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Abstract. Paleogene hyperthermals, including the Paleocene-Eocene Thermal Maximum (PETM) and several other smaller 10 

events, represent global perturbations to Earth’s climate system and are characterized by warmer temperatures, shifts in floral 

and faunal communities, and hydrologic changes. These events are identified in the geologic record globally by negative 

carbon isotope excursions (CIEs), resulting from the input of isotopically light carbon into Earth’s atmosphere. Much about 

the causes and effects of hyperthermals remains uncertain, including whether all hyperthermals are caused by the same 

underlying processes, how biotic effects scale with the magnitude of hyperthermals, and why CIEs are larger in paleosol 15 

carbonates relative to marine records. Resolving these questions is crucial for their full interpretation and application to future 

climate scenarios. The Fifteenmile Creek area of the central Bighorn Basin, Wyoming U.S.A., exposes an early Eocene 

floodplain sedimentary sequence that preserves paleosol carbonates and an extensive fossil mammal collection. Previous 

analysis of faunal assemblages revealed two pulses of mammal turnover and changes in diversity interpreted to correlate with 

the ETM2 and H2 hyperthermals that immediately follow the PETM. This was, however, based on long distance correlation 20 

of chemostratigraphic records. 

We present new carbon isotope stratigraphy using micrite δ13C values from paleosol carbonate nodules preserved in and 

between richly fossiliferous localities at Fifteenmile Creek to identify the stratigraphic positions of ETM2 and H2. 

Additionally, we used differential GPS elevations to establish a new stratigraphic framework that assists in correlation and is 

independent from the biostratigraphy and previous composite lithostratigraphic sections from the area. Carbon isotope results 25 

show that the ETM2 and H2 hyperthermals, and possibly the subsequent I1 hyperthermal, are recorded at Fifteenmile Creek. 

ETM2 and H2 overlap with the two previously recognized pulses of mammal turnover. Comparisons between the new 

chemostratigraphy and fossil record suggest that the recorded amplitude of these faunal changes may be muted as a result of 

some stratigraphic averaging of fossils. The CIEs for these hyperthermals are also smaller in magnitude than in more northerly 

Bighorn Basin records. We suggest that basin-wide differences in soil moisture and/or vegetation could contribute to variable 30 

CIE amplitudes in this and other terrestrial records. 
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1 Introduction 

1.1 Paleogene hyperthermals 

The early Paleogene is punctuated by numerous short duration (lasting 50–200 kyr) warming events known as “hyperthermals” 35 

(Westerhold et al., 2018; Barnet et al., 2019; Thomas et al., 2000). These hyperthermals are characterized by their rapid onset 

(estimates for some range from less than 10 kyr to ~20 kyr) and are associated with significant negative isotope excursions in 

δ13C and δ18O in marine sedimentary records, and negative δ13C excursions in terrestrial records, worldwide (e.g., Kennett and 

Stott, 1991; Koch et al., 1992; Zachos et al., 2001, 2008; Abels et al., 2012, 2016; Westerhold et al., 2020). Many of these 

hyperthermals are orbitally paced, often occurring during eccentricity maxima in 100 and 405 kyr cycles (Cramer et al., 2003; 40 

Lourens et al., 2005; Zachos et al., 2010; Dinarès-Turell et al., 2014; Barnet et al., 2019; although see D’Onofrio et al., 2016 

for debate about which carbon isotope variations during the Paleogene constitute a hyperthermal). The largest and best known 

of these hyperthermals is the Paleocene–Eocene Thermal Maximum (PETM) at ~56 Ma, during which time global 

temperatures increased between 5–8° C (McInerney and Wing, 2011). Along with this warming came deep-ocean acidification 

and carbonate dissolution, and the extinction of 30–50% of benthic foraminifera (Thomas, 1998, 2007; Zachos et al., 2005; 45 

Speijer et al., 2012). Conversely, planktic foraminifera experienced geographic range shifts and proliferation over the same 

interval (Lu and Keller, 1995; Thomas and Shackleton, 1996; Kelly et al., 1998; Gibbs et al., 2006; Agnini et al., 2007; 

Mutterlose et al., 2007).  

The negative carbon isotope excursions (CIEs) associated with the hyperthermals indicate massive injections of isotopically 

light carbon into the atmosphere, but the source and mechanism of release of these greenhouse gases is unresolved (Higgins 50 

and Schrag, 2006). Proposed sources of carbon for the PETM include destabilized methane clathrates (Dickens et al., 1995, 

1997; Katz et al., 1999), volcanism associated with the North Atlantic Igneous Province (NAIP) (Gutjahr et al., 2017), 

thermogenic methane released from organic-rich sediments during NAIP emplacement (Svensen et al., 2004; Frieling et al., 

2016), Antarctic permafrost thaw (DeConto et al., 2010, 2012), wildfires burning Paleocene peat deposits (Kurtz et al., 2003; 

Moore and Kurtz, 2008), and evaporation of epicontinental seas leading to the oxidation of organic matter (Higgins and Schrag, 55 

2006), although geological evidence supporting the last two hypotheses is weak. It is also possible that multiple mechanisms 

and sources may have acted together and that the drivers may not have been the same for the PETM and smaller hyperthermals. 

