.71×	0.51	0.11	0.07	0.	10.2	390
		3	5	.5	5	.1	8	.7	1	.5	0	9	10-10	8	1	1	63	4	
	LDGS	8.	0.	7.	2.	10	1.	12	2.	27	7.	59.8	7.42×	0.14	0.02	0.02	0.	12.4	116
	W-	7	8	7	6	.4	8	.1	8	.1	7		10-11	8	8	8	62	1	2
	2015-	8.	1.	10	3.	7.	1.	13	3.	27	7.	76.4	1.61×	0.08	0.01	0.04	0.	11.5	684
	907	2	5	.7	4	4	9	.4	6	.1	7		10-11	4	6	4	62	9	
		9.	1.	8.	2.	10	1.	10	1.	27	7.	116.	4.35×	0.18	0.03	0.04	0.	11.7	736
		1	6	8	4	.1	5	.0	6	.1	7	6	10-11	5	7	1	62	4	
	Average	10	1.	18	3.	10	1.	20	3.	27	7.	93.4	1.72×	0.43	0.08	0.05	0.	10.8	525
	value	.0	0	.5	2	.9	4	.6	7	.0	6		10-10	0	8	7	61	0	
Brach	LDGS	9.	0.	15	2.	10	1.	22	6.	23	4.	112.	4.36×	0.14	0.03	0.06	0.	10.3	402
yphyll	W-	9	5	.6	5	.9	4	.5	9	.1	0	7	10-11	8	3	3	60	9	
um	2016-	10	0.	15	0.	7.	0.	12	4.	23	4.	105.	1.16×	0.43	0.08	0.05	0.	10.9	501
obtusu	162A	.1	4	.0	6	3	3	.3	2	.1	0	6	10-10	3	8	4	60	6	
m	LDGS	9.	0.	14	0.	8.	1.	14	7.	23	4.	79.2	7.79×	0.21	0.03	0.05	0.	11.3	591

W-	7	6	.7	5	7	6	.9	1	.9	8		10-11	8	9	2	63	7	
2016-	10	0.	15	0.	8.	1.	11	6.	23	4.	111.	4.51×	0.22	0.04	0.05	0.	11.1	
385	.2	2	.4	6	3	1	.7	6	.9	8	9	10-11	2	8	6	63	6	
LDGS	5.	0.	9.	2.	7.	1.	15	5.	22	3.	131.	2.77×	0.17	0.03	0.06	0.	10.4	
W-	7	2	6	9	8	5	.2	9	.8	8	5	10-11	6	3	0	59	9	
2016-	8.	0.	19	5.	7.	1.	9.	3.	22	3.	132.	7.09×	0.36	0.06	0.06	0.	10.4	
154A	6	9	.8	1	7	9	2	0	.8	8	5	10-11	2	6	1	59	2	
	7.	0.	11	4.	6.	0.	9.	1.	22	3.	122.	$2.05 \times$	0.14	0.02	0.05	0.	11.0	
	8	8	.2	5	5	8	9	2	.8	8	3	10-11	2	8	0	59	7	
LDGS	8.	0.	18	3.	9.	0.	21	6.	23	4.	118.	1.38×	0.48	0.09	0.06	0.	10.3	
W-	6	7	.7	2	6	9	.2	8	.6	5	5	10-10	1	8	7	62	6	
2016-																		
159B																		
Average	8.	0.	15	2.	8.	1.	14	5.	23	4.	114.	6.74×	0.27	0.05	0.05	0.	10.7	
value	8	5	.0	5	3	2	.6	2	.3	2	3	10-11	3	4	8	61	8	

Taxon	Specimen number	$\delta^{l3}C$ (‰)	$\delta^{I3}C$ $_{CO2}($ % $)$	$\Delta^{13}C_{leaf}$	<i>p</i> CO ₂ (ppmv)
Cupressinocladus	LDGSW-2016-580A	-26.90	-5.78	21.70	401
sp.	LDGSW-2016-462A	-26.30	-5.78	21.07	353
	LDGSW-2016-1401	-27.50	-5.78	22.33	460
	LDGSW-2015-907	-27.10	-5.78	21.91	420
	Average value	-26.95	-5.78	21.76	409
Brachyphyllum	LDGSW-2016-162A	-23.10	-5.78	17.73	192
obtusum	LDGSW-2016-385	-23.90	-5.78	18.56	222
	LDGSW-2016-154A	-22.80	-5.78	17.42	182
	LDGSW-2016-159B	-23.60	-5.78	18.25	210
	Average value	-23.35	-5.78	17.99	202

334 Table 5 The carbon isotope parameters of Brachyphyllum and Cupressinocladus from Laiyang

Basin, and estimated pCO_2 values based on the carbon isotope model.

336

340 proxy estimates; SI, CS, Cu= SR-based method based on carboniferous standardization,

341 Cupressinocladus sp.; SI, CS, Br= SR-based method based on carboniferous standardization,

342 Brachyphyllum obtusum; SI, RS, Cu= SR-based method based on recent standardization,

343 Cupressinocladus sp.; SI, RS, Br= SR-based method based on recent standardization,

344 Brachyphyllum obtusum; Fr, Cu= mechanistic model based on Cupressinocladus sp.; Fr, Br=

345 mechanistic model based on Brachyphyllum obtusum; CI, Cu= carbon isotope model based on

346 Cupressinocladus sp.; CI, Br= carbon isotope model based on Brachyphyllum obtusum.

347

348 Based on the probability distributions from all proxy estimates, we note that most of the 95% 349 confidence intervals of the recent standardization from SR-based method and mechanistic model overlap (Fig. 5B). However, the confidence interval of the carboniferous standardization from the 350 351 SR-based method is much higher than the confidence interval of all other methods. The traditional method of using plant fossil SI to reconstruct pCO_2 has the following disadvantages. First, the SI 352 353 has specific responses to CO_2 concentration, so the quantitative estimation of pCO_2 is limited to specific fossil species that are close to existing taxa (Küaschner et al., 2008). We must assume that 354 355 these species have not suffered ecological and physiological evolution over time. However, this 356 assumption has been questioned. Second, the response of the fitting function between SI and pCO_2 nonlinear, and the gradient decreases with increasing CO₂ concentration. Therefore, it is 357 is 358 difficult to calculate the accurate pCO_2 value by the fitting function when the CO_2 concentration 359 in the environment is higher than the CO₂ concentration of the current environment (Beerling and Royer, 2002a; Beerling et al., 2009). Third, the traditional SR-based method depends mainly on 360 the density of stomata and epidermal cells, without the change of stomatal length, while many 361 362 experiments show that the change of stomatal length is often related to the atmospheric CO_2

363 concentration (Konrad et al., 2008; Franks and Beerling, 2009). Finally, the statistical requirement 364 of *SI* in this method is that epidermal cells should be clearly identified. However, due to the 365 influence of other epidermal structures (hair base, glands, etc.), it is difficult to obtain reliable 366 epidermal cell data for many plant fossils (Grein et al., 2013).

