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Abstract. The role and climatic impact of the opening of the Drake Passage and how it affected both marine and terrestrial 15 

environments across the Eocene-Oligocene Transition (EOT ~34 Ma) period remains poorly understood. Here we present new 

terrestrial palynomorph data compared with recently compiled lipid biomarker (n-alkane) data from Ocean Drilling Program 

(ODP) Leg 113 Site 696 drilled on the margin of the South Orkney Microcontinent (SOM) in the Weddell Sea, to investigate 

changes in terrestrial environments and paleoclimate across the late Eocene and early Oligocene (~37.6-32.2 Ma). Early late 

Eocene floras and sporomorph-based climate estimates reveal Nothofagus-dominated forests growing under wet temperate 20 

conditions, with mean annual temperature (MAT) and precipitation (MAP) around 12°C and 1802 mm, respectively. A phase 

of latest Eocene terrestrial cooling at 35.5 Ma reveals a decrease in MAT by around 1.4°C possibly linked to the opening of 

the Powell Basin. This is followed by an increase in reworked Mesozoic sporomorphs together with sedimentological evidence 

indicating ice expansion to coastal and shelf areas approximately 34.1 million years ago. However, major changes to the 

terrestrial vegetation at Site 696 did not take place until the early Oligocene, where there is a distinct expansion of 25 

gymnosperms and cryptogams accompanied by a rapid increase in taxa diversity and a shift in terrestrial biomarkers reflecting 

a change from temperate forests to cool temperate forests following 33.5 Ma. This surprising expansion of gymnosperms and 

cryptogams is suggested to be linked to environmental disturbance caused by repeat glacial expansion and retreat, which 

facilitated the proliferation of conifers and ferns. The timing of glacial onset at site 696 is linked to the global cooling at the 

EOT yet the latest Eocene regional cooling cannot directly be linked to the observed vegetation changes. Therefore, our 30 

vegetation record provides further evidence that the opening of the Drake Passage and Antarctic glaciation were not 

contemporaneous, although stepwise cooling in response to the opening of ocean gateways surrounding the Antarctic continent 

may have occurred prior to the EOT. 
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1. Introduction 

The Cenozoic progression from greenhouse to icehouse climate conditions was accompanied by the establishment of the 35 

Antarctic ice sheet around the Eocene-Oligocene Transition (EOT 34.44-33.65 Ma; e.g., Hutchinson et al., 2021). This change 

in Earth climate state is evidenced by a prominent excursion in oxygen isotope ratios from marine biogenic calcite (e.g., Zachos 

et al., 2001, 2008; Westerhold et al., 2020) during the Earliest Oligocene Oxygen Isotope Step (EOIS ~33.65Ma; Hutchinson 

et al., 2021). The possible causes of the onset of Antarctic glaciation are poorly understood and ambiguity remains as to 

whether a single or combination of factors and feedbacks drove the Cenozoic climate transition (e.g., DeConto and Pollard, 40 

2003; Coxall and Pearson, 2007). In particular, large uncertainties remain over the role of the opening and deepening of the 

Drake Passage on the development of the Antarctic Circumpolar Current (ACC), and how this event affected both marine and 

terrestrial environments (Scher and Martin, 2008; Houben et al., 2019; Lauretano et al., 2021). Today ocean currents and the 

ACC exert a strong influence on the Earth’s climate system in the global distribution of heat, nutrients, salt and carbon, as well 

as in the gas exchange between the atmosphere and the ocean (Cox, 1989; Bryden and Imawaki, 2001; Anderson et al., 2009; 45 

Sarkar et al., 2019). In particular the ACC facilitates the thermal isolation of Antarctica from subtropical surface heat through 

the isopycnal tilt of its water masses, acting to stabilise the Antarctic ice sheet (Martinson, 2012; Sarkar et al., 2019). Given 

that unabated anthropogenic warming is expected to cause a poleward shift of the ACC and potentially weaken thermohaline 

circulation (Zhang and Delworth, 2005) this study responds to a broader need to fully understand the Earth climate system in 

order to better predict future stability of the Antarctic ice sheet.  50 

 

A major obstacle in understanding the role of the opening Drake Passage and ocean currents in Cenozoic climate change has 

been the lack of well-dated continuous records spanning the EOT from the region. Here we present new terrestrial palynomorph 

data from the EOT recovered in the Ocean Drilling Program (ODP) Leg 113 Site 696 Hole B (herein referred to as Site 696), 

containing a well recovered EOT section (~37.6-32.2 Ma; Houben et al., 2013, 2019). Vegetation composition, structure and 55 

diversity patterns are reconstructed along with sporomorph-based quantitative climate estimates in order to explore the timing 

and nature of vegetation and climate change across the northern Antarctic Peninsula region and South Orkney Microcontinent 

(SOM). The results are compared with recently compiled lipid biomarker (n-alkane) data (López-Quirós et al., 2021), and 

dinoflagellate cyst data (Houben et al., 2013) to better understand shifts in marine as well as terrestrial environments and the 

source of terrestrial versus aquatic organic matter. Our results reveal new insights into the timing of terrestrial climate cooling 60 

in the region and glacial onset on Antarctica across the EOT. 

2. Previous Geochemical Analyses 

 The following section will focus on the interpretation of lipid biomarker (n-alkane) and stable isotope data from Site 696 by 

López-Quirós et al. (2021). For a full description of geochemical methods see López-Quirós et al. (2021). 
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2.1 Lipid biomarkers (n-alkanes) 65 

The distribution of n-alkanes in sediments can be assessed on the basis of carbon chain length in order to determine potential 

biological sources (Cranwell, 1973; Rieley et al., 1991; Bi et al., 2005; Duncan et al., 2019; López-Quirós et al., 2021). Algae 

and bacteria typically produce shorter chain lengths (C12-C22; Clark and Blumer, 1967; Han and Calvin, 1969; Cranwell et al., 

1987; Grimalt and Albaigés, 1987; Duncan et al., 2019), while aquatic plants and Sphagnum mosses are characterised by 

enhanced production of C23 to C25 chain lengths (Baas et al., 2000; Ficken et al., 2000; Pancost et al., 2002; Bingham et al., 70 

2010; Duncan et al., 2019). Long chain n-alkanes (C25 and higher) are most abundantly produced by terrestrial higher plants 

(Eglinton and Hamilton, 1963; Duncan et al., 2019). Therefore, medium to long chain n-alkane (C23-C31) distributions can 

provide details about the origin of organic matter in sediments, differentiating between terrigenous and marine, providing 

information about palaeovegetation and palaeoclimate (Meyers et al., 1997; Ficken et al., 2000; Schefuß et al., 2003; Vogts et 

al., 2009; Duncan et al., 2019; López-Quirós et al., 2021). 75 

2.1.1 ACL (Average Chain Length n-alkane index) 

Variations in the ACL index through time can be used as a proxy of terrestrial organic matter inputs and can also provide 

information on changes in climate (Collister et al., 1994; Rommerskirchen et al., 2006; Mahiques et al., 2017; Duncan et al., 

2019; López-Quirós et al., 2021). Plants produce higher ACLs in warmer, tropical regions, whilst lower ACLs are generally 

observed from cooler climates (Poynter et al., 1989; Sicre and Peltzer, 2004; Jeng, 2006; Vogts et al., 2009; Bush and 80 

McInerney, 2015; Duncan et al., 2019; López-Quirós et al., 2021). Studies have also suggested plants synthesise longer n-

alkanes in more arid environments providing plants with a more efficient wax coating to restrict water loss (e.g., Kolattukudy 

et al., 1976; Schefuß et al., 2003; Calvo et al., 2004; Zhou et al., 2005; Moossen et al., 2015; Jalali et al., 2017, 2018), indicating 

aridity has a strong control on ACL and that ACL index values decrease under wetter conditions (Duncan et al., 2019; López-

Quirós et al., 2021). At Site 696 ACL values display an upward decreasing trend (Fig. 5; López-Quirós et al., 2021). Higher 85 

ACLs indicate a mixed input from higher land-pants generally synthesized under warmer climate conditions (Jeng, 2006; 

Vogts et al., 2009; Bush and McInerney, 2015).  