Although the initial trigger for many hyperthermals may be related to orbital cyclicity, the primary cause of warming is likely 

the associated release of greenhouse gases. Of the smaller hyperthermals, those immediately following the PETM are currently 

the best studied. These include the Eocene Thermal Maximum 2 (ETM2) at ~54 Ma, also referred to as ELMO (Lourens et al., 60 

2005) or H1 (Cramer et al., 2003), as well as the succeeding H2, I1, and I2. Like the PETM, these hyperthermals are associated 

with negative CIEs, increased CaCO3 dissolution, and foraminiferal turnover (Agnini et al., 2009; Stap et al., 2009, 2010; 

Jennions et al., 2015; Arreguin-Rodriguez and Alegret, 2016; D’Onofrio et al., 2016). The ETM2, H2, and I1 hyperthermals 

have also been linked to increased radiolarian abundance as well as shifts in calcareous plankton assemblages. Together these 

suggest upper water column warming, weakening thermal stratification in the upper water column, and increased nutrients in 65 
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surface waters during the events (D’Onofrio et al., 2016). The high-resolution marine record of the PETM and subsequent 

hyperthermals has led to a growing understanding of their effects in the ocean. A similar level of detail has not been developed 

for the terrestrial record of the smaller (non-PETM) hyperthermals. Achieving this level of understanding will require 

geochemical records from a variety of depositional environments and locations to fully understand spatial heterogeneity and 

underlying carbon cycle–climate dynamics. Furthermore, understanding the effects of these hyperthermals on the terrestrial 70 

ecosystem requires their recognition in richly fossiliferous strata, where both plant and vertebrate fossils occur in abundance. 

1.2 Terrestrial record of hyperthermals 

Terrestrial stratigraphic records of the PETM have been reported from North America (e.g., Koch et al., 1992, 2003; Bowen 

and Bowen, 2008; Baczynski et al., 2013), South America (e.g., Jaramillo et al., 2010), Europe (e.g., Cojan et al., 2000; Schmitz 

and Pujalte, 2007), Asia (e.g., Bowen et al., 2002; Chen et al., 2014), India (e.g., Samanta et al., 2013), and Australia (e.g., 75 

Greenwood et al., 2003). Of these, the Bighorn Basin of Wyoming preserves the most detailed, richly fossiliferous, and best 

studied terrestrial record of the PETM. Here the PETM corresponds with rapid turnover in both plants and mammals, as the 

Paleocene flora is replaced by a dry tropical flora (Wing et al., 2005) and the first representatives of several mammalian clades 

disperse among the Holarctic continents. The “dwarfing” of about 40% of mammalian lineages also occurred during the PETM 

(Gingerich, 1989; Clyde and Gingerich, 1998; Secord et al., 2012). The hydrologic cycle was also strongly affected (Wing et 80 

al., 2005; Foreman et al., 2012; Kraus et al., 2013; Foreman, 2014; Baczynski et al., 2017). A comprehensive summary of 

terrestrial environmental changes associated with the PETM can be found in McInerney and Wing (2011). In contrast to the 

PETM, terrestrial records of the post-PETM hyperthermals are limited. They include carbon isotope records from coal 

exposures in NE China (Chen et al., 2014) and western India (Clementz et al., 2011; Samanta et al., 2013; Agrawal et al., 

2017), as well as records from paleosol carbonates preserved in floodplain deposits from the McCullough Peaks region in the 85 

central Bighorn Basin (Abels et al., 2012, 2016; D’Ambrosia et al., 2017). Four post-PETM hyperthermals (ETM2, H2, I1 and 

I2) are preserved in the McCullough Peaks sequence and this area offers one of the best opportunities for constructing a highly 

detailed terrestrial record, that can also be compared with marine and terrestrial records of the PETM and post-PETM 

hyperthermals worldwide. The McCullough Peaks fauna, however, is limited compared to other parts of the Bighorn Basin, 

complicating direct correlation between hyperthermals and faunal change. 90 

Records of the PETM show that terrestrial proxies generally record a larger magnitude CIE than marine proxies, leading some 

to consider the terrestrial record “amplified” (Bowen et al., 2004). In marine carbonate records of the PETM, the CIE generally 

ranges from ~2–4 ‰ (McInerney and Wing, 2011). In terrestrial records, the PETM CIE ranges from ~3–7 ‰ depending upon 

the proxy used and can show considerable spatial variability depending on local environmental differences (Bowen and Bowen, 

2008). Of the terrestrial δ13C proxies, paleosol carbonates record the largest CIE, generally ranging from ~3–7 ‰ (e.g., Koch 95 

et al., 2003; Bowen et al., 2004; Bowen and Bowen, 2008), with a mean of ~5.5 ‰ (McInerney and Wing, 2011). A direct 

comparison of marine and paleosol carbonate records indicates that the CIE is on average 2.8–3.0 ‰ greater in paleosol 

carbonates (McInerney and Wing, 2011). 
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Detailed paleosol carbonate records of the post-PETM hyperthermals are currently limited to McCullough Peaks, but also 

seem to show a larger magnitude CIE relative to the marine record. Marine benthic carbonate records of the ETM2 and H2 100 

CIEs are ~1.4–1.5 ‰ and 0.8 ‰, respectively (Stap et al., 2010; Barnet et al., 2019), whereas the terrestrial ETM2 and H2 

records from soil carbonates in McCullough Peaks are ~3.8 ‰ and ~2.8 ‰ (Abels et al., 2012, 2016; D’Ambrosia et al., 2017). 