367 The error between the estimated value and the measured value of the mechanical model used 368 in this paper is 2.6%, and its accuracy is significantly higher than the accuracy of other 369 reconstruction methods (Franks et al. 2014). In addition, the mechanical model avoids some of the abovementioned drawbacks of the traditional SR-based method for estimating the pCO_2 and fully 370 371 considers the influence of key parameters in gas exchange on the reconstruction results (such as 372 the length and depth of the stomatal pores, the maximum opening area of the stoma, and the 373 carbon isotope) (Franks et al. 2014). Therefore, this model has a strong reference when used to reconstruct the pCO_2 in the geological period. We also see that the 95% confidence intervals of 374 the pCO₂ value estimated by two different plants of Cupressinocladus sp. and B. obtusum using 375 the same method are highly coincident, increasing both accuracy and precision (Fig. 5B). We note 376 that the 95% confidence interval of the pCO2 value obtained by Cupressinocladus sp. in the 377 378 mechanical model is larger than the other 95% confidence interval, possibly due to the uncertainty of the value of A_n (Fig. 5B). Therefore, when using the mechanical model to estimate the pCO₂ 379 380 value, selecting An values of species with similar habits is more appropriate (Reichgelt and 381 D'Andrea, 2019).

We note that the CO_2 estimate from the carbon isotope model is lower than the estimates from the *SR*-based method and mechanical model. The main reason is that the main parameter settings of the carbon isotope model are based on environmental factors since the Quaternary and plants' own factors (Schubert and Jahren, 2012, 2015). However, the main parameters of the Quaternary are still used in reconstructing the pCO_2 value of the Cretaceous, and whether this is reasonable still requires much data to verify.

Finally, we note that during the Hauterivian-Barremian (the early period of the Early 388 389 Cretaceous), the pCO_2 value was generally low, and it is feasible to use the mechanical model to restore pCO_2 . In addition, the interval of the pCO_2 value which is obtained by the mechanical 390 391 model is larger (443-693 ppm), and the pCO₂ value shows greater instability, possibly because the mechanical model is established based on living plants. Most of the biological anatomical 392 393 parameters in the model, such as the thickness of the assimilation tissue and the conductivity of 394 the liquid part in the mesophyll, must be borrowed from the existing closest relatives of fossil 395 plants. Therefore, using this model will produce certain errors when recovering paleoclimate 396 parameters. According to the SR-based method, the pCO₂ value estimated by Brachyphyllum

- 397 *obtusum* (approximately 557–945 ppm) is lower than the pCO_2 value estimated by 398 *Cupressinocladus* sp. (approximately 599–1252 ppm). This obvious difference may be due to the 399 different responses of different plants to CO_2 concentrations.
- 400

401 4.2 Comparison with other pCO₂ records for the Early Cretaceous

402 The reconstruction methods of pCO_2 during the Hauterivian–Barremian (Early Cretaceous) 403 include mainly calculations with plant fossil stomatal data (Haworth et al., 2005; Du et al., 2016; 404 Aucour et al., 2008; Sun et al., 2016; Passalia, 2009), isotope analysis (Heimhofer et al., 2004; Wallmann, 2001; Ekart et al., 1999; Fletcher et al., 2005), biogeochemical models etc (Berner, 405 406 1994; Tajika, 1999; Berner and Kothavala, 2001; Rothman, 2002; Hansen and Wallman, 2003; 407 Bergman, 2004). The pCO_2 value of the Hauterivian–Barremian obtained in this paper is generally 408 low, which is close to most of the pCO_2 that was restored in the Early Cretaceous (Table 6; Fig. 6). For example, the pCO₂ values reconstructed by Haworth et al. (2005) based on the SR-based 409 410 method (SI_(NLES) = 10.5, Pseudofrenelopsis parceramosa) are approximately 653-1089 ppmv (Early Hauterivian), 630-1050 ppmv (Late Hauterivian), 568-946 ppmv (Early Barremian) and 411 412 641–1068 ppmv (late Barremian). The Late Hauterivian pCO_2 reconstructed by Dai and Sun (2018) based on the SR-based method (SI_(NLES) = 5.8, Pseudofrenelopsis parceramosa) is approximately 413 595–946 ppmv. Both of these results are highly coincident with the pCO_2 value obtained by the 414 SR-based method in this paper. The pCO_2 from the mechanical model in this paper is similar to 415 416 the late Barremian pCO₂ (395–789 ppmv) obtained by Retallack (2009a) using Ginkgo fossils and 417 also similar to early Barremian pCO₂ (560 ppmv) estimated by Robinson et al. (2002) using stable isotopes of calcareous conglomerates from southern England. Huang et al. (2012) also believed 418 that pCO2 during Berriasian-Barremian was low based on the paleosol carbonate, and the late 419 420 Barremian pCO_2 was about 365–644 ppmv. This value is also similar to the results recovered by 421 the recent standardization of the SR-based method and the mechanistic model in this paper. 422

	P			T 1'	
Age	Proxy	SI (fossil)	pCO_2	Locality	Data sources
		(%)	(ppmv)		
SR-based method					
Berriasian	Ginkgo coriacea	3.79±0.22-	918–1920	China, Inner	Sun et al., 2007
		4.75±0.32		Mongolia,	
				Huolinghe	
Valanginian–	Gingko coriacea	3.4±0.1	740	China, Inner	Chen et al., 2001
Hauterivian				Mongolia,	
				Huolinghe	
Hauterivian-	Cupressinocladus	5.3±0.2	663-1105	China,	This study
Barremian	sp.			Shandong	
	Brachyphyllum	6.0±0.3	579–965	China,	This study
	obtusum			Shandong	
Early Hauterivian	Pseudofrenelopsis	5.8 ± 1.3	653-1089	UK, USA	Haworth et al., 2005
	parceramosa				
Late Hauterivian	Pseudofrenelopsis	6.0 ± 1.3	630-1050	UK, USA	Haworth et al., 2005
	parceramosa				
	<i>Pseudofrenelopsis</i>	5.8±0.5	595–957	China, Fujian	Dai and Sun, 2018
	papillosa			, ,	
Early Barremian	Pseudofrenelopsis	6.6±1.3	568-946	UK. USA	Haworth et al., 2005
5	parceramosa			,	,
Late Barremian	Pseudofrenelopsis	5.9 ± 1.0	641-1068	UK. USA	Haworth et al., 2005
	parceramosa			,	,
	Frenelopsis alata	4 6±0 6	700-1400	Argentina	Aucour et al 2008.
	Trenetopsis ututu	1.0-0.0	/00 1100	Ingentina	Passalia 2009
	Ginkgo	_	395_789	USA	Retallack 2009a b
Barromian	Ginkgo		400 3510	USA	Retallack, 2009a,b
Antian	Ginkgo		400-5510	05/1	Retailder, 2007a,0
Machanistia model					
- Derringion	Otozamitos		116	Datagonia	Do Socono 2001:
Valanginian	Olozamiles	-	410	Patagonia,	De Seoane, 2001;
Valanginian	ornaius Commine de d		422 (01	Argentina	This state
Hauterivian-	Cupressinocladus	-	432-691	China,	This study
Barremian	sp.			Shandong	
	Brachyphyllum	-	3/1-817	China,	This study
	obtusum			Shandong	
Other carbon isoto	pe analysis				
Early-middle	Paleosol	-	287–389	China	Huang et al., 2012
Berriasian	carbonates				
Early	Paleosol	-	237–245	China	Huang et al., 2012
Valanginian	carbonates				
Hauterivian-	Carbon isotope of	-	409	China,	This study
Barremian	Brachyphyllum			Shandong	
	Carbon isotope of	_	202	China,	This study

423 **Table 6** Estimated pCO_2 during the early stage of Early Cretaceous.