2.1.2 Paq (Aquatic Plant n-alkane index) 

The Paq index provides an approximate measure of the relative sedimentary contribution of submerged and floating aquatic 

macrophytes relative to emergent and terrestrial vegetation (Ficken et al., 2000; López-Quirós et al., 2021). Sphagnum mosses 90 

also have a molecular distribution similar to submerged and floating macrophytes, showing enhanced production of C23 and/or 

C25 (Baas et al., 2000; Nott et al. 2000; Nichols et al., 2006; Duncan et al., 2019). Therefore, the Paq index reflects the input 

from Sphagnum and aquatic plants versus terrestrial vegetation. At the study site Paq values <0.23 indicate a dominance of 

terrestrial plant waxes, while higher values of 0.48 to 0.49 imply an enhanced contribution of enhanced submerged and floating, 

and/or Sphagnum moss (Fig. 5; López-Quirós et al., 2021).  95 
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2.1.3 TI (Terrestrial n-alkanes index) 

The TI index is based on the assumption that inputs from photosynthetic algae and bacteria are characterised by short-chain n-

alkanes (C12-C22; Clark and Blumer, 1967; Han and Calvin, 1969; Cranwell et al., 1987; Grimalt and Albaigés, 1987; Duncan 

et al., 2019) compared to higher land plants rich in C27, C29 and C31 (Bourbonniere and Meyers, 1996; Mahiques et al., 2017; 

López-Quirós et al., 2021). The TI index is calculated as a ratio over the Total Organic Carbon (TOC; Mahiques et al., 2017). 100 

At Site 696 higher values of TI characterize a greater input of terrestrial plant-derived organic matter (Fig. 5; Mahiques et al., 

2017; López-Quirós et al., 2021). 

2.2 TOC (Total Organic Carbon) and TN (Total Nitrogen) 

The ratio of total organic carbon to total nitrogen (TOC to TN) can be used to distinguish the sources of organic material, 

which is helpful in reconstructing the evolution on environments (Sampei and Matsumoto, 2001; Perdue and Koprivnjak, 105 

2007). TOC represents the organic fraction preserved in sediments and can be used to help distinguish between marine and 

terrestrial sources of organic matter, depositional conditions and organic matter production (Calvert and Pedersen, 1993; 

Meyers and Ishiwatari, 1993; Avramidis et al., 2014, 2015). Analysis of sediments from Site 696 reveal a significant positive 

relationship (R>0.9; López-Quirós et al., 2021) between TOC and TN. In addition, close correspondence between the two 

proxy records suggests TOC and TN reflect the same bulk organic matter source. C/N ratio values from Site 696 indicate a 110 

mixture of marine- and terrestrial-derived sources (López-Quirós et al., 2021), consistent with the presence of both marine and 

terrestrial palynomorphs.  

 

Organic matter in marine sediments is mainly derived from the decomposition of plants, animals and most importantly plankton 

(Avramidis et al., 2015). High planktonic primary production and zooplankton grazing results in increased export of organic 115 

matter through the water column to the sea floor supporting increased preservation of organic carbon in sediments. Although 

the C/N ratios have been interpreted to essentially be equal to the weight ratio of Corg. to organic nitrogen (i.e., C/Norg. ratio), 

the presence of inorganic nitrogen measured within TN has led some researchers to point out that a relatively high Ninorg. could 

affect the C/N ratio (Müller, 1977; Sampei and Matsumoto, 2001). Therefore, TOC may be a better indication for 

palaeoproductivity despite dependence on degradation and thus the residence time in the water column (Sarnthein et al. 1988; 120 

Lyle et al. 1988; Berger and Herguera 1992; Freudenthal et al. 2002; Jahn et al. 2003; Luo et al., 2013; Frihmat et al., 2015). 

However, organic carbon burial is also affected by redox conditions, and terrigenous detrital matter influx also exert a control 

and should be taken into account when interpreting TOC in terms of palaeoproductivity (Luo et al., 2013). At Site 696 increased 

levels of TOC coincide with higher abundance of heterotrophic dinoflagellate cysts (Houben et al., 2013) and may be used to 

support the notion of high marine palaeoproductivity. 125 
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3. Materials and Methods 

Site 696, hole B was drilled on the south-eastern margin of the SOM (Fig.1; latitude: 61°50.959′S, longitude: 42°55.996′W) 

at 650m water depth, as part of ODP Leg 113 in 1987 (Barker et al., 1988). The recovered section consists of late Eocene to 

Quaternary hemipelagic (214-0 mbsf), diatomaceous (530-214 mbsf), and terrigenous (645.4-530 mbsf) sediments (Barker et 130 

al., 1988; Wei and Wise, 1990; Gersonde and Burckle, 1990; López-Quirós et al., 2019, 2020, 2021) and is divided into seven 

lithological units (I-VII), primarily based on composition and diagenetic maturity of sediments (Fig. 2; Barker et al., 1988). 

This study focuses on pollen and spores recovered from the terrigenous unit VII (cores 113-696B-62R through 113-696B-53R; 

Fig. 2) interpreted shipboard to be deposited in a shallow marine shelf environment (Barker et al., 1988). Age-control based 

primarily on the presence of calcareous nannofossils (Wei and Wise, 1990 sensu Villa et al., 2008; and a revised dinoflagellate 135 

cysts age model (Houben et al., 2013, 2019), places the studied section at 33.2 to 37.6 Ma (Table 1), with sediments 

encompassing the EOT and EOIS event recovered between 571.5 mbsf to 569.1 mbsf (Houben et al., 2013). 

 

A total of 35 samples from the late-middle Eocene to earliest Oligocene (643.73-520.88 mbsf) were analysed for their pollen 

and spore content. Raw data collected is available from the PANGEA database (Thompson et al., 2021). All palynological 140 

slides were prepared using standard chemical palynological processing techniques following the protocols at the University of 

Northumbria, Department of Geography and Environmental Sciences and the Laboratory of Palaeobotany and the Laboratory 

of Palaeobotany and Palynology of Utrecht University, published previously (e.g., Bijl et al., 2018; Riding, 2021). Samples 

were treated with 30% HCl overnight and cold 38 % HF to dissolve carbonates and silicates respectively. Next 30% HCl was 

then added to remove fluoride gels, and subsequently centrifuged, decanted and sieved using 250 μm to 10 μm sieve meshes. 145 

Residues were mounted on glass slides using glycerine jelly. Slides were analysed using a Leica DM500 and Leica DM2000 

transmitted light microscopes at 200x and 1000x magnification. Where possible, counts of 300 (excluding reworked grains) 

sporomorphs were made. Only samples containing 50 or more in situ sporomorph grains were used for further analysis and 

evaluation. 

 150 

Identification and taxonomic classification of sporomorphs were carried out primarily following Cookson (1950), Cookson 

and Pike (1954), Dettmann et al. (1990), Dettmann and Jarzen (1996), Truswell and Macphail (2009) and Raine et al. (2011). 

Botanic and taxonomic affinities used to identify the Nearest Living Relatives (NLR) of fossil species were established mainly 

after Truswell and Macphail (2009) and Raine et al. (2011) and references therein (Table 2.). Identification of reworked grains 

are mainly based on the age-restriction of the species, with species older than Eocene or Oligocene (e.g., Mesozoic species) 155 

being easily recognised as reworked. Consideration was also given to whether a grain was reworked based on the level of 

thermal maturity and its state of preservation. All palynomorphs identified as in situ are regarded as being 

penecontemporaneous with deposition and are included in the final calculation of sporomorph percentages. Pollen percentages 

were plotted using riojaPlot, based on the R package rioja (Juggins, 2020) and local zones were established using the CONISS 
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(Constrained Incremental Sum-of-Squares: Grimm, 1987) cluster analysis function. Sporomorph diversity was measured using 160 

both the Shannon–Wiener index and the observed number of taxa. A rarefaction method for sums of ≥50 and ≥100 grains was 

applied, so that the effect caused by differences in the sample size may be removed allowing the estimation of the number of 

sporomorph species at a constant sample size (Raup, 1975; Birks and Line, 1992). The Shannon–Wiener Index was also carried 

out as the second measure of sporomorph diversity accounting for species richness and evenness (Shannon, 1948; Magurran, 

2013; Morris et al., 2014). Samples containing less than 50 grains were omitted from this analysis. Detrended Correspondence 165 

Analysis (DCA) was performed, with downweighting of rare species by removing pollen types whose representation is <5%. 

This ordination technique is used in order to evaluate ecological patterns within the data, using knowledge of the distribution 

of NLR and their modern environmental gradients (Correa-Metrio, 2014). Rarefaction, Shannon–Wiener and DCA were all 

performed using the software R for statistical computing (R Development Core Team, 2013) and the package Vegan (Oksanen 

et al., 2013). 170 

3.1 Bioclimatic Analysis 

Estimates for terrestrial mean annual temperature (MAT), mean annual precipitation (MAP), warmest month mean temperature 

(WMMT) and coldest month mean temperature (CMMT) were obtained using the NLR approach in conjunction with the 

Probability Density Function (PDF) method. Fossil taxa used and their NLR are shown in Table 2.  