No terrestrial organic carbon records exist for these hyperthermals from the Bighorn Basin, although bulk organic carbon 

records from India and China have an average magnitude of ~2.7–3.5 ‰ for ETM2 and ~2.5 ‰ for H2 (Chen et al., 2014; 

Agrawal et al., 2017). Moreover, there is debate surrounding the scaling relationship between the amplitude of the PETM and 105 

post-PETM CIEs, with some arguing for a consistent linear relationship and therefore common source (e.g., Chen et al., 2014) 

and others arguing that the post-PETM CIEs appear to scale linearly with each other, but not with the PETM, potentially 

suggesting a different triggering mechanism for the later hyperthermals (Abels et al., 2016).  

The cause of this apparent “amplification” in terrestrial CIEs is not fully understood, although increased soil productivity 

(Bowen, 2013), increased humidity (Bowen et al., 2004; Bowen and Bowen, 2008), increased carbon isotope discrimination 110 

by plants under higher atmospheric pCO2 conditions (Schubert and Jahren, 2013), and the loss of gymnosperms in the PETM 

(Smith et al., 2007), which have higher δ13C values than angiosperms, have been invoked as potential mechanisms. 

Alternatively, increased dissolution during hyperthermals could produce a muted CIE signal in some marine records relative 

to the true atmospheric δ13C shifts (Zachos et al., 2005). The paucity of terrestrial records of post-PETM hyperthermals outside 

of the McCullough Peaks area makes it difficult to understand how these records vary spatially and to compare CIE magnitudes 115 

between the terrestrial and marine realms. 

1.3 Mammal response to hyperthermals 

The PETM coincides with one of the most profound phases of mammal turnover during the Cenozoic, marked by the first 

appearances of several clades including: Perissodactyla, Artiodactyla, Euprimates, and Hyaenodontidae (e.g., Rose, 1981; 

Gingerich, 1989, 2003, 2006; Koch et al., 1992; Clyde and Gingerich, 1998; Hooker, 1998; Rose et al., 2012). These taxa 120 

disperse among North America, Europe, and Asia during the PETM, but their areas of origin are uncertain (e.g., Bowen et al., 

2002; Clyde et al., 2003; Smith et al., 2006; Morse et al., 2019). Several groups also demonstrate transient “dwarfing” during 

the PETM (Gingerich, 1989; 2006; Clyde and Gingerich, 1998; Strait, 2001; Chester et al., 2010), with minimum body sizes 

corresponding to peak warming in Bighorn Basin equids (Secord et al., 2012), the only clade described in stratigraphic detail 

through the PETM.  125 

Previous work on mammal faunas from post-PETM hyperthermals in McCullough Peaks suggests that mammal body size 

decreased during ETM2 in at least two lineages, though the fauna did not show major reorganization as is seen during the 

PETM (Abels et al., 2012; D’Ambrosia et al., 2017). However, PETM reorganization may largely be related to intercontinental 

and intracontinental immigrants making first appearances, while there is no strong evidence for such immigrants appearing 

around the time of ETM2 or H2 (Woodburne et al., 2009; Chew, 2015). Until now, the lack of abundant fossil mammals tied 130 

closely to the stable isotope record has precluded a detailed assessment of mammal faunal change through these hyperthermals. 
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Chew (2015) identified two distinct pulses of increased turnover and diversity, known as faunal events B–1 and B–2, in 

mammal assemblages from the Fifteenmile Creek area in the southern Bighorn Basin. In contrast to the PETM, faunal change 

during these events was lower in magnitude and driven by increased beta, rather than alpha, diversity. Moreover, the number 

of first appearances was roughly equal to the number of last appearances and there were no known intercontinental immigrant 135 

taxa arriving during the B–1 and B–2 events. Additionally, abundance shifts during these events appear to have favored smaller 

bodied species (Chew, 2015). Chew (2015) identified the ETM2 and H2 hyperthermals as potential drivers of faunal change 

during events B–1 and B–2, based on their inferred temporal overlap. Preliminary geochemical work in this region, however, 

did not identify any clear CIEs in this interval that would confirm this connection (Koch et al., 2003).  

