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Abstract  

We present speleothem fluid inclusion δ18Of and δ2Hf values from Larga Cave, Puerto Rico, that cover the interval between 

46.2 to 15.3 ka before present on millennial scale, including the Last Glacial Maximum (LGM) and several stadial and 

interstadial cycles. The dataset can be divided in two main clusters of stable isotope compositions of the fluid inclusion water 

with respect to the global meteoric water line which coincide with strong variations in the water content of the stalagmite. In 

particular, this clustering is found to be climate related, where one cluster comprises samples from cold and dry periods, such 

as Heinrich and Greenland stadials, as well as parts of the LGM, which exhibit very high δ18Of and δ2Hf values. We interpret 

this enrichment as caused by evaporation inside the cave due to enhanced cave ventilation during these colder and drier times. 

In contrast, in most samples corresponding to warmer and wetter Greenland interstadials, but also for some from Heinrich 

Stadial 2 and 3, the δ18Of and δ2Hf values plot on the meteoric water line and modification of fluid inclusion water due to “in-

cave” evaporation is found negligible.  

Consequently, variations of last glacial hydro-climate and temperature in the western tropical Atlantic can be constrained. In 

general, δ18Of values from fluid inclusions are up to 3‰ higher than those of modern drip water, which is interpreted as a 

weaker atmospheric convective activity during the last glacial period. In addition, reconstructed temperatures suggest an 

average cooling of 2-3°C during the LGM compared to modern cave temperature. During Heinrich Stadials 2 and 3, 

reconstructed cave temperatures yield an average cooling of -1.4 ± 2.8 °C for HS 2 and -3.6 ± 2.2 °C for HS 3. Higher δ18Of 

values of these samples further suggest that the drip water was dominated by orographic rainfall and/or cold fronts, along with 

weak or even absent convective activity. In contrast, during interstadial phases, reconstructed temperatures reached nearly 

modern values, and convective activity was comparable or only slightly weaker than today. 
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1 Introduction 

Stable isotopes of oxygen (represented by δ18O values) are a widely used proxy to deduce information about past climates 

from speleothems, since the cave drip water reflects the amount- or recharge-weighted annual mean isotopic signature of the 

rainfall above the cave (Baker et al., 2019;Lachniet, 2009). This value is in turn modulated by several variables, such as 

temperature, the type and seasonal distribution of precipitation as well as the source moisture trajectory (Lachniet, 2009;Bird 

et al., 2020;Lases-Hernandez et al., 2020). In the tropics, the isotopic composition of precipitation, δ18Op, has been attributed 

to changes in precipitation amount and convective activity (Dansgaard, 1964;Lachniet and Patterson, 2009;Vieten et al., 

2018a). Consequently, tropical speleothem δ18O values are usually interpreted in terms of this isotopic ‘amount effect’ 

(Medina-Elizalde et al., 2010;Arienzo et al., 2019;Lases-Hernandez et al., 2019). However, in the soil and karst above the cave 

as well as at the surface of a stalagmite, various (disequilibrium) isotope fractionation effects can obscure the interpretation of 

stable isotopes in speleothem calcite (Weber et al., 2021;Hansen et al., 2019;Carlson et al., 2020). 

In this respect, stable isotopes of oxygen and hydrogen in speleothem fluid inclusions provide a useful proxy, since these 

represent potentially unchanged aliquots of the original drip water, and thus relicts of past precipitation (Schwarcz et al., 

1976;van Breukelen et al., 2008;Affolter et al., 2015). The utility of speleothem fluid inclusion analysis improves if the 

conditions of carbonate precipitation are well understood, i.e., whether or not the minerals precipitated close to ‘equilibrium 

conditions’. In the case of equilibrium conditions, paleo-temperatures can be reconstructed from combined oxygen isotope 

ratios of the calcite (δ18Oc) and the fluid inclusions, δ18Of, based on known temperature dependent isotope fractionation 

relationships between calcite and water (e.g., Kim and O'Neil (1997);Tremaine et al. (2011);Hansen et al. (2019);Johnston et 

al. (2013). In continental mid- and high latitude locations, estimations of paleo-temperatures via fluid inclusion δ2Hf values 

alone are feasible, based on the dominant control of temperature on rainfall isotope composition in such settings (Affolter et 

al., 2019;Demény et al., 2021). This only works, however, if the contribution of the amount effect is negligible. The analysis 

of speleothem fluid inclusions has been successfully applied worldwide, including tropical locations (Griffiths et al., 

2010;Arienzo et al., 2015;Millo et al., 2017;Meckler et al., 2015). Nevertheless, speleothem fluid inclusion records from the 

Last Glacial Period (c. 115 – 11.7 ka) are still sparse, and in many cases, reliable paleo-temperature estimates are challenging 

(Millo et al., 2017;Demény et al., 2021;Nehme et al., 2020). 

Here we present a detailed study of fluid inclusions from a Puerto Rican stalagmite (PR-LA-1), spanning the interval between 

46.2 to 15.3 ka. The record encompasses a period which was characterized by rapid climatic fluctuations from cold (stadial) 

to warmer (interstadial) conditions recurring on millennial time scales (Dansgaard et al., 1984;Peterson et al., 2000). In 

paleoclimate records from the tropics, the so-called ‘Heinrich Stadials’ (HS) are clearly represented by dramatic cooling and 

dry conditions in the western tropical Atlantic (Escobar et al., 2012;Arienzo et al., 2015;Grauel et al., 2016). These conditions 

were likely caused by a southward shift of the Inter-Tropical Convergence Zone (ITCZ) induced by a near shutdown of the 

Atlantic Meridional Overturning Circulation (AMOC) (Broccoli et al., 2006;Lynch-Stieglitz et al., 2014;Deplazes et al., 

2013;Escobar et al., 2012). Conversely, during the interstadials, the ITCZ was presumably in a more northerly position, 
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accompanied by warmer and wetter climatic conditions and higher SSTs in the (sub-) tropical Atlantic (Schmidt et al., 

2006a;Peterson et al., 2000;Sachs and Lehman, 1999).  