 175 

Climate estimates based on the NLR approach use presence or absence data and are independent of the relative abundance of 

individual taxa. This makes this method ideal for sporomorph based climate estimates from marine sediments, where 

hydrodynamic sorting of grains may cause variations in the percentages of individual taxa (Arias, 2015), and also helps reduce 

taphonomic biases (Klages et al., 2020). However, the assumption that modern species and their climate requirements have 

remained unchanged throughout geological time represents one of the biggest weaknesses of the NLR approach. This 180 

uncertainty inevitably increases the further back in the geological record (Hollis et al., 2019). It should also be noted that the 

modern distribution of species may be a function of either its past climate or biogeographic history (Reichgelt et al., 2016; 

Willard et al., 2019). Nevertheless, temperature estimates derived from the NLR approach are often in agreement with those 

from other botanical methods and geochemical proxies, such as the Climate Leaf Analysis Multivariate Program (CLAMP) 

and leaf margin analysis (e.g., Kennedy, 2003; Uhl et al., 2003; Ballantyne et al., 2010; Pross et al., 2012; Kennedy et al., 185 

2014; Pound and Salzmann, 2017; Willard et al., 2019) providing a certain level of confidence (Klages et al., 2020; Pross et 

al. 2012).  

 

The PDF method is used to statistically constrain the most likely climate co-occurrence window for an assemblage (Harbert 

and Nixon, 2015; Willard et al., 2019; Klages et al., 2020). The bioclimatic envelope for each NLR was identified by cross 190 

plotting the modern distribution from the Global Biodiversity Information Facility (GBIF; GBIF, 2021) with the gridded 

WorldCLIM (Fick and Hijmans, 2017) climate surface data using the dismo package (Hijmans et al., 2017) in R. Some taxa 
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were grouped at the family level because of their potentially ambiguous climatic affinity. This includes (1) pollen taxa affiliated 

with the modern-day genus Microcachrys, of which Microcachrys tetragona is the sole species, on the basis that M. tetragona 

is only found in a particular location in Tasmania, Australia, under narrow climatic and environmental conditions which are 195 

likely not representative of this once widespread genus; and (3) the pollen taxa Peninsulapollis gillii, which has links to the 

modern genus Beauprea now also endemic to New Caledonia. In these cases, Podocarpaceae and Proteaceae were used, 

respectively, rather than the genus or species as the NLR.  

4. Results  

The recovery of palynomorphs is good throughout the section. Of the 34 samples analysed 5 do not contain a sufficient amount 200 

of sporomorphs and were discarded from further analysis. In total 74 pollen taxa (58 angiosperms and 16 gymnosperms), 24 

spores and 1 sporomorph of unknown affiliation were identified (excluding reworked and unidentified sporomorphs), 

containing 54 genera. The stratigraphic distribution and relative abundance of major taxa groups is shown in Fig. 3. Pollen 

affiliated with the modern-day genus Nothofagus are the most abundant throughout the section, with pollen taxa belonging to 

the Nothofagidites lachlaniae complex, undifferentiated Nothofagidites spp., Nothofagidites rocaensis and the Nothofagidites 205 

brachyspinulosus complex being the largest groups. Other major pollen and spore taxa, in order of decreasing abundance 

include, undifferentiated Podocarpidites spp., undifferentiated Retitriletes/Lycopodiacidites spp., Podocarpidites cf. exiguus, 

pollen belonging to the Podocarpidites marwickii/ellipticus complex, Cyathidites minor and Phyllocladidites mawsonii, which 

occur commonly throughout the Eocene and Oligocene sections. 

 210 

Based on the results of CONISS ordination the succession is divided into 2 main zones (I and II; Fig. 3). In addition, Zone I is 

further subdivided (Ia Ib), based on the abundance and presence of key taxa. The results of rarefaction and DCA analysis along 

with the diversity indices results also show a good distinction between Zones I and II.  

4.1 Zone I, 37.6-33.6 Ma (643.73-568.82 mbsf) 

Zone I comprises of 18 samples (62R 6W 142-144 to 55R 1W 62-64). Based on the age models of Wei and Wise (1990) and 215 

Houben et al. (2013, 2019) and linear extrapolation, the lowermost 16 samples are placed in the Eocene, while the uppermost 

2 samples are placed into the earliest Oligocene (37.6 Ma to ~33.6 Ma). Quantitatively, Zone I is typified by relatively low 

numbers of sporomorph species and low diversity. Based on rarefaction analysis, the average number of sporomorph species 

per sample is 13.28 ± 1.05 (mean ± SD) at a count of 50 grains. Low levels of diversity are confirmed by the Shannon diversity 

indices (H), which indicates an average of 1.79 ± 0.06. 220 

 

The overall Zone I assemblage is dominated by the southern beech, Nothofagus (pollen taxa: Nothofagidites). On average 

Nothofagidites pollen accounts for 79.0% of all non-reworked taxa and 95.0% of all angiosperm taxa. Taxa belonging to the 

Nothofagidites lachlaniae complex (subgenus: Fuscospora) are the most abundant followed by undifferentiated Nothofagus 
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spp. sporomorphs and N. rocanensis (subgenus: Nothofagus). Other angiosperm pollen (non-Nothofagidites) is rare, making 225 

up about 4.2% of the non-reworked sporomorph assemblage in Zone 1. Of the non-Nothofagus angiosperm taxa the most 

abundantly occurring, in order of decreasing abundance, include Proteacidites (NLR: Proteaceae), Tricolpites 

(Dicotyledonae), Liliacidites intermedius (Liliaceae) and Lateropora glabra (Freycinetia). Other less common angiosperms 

are typically only represented by one or two occurrences. The second most abundant group are gymnosperms, which account 

for 10.6% of all non-reworked taxa. Predominantly gymnosperms are represented by the pollen taxa (in order of abundance) 230 

Podocarpidites, Phyllocladidites, Trichotomosulcites subgranulatus (all Podocarpaceae), undifferentiated Podocarpidites spp. 

(Podocarpus) and Araucariacites australis (Araucariaceae). Many of these are likely to belong to Podocarpidites however 

folding of the grains has made further identification impossible. Cryptogams account for 6.23% of non-reworked taxa in Zone 

1 and include both ferns and mosses. Abundantly occurring cryptogam spores include taxa belonging to the 

Retitriletes/Lycopodiacidites spp. complex (Lycopodiaceae), Cyathidites (Cyatheaceae), Ischyosporites gremius (Filicopsida) 235 

and Coptospora archangelskyi (Conostomum). 

4.1.1 Subzone Ia 37.6-35.5 Ma (643.73-597.66 mbsf)  

The Subzone Ia assemblage is unique in that Arecipites spp. (Arecaceae), Beaupreaidites (Beauprea) and Myrtaceidites cf. 

mesonesus (Myrtaceae), all warmth loving taxa whose NLRs predominantly have a tropical and subtropical distribution, 

especially in the Pacific, Southeast Asia and New Caledonia, and only occur in this subzone. Ericipites cf. scabratus 240 

(Ericaceae), Chenopodipollis cf. chenopodiaceoides (Chenopodioideae), Polypodiisporites cf. radiatus (Davallia), 

Podosporites parvus (Podocarpaceae) and Tricolpites cf. asperamarginis (extinct clade) are also unique to Subzone Ia. In 

addition, pollen taxa belonging to the genus Podocarpidites are more abundant throughout Subzone Ia compared to Subzone 

Ib, in particular taxa belonging to the Podocarpidites marwickii/ellipticus complex and P. cf. exiguus (both Podocarpus). 

Furthermore, taxa belonging to the Nothofagidites asperus complex (subgenus: Lophozonia), Microcachryidites antarcticus, 245 

Trichotomosulcites subgranulatus (both Podocarpaceae), Gleicheniidites (Gleicheniaceae) and Ischyosporites (Filicopsida) 

are also more abundant in Subzone Ia in comparison to Subzone Ib. Other rare taxa such as Lymingtonia cf. cenozoica 

(Nyctaginaceae), Myrtaceidites spp. (Myrtaceae), Proteacidites tuberculatus (Proteaceae) and Ceratosporites cf. equalis 

(Selaginellaceae) also only occur in Subzone Ia of Zone I but are represented by one or two specimens. Sporomorph-based 

climate reconstructions reveal significantly higher temperatures within Subzone Ia compared to Subzone Ib, with an interval 250 

of latest Eocene cooling occurring around 35.5 Ma. MAT ranges from 10.5°C to 15.3°C and MAP ranges from 1580mm to 

2005mm, with an average of 12°C and 1802mm respectively for Subzone Ia (Fig. 4). 