Our work presents new, high-resolution carbon isotope records from paleosol carbonates through the fossil-rich Fifteenmile 140 

Creek area in the southern Bighorn Basin. This allows, for the first time, the extensive fossil mammal records from this area 

to be tied directly into the isotope stratigraphy of post-PETM early Eocene hyperthermals. The results offer a direct test of the 

hypothesis that faunal turnover events B–1 and B–2 are correlated with the ETM2 and H2 hyperthermals (Chew, 2015). This 

new record also adds to the terrestrial stable isotope record of post-PETM hyperthermals in the Bighorn Basin, allowing for 

better spatial characterization of these events. 145 

2 Geological setting 

The Bighorn Basin is a Laramide structural basin located in northwest Wyoming. Uplift of the Beartooth, Pryor, Bighorn, and 

Owl Creek mountains resulted in sediment accumulation in the basin during the early Paleogene (Gingerich, 1983; Kraus, 

1992). The early Paleogene basin axis was located near the western margin of the basin and sediment thickness generally 

decreases going from the northwest to southeast within the basin (Parker and Jones, 1986), with regional differences in 150 

subsidence potentially due to activation of east–west trending buried faults (Kraus, 1992). The lower Eocene Willwood 

Formation represents a fluvial depositional system, and it is typified by paleosols of varying maturity, channel sandstones, 

crevasse-splay deposits, and localized carbonaceous shales (Kraus, 1992, 1997; Bown and Kraus, 1993). Near McCullough 

Peaks, the basin experienced rapid subsidence during this time and the Willwood Formation is characterized by a thick 

sequence of relatively immature paleosols. 155 

The Fifteenmile Creek area of the Bighorn Basin is located ~80 km southeast of McCullough Peaks and, in contrast to the 

McCullough Peaks, it is characterized by having more mature paleosols, as well as more channel and cut-and-fill deposits 

associated with slower subsidence and aggradation. The region has produced an extensive collection of nearly 1000 mammal 

fossil localities that have been tied in to a 700 m thick composite stratigraphic section (Bown et al., 1994). Previous work in 

the area suggested that the interval containing the ETM2 and H2 hyperthermals was between 380 and 455 meters in the Bown 160 

et al., (1994) composite section (Chew, 2015). This interval follows the last occurrence of the mammal Haplomylus speirianus 

and the first occurrence of Bunophorus estagicus associated with the faunal event Biohorizon B (Schankler, 1980; Bown et 

al., 1994; Chew, 2009), which occurs just below ETM2 and H2 in sections farther north (Abels et al., 2012; D’Ambrosia et 
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al., 2017). The Chron C24r – C24n.3n geomagnetic polarity reversal provides additional support for this interval containing 

ETM2 and H2. In McCullough Peaks and other records around the world, the C24r – C24n.3n reversal occurs just above ETM2 165 

(Lourens et al., 2005; Abels et al., 2012; D’Ambrosia et al., 2017), meaning ETM2 is closely bracketed by Biohorizon B below 

and the Chron C24r – C24n.3n polarity reversal above. Magnetostratigraphic work from Elk Creek Rim, about 20 km north of 

the Fifteenmile Creek sections studied here, placed the C24r – C24n.3n reversal at the ~450 meter level of the Bown et al. 

(1994) composite section, ~70 meters above Biohorizon B (Clyde et al., 2007; however see Tauxe et al., 1994 for earlier 

magnetostratigraphic interpretation). Based on these constraints, we constructed detailed carbon isotope datasets from 170 

stratigraphic sections along Fifteenmile Creek that span the critical interval between Biohorizon B and the C24r – C24n.3n 

reversal to identify ETM2 and H2 and determine their correlation to mammal faunal changes. 

Figure 1: Map of the Fifteenmile Creek area of the Bighorn Basin, WY showing the Willwood Formation (brown 175 

shading), mammal fossil localities (black dots) and carbon isotope sections (colored lines), overlain onto satellite 

imagery. Fossil localities that were sampled directly or tied to these sections via lithological tracing are shown as red 

diamonds and labelled with locality numbers. Willwood Formation extent is from Green and Drouillard (1994). Note 

that some Willwood Formation exposures are found in areas mapped as Quaternary alluvium (not shaded). Inset map 

shows the location of the Fifteenmile Creek area relative to McCullough Peaks within the Bighorn Basin. Map sources: 180 

USGS (Green and Drouillard, 1994), and © Google Earth 2021. 
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3 Materials and methods 

3.1 Pedogenic carbonate 

Pedogenic carbonate nodules precipitate from soil CO2, a mixture derived from CO2 respired from plants and microorganisms, 

atmospheric CO2, and dissolved soil parent material (Zamanian et al., 2016). Carbon isotope fractionation in the atmosphere–185 

plant–soil–carbonate system is well characterized (e.g., Cerling, 1984; Farquhar et al., 1989; Cerling and Quade, 1993; Koch, 

1998; Wynn et al., 2005; Wynn, 2007). At depth (> 30 cm), where most pedogenic carbonate nodules form, soil CO2 is 

primarily plant respired (Cerling, 1984) and carbonate carbon isotope variation has been shown to closely follow the local 

vegetation and soil organic matter (Cerling and Quade, 1993). Fractionation during photosynthesis in C3 plants leads to an 

average δ13C value of plant tissues depleted in 13C by ~ -19.5 ‰ relative to the atmosphere (Koch, 1998), although several 190 

factors can affect the degree of fractionation during photosynthesis. In an environment with only C3 vegetation, fractionation 

associated with photosynthesis, soil diffusion, and calcite precipitation results in pedogenic carbonate δ13C that is ~4.5 ‰ more 

negative than atmospheric CO2 (Cerling, 1984; Koch, 1998). 