The speleothems PR-LA-1 was selected because its stable isotope values (δ18Oc and δ13Cc) and Mg/Ca ratios demonstrated a 

pronounced response to local hydro-climate on the millennial-scale (Warken et al., 2020). To further elucidate the millennial-

scale climate changes during the last glacial stadials and interstadials, we thus conducted a large number of fluid inclusion 

measurements following prominent δ18Oc changes in stalagmite PR-LA-1.  

 

 

Figure 1: Sample locations and previous work on stalagmite PR-LA-1. a) Location of Larga Cave (1), Puerto Rico, in the western 

tropical Atlantic region and other sites discussed in this study (map after Warken et al. (2020)) : (2) Guiana Basin (Rama-Corredor 

et al., 2015); (3) Cariaco Basin, Venezuela (Deplazes et al., 2013); (4) Lake Petén Itzá, Guatemala (Escobar et al., 2012;Grauel et al., 

2016); (5) Florida Strait (Them Il et al., 2015); (6) Abaco, Bahamas (Arienzo et al., 2015). The insert shows a detailed view on the 

location of Larga cave (red star), and the position of local meteorological stations: Arecibo observatory (AO), San Agustín (SA), 

Luquillo Mountains (LM), and Guánica Dry Forest (GD). Blue arrows in panel A indicate the dominant moisture trajectories over 

the region in boreal summer, when the Intertropical convergence zone (ITCZ, yellow shaded area) is in its northernmost position. 

b) Local rain water isotope data from Larga Cave (Vieten et al., 2018b), SA (Scholl et al., 2014) and GNIP station San Juan (SJ). In 

addition, the GMWL and LMWLs are shown from SA (Putman et al., 2019;Scholl et al., 2014); LM (Scholl and Murphy, 2014) and 

GD (Govender et al., 2013). c) Image of stalagmite PR-LA-1 and age-depth-model from Warken et al. (2020).  
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2 Material and Methods 

2.1 Site description 

Larga Cave (18°19’N 66°48’W, Fig. 1) is located 350 m above sea level in the north central karst region of Puerto Rico. The 

overburden of Larga Cave is comprised of the Oligocene Lares limestone Fm., which is covered by a thin layer of soil. The 

host rock is exposed at some places, and vegetation consists today of dense tropical forest. The main passage in the cave is 

almost horizontal and has a total length of 1400 m with a ceiling height of up to 30 m (Miller, 2010). Stalagmite PR-LA-1 has 

a total length of 185 cm and was found lying on the cave floor in the main passage, where the rock overburden is 40 to 80 m 

thick. The stalagmite was deposited between 15.4 to 46.2 ka before present with a hiatus between 35.5 and 41.1 ka (Fig. 1, 

Warken et al. (2020)). Microscopic inspection of thin sections shows that PR-LA-1 consists of calcite in columnar fabric and 

shows no signs of dissolution and/or recrystallization (Figure S 1). Between 2012 and 2017, the mean annual air temperature 

at the location of the cave was 22.5°C, and measured local annual rainfall amount had a mean of 2,200 mm (Vieten et al., 

2018a). Since 2012, cave air parameters such as temperature (T), pCO2 and relative humidity (RH), have been recorded at the 

position of stalagmite PR-LA-1. During this time, the cave temperature was constant with values of 22.5±0.2 °C. The cave air 

pCO2 varies depending on the season, with high values of up to 1800 ppm in summer and low values of around 550 ppm in 

winter (Vieten et al., 2016). This seasonal pattern results from a temperature-driven, very well-ventilated cave environment in 

winter and low ventilation in summer. During the winter season, a high buoyancy contrast at night leads to maximal cave 

ventilation, while it is at a minimum during summer, when cave temperatures are lower than in the outside environment. RH 

is mostly close to 100%, but has been found to decrease to values to 90-95% for several weeks when ventilation intensifies in 

winter months (Vieten et al., 2016;2018a). 

As typical for Caribbean locations, the precipitation regime over Larga Cave is characterized by a drier winter season, from 

December to April and a much wetter season during the rest of the year. During the drier season, occasional light showers 

occur imbedded in trade winds, which are interrupted by occasional cold fronts emanating from North America (Scholl and 

Murphy, 2014). In contrast, during the remainder of the year convective rain is formed by easterly moving low pressure systems 

which occasionally develop into tropical depressions accounting for the major part of total precipitation (Scholl and Murphy, 

2014). On inter-annual time scales, the δ18O values of rainfall in Puerto Rico show a negative correlation with precipitation 

suggesting an isotopic ‘amount effect’ of c. -0.1 ‰ per 100 mm of rainfall amount (Govender et al., 2013;Scholl et al., 

2014;Warken et al., 2020). Over the course of monthly drip water monitoring (2013 – 2017), the drip water composition at 

sites with a maximum distance of 10m to the location where stalagmite PR-LA-1 was found shows only little seasonal variation 

with a mean value of δ18Ow = −2.6 ± 0.3‰, and δ2Hw = −9.5 ± 0.2‰ (VSMOW). The seasonal signal in the rain water is 

strongly smoothed by the soil and epikarst above the cave with a mixing time of at least several months to years, suggesting 

that Larga speleothems time resolution record is at least inter-annual.  
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A local meteoric water line (LMWL) is available for three stations in Puerto Rico (Fig. 1). At San Agustin, located closest to 

Larga cave, a monthly dataset covering 1998 to 2012 shows a LMWL of δ2H = 8.4 × δ18O + 11.6‰ (VSMOW) (Putman et 

al., 2019;Scholl et al., 2014). Similar LMWLs (Fig. 1) exist for a site in the Luquillo Mountains in eastern Puerto Rico (Scholl 

and Murphy, 2014) as well at Guánica Dry Forest located in south-western Puerto Rico (Govender et al., 2013). 