4.1.2 Subzone Ib 35.0Ma-33.6 Ma (588.25-568.82 mbsf) 

Subzone Ib records the loss of thermophilic plant types (Arecaceae, Beauprea and Myrtaceae) that are only found within 

Subzone Ia and a decrease in the abundance of Podocarpaceae. In comparison to Subzone Ia, taxa belonging to Proteaceae are 255 
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more abundant within Subzone Ib, in particular the pollen taxa belonging to the Proteacidites parvus/pseudomoides complex, 

P. cf. Scabratriporites spp. and P. tenuiexinus (all Proteaceae). Other pollen taxa that increase in abundance and frequency 

within Subzone Ib of Zone I include Liliacidites intermedius (Liliaceae), Tricolporites cf. scabratus (extinct clade), Coptospora 

archangelskyi (Conostomum) and Retitriletes/Lycopodiacidites spp. (Lycopodium). Other rare taxa are also unique to Subzone 

Ib of Zone I and are represented by one of two occurrences. These include Clavatipollenites ascarinoides (Ascarina), 260 

Ligulifloridites (Asteraceae), Parsonsidites psilatus (Malvaceae), Proteacidites cf. amolosexinus, P. cf. Lewalanipollis 

trycheros, P. scaboratus, P. spiniferus (all Proteaceae), Sparganiaceaepollenites barungensis (Sparganium) (Tricolpites cf. 

brevicolpus, T. reticulatus (both extinct clade) and Camarozonosporites sp. (Lycopsida). Sporomorph-based climate estimates 

reveal MAT between 10.1°C and 11.7°C and MAP between 1499mm and 2042mm, with an average of 10.7°C and 1706mm 

respectively for Subzone Ib (Fig. 4). 265 

4.2 Zone II, ca. 33.5-32.2 Ma (563.38-549.70 mbsf) 

The 11 samples of Zone II (53R 1W 80-82 to 54R 3W 38-41) are assigned an Oligocene age. Zone II records a significant 

increase in gymnosperms and cryptogams, accompanied by a rapid rise in taxa diversity between ca. 33.5 and 32 Ma and a 

contemporaneous increase in reworked Mesozoic sporomorphs (Fig. 3). Based on the results of rarefaction analysis the average 

number of sporomorph species for a count size of 50 grains is 19.63 ± 2.00. The results of the Shannon diversity index are 270 

between 1.97 and 2.12, with an average of 2.06 ± 0.05. 

 

The Zone II sporomorph assemblages shows a significant decrease in Nothofagus compared to Zone I. Nothofagus pollen make 

up 51.2% of all non-reworked taxa and 89.9% of all angiosperm taxa in Zone II. Pollen taxa belonging to the Nothofagidites 

lachlaniae complex (subgenus: Fuscospora) remain the most abundant, followed by N. rocanensis (subgenus: Nothofagus), 275 

with undifferentiated Nothofagidites spp. sporomorphs also making a valuable contribution. Other pollen taxa belonging to 

Nothofagus are less abundant and represented by only a few occurrences. Although a slight increase in other angiosperms 

(non-Nothofagus) occurs in Zone II they remain the smallest botanical group, representing just 5.8% of all non-reworked 

sporomorphs. In order of abundance, from most to least abundant, significant non-Nothofagus angiosperm taxa include 

Proteacidites, Tricolpites, Myricipites harrisii (Casuarinaceae) and Peninsulapollis gillii (Proteaceae). Additional angiosperm 280 

taxa are typically represented by one or two occurrences (e.g., Chenopodipollis chenopodiaceoides). Gymnosperms remain 

the second most abundant botanical group, but their abundance has increased markedly, representing 28.3% of all non-

reworked sporomorphs in Zone II. The gymnosperm assemblage remains dominated by Podocarpidites and Phyllocladidites, 

which are the two most common gymnosperm taxa respectively. However, other changes in the gymnosperm pollen include 

Dilwynites (Wollemia) which increasing in frequency and abundance, along with Alisporites cf. australis 285 

(Gymnospermopsida), Microcachryidites antarcticus, Podosporites, Trichotomosulcites subgranulatus (all Podocarpaceae) 

and undifferentiated Podocarpidites spp. (Podocarpus), among others. Sporomorph-based climate estimates provide no 

evidence for abrupt cooling at the Eocene/Oligocene boundary. Within the early Oligocene Zone II MATs are between 10.4°C 
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to 12.9°C and MAP ranges from 1571mm to 1951mm a year, with an average of 11.2°C and 1715mm respectively (Fig. 4). 

These results indicate a slight increase in both temperature and precipitation compared to the latest Eocene Subzone Ib. 290 

5. Discussion  

5.1 Sediment Transport and Provenance 

The late Eocene terrestrial vegetation assemblage from Site 696 shares a number of similarities with Antarctic Peninsula 

palaeofloras of similar ages (e.g., Warny and Askin 2011b; Warny et al., 2019). Both Site 696 and Antarctic Peninsula late 

Eocene assemblages are dominated by Nothofagidites pollen, predominantly those related to the modern subgenus Fuscospora, 295 

with secondary gymnosperms, including high frequencies of Podocarpaceae pollen. Similar angiosperm and cryptogam 

assemblages are also seen between the two, with angiosperms such as Proteaceae and Liliaceae, and cryptogams such as 

Cyatheaceae and Sphagnum. This finding suggests that pollen from the Antarctic Peninsula region could have been transported 

to the SOM during this time. Furthermore, similarities between Facies IV and nearby Seymour Island sediments, both in 

composition and paleogeographic setting, could suggest a related sediment source, and that the SOM was proximal enough to 300 

receive detritus from the Antarctic Peninsula (Barker et al., 1988; López-Quirós et al., 2021). However, despite these 

similarities, significant differences in the palaeoflora occurs between the two regions indicating the Antarctic Peninsula may 

not have been the primary sediment source. In agreement with previous observations by Mohr (1990) the sporomorph 

assemblage from Site 696 contains a greater diversity of angiosperm pollen compared to late Eocene Antarctic Peninsula 

palaeofloras (e.g., Anderson et al., 2011; Warny and Askin 2011b; Warny et al., 2019). This higher diversity has also been 305 

reported in southern South American Paleogene sporomorph floras (e.g., Romero and Zamaloa, 1985; Romero and Castro, 

1986). In addition, the late Eocene Zone Ia assemblage (37.6-35.5 Ma) at Site 696 contains the thermophilic taxa Arecipites 

spp. (Arecaceae), Myrtaceidites cf. mesonesus (Myrtaceae), and Polypodiisporites cf. radiatus (Davallia) not recorded in 

coeval Antarctic Peninsula assemblages, possibly due to the more northern latitude of the SOM resulting in milder climatic 

conditions. Sediments may also have been supplied from the southern tip of South America (e.g., the Magallanes Basin and 310 

the Fuegian Andes; Carter et al., 2017), due to the more proximal location of the SOM to South America prior to its separation 

from Antarctica during the Eocene (Eagles and Jokat, 2014). However, detrital zircon ages clearly show a strong dissimilarity 

between Site 696 samples and South America (Carter et al., 2017). Furthermore, the occurrence of well-preserved 

palynomorphs and moderate to well-preserved in situ benthic foraminifera, with predominantly angular to subangular 

terrigenous particles, does not support the notion of long-distance transport of sediments from adjacent sources (e.g., Seymour 315 

Island and southern South America; López-Quirós et al., 2021). These observations, together with an expansion of 

gymnosperm conifers and cryptogams recorded during the early Oligocene (33.5-32.2 Ma) at Site 696, but absent from 

Antarctic Peninsula and southern South America floras (e.g., Askin et al., 1992; Anderson et al., 2011), suggest that the 

vegetation of the SOM was unique in character. It is therefore likely that a significant proportion of detrital material, including 
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sporomorphs, was likely of local origin (e.g., exposed parts of the SOM), with some input from the northern Antarctic 320 

Peninsula and possibly southern South America during the late Eocene. 

 

The SOM and the northern Antarctic Peninsula underwent significant rifting during the late Eocene and early Oligocene (~37-

30 Ma; King and Barker, 1988; Eagles and Livermore, 2002; van de Lagemaat et al., 2021), forming what would become the 

Powell Basin (Eagles and Livermore, 2002; Eagles and Jokat, 2014; van de Lagemaat et al., 2021; López-Quirós et al., 2021). 325 

This rifting resulted in the capture of terrigenous detritus likely from the Northern Antarctic Peninsula and exposed parts of 

the SOM (South Orkney Islands; Carter et al., 2017). However, throughout the latest Eocene (~35.5–34.1Ma), a decrease in 

the delivery of coarse terrigenous sediments and a decrease in sedimentation rates by almost half is observed as the SOM 

became more distal from the Antarctic Peninsula due to the opening of the proto-Powell Basin (Eagles and Livermore, 2002; 

López-Quirós et al., 2021).   Deposition of moderately to intensely bioturbated silty mudstones across the EOT (~34.1–33.6Ma) 330 

indicate continued subsidence-related marine transgression at Site 696 (López-Quirós et al., 2021). This subsequent and 

continued isolation of the SOM may have resulted in Site 696 receiving a greater proportion of localised sediments from 

exposed parts of the SOM. This supports our suggestion that the majority of sediments supplied to Site 696 at this time were 

of local origin, perhaps still with some contribution from the northern Antarctic Peninsula. 