3.2 Field methods 

Pedogenic carbonate nodules were collected from five primary stratigraphic sections that span the target interval (Fig. 1). All 195 

samples were collected from fresh, unweathered rock and at least three nodules were analyzed from each sampling site, when 

possible. The relative stratigraphic positions of sampling sites and fossil localities were measured in local sections using a 

Jacob’s staff and bed tracing. These sections were correlated to the composite stratigraphic section of Bown et al. (1994) by 

using the composite stratigraphic levels (hereafter referred to as “Bown composite meter levels” or BCM) of fossil localities 

that were included in the sections and using the measured thickness to infer BCM levels for the rest of the section. Because of 200 

the difficulty with tracing individual beds in this low relief area with spatially dispersed outcrops, we employed a second 

method of correlation using local elevation to develop an independent stratigraphic framework. Elevations were collected 

using a Trimble GeoXT 6000 handheld differential GPS (dGPS) paired with a Trimble Tornado external dual-frequency 

antenna.   Elevations were collected from sample sites and from important stratigraphic markers (e.g., marker beds and fossil 

producing horizons) in every section. Elevation is a reasonable proxy for stratigraphic level in the Fifteenmile Creek area since 205 

the dip is close to 0°. Checks on local dips were made by tracing well exposed beds using the dGPS. Postprocessing of dGPS 

data was done using the Trimble Pathfinder Office and Terra Sync Software. After processing, the elevations typically had an 

accuracy of < 50 cm. 

3.3 Mammal fossil localities 

A total of 18 fossil localities, that include more than 4500 identified fossil mammal specimens, were directly tied to the five 210 

primary local stratigraphic sections from which isotope samples were collected (Fig. 1) and used to correlate these sections to 

the BCM levels. Three shorter sections were also sampled, one away from the main Basin Draw section (through fossil locality 
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D–1454), and two located near the Kraus Flats and Red Butte sections (through localities D–1207 and D–1532, respectively) 

(Appendix A). 

3.4 Laboratory methods 215 

Individual nodules were polished using a diamond lap wheel and were visually inspected to identify any primary, secondary, 

or altered textures. Micritic calcite and sparite were sampled for stable isotope analysis. Micrite is generally interpreted to 

represent a primary phase formed by precipitation directly from soil CO2, and thus is appropriate for paleoclimate 

reconstruction (Bowen et al., 2001). Sparite samples were also drilled from a subset of nodules to compare stable isotope 

values of primary and secondary components (e.g., Bowen et al., 2001; Snell et al., 2013). Sparite in paleosol carbonate nodules 220 

generally forms in veins and septarian-style cracks in the nodules. It is thought to precipitate from fluids after deep burial at 

high temperatures, resulting in lower δ18O values than the original soil water δ18O (Bowen et al., 2001; Snell et al., 2013). All 

stable isotope ratios are reported in delta (δ) notation as per mil (‰) deviation relative to the Vienna Pee Dee Belemnite 

(VPDB) standard, where δ = ([(RSample / RStandard) – 1] x 1000), and R is the ratio of the higher mass isotope to the lower mass 

isotope. 225 

Analyses of δ13C and δ18O values were done at the University of Michigan Stable Isotope Laboratory (UMSIL) using a Thermo 

Finnegan MAT253 stable isotope ratio mass spectrometer attached to a Kiel IV automated preparation device, and at the 

University of Colorado Boulder Earth Systems Stable Isotope Laboratory (CUBES–SIL) using a Thermo Delta V continuous 

flow stable isotope ratio mass spectrometer attached to a GasBench II gas preparation device. Repeated measurements of in-

house standards yield precision of ± 0.1 ‰ or better for both δ13C and δ18O in both laboratories, although overall uncertainties 230 

are likely slightly larger than this in carbon isotopes due to extrapolation of the standard correction lines beyond the lowest 

standard values for both labs (Appendix B). Data correction and calculations from CUBES–SIL were done using in-house R 

scripts that utilized Tidyverse and IsoVerse R packages. Powder from a subset of 10 micrite samples was homogenized and 

replicates were sent to UMSIL and CUBES–SIL to identify if there were differences between the two labs. δ13C and δ18O 

values that were measured at UMSIL were then corrected to the CUBES–SIL values based on these replicate samples 235 

(Appendix B). 