2.2 Fluid inclusion stable isotope composition  

Solid samples for fluid inclusion isotope analysis were cut using a band saw along the growth axis of stalagmite PR-LA-1. 

High growth rates of this specimen of up to 1mm per year allow the sampling of distinct millennial scale climate oscillations 

evident in the δ18Oc record, such as D/O or Heinrich events. Replicate samples were taken along the corresponding growth 

layers to minimize the effect of integrating over too long time intervals. Individual sample sizes were between 0.21 – 1.34 g. 

The speleothem fragments were placed in a copper tube and installed in a preparation line connected to cavity ring down 

spectrometer (CRDS, L2130-I, Picarro) at the Institute of Environmental Physics, Heidelberg University (Weißbach, 2020). 

After connecting the sample, the setup requires approximately 90 minutes until the water vapour background has reached 

stable conditions. When the standard deviation of the water vapour concentration is below 20 ppmV over 30 minutes, the 

sample is crushed with a hydraulic crusher. To avoid a CRDS memory effect, a stable water vapour background was generated 

to ensure constant saturation of the cavity without condensation (Affolter et al., 2014;De Graaf et al., 2020). This was achieved 

by mixing dry nitrogen as a carrier gas with water of known isotopic composition, while the line, including the tube that holds 

the sample, was held at a constant temperature of 120°C.  

The mixture of background water and sample signal is measured in the CRDS analyser, and evaluated similar to the method 

of Affolter et al. (2014) with a Python code. The isotopic composition and released water volume is calibrated with in-house 

water standards and glass capillaries with known volumes in the µl range, respectively. These are inserted into the copper tube 

and connected to the preparation line, similarly as the speleothem samples. The in-house water standards are analysed regularly 

against the international primary reference material VSMOW2 and SLAP2. The long-term precision of single stable isotope 

measurements is 0.5 ‰ for δ18O and 1.5 ‰ for δ2H, while for released water volumes above 1.0 μl, the precision improves to 

0.2‰ for δ18O and 0.4‰ for δ2H (Weißbach, 2020). In case of water volumes < 0.2 μl, the result of a single measurement may 

become less precise and is therefore reproduced by replicate measurements to verify the result. If not stated differently, the 

stable isotope composition of fluid inclusions is given relative to Vienna Standard Mean Ocean Water (VSMOW). 



6 

 

 

Figure 2: Results of fluid inclusion analysis of stalagmite PR-LA-1 (Table S2). From top to bottom: (a) Growth rate (logarithmic 

scale) and (b) δ18Oc values from Warken et al. (2020). Symbols indicate the averaged δ18Oc values used for each depth of fluid 

inclusion isotope analysis, respectively. Vertical blue bars (dotted red lines) indicate the timing of cool/dry (warm/humid) periods, 

such as Heinrich stadials HS1 to HS3 (Greenland interstadials GI12c to 6) in the western tropical Atlantic (Warken et al., 2020). 

The following panels show fluid inclusion isotope values of (c) δ18Of , (d) δ2Hf, and (e) measured water content. Symbol colors indicate 

the samples with high (dark colored symbols) and low (light colored stars) water content with a threshold value of 0.55 μl/g, 

respectively. Horizontal lines indicate modern cave conditions. Note that the axes of the δ18Oc, δ18Of, and δ2Hf values are inversed.  
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3 Results 

3.1 Water content and stable isotope composition of speleothem fluid inclusions 

In total, 64 fluid inclusion water isotope measurements were performed from 30 different depth intervals. The results of the 

single measurements are shown in Table S1, while the mean values of the replicate measurements are given in Table S2. The 

mean water content of PR-LA-1 calcite for the different depth intervals shows a variation from close to 0 to 3 μl/g (Fig. 2). 

Sections with a relatively high water content, e.g., around c. 24 or 28 ka, also show a high (or at least highly variable) growth 

rate, while parts with a comparably low water content, such as at c. 20, 26, or 32ka are mainly in sections with relatively slow 

growth rates. The mean fluid inclusion water δ18Of values vary between -1.9 and +11.4‰, and mean δ2Hf values are between 

+6.9 and +44.9‰ (VSMOW) (Fig. 3a). The data exhibit a systematic 18O and 2H enrichment compared to modern drip water 

stable isotope values. This general pattern is also reflected in the slope of the linear regression line fitted to the data, which is 

with 2.42 ± 0.25 significantly lower than expected for a LMWL. This slope agrees with those of globally distributed 

evaporation lines for lakes and soil waters (Gibson et al., 2008) as well as evaporation experiments (Hu et al., 2009). 

Furthermore, the data can be allocated to two different clusters, depending on the measured water content of the samples. The 

first cluster comprises samples which are mainly located on or scatter around the GMWL. Most of these are also characterized 

by a water content greater than 0.55 µl/g. In contrast, a lot of samples show more positive δ18O and δ2H values and clearly plot 

off the GMWL along the linear regression line. In contrast to the first set of samples, most of these have a water content lower 

than 0.55 µl/g. Only one sample clearly does not fit into this pattern and plots away from the GMWL despite a water content 

>0.55µl/g (sample 32b), which therefore are also allocated to cluster (2). Conversely, two samples plot close to the MWLs 

despite a relatively low water content (samples 5 and 8). The relationship between fluid inclusion stable isotope values and 

water content is also expressed numerically with a negative correlation of δ18Of and the measured water content with r = -0.72 

(r² = 0.51) for logarithmic fitting (supplementary Figure S 2). 