 335 

Conversely however, Carter et al. (2017) suggested the majority of the late Eocene (∼36.5–33.6 Ma) sediments deposited at 

Site 696 are not of local origin. Using detrital zircon U-Pb and apatite thermochronometry analysis these authors concluded 

that sand grains, featuring characteristics of ice transport, from the late Eocene Site 696 best matched sources within the 

Ellsworth–Whitmore Mountains, West Antarctica. Barriers to the delivery of sediment by long distance gravity flows from the 

margins of the southern Weddell Sea, further suggested that sediments may have been transported to the SOM by icebergs 340 

(Carter et al., 2017). In spite of this, the presence of in situ thermophilic taxa within the early-late Eocene of Site 696 (37.6-

35.5 Ma) suggests mild and even ice-free conditions during this overlapping time period. Furthermore, palaeo-sea-surface 

temperature reconstructions (Douglas et al., 2014) indicate relatively warm conditions (~14°C), and fossil dinoflagellate cyst 

(Houben et al., 2013, 2019), calcareous nannofossils (Wei and Wise, 1990) and smectite-dominated clay mineralogy (Fig. 2: 

Robert and Maillot, 1990) support temperate depositional conditions (López-Quirós et al., 2021) not favourable for transport 345 

by ice. Unequivocal evidence for ice transport, in the form of ice-rafted debris, at Site 696 is observed within two coarse-

grained mudstone intervals within a fine-grained transgressive sequence deposited around 34.1 Ma (Barker et al., 1988; López-

Quirós et al., 2021). However, these intervals contain altered glaucony grains most likely sourced from shallower SOM 

coastal/shelf areas (López-Quirós et al., 2019, 2021). Therefore, these observations and those of this study suggest that 

transportation by ice from adjacent land areas (e.g., Antarctic Peninsula and Ellsworth–Whitmore Mountains) was unlikely 350 

before 34.1 Ma and that a majority of sediments transported to Site 696 are likely of local origin from exposed parts of the 

SOM as the Powell basin opened isolating the microcontinent from the possible sediment supply of the Antarctic Peninsula 

and southern Weddell Sea margins. 
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5.2 Palaeoenvironment and Palaeoclimate   

5.2.1 Late Eocene Palaeoenvironment and Palaeoclaimte  355 

Sediments from Site 696 record two distinct palaeofloras from the late Eocene Zone I to the early Oligocene Zone II 

assemblage that evolved in response to an increase in environmental disturbance beginning around 34.1 Ma. Throughout the 

Zone I assemblage (~37.6-33.6 Ma) abundant Nothofagus with secondary Podocarpaceae, minor angiosperm and cryptogam 

elements indicate the presence of a relatively humid Nothofagus-dominated temperate rainforest, growing under MATs 

between 10.1°C and 15.3°C, and MAP of 1499mm and 2043mm (Fig. 4). Comparison with lipid biomarker n-alkane results 360 

(Fig. 5.; López-Quirós et al., 2021) indicates ACL indicative of temperate vegetation, supporting this interpretation. In 

addition, marine palynomorphs (Houben et al., 2013) and calcareous nannofossil (Wei and Wise, 1990) assemblages attest to 

temperate marine depositional conditions. Nothofagus (predominantly Fuscospora-type), together with less common 

Podocarpaceae, formed the forest canopy across much of the mid- to higher-altitude areas, with tracts perhaps dominated by 

one or the other due to natural differences in shade tolerance (Poole, 1987; Veblen et al., 1996; Gallagher et al., 2008; Bowman 365 

et al., 2014). Microcachrys along with Araucariaceae, Ericaceae, Liliaceae, Chenopodioideae and low growing proteaceous 

shrubs, also reflect better drained higher-altitude habitats as well as coastal and marginal forest environments (Kühl et al., 

2002; MacPhail et al., 1999; Kershaw and Wagstaff, 2001; Bowman et al., 2014). Prior to the opening of the Powell Basin the 

SOM was joined to the Antarctic Peninsula (King and Barker, 1988; López-Quirós et al., 2021), which was comparable in 

elevation to the Trans Antarctic Mountains and Dronning Maud Land during the late Eocene (Wilson et al., 2012). This may 370 

suggest that exposed parts of the SOM also had a similar mountainous elevation. Furthermore, the modern topography of the 

South Orkney Islands reaches a maximum of 1265m (~4150ft; USGS, 2021). Subsidence of the SOM since the late Eocene 

(López-Quirós et al., 2021), together with erosion likely mean these exposed parts of the SOM were once higher than today, 

supporting the reconstruction of higher and lower altitude vegetation communities. Today, similar cool temperate Nothofagus-

dominated mixed-podocarp forests occur in the temperate Valdivian region of southern Chile, between 37°45’ and 43°20’S 375 

(Veblen et al., 1983, 1996; Poole et al., 2001, 2003; Cantrill and Poole, 2012a; Bowman et al., 2014) across elevations greater 

than 2000m to lowland areas (Kershaw, 1988; Punyasena et al., 2011; Arias, 2015), where westerly trade winds from the 

Pacific result in high precipitation. Comparable mixed Nothofagus-podocarp forests are also found today in New Zealand (e.g., 

Wardle, 1984; Poole, 1987), however the geological setting of southern South America, with oceanic crust being subducted 

beneath a convergent continent margin, is most similar to that of the Antarctic Peninsula region during the Cenozoic (Poole et 380 

al., 2001; Cantrill and Poole, 2012a). 

 

Pollen taxa representing vegetation communities with very different temperature requirements exist within the early-late 

Eocene (~35.5-37.6 Ma) Subzone Ia. The presence of the thermophilic taxa Arecaceae (palms), Beauprea and Myrtaceae, each 

occurring intermittently throughout this subzone (643.73-597.66 mbsf), indicates the existence of a temperate-thermophilic 385 

vegetation community. These communities are not recorded in coeval Antarctic Peninsula assemblages perhaps due to the 
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Antarctic peninsulas high mountainous palaeotopography (Wilson et al., 2012) and/or the lower latitude of the SOM. 

Thermophilic taxa likely occupied sheltered lowland areas and favourable coastal margins and would have required mild 

temperatures and the absence of winter frosts, owing to the frost sensitivity of extant palms (Larcher and Winter, 1981, 

Tomlinson, 2006, Eiserhardt et al., 2011, Reichgelt et al., 2018). Sporomorph based climate estimates reveal Coldest Month 390 

Mean Temperatures (CMMT) between 6.2°C and 11.9°C, well above freezing (Fig. 4). In addition, warmth-loving ferns 

including Gleicheniaceae and rare Davalliaceae also occur together with moisture-loving conifers such as Dacrydium, which 

only occur in Subzone Ia, and Phyllocladus, further indicating warm wet temperate conditions throughout this subzone. Today 

these taxa occur in subtropical to temperate regions in lowland sheltered environments, often thriving in wet humid conditions 

and severely disturbed or pioneer habitats at the margins of rainforests and waterways (Specht et al., 1992; Chinnock and Bell, 395 

1998; Bowman et al., 2014; Arias, 2015). Similar conditions have also been documented in the late Eocene of southern New 

Zealand (Conran et al. 2016) suggesting a longitudinal continuum of relatively high precipitation and temperatures during this 

time interval. 

 

The co-occurrence of prominent vegetation communities, each with very different temperature and moisture requirements 400 

therefore suggests that late Eocene forests across the northern Antarctic Peninsula and SOM were subject to climatic gradients 

related to differences in elevation and proximity to the coastline. Furthermore, the presence of thermophilic taxa within 

Subzone Ia and the lack of cold temperature taxa reveal conditions were warmer, by around 1.4°C between 37.6 and 35.5 Ma, 

compared to the rest of Zone I, indicating a phase of latest Eocene cooling from 35.5 to 35 Ma. The cooling between 35.5 and 

35 Ma recorded by the terrestrial palynomorph assemblage coincides with a slight decrease in the terrestrial n-alkanes Index 405 

(TI; Mahiques et al., 2017), which records absolute input of n-C27+29+30-rich molecules present in vascular plants, indicating 

decreased input of terrestrial plant-derived organic matter (Fig. 5; López-Quirós et al., 2021). The latest Eocene cooling 

recorded at Site 696 after 35.5 Ma corresponds with large-scale changes in vegetation composition and decreasing diversity 

from Antarctic Peninsula palaeoflora records (e.g., Askin, 2000; Anderson et al., 2011; Warny and Askin, 2011a, 2011b). 

Furthermore, an upwards-increase in illite clay minerals (Robert and Maillot, 1990) between approximately 36.4 to 33.9 Ma, 410 

signifying a shift in weathering regime from chemical to physical, supports the idea of latest Eocene climate cooling. 