	Cupressinocladus			Shandong	
Hauterivian/Apti	Paleosol	-	2300	Japan, Korea	Lee et al., 1999
an–Albian	carbonates				
Early Barremian	Calcrete nodules	-	560	UK	Robinson et al.,
					2002
Late Barremian	Paleosol	-	365-644	China	Huang et al., 2012
	carbonates				

424

425

426 Fig. 6. A: Our estimated pCO₂ values during Hauterivian–Barremian (Early Cretaceous), and

427 previous data based on SR-based method and mechanistic model; B: Our estimated pCO₂ values

428 during Hauterivian-Barremian, and previous data based on biogeochemical models and carbon

429 isotopes.

430

431 Furthermore, the global carbon cycle model established by Tajika (1999) and Wallmann 432 (2001) and the geochemical model COPSE established by Bergman et al. (2004) both show that 433 pCO_2 during the Hauterivian–Barremian was relatively low compared with other pCO_2 values of the Early Cretaceous. The pCO_2 obtained by the recent standardization of the SR-based method 434 435 and the mechanistic model in this paper are close to the value of the Hauterivian-Barremian 436 recovered by Hansen and Wallmann (2003). However, the pCO_2 value estimated by the carboniferous standardization of the SR-based method is slightly higher, which is closer to the 437 concentration curves obtained from the geochemical models GEOCARB II, COPSE and Tajika 438 439 (1999) (Fig. 6).

440 Schubert and Jahren (2015) reconstructed pCO_2 and its changes during the past 30,000 years based on the carbon isotope model with a large amount of global terrestrial organic matter and 441 carbon isotopic composition of plant fossils. The reconstruction results are consistent with the 442 results known from ice cores (Schubert and Jahren, 2015). The pCO₂ during the Barremian-443 Santonian Cretaceous reconstructed by Barral et al. (2017a) with the plant carbon isotope model is 444 445 about 185-502 ppmv, which is generally lower than the results from plant stomatal method, isotope method, biogeochemical model, etc (Fig. 6). Furthermore, the pCO₂ value reconstructed in 446 447 this paper based on the carbon isotope method during the Hauterivian-Barremian is also lower 448 than the results of the SR-based method and the mechanistic model and close to the results of Barral et al (2017a) (Fig. 6). Therefore, in combination with previous studies, the pCO_2 values 449 reconstructed from the carbon isotope model are generally lower than the pCO_2 values 450 451 reconstructed from other methods.

452

453 4.3. The pCO_2 records and Weissert event

454 Strata of the Valanginian age (Early Cretaceous, 139.8-132.9 Ma) record a 1.5‰ positive 455 carbon-isotope excursion (CIE), the Weissert event, which is regarded as a global perturbation of 456 coupled oceanic and atmospheric carbon reservoirs based on the wide documentation from marine bulkrock and belemnite carbonates and fossil wood organic matter (Lini et al., 1992; Wortmann 457 and Weissert, 2000; Weissert and Erba, 2004; Gröcke et al., 2005; Price et al., 2018; Jelby et al., 458 459 2020). The latest estimate of the timing of the onset of the Weissert event is ascertained to be 135.22 ± 1 Ma derived from U-Pb ages from tuff layers in the Neuquén Basin and an update of the 460 461 Valanginian-Hauterivian astrochronological time scale (Aguirre-Urreta et al., 2015; Martinez et 462 al., 2015). Most studies have confirmed that the Valanginian Weissert event coincided with the onset of the eruptive phase of the Paraná-Etendeka, which has recently been dated between 463

464 134.6 ± 0.6 Ma and 134.3 ± 0.8 Ma (Price et al., 2018).

465 The intense volcanism in the geological age affected seawater chemistry in different ways. 466 The widely dispersed volcanic emissions formed by Paraná-Etendeka volcanic activity possibly 467 caused increased concentrations of toxic trace metals in the surface ocean, affecting marine primary producers (Möller et al., 2020). Following the positive carbon isotope excursion of the 468 469 Weissert event, fertilization of the oceans increased, which caused sequestration of marine organic 470 carbon (Erba et al., 2004; Duchamp-Alphonse et al., 2007). Then the weathering of basalt gradually strengthened, which eventually led to a decrease in the pCO_2 and global temperature in 471 472 the last stages of the Weissert event (the late Valanginian) (Möller et al., 2020). This cooling event has been inferred based on glendonite occurrences from the Canadian Arctic Archipelago, ice 473 474 rafted debris in central Australia, belemnites and fish tooth enamel δ^{18} O data from northern Germany, Western Siberia, northern Italy, France and Spain (Kemper and Schmitz, 1981; Frakes 475 and Francis, 1988; Podlaha et al., 1998; Price and Mutterlose, 2004; Weissert and Erba, 476 2004; McArthur et al., 2007; Bodin et al., 2015; Meissner et al., 2015; Price et al., 2018; Möller et 477 478 al., 2020).

479 Most of the pCO₂ values that have been recovered thus far all reflect the significant decrease during the Hauterivian–Barremian, such as the pCO_2 values obtained from SR-based method of 480 481 Pseudofrenelopsis parceramosa, the geochemical model COPSE, and the global carbon cycle 482 model established by Tajika (1999) and Wallmann (2001), all of the Hauterivian–Barremian pCO_2 values obtained from these studies reached the lowest point in Early Cretaceous (Tajika, 1999; 483 Wallmann, 2001; Bergman et al., 2004; Haworth et al., 2005). Similarly, the Hauterivian-484 485 Barremian pCO_2 values in Laiyang Basin reconstructed by both fossil coniferous species (C. sp. and B. obtusum) from each method are relatively low compared with other pCO_2 values in the 486 Early Cretaceous. All of these pCO_2 records also reflect the cooling event in the final stage of the 487 488 Weissert event.

489

490 5. Conclusions

491 In this study, we present a new pCO₂ record for the Hauterivian-Barremian on the basis of 492 fossil leaves (Cupressinocladus sp. and Brachyphyllum obtusum) collected from Laiyang Basin. All the required fossil cuticle and isotopic parameters were measured and three different proxy 493 494 methods were applied to estimate pCO_2 . The pCO_2 values estimated using the SR-based method 495 were approximately 579-663 ppmv calibrated with recent standardization and 966-1106 ppmv calibrated with carboniferous standardization. The pCO2 value estimated using the mechanistic 496 model was about 472–525 ppmv. The pCO_2 value estimated using the carbon isotope model was 497 498 approximately 472–525 ppmv. By summarizing the pCO_2 record estimated using SR-based,

499 mechanistic, and carbon isotope model, the pCO_2 variability was discussed. The mechanistic 500 model may be widely applied to more fossil taxa than the *SR*-based method and retains sensitivity 501 at high pCO_2 . The pCO_2 value obtained from this study indicates a relatively low atmospheric CO_2 502 concentration and a cool climate during the Hauterivian–Barremian, which also reflects the 503 response of terrestrial plants to the cooling event in the last stages of the Weissert event. 504

505 Author contributions

All authors contributed to obtaining and analysing the data utilised in the study. Zhang Mingzheng, Du Baoxia and Sun Bainian conceived the research. Lei Xiangtong contributed the mechanistic model analyses. Dong Junling performed fossil cuticles analyses. Jin Peihong wrote the paper. All authors contributed to improving and editing the paper, and they are in agreement with the content of manuscript.