CIE magnitudes were calculated by detrending the data to account for long-term early Paleogene trends, then taking the 

difference between the detrended δ13C background values and the values from the body of the CIEs, following the method of 

Abels et al. (2016). δ13C values were averaged from each stratigraphic level prior to calculating the magnitude and the mean 

peak excursion values from each section were also averaged to facilitate comparisons to other records and account for local 240 

spatial heterogeneity. 
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4 Results 

4.1 Stable isotopes 

A total of 789 carbonate samples from the Fifteenmile Creek area were analyzed for δ13C and δ18O (Figs. 2 and 3). δ13C values 

for micritic carbonate samples (n = 770) range from -16.4 ‰ to -8.7 ‰ (mean = -11.0 ‰). Micrite δ18O values range from -245 

16.6 ‰ to -6.5 ‰ (mean = -9.3 ‰). Sparite samples (n = 19) display δ13C values between -21.2 ‰ and -9.5 ‰ (mean = -12.6 

‰) and δ18O values between -23.4 ‰ and -8.6 ‰ (mean = -14.8 ‰) (Fig. 2). Twelve samples were removed due to relatively 

low weight percent carbonate (< 50 %). Low weight percent carbonate introduces the possibility that the carbonate in these 

samples does not reflect pedogenesis, or they could be higher porosity samples that were more susceptible to alteration. Fifty 

percent is a somewhat conservative cutoff that only retains samples that are majority carbonate. Considering only sampling 250 

sites with at least three nodules, the mean within–site range in δ13C is 0.7 ‰ but can be up to 3.2 ‰. The mean within–site 

range in δ18O is 0.9 ‰ and up to 5.8 ‰. Together, the within–site range in both δ13C and δ18O are generally < 1 ‰.  

It is possible that small amounts of unrecognized spar or areas of recrystallization were drilled with the micrite, which could 

contribute to the large spread in δ18O towards more negative values (Fig. 2). As such, samples with δ18O values greater than 

2σ below the mean micrite δ18O value (-11.7 ‰) were identified as potentially incorporating a secondary spar phase and are 255 

shown as such in Figs. 3 and 4. Secondary recrystallization in a closed system does not affect carbon isotopes to the same 

extent as oxygen isotopes (Cerling, 1984), suggesting that partially recrystallized samples may still record CIEs reliably. Two 

stratigraphic levels from the base of the Basin Draw section had anomalously low δ13C values (up to -16.4 ‰) that fall outside 

of the typical range for early Eocene pedogenic carbonate from this region and could incorporate some mixing with sparite, 

particularly given their relatively low δ18O values (up to -12.1 ‰). 260 

Replicate samples that were analyzed by the two laboratories (n = 10) show that δ13C values differed by up to 0.7 ‰ (mean = 

0.4 ‰, standard deviation = 0.3 ‰) while δ18O values differed by up to 0.6 ‰ (mean = 0.3 ‰, standard deviation = 0.2 ‰). 

Greater differences between the two labs are consistently associated with more negative values, and δ13C and δ18O values 

produced in the CUBES–SIL lab are generally more negative than values from the UMSIL. These offsets are likely due to 

differences in standardization between the labs and this relationship was used to correct the UMSIL data to the CUBES–SIL 265 

values (Appendix B). This laboratory offset is within the range of observed within–site variation described above, indicating 

that the offset is not likely to affect the stratigraphic interpretations relevant to this study. 
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Figure 2: (A) δ13C and δ18O for sparite and micrite samples measured from Fifteenmile Creek. Samples analyzed in the 270 

CUBES–SIL lab are colored according to their weight % CO3. Samples analyzed by the UMSIL lab are shown in grey. 

(B) Weight percent carbonate from the CUBES–SIL samples. Thirteen samples with less than 50% CO3 were 

considered unreliable and were removed. 

4.2 Carbon isotope excursions 

Three stratigraphic intervals have consistently low carbon isotope values (< ~ -12 ‰) relative to background levels (between 275 

about -8 ‰ and -12 ‰, mean background δ13C = -10.3 ‰), though the precise BCM levels at which these intervals occur 

varies among the sections (Fig. 4a). The lowest excursion occurs between the 405–430 BCM levels, the middle excursion 

between the 430–455 BCM levels, and the highest excursion between the 460–500 BCM levels. When the data are plotted 

against dGPS elevation, the variability in their stratigraphic position is reduced with the lowest excursion occurring between 

1320–1340 m in elevation, the middle excursion between 1340–1355 m, and the highest excursion between 1370–1405 m 280 

(Fig. 4b). Oxygen isotopes do not show any clear differences between hyperthermal and non-hyperthermal intervals (Appendix 

C). This is consistent with observations that changes in pedogenic carbonate δ18O during the PETM are muted compared to 
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the δ13C record, possibly due to temperature fractionation in the carbonate acting in an opposing direction to temperature 

fractionation in the atmosphere (e.g., Koch et al., 2003).   

The magnitudes of the CIEs also vary, both across the different sections and from one CIE to another. The average magnitude 285 

of the stratigraphically lowest CIE is 2.4 ‰, with minimum mean δ13C values ranging from -13.3 ‰ to -12.0 ‰ in different 

sections. The average magnitude of the middle CIE is 1.3 ‰, with minimum δ13C values of -12.7 ‰ and -12.2 ‰. The average 

magnitude of the stratigraphically highest CIE is 1.6 ‰ with minimum δ13C values of -12.2 ‰. 
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 290 

Figure 3: Carbon isotope data from pedogenic carbonate nodules and lithology for Fifteenmile Creek sections. (a) 

Lithostratigraphy, colors represent outcrop color. (b) Stratigraphic levels where dGPS elevations were collected. (c) 

Fossil localities that were sampled within the section. Open points correspond to the Bown et al. (1994) composite meter 

level for the locality and main collecting level. Lines show ranges of collecting levels. (d) Carbon isotope stratigraphy. 