 

An initial spike in reworked Mesozoic sporomorphs at around 34.1 Ma at the onset of the EOT indicates an increase in 

reworking. This coincides with increasing Eocene dinoflagellate cyst taxa percentages over Protoperidiniaceae (Houben et al., 

2013). Sediments within this EOT interval also exhibit two coarsening-upward packages, within an otherwise fine-grained 415 

sequence. Furthermore, these sedimentary packages contain the first evidence for ice-rafted debris (IRDs; Barker et al., 1988; 

López-Quirós et al., 2021) in conjunction with a high percentage of illite clay minerals (Robert and Maillot, 1990). Based on 

these observations, significant ice build-up around the northern Antarctic Peninsula and SOM is inferred during the latest 

Eocene, with a period of continental ice expansion to the coast or beyond (López-Quirós et al., 2021). This is supported by the 

presence of glacial surface textures on sand grains (Kirshner and Anderson, 2011) and rare drop stones (Wellner et al., 2011) 420 
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from late Eocene (34-37 Ma; Bohaty et al., 2011) sediments offshore James Ross Basin, as well as other sedimentological and 

geochemical evidence indicating late Eocene and early Oligocene cooling and ice expansion on the northern Antarctic 

Peninsula (e.g., Robert and Maillot, 1990; Ivany et al., 2008). Furthermore, topographic reconstructions indicate the northern 

Antarctic Peninsula at the EOT was comparable in elevation to the Trans Antarctic Mountains and Dronning Maud Land 

(Wilson et al., 2012). In model simulations these are suggested nucleation points for late Eocene and Oligocene glaciation 425 

(DeConto and Pollard 2003; DeConto et al., 2007), suggesting a glacial presence in the Antarctic Peninsula region is reasonable 

during this time (Carter et al., 2017; Lepp, 2018). However, the pollen and spore assemblage from site 696 as well as other 

late Eocene and Oligocene sporomorph assemblages from the Antarctic Peninsula (e.g., Anderson et al., 2011; Askin and 

Warny 2011a), indicate the region still retained some vegetation and therefore was never fully glaciated.  

5.2.2 Early Oligocene Palaeoenvironment and Palaeoclaimte 430 

Despite the evidence for a cooling of terrestrial climate between 35.5 Ma and 35 Ma, and latest Eocene glacial onset around 

34.1 Ma the terrestrial palynomorph assemblage from Site 696 indicates that Nothofagus-dominated forests did not change 

dramatically in composition until the early Oligocene, after the EOIS. An expansion of conifer trees and cryptogams 

accompanied by a rapid increase in taxa diversity is recorded between approximately 33.5 and 32 Ma. This significant 

transformation of Antarctic flora in the early Oligocene is quantitatively reflected by the results of DCA analysis, as well as 435 

by a decrease in n-alkane ACL, which in turn suggest herbaceous plants and/or conifer dominance (Fig. 5; López-Quirós et 

al., 2021). The diversity patterns derived from the Shannon diversity index and rarefaction analysis show that early Oligocene 

forests contained a significantly higher number of taxa compared with the late Eocene forest communities. Previous studies 

(e.g., Cantrill, 2001; Raine and Askin, 2001; Prebble et al., 2006; Griener and Warny, 2015) suggest that significant cooling 

and drying of the climate across the EOT led to decreasing diversity and a lowering of the forest canopy, with low stature 440 

forests formed of scrubby dwarf Nothofagus and podocarps in sheltered regions and low altitude coastal zones. However, 

based on the relatively high diversity and frequency of cryptogam taxa and non-Nothofagus angiosperms within the Zone II 

assemblage, these Nothofagus-podocarp forests would have been at least intermediate in stature and relatively open, allowing 

the development of fern, shrub and bryophyte communities (e.g., Macphail and Truswell, 2004). When compared to n-alkane 

results, an increase in the abundance of cryptogams, specifically Sphagnum moss, is also supported by an increase in the 445 

aquatic plant n-alkane index (Paq) and n-C23/n-C29 ratios throughout the early Oligocene (López-Quirós et al., 2021). Sphagnum 

moss has been found in many Antarctic Oligocene and Miocene assemblages interpreted to represent low diversity tundra 

vegetation (e.g., Rain, 1998; Askin, 2000; Askin and Raine, 2000; Prebble et al., 2006), suggesting a transition towards cooler 

tundra mosaic vegetation at this time (e.g., Truswell and Macphail, 2009). Furthermore, within the early Oligocene (~33.5-

32.2 Ma) Zone II assemblage, the increase in Coptospora along with Stereisporites (Sphagnum), and some angiosperms such 450 

as Liliacidites and possibly Myricipites, likewise suggest the progression towards colder environments. Coptospora and 

Liliacidites have been found in Oligocene and Miocene assemblages across Antarctica, including the Ross Sea region (e.g., 

Askin and Rain, 2000; Prebble et al., 2006), Meyer Desert Formation (e.g., Lewis et al., 2008), Wilkes Land (e.g., Sangiorgi 
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et al., 2018) and the Antarctic Peninsula (e.g., Warny and Askin 2011a). These Oligocene/Miocene assemblages have been 

inferred to represent tundra mosaic vegetation in cold, possibly glacial, landscapes (Francis and Hill, 1996; Macphail and 455 

Truswell, 2004; Prebble et al., 2006). In addition, the presence of common millimetre sized IRDs between approximately 564 

and 560 mbsf suggests phases of continental ice expansion to coastal and possibly shelf areas (Barker et al., 1988; López-

Quirós et al., 2021). Within this same interval, sporomorph-based climate reconstructions also reveal a cooling and drying 

step, with a decrease in MAT and MAP from around 12.7°C to 10.5°C and 1895mm to 1471mm, between ~33.5 Ma and 33.4 

Ma. The initially relatively high temperatures during the earliest Oligocene may be associated with the reported return to near-460 

Eocene climate soon after the EOT (Liu et al., 2009; Houben et al., 2012; Wilson et al., 2013) and is possibly also reflected in 

a shift in some organic matter indices across the EOT and after the EOIS (Fig. 5; López-Quirós et al., 2021). However, further 

interpretation of this sediment section is hampered by a gap in core recovery. The increase in typical tundra taxa together with 

common IRD indicates a potential phase of cooling and glacial expansion during the earliest Oligocene, possibly punctuated 

by the development of milder climates (e.g., Liu et al., 2009; Houben et al., 2012; Wilson et al., 2013). 465 

 

Warming and cooling phases with episodes of ice growth and retreat would have caused environmental disturbance, likely 

reducing the extent of Eocene Nothofagus-dominated forested. In New Zealand modern Nothofagus seedlings are able to 

capitalise on small canopy openings enabling them to out-compete podocarps in old-growth stands (Lusk et al., 2015). 

However, unlike podocarps, juvenile Nothofagus also require shelter from frost and desiccation, finding it hard to establish 470 

themselves amongst other vegetation in open and marginal forest environments until other vegetation has been partially 

suppressed through overtopping by Nothofagus (Wardle, 1964; Lusk et al., 2015 Rawlence et al., 2020). Thus, conifers are 

probably favoured by exogenous disturbance, providing a short-lived reprieve from angiosperm competition (Enright & Hill 

1995; Lusk et al., 2015). Across the EOT and earliest Oligocene glacial related environmental disturbance and the development 

of milder climates, possibly after the EOT (e.g., Liu et al., 2009; Houben et al., 2012; Wilson et al., 2013), could have therefore 475 

facilitated the expansion of different vegetation types previously suppressed by the dominance of Nothofagus. Furthermore, a 

study by Galeotti et al. (2016), suggested that until ca. 32.2 Ma any Antarctic ice sheet would have been extremely sensitive 

to orbitally paced, local insolation forcing and would have been prone to large fluctuations. These fluctuations in ice extent 

would have in turn resulted in environmental disturbance. Variability in ice volume during the early Oligocene are also 

reflected by greatly varying benthic 𝛿18O, confirming large fluxes in Antarctic ice during this time. Therefore, the unusual 480 

expansion of gymnosperms and cryptogams seen at Site 696 is suggested to be related to an increase in environmental 

disturbance caused by repeated glacial expansion and retreat, with the first major glacial expansion around 34.1 Ma, together 

with the competitive dominance of podocarps on exposed disturbed sites (Fig. 6). A lack of evidence for marine reworking 

after the EOT and good agreement between terrestrial biomarkers (López-Quirós et al., 2021) and the fossil sporomorph record 

suggest that the changes in the terrestrial palynomorph assemblage during the early Oligocene (~33.5 Ma) reflect true climate 485 

signals and increased environmental disturbance caused by glacial onset. Moreover, the results of this study reveal that major 
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changes in terrestrial vegetation took place after the onset of glaciation rather than after terrestrial climate cooling that took 

place during the latest Eocene after 35.5Ma. 