511

512 Competing interests

513 We declare that we have no financial and personal relationships with other people or 514 organizations that can inappropriately influence our work.

515

516 Acknowledgments

517 We are very grateful to the editor and anonymous reviewers for useful comments that 518 significantly improved the manuscript.

519

520 Financial support

521 This study was supported by the Second Tibetan Plateau Scientific Expedition and Research 522 Program (STEP) (Grant No. 2019QZKK0704), the National Natural Science Foundation of China 523 (No. 41902017), the Natural Science Foundation of Gansu Province (No. 2021000050), the Key 524 Laboratory Project of Gansu Province (No. SZDKFJJ20201208), and State Key Laboratory of 525 Palaeobiology and Stratigraphy (Nanjing Institute of Geology and Palaeontology, CAS) (No. 526 203103). 527

521

528

529 References

- 530
- 531 Aguirre-Urreta, B., Lescano, M., Schmitz, M.D., Tunik, M., Concheyro, A., Rawson, P.F., Ramos,
- 532 V.A.: Filling the gap: new precise Early Cretaceous radioisotopic ages from the Andes,
- 533 Geol. Mag., 152, 557–564, https://doi.org/10.1017/S001675681400082X, 2015.
- 534 Arens, N.C., Jahrens, A.H., Amundson, R.: Can C₃ plants faithfully record the carbon isotopic

535	composition of atmospheric carbon dioxide? Palaeobiology, 26, 137-164,
536	https://doi.org/10.1666/0094-8373(2000)026<0137:CCPFRT>2.0.CO;2, 2000.
537	Aucour, A.M., Gomez, B., Sheppard, S.M.F., Thevenard, F.: δ^{13} C and stomatal number variability
538	in the Cretaceous conifer Frenelopsis, Palaeogeography, Palaeoclimatology,
539	Palaeoecology, 257, 462-473, https://doi.org/10.1016/j.palaeo.2007.10.027, 2008.
540	Barclay, R.S., Mcelwain, J.C., Sageman, B.B.: Carbon sequestration activated by a volcanic CO ₂
541	pulse during Ocean Anoxic Event 2, Nature Geoscience, 3, 205-208,
542	doi:10.1038/ngeo757, 2010.
543	Barral, A., Gomez, B., Fourel, F., Daviero-Gomez, V., Lécuyer, C.: CO2 and temperature
544	decoupling at the million-year scale during the Cretaceous Greenhouse, Scientific Reports,
545	7, 8310, DOI:10.1038/s41598-017-08234-0, 2017a.
546	Barral, A., Gomez, B., Legendre, S., Lécuyer, C.: Evolution of the carbon isotope composition of
547	atmospheric CO2 throughout the Cretaceous, Palaeogeography, Palaeoclimatology,
548	Palaeoecology, 471, 40-47, https://doi.org/10.1016/j.palaeo.2017.01.034, 2017b.
549	Beerling, D.J., Fox, A., Anderson, C.W.: Quantitative uncertainty analyses of ancient atmospheric
550	CO2 estimates from fossil leaves, American Journal of Science, 309, 775-787,
551	https://doi.org/10.2475/09.2009.01, 2009.
552	Beerling, D.J., Osborne, C., Chaloner, W.: Evolution of leaf-form in land plants linked to
553	atmospheric CO ₂ decline in the Late Palaeozoic era, Nature, 410, 352-354,
554	https://doi.org/10.1038/35066546, 2001.
555	Beerling, D.J., Royer, D.L.: Fossil plants as indicators of the Phanerozoic global carbon cycle,
556	Annual Review of Earth and Planetary Sciences, 30, 527-556,
557	https://doi.org/10.1146/annurev.earth.30.091201.141413, 2002a.
558	Beerling, D.J., Royer, D.L.: Reading a CO ₂ signal from fossil stomata, New Phytologist, 153,
559	387-397, https://doi.org/10.1046/j.0028-646X.2001.00335.x, 2002b.
560	Bergman, N.M., Lenton, T.M., Watson, A.J.: COPSE: a new model of biogeochemical cycling
561	over Phanerozoic time, American Journal of Science, 304, 397-437, 2004.
562	Berner, R.A.: GEOCARB II: a revised model of atmospheric CO ₂ over Phanerozoictime, Am. J.
563	Sci., 294, 56-91, https://doi.org/10.2475/ajs.304.5.397, 1994.
564	Berner, R.A., Kothavala, Z.: GEOCARB III: revised model of atmospheric CO ₂ over Phanerozoic
565	time, Am. J. Sci., 301, 182–204, https://doi.org/10.2475/ajs.301.2.182, 2001.
566	Bodin, S., Meissner, P., Janssen, N.M.M., Steuber, T., Mutterlose, J.: Large igneous provinces and
567	organic carbon burial: Controls on global temperature and continental weathering
568	during the Early Cretaceous, Glob. Planet. Chang., 133, 238-253,
569	https://doi.org/10.1016/j.gloplacha.2015.09.001, 2015
570	Boucot, A.J., Gray, J.: A critique of Phanerozoic climatic models involving changes in the CO ₂
571	content of the atmosphere, Earth Sci. Rev., 56 (1-4), 1-159,
572	https://doi.org/10.1016/S0012-8252(01)00066-6, 2001.
573	Chen, L.Q., Li, C.S., Chaloner, W.G., Beerling, D.J., Sun, Q.G., Collinson, M.E., Mitchell, P.L.:
574	Assessing the potential for the stomatal characters of extant and fossil Ginkgo leaves
575	tosignal atmospheric CO ₂ change, American Journal of Botany, 88, 1309–1315,
576	https://doi.org/10.2307/3558342, 2001.
577	Chen, P.J., Cao, M.Z., Pan, H.Z., Ye, C.H., Li, W.B., Shen, Y.B., Chen, J.H.: Issues of continental
578	strata in Mesozoic from Shandong, Journal of Stratigraphy, 4 (4), 301-309, 1980.