Points represent measurements for individual nodules. Red lines are a three-point moving average through the mean 295 

values from a sampling site and blue shading shows range of peak values used to calculate CIE magnitudes. 
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Figure 4: Carbon isotope data for Fifteenmile Creek sections shown (a) using the Bown et al. (1994) equivalent meter 

level, and (b) differential GPS elevation. The stratigraphically lowest, middle and highest carbon isotope excursions 300 

are outlined by the blue, yellow and red shading, respectively. The stratigraphic intervals associated with the faunal 

events described in Chew (2015) are shown as grey shaded regions in the top panel. Points represent measurements for 

individual nodules. Red lines are a three-point moving average through the mean values from a sampling site. 

5 Discussion 

5.1 Stratigraphic correlation and uncertainty 305 

Several aspects of the Fifteenmile Creek stratigraphy complicate direct correlation between sections in the study area, including 

large lateral spacing and relative lack of vertical relief of exposures. To account for this, we used two methods of correlation, 

traditional bed tracing and correlation to the Bown et al. (1994) composite section (= BCM levels), and elevations based on 
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dGPS. Each of these methods of correlation has its own inherent uncertainty. For example, early fossil collecting in the region 

may not have specified the producing level for each fossil specimen. The BCM levels therefore reflect some degree of 310 

stratigraphic averaging of fossil horizons. These composite levels also rely on bed tracing, which is difficult to do precisely 

over long distances in this low-relief terrane. Although the dGPS elevations presented here account for some of this uncertainty 

in bed tracing, they do not account for changes in local dip. Although dip is generally close to zero in this area, bed tracing 

combined with dGPS measurements has highlighted some local variation in bedding attitude in the field area. The elevations 

also may be affected by variations in paleo-topography, including lateral variation in paleosol thickness due to relative position 315 

on the floodplain and channel meander. Paleosol and sandstone thickness can vary on a meter scale in this area, which is larger 

than the vertical error of the dGPS (~50 cm). Vertical dGPS error on the elevations therefore likely contributes very little to 

the observed variation among sections. 

Many aspects that complicate stratigraphic correlation in this region are illustrated with the Basin Draw section. This section 

is located south of Fifteenmile Creek, across from the main portion of the composite section (Fig. 1) making direct 320 

lithostratigraphic correlations difficult. Exposures along this section are also spaced far apart and dGPS elevations routinely 

underestimate thickness compared to bed tracing between exposures here, suggesting that dip and/or paleosol thickness 

variation may disproportionally affect these longer traces. Further complicating correlation, a large cut-and-fill deposit occurs 

in the upper portion of the Basin Draw section and fossil locality D–1459 (between ~430–440 BCM level, or 1330–1336 m 

elevation) is in the cut-and-fill. 325 

Despite uncertainties, stratigraphic levels for each of the three CIE intervals are in better agreement across the five sections 

using dGPS elevation, than with BCM levels (Fig. 4). Using elevation, the CIE in the Basin Draw section correlates better 

with the stratigraphically lowest excursion in other sections, particularly when we exclude the outliers at the base of the section 

that appear to be diagenetically altered and not associated with a well-defined excursion. The local biostratigraphy rules out 

the possibility that these basal samples could be capturing the PETM and the very negative (< -14 ‰) carbon isotope values 330 

are more consistent with diagenesis. It should be noted that the faunal analysis of Chew (2015) places the top of the Basin 

Draw section within faunal event B–2, and therefore predicts that it would overlap with the middle CIE, which is inconsistent 

with this correlation. 

5.2 Identification of post-PETM hyperthermals 

To account for the geographic variability in bed thickness described above, the five stratigraphic sections, as well as the three 335 

shorter sections through fossil localities, were compiled into a “Fifteenmile Creek Composite Section” (Fig. 5), where the peak 

negative δ13C values from each CIE are aligned and the relative spacing between CIEs is scaled to the average of the spacing 

from the sections where the two primary excursions were measured together. Using this composite section, the lowest CIE 

occurs between the ~35 to 55 meter level. The middle CIE occurs between the ~57 to 70 meter level. The highest CIE occurs 

between the ~85 to 104 meter level, with some relatively low δ13C values above this that could possibly represent the onset of 340 

a fourth CIE (Fig. 5). We confidently identify the two stratigraphically lowest CIEs as the ETM2 and H2 hyperthermals, based 
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on their position relative to Biohorizon B. Elsewhere in the Bighorn Basin, ETM2 lies just above Biohorizon B (Abels et al., 

2012; D’Ambrosia et al., 2017).  Biohorizon B occurs at the ~11 meter level in our new composite section, suggesting the 

lowest CIE that starts at ~35 meters is ETM2 (Fig. 5). Magnetostratigraphic data are consistent with this correlation, as the 

Chron C24r – C24n.3n polarity reversal is known to lie just above ETM2 and correlates to somewhere in the lower 100 meters 345 

of our new composite section (Tauxe et al., 1994; Clyde et al., 2007). 