3.2 Calculation of paleo-temperatures using the oxygen isotope equilibrium thermometer 

In order to assess the applicability of the oxygen isotope equilibrium thermometer based on the mean fluid inclusion δ18Of 

values, the average carbonate δ18Oc values were calculated from the intervals covered by the depth range of the measured fluid 

inclusion samples, respectively (Table S2). Figure 4a shows that the previously mentioned pattern with two clusters of samples 

is also reproduced when comparing the fluid inclusion δ18Of with the carbonate δ18Oc values. Samples with a high water 

content, which plot on the GMWL in Fig. 3a, are clearly separated by the samples with a lower water content. While cluster 

(1) samples with a high water content show a positive correlation between δ18Oc and δ18Of values, cluster (2) samples do not 

follow the same trend. Similarly, the fractionation between speleothem calcite and fluid inclusions, 18εc/f = 1000·lnα (with α = 

(1000 + δ18Oc,)/(1000 + δ18Of), and δ18Oc and δ18Of in VSMOW) shows a clear dependence on the δ18Of value for the evaporated 

samples of cluster (2) (Fig. 4b), but no relationship with carbonate δ18Oc values (Fig. 4c). In contrast, for the cluster (1) samples, 
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no relationship between 18εc/f and δ18Of values is observed (Fig. 4b). Figure 4 also suggests that fluid inclusion samples 9b, 32b, 

27, 32, and 36 are also enriched in 18O, and have to be allocated to cluster (2). 

 

Figure 3: a) Results of stable isotopes of fluid inclusions and drip waters in Larga Cave as indicated in Tables S1 and S2. Lines 

indicate the GMWL as well as the LMWL with δ2H = 8.2· δ18O+14‰ VSMOW by Scholl and Murphy (2014). Single values of the 

water isotopes in fluid inclusions (small circles) and mean values (large circles) with corresponding standard deviation are shown 

together with Larga cave drip water from different drip sites (2013 - 2019, green triangles) and local rain water data (compare Fig. 

1). The mean values of the replicate measurements are allocated to two groups, with cluster (1) comprising samples on or scattering 

around the GMWL (indicated by the dark blue circle), and cluster (2) comprising all samples with a clear evaporation signal, plotting 

off the GMWL (light blue circle). b) Stable isotope values of fluid inclusions from stalagmite PR-LA-1, categorized according to 

their allocation to the presumably warm (interstadial) or cold (stadial) periods when they formed. Thereby, a distinction is made 

between Heinrich stadials, Greenland stadials, and Greenland interstadials. Samples analysed from the LGM are also subdivided 

in presumably more warm/humid and relatively cool/dry periods. Numbers refer to the sample IDs as shown in Tables S1 and S2.  
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Figure 4: Analysis of the fractionation between speleothem calcite and fluid inclusions. Panel (a) shows the measured δ18Oc values 

in speleothem carbonate (Warken et al., 2020) vs. measured δ18Of in speleothem fluid inclusion water (this study). (b) fractionation 

δ c/f = 1000 lnα between carbonate and fluid inclusion water vs. the δ18Of values. (c) fractionation 18εc/f  = 1000·lnα vs. δ18Oc values. 

Numbers indicate the sample IDs of the fluid inclusion measurements (Table S2). The uncertainty of the calculated fractionation is 

estimated from propagating the analytical error of the fluid inclusion measurements, as well as the range of the δ18Oc calcite value 

due to dating and sampling uncertainty. Blue symbols indicate samples with a water content >0.55 µl/g, and light blue symbols a 

water content <0.55 µl/g. The grey lines indicate the water–calcite oxygen isotope fractionation relationship after Tremaine et al. 

(2011) for cave temperatures of 15, 20 and 25°C, respectively. The ellipses indicate the samples which are allocated to cluster (2) due 

to large fractionation effects in δ18Of. All these samples also plot off the water–calcite oxygen isotope fractionation curve for 25°C. 

For a first-order temperature calculation from 18εc/f , three different isotope fractionation relationships have been tested (Kim 

and O'Neil, 1997;Tremaine et al., 2011;Johnston et al., 2013). All results are listed in Table S2, where the given uncertainties 

of the paleo-temperatures result from propagating the analytical error of the fluid inclusion measurements, as well as the range 

of the δ18Oc calcite value due to dating and sampling uncertainty. All paleo-temperatures reported and discussed in the main 

text are calculated using the Tremaine et al. (2011) equation, which has been developed from cave monitoring and modern 

speleothem calcite and yields realistic temperatures compared to the modern cave air temperature (Table S2). Note that we 

discard samples from the temperature discussion where replicate measurements exhibit a poor reproducibility in terms of 

largely variable water content and large isotopic differences, in order to focus on the most robust paleo-climatic inferences 

(Table S2). Note also that we do not report temperatures for the samples of cluster (2), which clearly show significant influence 

from fractionation through evaporation (Table S2). We regard the temperature results obtained on the 12 replicate samples 

from cluster (1) as reliable within the large uncertainty of 1.5 – 2.5°C. The calculated temperatures scatter around the modern 

cave temperature of 22.8°C, with paleo-temperatures varying between 16 ± 1.8 °C (sample 8, 21.39 ± 0.25 ka) and 25.7 ± 1.4 

°C (sample 24, 33.52 ± 0.52 ka), and a mean value of 21.1 ± 2.7 °C. 
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4 Discussion 

4.1 Influence of evaporation on PR-LA-1 fluid inclusion isotope data 

4.1.1 Categorization of the fluid inclusion isotope data 

For the fluid inclusion isotope data from cluster (1), δ18Of and δ2Hf values scatter around the LMWL (Govender et al., 

2013;Putman et al., 2019;Scholl and Murphy, 2014;Scholl et al., 2014). Thus, we suggest that these samples represent pristine 

fossil drip water. The second cluster of fluid inclusion isotope values contains mainly samples with water contents below 

0.55µl/g, which all show increased δ18Of values which are noticeably more fractionated than hydrogen isotopes. In addition to 

the categorization with respect to water content, the fluid inclusion samples can be further associated with stadial and 

interstadial phases during the Last Glacial according to their stable isotope and elemental signatures in speleothem calcite (Fig. 