579	Dai, J., Sun, B.N.: Early Cretaceous atmospheric CO2 estimates based on stomatal index of
580	Pseudofrenelopsis papillosa (Cheirolepidiaceae) from southeast China, Cretaceous
581	Research, 85, 232-242, https://doi.org/10.1016/j.cretres.2017.08.011, 2018.
582	De Seoane, L.V.: Cuticular study of Bennettitales from the Springhill Formation, Lower Cretaceous of
583	Patagonia, Argentina, Cretaceous Research, 22, 461-479,
584	https://doi.org/10.1006/cres.2001.0266, 2001.
585	Du, B.X., Lei, X.T., Zhang, M.Z., Wang, S., Li, A.J., Du, Z., Xing, W.W.: Late early Cretaceous
586	climate and pCO ₂ estimates in the Liupanshan Basin, northwest China, Palaeogeography,
587	Palaeoclimatology, Palaeoecology, 503, 26-39,
588	https://doi.org/10.1016/j.palaeo.2018.04.023, 2018.
589	Du, B.X., Sun, B.N., Zhang, M.Z., Yang, G.L., Xing, L.T., Tang, F.J., Bai, Y.X.: Atmospheric
590	palaeo-CO ₂ estimates based on the carbon isotope and stomatal data of Cheirolepidiaceae
591	from the Lower Cretaceous of the Jiuquan Basin, Gansu Province, Cretaceous Research,
592	62, 142-153, https://doi.org/10.1016/j.cretres.2015.07.020, 2016.
593	Duchamp-Alphonse, S., Fiet, N., Adatte, T., Pagel, M.: Climate and sea-level variations along the
594	northwestern Tethyan margin during the Valanginian C-isotope excursion:
595	Mineralogical evidence from the Vocontian Basin (SE France), Palaeogeography,
596	Palaeoclimatology, Palaeoecology, 302, 243-254,
597	https://doi.org/10.1016/j.palaeo.2011.01.015, 2011.
598	Ekart, D.D., Cerling, T.E., Montanez, I.P., Tabor, N.J.: A 400 million year carbon isotope record
599	of pedogenic carbonate: implications for paleoatmospheric carbon dioxide, American
600	Journal of Science, 299, 805-827,
601	http://earth.geology.yale.edu/~ajs/1999/10.1999.01Ekart, 1999.
602	Erba E., Bartolini A., Larson R.L.: Valanginian Weissert oceanic anoxic event, Geology, 32, 149-
603	152, https://doi.org/10.1130/G20008.1, 2004.
604	Farquhar, G.D., And, J.R.E., Hubick, K.T.: Carbon Isotope Discrimination and Photosynthesis,
605	Annu. Rev. Plant Physiol. Plant Mol. Biol., 40, 503-537,
606	https://doi.org/10.1146/annurev.pp.40.060189.002443, 1989.
607	Farquhar, G.D., Caemmerer, S.V., Berry, J.A.: A biochemical model of photosynthetic CO2
608	assimilation in leaves of C3 species, Planta, 149, 78-90, doi: 0032-
609	0935/80/0149/0078/\$02.60, 1980.
610	Farquhar, G.D., O'leary, M.H., Berry, J.A.: On the Relationship Between Carbon Isotope
611	Discrimination and the Intercellular Carbon Dioxide Concentration in Leaves, Functional
612	Plant Biology, 9, 281-292, https://doi.org/10.1071/PP9820121, 1982.
613	Fletcher, B.J., Beerling, D.J., Brentnall, S.J., Royer, D.L.: Fossil bryophytes as recorders of
614	ancient CO2 levels: experimental evidence and a Cretaceous case study, Glob.
615	Biogeochem. Cycles, 19, 1-13, https://doi.org/10.1029/2005GB002495, 2005.
616	Fletcher, B.J., Brentnall, S.J., Anderson, C.W., Berner, R.A., Beerling, D.J.: Atmospheric carbon
617	dioxide linked with Mesozoic and early Cenozoic climate change, Nature Geoscience, 1,
618	43-48, doi:10.1038/ngeo.2007.29, 2008.
619	Florin, R.: On Jurassic taxads and conifers from north-western Europe and eastern Greenland,
620	Acta Horti Bergiani, 17, 257-402, 1958.
621	Florin, R.: The distribution of conifer and taxad genera in time and space, Acta Horti Bergiani,

622 20(4), 121–312, 1963.

623	Föllmi, K.B.: Early Cretaceous life, climate and anoxia, Cretaceous Research, 35, 230–257,
624	https://doi.org/10.1016/j.cretres.2011.12.005, 2012.
625	Frakes, L.A., Francis, J.E.: A guide to Phanerozoic cold polar climates from highlatitude ice-
626	rafting in the Cretaceous, Nature, 333, 547-549, https://doi.org/10.1038/333547a0,
627	1988.
628	Franks, P.J., Adams, M.A., Amthor, J.S., Barbour, M.M., Berry, J.A., Ellsworth, D.S., Farquhar,
629	G.D., Ghannoum, O., Loyd, J.L., McDowell, N., Norby, R.J., Tissue, D.T., Caemmerer,
630	S.: Sensitivity of plants to changing atmospheric CO2 concentration: from the geological
631	past to the next century, New Phytol, 197, 1077-1094, https://doi.org/10.1111/nph.12104,
632	2013.
633	Franks, P.J., Drake, P.L., Beerling, D.J.: Plasticity in maximum stomatal conductance constrained
634	by negative correlation between stomatal size and density: an analysis using Eucalyptus
635	globules, Plant Cell Environ., 32, 1737-1748, https://doi.org/10.1111/j.1365-
636	3040.2009.002031.x, 2009.
637	Franks, P.J., Royer, D.L., Beerling, D.J., Van de Water, P.K., Cantrill, D.J., Barbour, M.M., Berry,
638	J.A.: New constraints on atmospheric CO ₂ concentration for the Phanerozoic,
639	Geophysical Research Letters, 41, 4685–4694, https://doi.org/10.1002/2014GL060457,
640	2014.
641	Gomez, B., Ewin, T. A., Daviero-Gomez, V.: The conifer Glenrosa falcata sp. nov. from the
642	Lower Cretaceous of Spain and its palaeoecology, Review of Palaeobotany and
643	Palynology, 172, 21-32, https://doi.org/10.1016/j.revpalbo.2012.01.009, 2012.
644	Grein, M., Oehm, C., Konrad, W., Utescher, T., Kunzmann, L., Roth-Nebelsick, A.: Atmospheric
645	CO2 from the late Oligocene to early Miocene based on photosynthesis data and fossil
646	leaf characteristics, Palaeogeography, Palaeoclimatology, Palaeoecology, 374, 41-51,
647	https://doi.org/10.1016/j.palaeo.2012.12.025, 2013.
648	Grimaldi, D., Engel, M.S. (Eds.): Evolution of the Insects, Cambridge University Press, New York,
649	pp. 772, 2005.
650	Gröcke, D.R., Price, G.D., Robinson, S.A., Baraboshkin, E.Y., Mutterlose, J., Ruffell, A.H.: The
651	Upper Valanginian (Early Cretaceous) positive carbon-isotope event recorded in
652	terrestrial plants, Earth Planet. Sci. Lett., 240, 495-509,
653	https://doi.org/10.1016/j.epsl.2005.09.001, 2005.
654	Hansen, K.W., Wallmann, K.: Cretaceous and Cenozoic evolution of seawater composition,
655	atmospheric O ₂ and CO ₂ , American Journal of Science, 303,
656	https://doi.org/10.2475/ajs.303.2.94, 2003.
657	Harris, T.M.: Naming a fossil conifer, J. Sen. Memorial, 243–252, 1969.
658	Haworth ,M., Heath, J., Mcelwain, J.C.: Differences in the response sensitivity of stomatal index
659	to atmospheric CO ₂ among four genera of Cupressaceae conifers, Annals of Botany, 105,
660	411-418, https://doi.org/10.1093/aob/mcp309, 2010.
661	Haworth, M., Hesselbo, S.P., Mcelwain, J.C., Robinson, S.A., Brunt, J.W.: Mid-Cretaceous pCO ₂
662	based on stomata of the extinct conifer Pseudofrenelopsis (Cheirolepidiaceae), Geology,
663	33, 749–752, https://doi.org/10.1130/G21736.1, 2005.
664	Heimhofer, U., Hochulib, P.A., Herrlec, J.O., Andersend, N., Weisserta, H.: Absence of major
665	vegetation and palaeoatmospheric pCO ₂ changes associated with oceanic anoxic event 1a
666	(Early Aptian, SE France), Earth Planet. Sci. Lett., 223, 303–318,