5.3 Paleoceanography 

Concurrent to terrestrial cooling at 35.5 Ma, indicated by the loss of thermophilic taxa and a decrease in sporomorph-based 490 

MAT estimates, dramatic changes to marine environments at site 696 are signalled by the appearance of glauconitic packstone 

(~588.8 to 577.9 mbsf; López-Quirós et al., 2019). The formation of this mature glaucony-bearing facies is suggested to be 

related to a decrease in the delivery of terrigenous sediments to Site 696 and suboxic reducing conditions at the sediment water 

interface (López-Quirós et al., 2019, 2021). This change in oceanic environmental conditions may be explained by the opening 

of the proto-Powell Basin and changes to ocean currents, with several studies (e.g., Lawver and Gahagan, 1998; Eagles and 495 

Livermore, 2002; Livermore et al., 2007) indicating strengthening of Scotia Sea and the northern Weddell Sea circulation at 

this time (López-Quirós et al., 2021). Decreased terrigenous sediment supply, as the SOM moved away from the Antarctic 

Peninsula, is supported by a drop in sedimentation from ~4 cm/kyr between 645.6 to ~597.2 mbsf to ~1.85 cm/kyr between 

~588.8 to 577.9 mbsf (López-Quirós et al., 2019, 2021). The opening of the Powell Basin to shallow and possibly intermediate 

waters is also suggested to have resulted in the creation of an upwelling system fuelling high sea-surface primary productivity 500 

and the development of oxygen-deficient bottom waters (López-Quirós et al., 2021). Condensed glauconitic sections on outer 

shelf-upper slope setting commonly occur beneath upwelling areas with high productivity (e.g., Cook and Marshall, 1981; 

Wigley and Compton, 2006; Banerjee et al., 2016). Fe-enrichment of glaucony grains is likely the result of high sea-surface 

productivity as a result of upwelling along the margin of the SOM (López-Quirós et al., 2019, 2021). Further evidence for 

increased marine biological productivity at Site 696 comes from distribution patterns of dinocysts and the proliferation in 505 

heterotrophic Protoperidiniaceae dinoflagellates, notably with increased abundances of the genera Brigantedinium spp., at 

approximately 34.5 Ma (Fig. 5; Houben et al., 2013, 2019). The dominance of Protoperidiniaceae dinoflagellates throughout 

the late Eocene-early Oligocene at Site 696 suggesting eutrophic surface waters supports the hypothesis of high sea-surface 

productivity enhanced by upwelling related to the opening of the Powell Basin at 35.5 Ma. Furthermore, high TOC within the 

early Oligocene combined with the presence of pyrite and diagenetic barite provide further evidence suggesting high marine 510 

productivity, leading to low oxygen conditions at the seafloor, possibly due to upwelling (López-Quirós et al., 2021). 

 

Importantly these change in oceanographic conditions associated with the opening of the Powell Basin occur synchronously 

with terrestrial cooling at 35.5 Ma, within the resolution of this study. Furthermore, large-scale changes in vegetation 

composition and decreasing diversity from Antarctic Peninsula (e.g., Askin, 2000; Anderson et al., 2011; Warny and Askin, 515 

2011a, 2011b) also occur at this time. Therefore, this may suggest a link between marine and terrestrial environments and that 

the opening of the Powell Basin and the establishment of oceanic upwelling may have driven a large-scale regional cooling 

step at 35.5 Ma. However, the regional change in oceanography and marine environments cannot be directly linked with the 

terrestrial vegetation change and glacial onset in the region that took place about one million years later, at 34.1 Ma. The timing 
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of the second cooling rather suggests that the event at site 696 is linked to global cooling at the onset of the EOT, documented 520 

by a combination of deep-ocean cooling and global ice sheet growth, marking the step from a largely ice-free greenhouse 

world to an icehouse climate (Hutchinson et al. 2020). 

6. Conclusion 

The terrestrial palynomorph assemblage from ODP Site 696 in the Weddell Sea records records palaeofloral evolution in 

response to increased environmental disturbance and provide insight into late Eocene and early Oligocene terrestrial climate 525 

and cryosphere evolution. Late Eocene pollen and spore assemblages reveal a terrestrial climate cooling at 35.5 Ma with a 

decrease in MAT by an average of 1.4°C, associated with a shift from warm-temperate Nothofagus-dominated forests including 

typical thermophilic plant types to cool temperate Nothofagus-dominated forests. This cooling of terrestrial climate after 35.5 

Ma coincides with changes in floral diversity and composition in palaeoflora records from the Antarctic Peninsula (e.g., Askin, 

2000; Anderson et al., 2011; Warny and Askin, 2011a, 2011b), which have been interpreted to reflect the onset of prolonged 530 

cooling in the region. Despite evidence for terrestrial cooling and ice expansion, Nothofagus-dominated forests did not change 

dramatically in composition until the early Oligocene, when there was distinct expansion of gymnosperms and cryptogams 

accompanied by a rapid increase in taxa diversity between approximately 33.5 and 32 Ma. We suggest that glacial related 

environmental disturbance, starting around 34.1 Ma, reflected by an increase in cold climate taxa and sedimentological 

evidence for ice transport and erosion (e.g., Robert and Maillot, 1990; López-Quirós et al., 2019, 2021), facilitated the 535 

expansion of different vegetation types previously suppressed by the dominance of Nothofagus. 

 

The cooling step at 35.5 Ma coincides with an abrupt change to marine environments at Site 696, indicated by the appearance 

of mature glaucony-bearing facies (~588.8 to 577.9 mbsf; López-Quirós et al., 2019). Development of this glauconitic section 

has been related to the opening of the Powell Basin, resulting in decreased sedimentation rates and the development of oceanic 540 

upwelling fuelling high marine biological productivity and the development suboxic bottom waters (López-Quirós et al., 2019, 

2021). The coincidence between terrestrial cooling and changes to ocean currents and marine environments at Site 696 possibly 

indicates a strong link between ocean and terrestrial environmental change, suggesting the opening of the Powell Basin and 

reorganisation of ocean currents triggered a regional cooling step at 35.5 Ma prior to glacial onset at 34.1 Ma. However, the 

large temporal gap (~1.4 Ma) between oceanographic changes and glacial onset suggests that the opening of ocean gateways 545 

did not alone trigger glaciation, even if ocean gateways may have played a role in stepwise cooling.  
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Data Availability 

All data will be available on the www.pangaea.de database (submitted 02/07/2021, awaiting 

validation)  
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Table captions  

Table 1: Revised age model for Ocean Drilling Program (ODP) Leg 113 Site determined by calcareous nannofossil and dinoflagellate 
cysts biostratigraphy (FO = First occurrence, FCO = Fist common occurrence) 1040 

Table 2: List of fossil pollen and spore taxa and their NLR used in sporomorph-based climate estimates from ODP Site 696.  

Figure captions 

Figure 1: Modern day geographical and tectonic setting of the study area, showing location of ODP Site 696 on the south-eastern 
margin of the SOM (red circle), and litho-tectonic units superimposed for the Antarctic Peninsula and southern South America 
(modified after Elliot, 1988). Tectonic setting and features after Maldonado et al. (2015). APR, Antarctic-Phoenix Ridge; BB, Bruce 1045 
Bank; Sea; DB, Discovery Bank; DvB, Dove Basin; EB, Endurance Basin; ESR, East Scotia Ridge; FP, Falkland Plateau; HB, 
Herman Bank; JB, Jane Basin; JBk, Jane Bank; OB, Ona Basin; PB, Powell Basin; PBk, Protector Bank; PrB, Protector Basin; SB, 
Scan Basin; SGM, South Georgia Microcontinent; SI, Seymour Island; SOM, South Orkney Microcontinent; SSIB, South Shetland 
Islands Block; TR, Terror Rise; WSR, West Scotia Ridge; and WSS, West Scotia Sea. (Adapted from López-Quirós et al., 2019, 
2021). 1050 

Figure 2: Stratigraphy of the studied sedimentary interval from ODP Site 696 Hole B. From left to right: Simplified lithological log 
of ODP Site 696, Age-depth plot based on biostratigraphy, cores, detailed lithological log of Eocene-Oligocene Unit VII and clay 
mineral percentage. Biostratigraphic age constraints based on calcareous nannofossils (Wei and Wise, 1990) and dinoflagellate cysts 
(Houben et al., 2013). Detailed lithological log from López-Quirós et al. (2019, 2021). Clay minerals are from Robert and Maillot 
(1990). (Adapted from López-Quirós et al., 2019, 2021). 1055 

Figure 3: Frequency and stratigraphic distribution of major pollen and spore taxa with CONISS ordination showing two distinct 
zones (Zone I and Zone II), Zone I is further subdivided based on the occurrence of key taxa. Pollen and spore taxa have been 
separated into key ecological groups. 

Figure 4: Sporomorph based quantitative climate estimates using probability density functions (PDF). From left to right: Coldest 
Month Mean Temperature (CMMT), Mean Annual Temperature (MAT), Warmest Month Mean Temperature (WMMT) and Mean 1060 
Annual Precipitation (MAP). 