3b). The fluid inclusion samples representing warm Greenland Interstadial (GI, red triangle) plot close to the MWL and can 

be all associated with cluster (1). In contrast, the samples formed during the colder intervals (HS; GS, LGM) are mainly 

attributed to cluster (2) and trend away from the MWL. In addition, for Last Glacial Maximum (LGM) samples, the 

differentiation between the two clusters appears to be valid, with relatively warm/humid phases plotting closer to the MWL, 

and relatively dry/cool phases rather clustering with the GS and HS samples (Fig. 3b). This demonstrates that our dataset 

allows us to distinguish cooler and/or drier climatic background states during Heinrich and Greenland Stadials, represented by 

cluster (2) samples, from the presumably warmer and more humid phases during Greenland Interstadials, which comprise 

cluster (1). Note that evaporation driven fractionation must indicate a general annual decrease of humidity in the cave spanning 

over decades required to trap the water in the calcite. Therefore, we suggest that samples of cluster (2) reflect periods with 

stronger cave ventilation as recorded today in the thermal contrast of cave and ambient air in winter. This categorisation 

suggests that the underlying process, which causes this clustering and affects the fluid inclusion isotopic signatures, is purely 

climate related. 

Isotope effects due to partial evaporation of fluid inclusion water can in principle also occur during the warm-up phase in the 

crusher when fluid inclusions are insufficiently sealed to withstand the pressure that builds up during warm-up. Based on our 

experience, water loss in the warm-up phase causes noticeable disruptions in the water background of the analyses, but this 

has been observed mostly for diagenetically compromised samples so far. We note that the water vapour background was 

continuously monitored before crushing, and no anomalies were observed for the samples from PR-LA-1 (Weißbach, 2020). 

Figure S 1 also shows no clear relationship between shape and distribution of fluid inclusions in PR-LA-1 nor do we see signs 

of diagenetic alteration in stalagmite PR-LA-1, which could have favoured inclusion leaking during heating. Previous studies 

have also invoked recrystallization-induced oxygen isotope changes in inclusion-hosted water of speleothems (Demény et al., 

2016).  This process is unlikely to be systematically related with climate and would shift the fluid inclusion δ18O values towards 

more negative values, which is opposite to the observed pattern in this study. 
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Other studies suggest that in situ oxygen isotope exchange of fluid inclusion water with the host carbonate is unlikely to cause 

significant isotope fractionation (Uemura et al., 2020;Demény et al., 2021). The systematic enrichment of cluster (2) samples 

indicates that the stable isotope composition of the low water content samples has been affected by fractionation processes in 

the gas phase as 18O is enriched over H isotopes, just as in non-equilibrium evaporation of thin water films (Gat et al., 1994). 

Thus, all information combined suggests evaporation inside the cave on the surface of the stalagmite as the most likely scenario 

causing the lower slope of the water isotope relationship of 2.42 ± 0.25 (Fig. 3) via a temperature and humidity related climate 

– change (Gibson et al., 2008;Hu et al., 2009). 

4.1.2 Climate-related evaporation effects on fluid inclusion isotope values in Larga cave 

Recent studies have suggested that in-cave evaporation may affect the isotopic composition of speleothem fluid inclusions 

(Nehme et al., 2020;Weißbach, 2020). A potential climate-related driver of this evaporative fractionation that has not been 

described previously is temperature-driven ventilation. This effect has been observed in Larga Cave today, especially during 

the dry winter season (Vieten et al., 2016). Cave air ventilation may provoke evaporation of remaining water at the stalagmite’s 

surface, which in turn influences the δ18Of and δ2Hf values of the inclusion water seconds (Dreybrodt and Scholz, 

2011;Deininger et al., 2012;Day and Henderson, 2011). At the same time, evaporation would also reduce the water content of 

the inclusions, explaining the systematically lower water content of the cluster (2) samples (section 3.1 and Figure S 2). Since 

speleothems are covered only with a thin film of water, evaporation can be very effective, especially given the high average 

cave temperature of Larga Cave and assuming a persistently lowered humidity. Calculation of the evolution of both water 

content and fluid inclusion 18O values with a Rayleigh fractionation approach (Figure S 2) supports this interpretation and 

shows that a moderate evaporation of 50-75% of the initial water content (between 0.5 and 3µl/g) is sufficient to explain the 

observed enrichment of more than 12‰ of the fluid inclusion δ18Of values. 

Figure 4 shows that the fractionation 18εc/f between speleothem carbonate and fluid inclusion water is dominated by the 

enrichment of the fluid inclusion water, which means that the process resulting in the large fractionation of the δ18Of values 

does only have a minor effect on the δ18Oc values of CaCO3. When regarding both cluster (1) and cluster (2), 18εc/f is largely 

independent from δ18Oc values (Fig. 4c), while a very strong correlation with δ18Of values is evident (Fig. 4b). This argues for 

a significant influence of evaporation, which would have a strong effect on the fluid inclusion water, but only a minor effect 

on the precipitated carbonate. The reason for the different effect of evaporation on the δ18Of values of the fluid inclusion water 

and the precipitated calcite is related to the very different time-scales of precipitation and oxygen isotope exchange between 

water and dissolved bicarbonate. Precipitation of calcite occurs on a time scale of a few hundred seconds (Dreybrodt and 

Scholz, 2011), depending – amongst other parameters - on cave temperature and film thickness. The time-scale of oxygen 

isotope exchange between water and dissolved bicarbonate, in contrast, is in the range of hours to days (Beck et al., 

2005;Dreybrodt and Scholz, 2011), and thus orders of magnitude longer. 