667	https://doi.org/10.1016/j.epsl.2004.04.037, 2004.
668	Huang, C.M., Retallack, G.J., Wang, C.S.: Early Cretaceous atmospheric pCO ₂ levels recorded
669	from pedogenic carbonates in China, Cretaceous Research, 33, 42-49,
670	https://doi.org/10.1016/j.cretres.2011.08.001, 2012.
671	Huo, T.F., Yang D.B., Xu, W.L., Wang F., Liu H.B., Shi J.P.: U-Pb Ages and Hf Isotope
672	Compositions of Detrital Zircons from the Sandstone in the Early Cretaceous
673	Wawukuang Formation in the Jiaolai Basin, Shandong Province and its Tectonic
674	Implications, Geotectonica et Metallogenia, 39(2), 355-368, 2015.
675	Jelby, M.E., Śliwińska, K.K., Koevoets, M.J., Alsen, P., Vickers, M.L., Olaussen, S., Stemmerik,
676	L .: Arctic reappraisal of global carbon-cycle dynamics across the Jurassic-Cretaceous
677	boundary and Valanginian Weissert Event, Palaeogeography, Palaeoclimatology,
678	Palaeoecology, 555, 109847, https://doi.org/10.1016/j.palaeo.2020.109847, 2020.
679	Jenkyns, H.C.: Geochemistry of Oceanic Anoxic Events, Geochemistry, Geophysics, Geosystems,
680	11(3), Q03004, doi:10.1029/2009GC002788, 2010.
681	Jin, P.H., Dong, J.L., Wang, Z.X., Yuan, X.C., Hua, Y.F., Du, B.X., Sun, B.N.: A new species of
682	Elatides from the Lower Cretaceous in Shandong province, Eastern China and its
683	geographic significance, Cretaceous Research, 85, 109-127,
684	https://doi.org/10.1016/j.cretres.2017.11.022, 2018.
685	Jin, P.H., Mao, T., Dong, J.L., Wang, Z.X., Xu, X,H., Du, B.X., Sun, B.N.: A new species
686	of Cupressinocladus from the Lower Cretaceous of Guyang Basin, Inner Mongolia, North
687	China and its microstructure, Acta Geological Sinica (English Edition), 4, 1200-1214,
688	https://doi.org/10.1111/1755-6724.13355, 2017.
689	Kemper, E., Schmitz, H.H.: Glendonite-Indikatoren des polarmarinen Ablagerungsmilieus, Geol.
690	Rundsch., 2, 759–773, 1981.
691	Konrad, W., Katul, G., Roth-Nebelsick, A., Grein, M.: A reduced order model to analytically infer
692	atmospheric CO ₂ concentration from stomatal and climate data, Advances in Water
693	Resources, 104, 145–157, https://doi.org/10.1016/j.advwatres.2017.03.018, 2017.
694	Konrad, W., Roth-Nebelsick, A., Grein, M.: Modelling of stomatal density response to
695	atmospheric CO ₂ , Journal of Theoretical Biology, 253(4), 638–658,
696	https://doi.org/10.1016/j.jtbi.2008.03.032, 2008.
697	Kürschner, W.M., Kvaček, Z., Dilcher, D.L.: The impact of Miocene atmospheric carbon dioxide
698	fluctuations on climate and the evolution of terrestrial ecosystems, Proceedings of the
699	National Academy of Sciences, 105, 449–453, https://doi.org/10.1073/pnas.0708588105,
700	2008.
701	Lee, Y.I.: Stable isotopic composition of calcic paleosol of the Early Cretaceous Hasandong
702	Formation, southeastern Korea, Palaeogeography, Palaeoclimatology, Palaeoecology,
703	150 (1–2), 123–133, https://doi.org/10.1016/S0031-0182(99)00010-3, 1999.
704	Lee, Y.I., Hisada, K.I.: Stable isotopic composition of pedogenic carbonates of the Early
705	Cretaceous Shimonoseki Subgroup, western Honshu, Japan, Palaeogeography,
706	Palaeoclimatology, Palaeoecology, 153 (1–4), 127–138, https://doi.org/10.1016/S0031-
707	0182(99)00069-3, 1999.
708	Let, X.T.: Early Cretaceous Cheirolepidiaceae from the Jiuquan and Liupanshan Basins and pCO_2
709	estimates, Ph.D. thesis, Lanzhou University, China, 27–40pp., 2019 (in Chinese with
710	English abstract).

711	Lei, X.T., Du, Z., Du, B.X., Zhang, M.Z., Sun, B.N.: Middle Cretaceous pCO ₂ variation in Yumen,
712	Gansu Province and its response to the climate events, Acta Geologica Sinica-English
713	Edition, 92(2), 801-813, https://doi.org/10.1111/1755-6724.13555, 2018.
714	Leier, Heimhofer A., Quade, J., DeCelles, P., Kapp, P.: Stable isotopic results from paleosol
715	carbonate in South Asia: paleoenvironmental reconstructions and selective alteration,
716	Earth Planet. Sci. Lett., 279, 242-254, https://doi.org/10.1016/j.epsl.2008.12.044, 2009.
717	Li, H., Yu, J.X., McElwain, J.C., Yiotis, C., Chen, Z.Q.: Reconstruction of atmospheric CO ₂
718	concentration during the late Changhsingian based on fossil conifers from the Dalong
719	Formation in South China, Palaeogeography, Palaeoclimatology, Palaeoecology, 519, 37-
720	48, https://doi.org/10.1016/j.palaeo.2018.09.006, 2019.
721	Li, R.H., Zhang, G.W.: New Dinosaur Ichotaxon from the Early Cretaceous Laiyang Group in the
722	Laiyang Basin, Shandong Province, Geological review, 46(6), 605-610, 2000 (in Chinese
723	with English abstract).
724	Lin, Q.: On Penaphis Lin, 1980 of Cretaceous (Callaphididae, Homoptera) and its coevolutionary
725	relationships, Acta Palaeontologica Sinica, 34, 194-204, 1995 (in Chinese with English
726	abstract).
727	Ling, W.L., Xie, X.J., Liu, X.M., Cheng, J.P.: Zircon U-Pb dating on the Mesozoic volcanic suite
728	from the Qingshan Group stratotype section in eastern Shandong Province and its tectonic
729	significance, Science in China, 50(6), 813-824, 2007.
730	Lini, A., Weissert, H., Erba, E.: The Valanginian carbon isotope event: a first episode of
731	greenhouse climate conditions during the Cretaceous, Terra Nova, 4, 374-384,
732	https://doi.org/10.1111/j.1365-3121.1992.tb00826.x, 1992.
733	Luo, S.L., Liu, M.W., Sha, Y.X., Wang, B., Hong, Y.C., Wang, W.L., Yu, J.X. (Eds.): The
734	stratigraphy and palaeontology of Laiyang Basin, Shandong province, Geological
735	Publishing House, Beijing pp. 24–159, 1990.
736	Martinez, M., Deconinck, J.F., Pellenard, P., Riquier, L., Company, M., Reboulet, S., Moiroud, M.:
737	Astrochronology of the Valanginian-Hauterivian stages (Early Cretaceous):
738	Chronological relationships between the Paraná-Etendeka large igneous province and
739	the Weissert and the Faraoni events, Global and Planetary Change, 131, 158-173,
740	https://doi.org/10.1016/j.gloplacha.2015.06.001, 2015.
741	McArthur, J.M., Janssen, N.M.M., Reboulet, S., Leng, M.J., Thirlwall, M.F., van de Schootbrugge,
742	B.: Palaeotemperatures, polar ice-volume, and isotope stratigraphy (Mg/Ca, δ^{18} O, δ^{13} C,
743	⁸⁷ Sr/ ⁸⁶ Sr): the Early Cretaceous (Berriasian, Valanginian, Hauterivian),
744	Palaeogeography, Palaeoclimatology, Palaeoecology, 248, 391–430,
745	https://doi.org/10.1016/j.palaeo.2006.12.015, 2007.
746	Mcelwain, J.C.: Do fossil plants signal palaeoatmospheric carbon dioxide concentration in the
747	geological past? Philosophical Transactions Biological Sciences, 353, 83–96,
748	https://doi.org/10.1098/rstb.1998.0193, 1998.
749	McElwain, J.C., Chaloner, W.G.: Stomatal density and index of fossil plants track atmospheric
750	carbon dioxide in the Palaeozoic, Annals of Botany, 76, 389–395,
751	https://doi.org/10.1006/anbo.1995.1112, 1995.
752	Mcelwain, J.C., Chaloner, W.G.: The Fossil Cuticle as a Skeletal Record of Environmental
153	Change, Palaios, 11, 376–388, https://doi.org/10.230//3515247, 1996.
1 - /	ng arage on the particular of the day by the state days and the second and the second