Figure 5: Distribution of key vegetation and dinocyst groups plotted against diversity indices results, percentages of reworked 
terrestrial palynomorphs and n-alkane variables/ratios. From left to right: Rarefaction analysis results at number of species per 50 
and 100 specimens, percentage of reworked terrestrial palynomorphs, DCA axis 1 results, percentage of cryptogam taxa, percentage 
of angiosperm taxa (non-Nothofagus), percentage of gymnosperm taxa, percentage of Nothofagus, percentage of endemic-Antarctic 1065 
dinocyst taxa, percentage of Protoperidiniaceae dinoflagellates, TOC, TI index, ACL, Paq and n-alkane n-C23/n-C29 ratios. 
Dinoflagellate abundance from Houben et al. (2013). Terrestrial biomarkers/n-alkane variables/ratios from López-Quirós et al. 
(2021). 

Figure 6: Schematic representation of vegetation from Site 696, illustrating the response of key taxonomic group to climate and 
environmental change through key intervals during the late Eocene and early Oligocene. (A) Late Eocene vegetation (~37.6-35.5 1070 
Ma), during the deposition of Zone Ia vegetation was dominated by Nothofagus with secondary podocarps and an understory of 
cryptogams and minor angiosperms. Sporomorph-based climate estimates and the presence of thermophilic taxa indicate conditions 
were relatively warm compared to the rest of the section; (B) Latest Eocene after late Eocene climate cooling (~35.5-34.1 Ma), 
vegetation remained similar to that of the late Eocene and was still dominated by Nothofagus, but climate cooling by around 2°C 
resulted in loss of thermophilic taxa and slight decrease in taxa diversity; (C) EOT vegetation during glacial onset (~34.1 Ma), 1075 
environmental disturbance caused by ice expansion and retreat resulted in the reduction of Nothofagus-dominated forested areas 
and increase in tundra-like vegetation; (D) early Oligocene (~33.5-32.2 Ma), during glacial retreat and the development of milder 
climates disturbance and reduction of Nothofagus-dominated forests facilitated the expansion of more competitive Podocarpaceae 
and pioneer cryptogam taxa. 
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Table 1 

Event/Characteristic Kind Lower 
level 

Upper 
level 

Bottom 
depth 

Top 
depth 

Mid-
depth 

Reference Age 
(Ma) 

Reference 

FO Chiropteridium 
galea 

Dinocysts 53R-3, 
80 cm 

53R-2, 
130 cm 

552.70 551.70 552.20 Houben et al., 2019 <33.26 Pross et al., 2010 

FO Malvinia escutiana Dinocysts 55R-1, 
117 cm 

55R-1, 
62 cm 

569.39 568.82 569.11 Houben et al., 2013; 2019 33.6 Houben et al., 2011 

FO Stoveracysta 
kakanuiensis 

Dinocysts 55R-3, 
75 cm  

55R-2, 
147 cm 

571.95 571.16 571.55 Houben et al., 2013; 2019 34.1 Clowes, 1985 

FO Reticulofenestra 
oamaruensis  

Calcareous 
nannofossils 

58R-1, 
122cm 

57R-1, 
112 cm 

598.42 588.72 593.57 Wei and Wise, 1990 35.5 Villa et al., 2008 

FCO Isthmolithus 
recurvus 

Calcareous 
nannofossils 

60R-1, 
36 cm 

59R-
CC 

616.96 616.6 616.78 Wei and Wise, 1990 36.27 Villa et al., 2008 

FO Reticulofenestra 
bisecta 

Calcareous 
nannofossils 

62R-6, 
132 cm 

- 643.62 - 643.62 Wei and Wise, 1990 <37.61 Villa et al., 2008 
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Table 2 

Fossil taxa Botanical affinity Reference NLR used for climate 
analysis  

Angiosperms     
Acaena sp. Acaena  Acaena 
Arecipites sp. Arecaceae Raine et al. (2011) Arecaceae 
Beaupreaidites cf. verrucosus Proteaceae (Beauprea). Raine et al. (2011) Beauprea 
Chenopodipollis chenopodiaceoides Amaranthaceae (Chenopodioideae) Raine et al. (2011) Chenopodiaceae 

(Chenopodioideae) 
Clavatipollenites ascarinoides Chloranthaceae (Ascarina). Barreda et al. (2020) Ascarina 
Cupanieidites orthoteichus Sapindaceae Raine et al. (2011) Sapindaceae 
Ericipites cf. scabratus Ericaceae Raine et al. (2011) Ericaceae 
Lateropora glabra Pandanaceae (Freycinetia) Raine et al. (2011) Freycinetia 
Liliacidites intermedius Liliaceae (?Arthropodium) Raine et al. (2011) Liliaceae 
Lymingtonia cf. cenozoica Nyctaginaceae (Pisonia brunoniana) Raine et al. (2011) Pisonia 
Malvacipollis cf. subtilis Malvaceae?/Euphorbiaceae Raine et al. (2011) Euphorbiaceae 
Myricipites harrisii Casuarinaceae/Myricaceae Raine et al. (2011) Myricaceae 
Myrtaceidites cf. mesonesus Myrtaceae (Metrosideros) Barreda et al. (2020, 2021) Metrosideros 
Nothofagidites asperus complex Nothofagus (Lophozonia) Raine et al. (2011) Nothofagus menziesii 
Nothofagidites brachyspinulosus Nothofagus (Fuscospora) Raine et al. (2011) Fuscospora 
Nothofagidites lachlaniae Nothofagus (Fuscospora) Raine et al. (2011) Fuscospora 
Nothofagidites emaricidus complex Nothofagus (Brassospora) Raine et al. (2011) Brassospora 
Nothofagidites flemingii Nothofagus (Nothofagus) Barreda et al. (2020, 2021) Nothofagus 
Nothofagidites roccanensis Nothofagus (Nothofagus) Barreda et al. (2021) Nothofagus 
Nothofagidites spp. Nothofagaceae Barreda et al. (2020, 2021) Nothofagaceae 
Propylipollis reticuloscabratus Proteaceae (Gevuina/Hicksbeachia) Barreda et al. (2020, 2021) Proteaceae 
Proteacidites spp. Proteaceae Barreda et al. (2020, 2021) Proteaceae 
Sparganiaceaepollenites barungensis Sparganiaceae (Sparganium) Macphail & Cantrill (2006) Sparganium 
Gymnosperms     
Araucariacites australlis Araucariaceae (Araucaria) Barreda et al. (2020, 2021) Araucaria 
Dacrydiumites praecupressinoides Podocarpaceae (Dacrydium cupressinum) Raine et al. (2011) Dacrydium 
Microalatidites paleogenicus Podocarpaceae (Phyllocladus) Barreda et al. (2021) Phyllocladus 
Microcachryidites antarcticus Podocarpaceae (Microcachrys tetragona) Barreda et al. (2020, 2021) Podocarpaceae 
Phyllocladidites mawsonii Podocarpaceae (Lagarostrobos franklinii). Barreda et al. (2021) Lagarostrobos franklinii 
Podocarpidites spp. Podocarpaceae (Podocarpus) Barreda et al. (2020, 2021) Podocarpus 
Podosporites spp. Podocarpaceae (cf. Microcachrys) Raine et al. (2011) Podocarpaceae 
Trichotomosulcites subgranulatus Podocarpaceae (Microcachrys) Barreda et al. (2021) Podocarpaceae 
Cryptogams    
Baculatisporites comaumensis Osmundaceae Barreda et al. (2020) Osmundaceae 
Ceratosporites cf. equalis Selaginellaceae (Selaginella) Raine et al. (2011) Selaginellaceae 
Coptospora archangelskyi Bartramiaceae (Conostomum) Raine (1998) Conostomum 
Cyathidites spp. Cyatheaceae/ Dicksoniaceae/ Schizaeaceae Barreda et al. (2020) Cyatheaceae 
Dictyophyllidites arcuatus Gleicheniaceae (?Dicranopteris) Raine et al. (2011) Dicranopteris 
Foveotriletes lacunosus Lycopodiaceae (Huperzia) Raine et al. (2011) Huperzia 
Gleicheniidites spp. Gleicheniaceae Barreda et al. (2020) Gleicheniaceae 
Laevigatosporites spp. Polypodiaceae Barreda et al. (2020) Polypodiaceae 
Monolites alveolatus cf. Polypodiaceae (Belvisia) Raine et al. (2011) Belvisia 
Osmundacidites cf. wellmanii Osmundaceae (Todea barbara) Raine et al. (2011) Osmundaceae 
Polypodiisporites cf. radiatus Davalliaceae (Davallia) Conran et al. (2010) Davallia 
Retitriletes/Lycopodiacidites Lycopodiaceae (Lycopodium) Raine et al. (2011) Lycopodium 
Stereisporites spp. Sphagnaceae (Sphagnum) Truswell & Macphail (2009) Sphagnum 
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Figure 1 1110 
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Figure 3 
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Figure 4 
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Figure 5 
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Figure 6 

 