When the drip water enters the cave, it is reasonable to assume that the δ18O value of the dissolved bicarbonate is in oxygen 

isotope equilibrium with the δ18O value of the drip water. When the drip water then falls onto the surface of a stalagmite, 
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degassing of excess CO2 occurs within a few seconds (Dreybrodt and Scholz, 2011) with a negligible effect on the δ18O value 

of the dissolved bicarbonate. Then, precipitation of CaCO3 starts immediately, and the δ18O value of the bicarbonate that was 

previously equilibrated with the drip water is imprinted on the δ18O value of the precipitated calcite. We note that oxygen 

isotope fractionation during precipitation of speleothem calcite is a complex process (e.g., Dreybrodt and Scholz, 2011;Guo 

and Zhou, 2019;Hansen et al., 2019;Scholz et al., 2009), and oxygen isotope fractionation does in most cases not occur under 

conditions of oxygen isotope equilibrium. After rapid precipitation of speleothem calcite, the drip water remaining on the 

surface of the speleothem, which forms the fluid inclusion water when it is eventually trapped, is progressively affected by 

evaporation, which leads to increasing δ18O and δ2H values of the water, and finally to fluid inclusions that are not in isotope 

equilibrium with the host-calcite. However, due to the very long time-constant of oxygen isotope exchange between water and 

bicarbonate, it takes hours to imprint the oxygen isotope signature of the (evaporated) water on the dissolved HCO3
-, and 

hence, the precipitated calcite. In addition, since the Ca concentration of the drip water drops exponentially, only a minor 

component of calcite could still be precipitated from the remaining solution (Scholz et al., 2009;Mühlinghaus et al., 

2007;Deininger et al., 2012;Dreybrodt and Scholz, 2011). Given the smaller amount of Ca typically left in the solution, even 

under evaporative conditions only an insignificant amount of calcite may be formed from the solution affected by evaporation. 

Thus, in case of evaporation inside the cave, the δ18O values of the precipitated calcite would still reflect the δ18O value of the 

original drip water, whereas the trapped fluid inclusion water may be strongly affected by evaporation and exhibit elevated 

δ18O values (Fig. 3). These processes have been modelled by Deininger et al. (2012), who indeed predicted an enrichment of 

the δ18O values of the water film on the surface of a stalagmite of several per mil due to evaporation, whereas the effect on the 

δ18O values of the precipitated calcite was below 1 ‰. 

Ventilation in Larga Cave is mainly driven by temperature differences between the atmosphere and the cave (Vieten et al., 

2016). During the dry winter season, over the course of the day, the part of the cave hosting the studied speleothem is warmer 

than the atmosphere inducing a buoyancy-driven air flow. According to our results, evaporation effects are strongest during 

the comparably cooler and drier periods of the record. This in turn suggests that cave ventilation was particularly pronounced 

in these times, which would argue for a stronger seasonal temperature contrast during stadial intervals. This observation is 

consistent with the hypothesis of enhanced northern-hemisphere seasonality during abrupt cooling events (Denton et al., 2005). 

Similarly, Ziegler et al. (2008) reported persistently high summer temperatures of the Atlantic warm pool also during north 

Atlantic cold events, such as Heinrich stadials, suggesting that these seem to influence mainly the winter climate conditions in 

the Caribbean. It is therefore plausible that a pronounced and persistently strong seasonal temperature difference with 

particularly cool temperatures during the winter season enhanced winter type ventilation conditions in Larga cave. Hence, 

ventilation, and thus, the occurrence of evaporation on the stalagmite’s surface would have been significant. 

4.1.3 Applicability of the oxygen isotope equilibrium thermometer 

The previously discussed processes have implications for the applicability of the oxygen isotope equilibrium thermometer 

using fluid inclusion and carbonate δ18O values from PR-LA-1. Post-depositional (but pre-entrapment) enrichment of 18O in 
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fluid inclusion water due to evaporation apparently results in high 18εc/f fractionation values between fluid inclusion water and 

calcite, because such influenced samples do not preserve the original δ18Of signal. Samples plotting off the MWL are thus 

discarded from further inferences. Note that evaporation effects would increase reconstructed temperatures by a factor of two 

to even three, hence, temperature reconstruction is very sensitive to evaporation, which must be considered when interpreting 

meaningful temperature values as likely being maximum temperature estimates. Figure 4 shows that also samples, which plot 

on the GMWL in Fig. 3, might show signs of evaporation. This is, e.g., the case for the sample taken from Heinrich Stadial 

(HS) 1 (15.9 ka). Here, other paleoclimate records as well as the PR-LA-1 calcite δ18O values and elemental proxies suggest 

that this phase was the coolest and driest in Puerto Rico and the Caribbean realm (Warken et al., 2020;Escobar et al., 

2012;Grauel et al., 2016). The temperature calculated from the PR-LA-1 fluid inclusion value, however, would be considerably 

warmer than at present-day. As outlined above, we have to assume that evaporative effects also influenced speleothem and 

fluid inclusion formation during HS 1, shifting the δ18Of to heavier (more positive) values. This demonstrates that samples 

may be influenced from evaporation despite a position on or close to the MWL. We therefore consider all calculated 

temperatures as a maximum estimate, and results lower than +3°C compared to modern temperatures as in first order plausible. 