755	during the Early Cretaceous (Valanginian–Hauterivian), Palaeogeography,
756	Palaeoclimatology, Palaeoecology, 424, 17-39,
757	https://doi.org/10.1016/j.palaeo.2015.02.003, 2015.
758	Miller, C.N.: Mesozoic conifers, The Botanical Review, 43(2), 217-280, 1977.
759	Möller, C., Bornemann A., Mutterlose J.: Climate and paleoceanography controlled size variations
760	of calcareous nannofossils during the Valanginian Weissert Event (Early Cretaceous),
761	Marine Micropaleontology, 157, 101875,
762	https://doi.org/10.1016/j.marmicro.2020.101875, 2020.
763	OKUBO, A., KIMURA, T.: Cupressinocladus obatae, sp. nov., from the Lower Cretaceous
764	Choshi Group, in the Outer Zone of Japan, Bulletin of the National Science Museum,
765	Series C, 17(3), 91–109, 1991.
766	O'Reilly, J.E., Reis, M. dos, Donoghue, P.C.J.: Dating tips for divergence-time estimation, Trends
767	in Genetics, 31 (11), 637-650, https://doi.org/10.1016/j.tig.2015.08.001, 2015.
768	Passalia, M.G.: Cretaceous pCO ₂ estimation from stomatal frequency analysis of gymnosperm
769	leaves of Patagonia, Argentina, Palaeogeography, Palaeoclimatology, Palaeoecology, 273,
770	17-24, https://doi.org/10.1016/j.palaeo.2008.11.010, 2009.
771	Pearson, P.N., Palmer, M.R.: Atmospheric carbon dioxide concentrations over the past 60 million
772	years, Nature, 406, 695, 2000.
773	Podlaha, O.G., Mutterlose, J., Veizer, J.: Preservation of $\delta^{18}O$ and $\delta^{13}C$ in belemnite rostra from
774	the Jurassic/ Early Cretaceous successions, American Journal of Science, 324-347,
775	https://doi.org/10.2475/ajs.298.4.324, 1998.
776	Price, G.D., Janssen, N.M.M., Martinez, M., Company, M., Vandevelde, J.H., Grimes, S.T.: A
777	high-resolution belemnite geochemical analysis of Early Cretaceous (Valanginian-
778	Hauterivian) environmental and climatic perturbations, Geochemistry, Geophysics,
779	Geosystems, 19, 3832-3843, https://doi.org/10.1029/2018GC007676, 2018.
780	Price, G.D., Mutterlose, J.: Isotopic signals from late Jurassic-early Cretaceous (Volgian-
781	Valanginian) sub-Arctic belemnites, Yatria River, Western Siberia, J. Geol. Soc., 161,
782	959-968, https://doi.org/10.1144/0016-764903-169, 2004.
783	Quan, C., Sun, C., Sun, Y., Sun, G.: High resolution estimates of paleo-CO ₂ levels through the
784	Campanian (Late Cretaceous) based on Ginkgo cuticles, Cretaceous Research, 30, 424-
785	428, https://doi.org/10.1016/j.cretres.2008.08.004, 2009.
786	Reichgelt, T., D'Andrea, W.J.: Plant carbon assimilation rates in atmospheric CO ₂ reconstructions,
787	New Phytologist, 223, 1844–1855, https://doi.org/10.1111/nph.15914, 2019.
788	Ren, D., Hong, Y.: Origin of angiosperms based on the flower-loving Brachycera fossils, Acta
789	Zootaxonomica Sinica, 23, 212–221, 1998 (in Chinese with English abstract).
790	Retallack, G.J.: A 300-million-year record of atmospheric carbon dioxide from fossil plant
791	cuticles, Nature, 411, 287, 2001.
792	Retallack, G.J.: Pedogenic carbonate proxies for amount and seasonality of precipitation in
793	paleosols, Geology, 33, 333-336, https://doi.org/10.1130/G21263.1, 2005.
794	Retallack, G.J.: Refining a pedogenic-carbonate CO2 paleobarometer to quantify a middle
795	Miocene greenhouse spike, Palaeogeography, Palaeoclimatology, Palaeoecology, 281(1-
796	2), 57-65, https://doi.org/10.1016/j.palaeo.2009.07.011, 2009a.
797	Retallack, G.J.: Greenhouse crises of the past 300 million years, Geological Society of America
798	Bulletin, 121, 1441–1455, https://doi.org/10.1130/B26341.1, 2009b.