4.2 Reconstruction of hydro-climate and paleo-temperatures in the western tropical Atlantic region 

4.2.1 Fluid inclusion δ18O values suggest reduced convective activity during the last glacial  

Despite their position close to the MWL, δ18Of values in cluster (1) are significantly higher by +2.6 ± 1.3 ‰ compared to 

modern drip water δ18Ow. At the time of deposition of speleothem PR-LA-1 (46.2 to 15.3 ka), the δ18O signature of the 

(sub)tropical Atlantic surface water was higher by about 1.5‰ due to larger global continental ice volume and increased 

salinity of the western tropical Atlantic  (Hagen and Keigwin, 2002;Lea et al., 2003;Schmidt and Spero, 2011). Consequently, 

glacial drip water represented by fluid inclusion δ18Of values must be corrected for this 1.5‰ offset from present-day. Millo 

et al. (2017) reported a similar enrichment of about 4‰ compared to modern drip water in last glacial fluid inclusion water in 

a subtropical stalagmite from Brazil, and a similar glacial-interglacial offset has been observed in δ18O values of stalagmites 

from Guatemala (Winter et al., 2020) and Florida (van Beynen et al., 2017). 

We interpret the offset in cluster (1) to reflect a generally weaker convective activity during the last glacial period compared 

to modern conditions and associated reduced summer rainfall (e.g., Arienzo et al., 2019;Winter et al., 2020;Lases-Hernandez 

et al., 2019;2020;Bird et al., 2020). Today, Puerto Rico rainfall is isotopically enriched when it is formed by occasional 

northerly cold fronts as well as orographic processes of trade winds (Scholl and Murphy, 2014). In contrast, isotopically lighter 

precipitation is associated with convective rain, such as hurricanes and tropical storm events. The type of precipitation, i.e., 

convective vs. orographic, depends to some extent on the meridional location of the ITCZ as well as related Caribbean SSTs 

(Winter et al., 2020). In this study, the mean of the reconstructed fluid inclusion temperatures for the LGM (c. 25 – 18ka) is 

20.6 ± 3.2 °C. Since our reconstructed temperatures can be regarded as upper limits, due to an underlying imperceptible amount 

of evaporation, this supports generally cooler temperatures than today over the course of the LGM. The observation of a 
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glacial-interglacial temperature difference of 2-3°C highlights the results of previous Caribbean SST records (Rama-Corredor 

et al., 2015;Lea et al., 2003;Schmidt et al., 2006b). Such low temperatures were presumably too cold to sustain strong 

convective activity during the LGM. Accordingly, Winter et al. (2020) suggested that deep atmospheric convection during the 

Holocene was triggered by exceeding a SST threshold of 27.5°C in the tropical ocean leading to a shift of the hydro-climatic 

regime from a drier state and weak convection during the last glacial to a humid state and strong convection after 9 ka over 

Central America. 

The mean value of Puerto Rican fluid inclusion temperatures obtained during MIS 3 (45.5 - 29 ka) is 21.7 ± 2.6 °C. Despite 

the relatively large uncertainties, this may support a warmer MIS 3 than LGM, which has been found in the Guiana Basin 

(Rama-Corredor et al., 2015) and Brazil (Millo et al., 2017). For Central Mexico, Caballero et al. (2019) report a mean annual 

temperature of MIS 3 comparable to the present-day. From a global perspective, MIS 3 was c. 2°C warmer than the LGM, due 

to a northern hemispheric summer insolation maximum and resulting smaller ice sheets (Van Meerbeeck et al., 2009;Svendsen 

et al., 2004). According to Rama-Corredor et al. (2015), western tropical Atlantic SSTs were close to the threshold of 27.5°C 

during certain intervals of MIS 3 (Fig. 5), allowing sustainment of convective activity at least temporarily and/or over a longer 

time interval over the course of the year. Consequently, relatively wet environmental conditions - even though still drier than 

those of the Holocene – are supported by records from Mexico, Guadeloupe and the Bahamas (Lozano-García et al., 

2015;Royer et al., 2017;Arienzo et al., 2017). 
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Figure 5: Paleo-temperatures and hydro-climate in the western tropical Atlantic region during the LGM and MIS2. From top to 

bottom: (a) Cariaco basin reflectance record representing the mean meridional position of the ITCZ over northern south America 

(Deplazes et al., 2013); (b) Speleothem PR-LA-1 δ18Oc values from Warken et al. (2020), representing local high-resolution 

hydroclimate; (c) Guiana basin Uk37 sea surface temperature reconstruction (Rama-Corredor et al., 2015); (d) Ostracod δ18O 

derived temperature record from Lake Petén Itzá (Guatemala) (Escobar et al., 2012); (e) Speleothem fluid inclusion based 

temperature reconstruction from the Bahamas (Arienzo et al., 2015); (f) Fluid inclusion derived temperatures from PR-LA-1 (this 

study). The horizontal dashed line indicates modern cave air temperature at Larga cave. (g) green triangles indicate the timing of 

Larga cave ventilation events as suggested by fluid inclusion stable isotopic composition influenced by evaporation.  In the tropical 

Atlantic, Heinrich stadials (HS1 to 4) as well as Greenland stadials are associated with cold and dry conditions (light blue bars), and 

Greenland interstadials are associated with warmer and more humid climatic conditions (light red lines). 
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4.2.2 Millennial-scale climate variability in the western tropical Atlantic 

On the millennial scale, fluid inclusion δ18Of (and δ2Hf) values exert pronounced swings between very high values of up to 

2‰ (30‰) during stadial phases, and down to 0‰ (15‰) during interstadial phases between 45 and 27 ka. The pattern largely 

follows the evolution of the high-resolution calcite stable isotope record (Fig. 2). Vertical blue bars in Fig. 2 and Fig. 5 illustrate 

the intervals of elevated δ18Oc values during Heinrich stadials, which are associated with relatively cold and dry conditions in 

the circum-Caribbean area. The calculated upper limits for paleo-temperatures during HS2 and HS3 are between 17.4 ± 1.5 °C 

and 22.8 ± 1.6°C and between 18.6 ± 1.9 °C and 19.8±1.5°C, respectively (Fig. 5, Table S2). Accordingly, we estimate an 

minimum average cooling compared to the present cave air temperature of -1.4 ± 2.8 °C for HS 2 and -3.6 ± 2.2 °C for HS 3. 