799	Robinson, S.A., Andrews, J.E., Hesselbo, S.P., Radley, J.D., Dennis, P.F., Harding, I.C., Allen, P.:
800	Atmospheric pCO ₂ and depositional environment from stable-isotope geochemistry of
801	calcrete nodules (Barremian, Lower Cretaceous, Wealden Beds, England), J. Geol. Soc.,
802	159, 215-224, https://doi.org/10.1144/0016-764901-015, 2002.
803	Royer, D.L.: CO ₂ -forced climate thresholds during the Phanerozoic, Geochim. Cosmochim. Acta,
804	70, 5665-5675, https://doi.org/10.1016/j.gca.2005.11.031, 2006.
805	Royer, D.L., Moynihan, K.M., McKee, M.L., Londoño, L., Franks, P.J.: Sensitivity of a leaf gas-
806	exchange model for estimating paleoatmospheric CO2 concentration, Climate of the Past,
807	15, 795-809, https://doi.org/10.5194/cp-15-795-2019, 2019.
808	Schubert, B.A., Jahren, A.H.: The effect of atmospheric CO ₂ concentration on carbon isotope
809	fractionation in C3 land plants, Geochim. Cosmochim. Acta, 96, 29-43,
810	https://doi.org/10.1016/j.gca.2012.08.003, 2012.
811	Schubert, B.A., Jahren, A.H.: Global increase in plant carbon isotope fractionation following the
812	Last Glacial Maximum caused by increase in atmospheric pCO ₂ , Geology, 43 (5), 435-
813	438, https://doi.org/10.1130/G36467.1, 2015.
814	Shi, G.L., Zhou, Z.Y., Xie, Z.M.; Cupressus foliage shoots and associated seed cones from the
815	Oligocene Ningming Formation of Guangxi, South China, Review of Palaeobotany and
816	Palynology, 166(3), 325-334, https://doi.org/10.1016/j.revpalbo.2011.06.005, 2011.
817	Skelton, P.W., Spicer, R.A., Kelley, S.P., Gilmour, I.: The Cretaceous World, 2003.
818	Srinivasan, V.: Two new species of the conifer Glenrosa from the Lower Cretaceous of North
819	America, Review of Palaeobotany and Palynology, 72, 245-255,
820	https://doi.org/10.1016/0034-6667(92)90029-G, 1992.
821	Srinivasan, V.: Conifers from the Puddledock locality (Potomac Group, Early Cretaceous) in
822	eastern North America, Review of Palaeobotany and Palynology, 89(3-4), 257-286,
823	https://doi.org/10.1016/0034-6667(95)00010-8, 1995.
824	Steinthorsdottir, M., Jeram, A.J., McElwain, J.C.: Extremely elevated CO ₂ concentrations at the
825	Triassic/Jurassic boundary, Palaeogeography, Palaeoclimatology, Palaeoecology, 308,
826	418-432, https://doi.org/10.1016/j.palaeo.2011.05.050, 2011.
827	Steinthorsdottir, M., Vajda, V.: Early Jurassic (late Pliensbachian) CO2 concentrations based on
828	stomatal analysis of fossil conifer leaves from eastern Australia, Gondwana Res., 27,
829	932-939, https://doi.org/10.1016/j.gr.2013.08.021, 2015.
830	Steinthorsdottir, M., Wohlfarth, B., Kylander, M.E., Blaauw, M., Reimer, P.J.: Stomatal proxy
831	record of CO ₂ concentrations from the last termination suggests an important role for CO ₂
832	at climate change transitions, Quat. Sci. Rev., 68, 43-58,
833	https://doi.org/10.1016/j.gr.2013.08.021, 2013.
834	Sun, B.N., Xiao, L., Xie, S.P., Deng, S.H., Wang, Y.D., Jia, H., Turner, S.: Quantitative analysis
835	of paleoatmospheric CO ₂ level based on stomatal characters of fossil <i>Ginkgo</i> from
836	Jurassic to Cretaceous in China, Acta Geol. Sin., 81, 931–939,
837	https://doi.org/10.1111/j.1755-6724.2007.tb01016.x, 2007.
838	Sun, Y.W., Li, X., Zhao, G.W., Liu, H., Zhang, Y.L.: Aptian and Albian atmospheric CO ₂ changes
839	during oceanic anoxic events: evidence from fossil <i>Ginkgo</i> cuticles in Jilin Province,
840	Northeast China, Cretaceous Research, 62, 130–141,
841	https://doi.org/10.1016/j.cretres.2015.12.007, 2016.

843	biogeochemical carbon cycle model, Island Arc, 8, 293-303,
844	https://doi.org/10.1046/j.1440-1738.1999.00238.x, 1999.
845	Wallmann, K.: Controls on the Cretaceous and Cenozoic evolution of seawatercomposition,
846	atmospheric CO ₂ and climate, Geochim. Cosmochim. Acta, 65, 3005-3025,
847	https://doi.org/10.1016/S0016-7037(01)00638-X, 2001.
848	Wan, C.B., Wang, D.H., Zhu, Z.P., Quan, C.: Trend of Santonian (Late Cretaceous) atmospheric
849	CO2 and global mean land surface temperature: evidence from plant fossils, Earth Sci.,
850	54, 1338–1345, doi: 10.1007/s11430-011-4267-1, 2011.
851	Wang, Y.D., Huang, C.M., Sun, B.N., Quan, C., Wu, J.Y., Lin, Z.C.: Paleo-CO ₂ variation trends
852	and the Cretaceous greenhouse climate, Earth-Science Reviews, 129, 136-147,
853	https://doi.org/10.1016/j.earscirev.2013.11.001, 2014.
854	Watson, J.: The Cheirolepidiaceae. In: Origin and Evolution of Gymnosperms, edited by: Beck,
855	C.B., Columbia University Press, New York, pp. 382-447, 1988.
856	Watson, J., Fisher, H.L.: A new conifer genus from the Lower Cretaceous Glen Rose Formation,
857	Texas, Palaeontology, 77, 719-727, 1984.
858	Weissert, H., Erba, E.: Volcanism, CO2 and palaeoclimate: a Late Jurassic-Early Cretaceous
859	carbon and oxygen isotope record, Journal of the Geological Society, 161, 695-702,
860	https://doi.org/10.1144/0016-764903-087, 2004.
861	Wortmann, U.G., Weissert, H.: Tying platform drowning to perturbations of the global carbon
862	cycle with a $\delta^{13}C_{\text{Org}}$ -curve from the Valanginian of DSDP Site 416, Terra Nova, 12,
863	289-294, https://doi.org/10.1046/j.1365-3121.2000.00312.x, 2000.
864	Xie, S.W., Wu, Y.B., Zhang, Z.M., Qin, Y.C., Liu, X.C., Wang, H., Qin, Z.W., Liu, Q., Yang,
865	S.H.: U-Pb ages and trace elements of detrital zircons from Early Cretaceous sedimentary
866	rocks in the Jiaolai Basin, north margin of the Sulu UHP terrane: Provenances and
867	tectonic implications, Lithos, 154, 346-360, https://doi.org/10.1016/j.lithos.2012.08.002,
868	2012.
869	Zhang, J.F., Rasnitsyn, A.P.: New extinct taxa of Pelecinidae sensu lato (Hymenoptera:
870	Proctotrupoidea) in the Laiyang Formation, Shandong, China, Cretaceous Research, 27
871	(5), 684–688, https://doi.org/10.1016/j.cretres.2006.03.001, 2006.
872	Zhang, Y.Q., Dong, S.W., Shi, W.: Cretaceous deformation history of the middle Tan2Lu fault
873	zone in Shandong Province, Eastern China, Tectonophysics, 363 (324), 243–258,
874	https://doi.org/10.1016/S0040-1951(03)00039-8, 2003.
875	Zhang, Y.Q., Li, J.L., Zhang, T., Dong, S.W., Yuan, J.Y.: Cretaceous to Paleocene
876	TectonoeSedimentary Evolution of the Jiaolai Basin and the Contiguous Areas of the
877	Shandong Peninsula (North China) and Its Geodynamic Implications, Acta Geologica
878	Sinica, 82 (9), 1229–1257, 2008 (in Chinese with English abstract).
879	Zhou, N., Wang, Y.D., Ya, L., Porter, A.S., Kürschner, W.M., Li, L.Q., Lu, N., McElwain, J.C.:
880	An inter-comparison study of three stomatal-proxy methods for CO ₂ reconstruction
881	applied to early jurassic ginkgoales plants, Palaeogeography, Palaeoclimatology,
882	Palaeoecology, 542(15), 109547, https://doi.org/10.1016/j.palaeo.2019.109547, 2020.
883	