These values are consistent with the results of Arienzo et al. (2015), who found an average temperature decrease of 4°C across 

Heinrich stadials 1 to 3 for the Bahamas. In addition, many studies document that HS 1 exhibited the most pronounced cooling 

of all Heinrich stadials (Arienzo et al., 2015;Grauel et al., 2016). HS1 was also more pronounced in the isotopic and elemental 

calcite signals of our sample compared to HS2 or HS3 (Warken et al., 2020). Escobar et al. (2012), and Grauel et al. (2016) 

found an even stronger cooling down to 10°C for HS1 in Lake Petén Itzá, Guatemala (Fig. 5). We note, however, that these 

studies used bottom dwelling ostracods, which may have recorded winter – biased lake temperatures. In addition, the strong 

maritime climate of Puerto Rico located in the eastern Caribbean makes less pronounced temperature variations appear 

reasonable. In addition to absolute temperature estimates, the samples which show signs of evaporation from cluster (2) suggest 

that during these times an increased seasonal temperature difference between persistently warm summer temperatures but 

cooler winter temperatures lead to enhanced cave ventilation. The timing of these samples which includes not only the Heinrich 

stadials but also Greenland stadials and certain intervals of the LGM is highlighted in Fig. 5. This further illustrates that our 

dataset suggests that enhanced seasonality may have occurred during these intervals, which would be indicative of a persistent 

summer expansion of the Atlantic warm pool, but relatively cool winter temperatures. 

Besides the temperature drops associated with Heinrich stadials, the expression of Greenland interstadials is still not well 

constrained in the American tropics (Warken et al., 2019). The mean temperature calculated from samples associated with 

interstadial events in speleothem PR-LA-1 is 22.8 ± 1.9°C (samples 15, 24, 28, 35), which is in the range of present-day cave 

temperature. In comparison to the average stadial temperatures of 19.7 ± 0.9°C (samples 16, 18, 19), this indicates a difference 

of up to 3°C between stadial and interstadial phases in Puerto Rico. In the tropical Guiana Basin at 7°N latitude, abrupt glacial 

SST variations on the millennial scale are in the range of about ±1°C (Rama-Corredor et al., 2015). Further north, Them Il et 

al. (2015) report a shift of c. 2°C associated with stadial/interstadial transitions in the Florida Strait (24°N), whereas shifts by 

2 to 5°C have been observed in subtropical SSTs, such as at the onsets of GI8 or 12 at the Bermuda Rise at 33°N (Sachs and 

Lehman, 1999). Despite the large uncertainties associated with the oxygen isotope equilibrium thermometer, our results are 

thus consistent with these previous reconstructions and suggest that also on Puerto Rico the interstadial phases in the western 

tropical Atlantic were associated with relatively warm temperatures, which may have been even comparable to present-day. 

Such warm temperatures favoured convective activity, and thus, higher precipitation amounts in the region. Marine 
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reconstructions showed that interstadials were associated with reduced upper water column salinity, while stadial events were 

associated with increased salinity (Them Il et al., 2015). These observations support our results that meridional shifts in the 

position of the ITCZ in response to changes in the strength of the AMOC affected the evaporation-precipitation ratio in the 

western tropical Atlantic (Schmidt and Spero, 2011;Arienzo et al., 2017;Peterson et al., 2000;Schmidt et al., 2006a;Warken et 

al., 2020). 

5 Conclusions 

We demonstrate that the stable isotopic composition of fluid inclusions can be strongly influenced by evaporative effects. In 

Larga Cave, the temperature driven ventilation potentially favoured such conditions, and our data suggest that this effect may 

have been especially pronounced during cold and dry conditions, such as during Heinrich and Greenland stadial phases and 

parts of the LGM. During warmer Greenland interstadials, most samples suggest that isotopic modification due to evaporation 

is negligible. In Larga cave, this process is apparently climate-related, making it possible to omit the potentially affected sub-

samples for paleo-temperature calculation. 

Our dataset thus provides valuable information about last glacial hydro-climate and temperature variability in the western 

tropical Atlantic and allows to constrain climatic changes on the millennial to orbital scale. For the presumably coldest phases 

of the last glacial, the Heinrich stadials, we observe a minimum cooling of -1.4 ± 2.8 °C during HS 2 and -3.6 ± 2.2 °C during 

HS 3. In contrast, during interstadial phases, temperatures were on average 23.4 ± 1.7°C , which is comparable to modern 

values. The analysis of stable water isotope values in speleothem fluid inclusions further suggests that, compared to present-

day, the precipitation regime in the western tropical Atlantic was characterized by generally weaker convective activity during 

the glacial period as compared to present-day. Especially during the LGM, average temperatures were 2-3°C cooler, and thus 

too cold to sustain deep atmospheric convection. The intermediate background climate state during MIS 3 was potentially 

slightly warmer than the LGM, and favoured an increased sensitivity of western tropical Atlantic hydro-climate to 

perturbations of the AMOC and northern hemispheric temperature changes on the millennial scales. In this period, the region 

experienced significant shifts between a slightly weaker – but still active - convective regime during the warmer interstadial 

phases and a dry/non-convective regime during the colder stadial phases.  

Data availability 

The results of fluid inclusion isotope analyses from this study are available in the appendix to this publication. The in-house 

Python code for the evaluation of the raw data is available under https://github.com/bhemmer/IsoFluid. 
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