Identification of the stratigraphically highest CIEs is more difficult. One possibility is that they represent I1 and the onset of 

I2. Another possibility is that they correspond to a less well-defined negative CIE between H2 and I1 near the 260 m level in 

the McCullough Peaks composite section that was attributed to local environmental factors (Abels et al., 2016) (Fig. 5). Barnet 

et al. (2019) have recently shown a small CIE at roughly the same level in the marine record, suggesting that this could be a 350 

global signal. Biostratigraphy and magnetostratigraphy do little to help resolve these options, due to the small fossil sample 

sizes in McCullough Peaks, uncertainty on the position of the C24r – C24n.3n reversal in Fifteenmile Creek, and the overall 

differences in sediment thickness across the basin (Clyde et al., 2007). The stratigraphic spacing between the lower and higher 

CIEs in our section supports the second scenario (correlation to the poorly defined negative CIE between H2 and I1) supporting 

the idea that this isotopic signal may be more regional or global in scale (Fig. 5). It is also possible that there is a hiatus in the 355 

upper part of the Fifteenmile Creek section or that sediment accumulation rates were much slower in this interval. In either 

case, the stratigraphically highest excursion could represent I1. Additional sampling and better age control are needed to 

resolve the precise identification of these upper CIEs. 

5.3 Comparison to other post-PETM hyperthermal records 

The post-PETM hyperthermal record in Fifteenmile Creek differs from the McCullough Peaks record in several ways. The 360 

spacing between the CIEs is compressed in Fifteenmile Creek relative to McCullough Peaks. In McCullough Peaks, the peak 

ETM2 and H2 excursions are separated by approximately 32 m whereas they are separated by approximately 23 m in the 

Fifteenmile Creek record (Fig. 5). This is consistent with other studies showing lower sediment accumulation rates due to 

slower subsidence in the southern part of the Bighorn Basin during the early Eocene (Parker and Jones, 1986; Clyde et al., 

2007). H2 and I1 are separated by approximately 90 m in McCullough Peaks, while only ~22 m separate H2 from the 365 

stratigraphically highest CIE in Fifteenmile Creek, supporting the idea that this may not represent I1.  

The carbon isotope values also vary between Fifteenmile Creek and McCullough Peaks (Fig. 5). In McCullough Peaks, the 

average magnitude of the ETM2 and H2 CIEs are 3.8 ‰ and 2.8 ‰, respectively. In Fifteenmile Creek, these magnitudes are 

2.4 ‰ and 1.3 ‰. The smaller CIE magnitudes in Fifteenmile Creek indicate that these atmospheric perturbations are recorded 

differently in different parts of the same basin and likely reflect local differences in vegetation structure or soil moisture. The 370 

slower sediment accumulation in Fifteenmile Creek also means that pedogenic carbonate in this area may have averaged 

atmospheric carbon isotope values over a longer time period and thus not recorded the minimum excursion values as reliably 

if minimum atmospheric values lasted only a short time. 
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Despite having lower magnitudes than the CIEs in McCullough Peaks, the Fifteenmile Creek CIEs are still amplified relative 

to the marine benthic record, where the average ETM2 and H2 CIEs are ~1.4 ‰ and 0.8 ‰, respectively (Stap et al., 2010). 375 

The amplification effect, however, seems to be somewhat variable even in similar stratigraphic records that are only ~80 km 

apart within the same basin. This supports the hypothesis that some (or all) of the observed difference in magnitudes between 

marine and terrestrial CIEs is due to local environmental or time averaging effects. 

 

 380 

Figure 5: Correlation between McCullough Peaks (from Abels et al., 2016) and Fifteenmile Creek. All points represent 

mean δ13C values from a stratigraphic level. Both records are shown at the same vertical scale. The ETM2 and H2 
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hyperthermals are shaded in grey and two alternative correlations for the 85 – 104 m Fifteenmile Creek composite level 

interval are shown. Blue line shows the approximate level of Biohorizon B in both locations. McCullough Peaks 

magnetostratigraphy from Clyde et al. (2007), Abels et al. (2012), and D’Ambrosia et al. (2017). 385 

5.4 Correlation to mammal faunal events 

Chew (2015) proposed that the 405–417 and 435–448 BCM levels could correspond to the ETM2 and H2 hyperthermals, 

based on the observed changes in mammal diversity and rate of turnover in these intervals. The new Fifteenmile Creek isotope 

records presented here broadly support this hypothesis, with the ETM2 hyperthermal overlapping with the 405–417 m interval 

(faunal event B–1) and H2 overlapping with the 435–448 m interval (faunal event B–2) (Figs. 4 and 6). This is especially 390 

apparent in the Basal/D–1350, Kraus Flats, and North Fork sections north of Fifteenmile Creek. The D–1350 locality (408–

410 BCM level), for example, shows a clear CIE consistent with ETM2 and also yields several species that first appear during 

faunal event B–1 (e.g., Xenicohippus grangeri, Diacodexis secans, Didymictis lysitensis, Eohippus angustidens). Localities 

D–1410 (410–418 BCM level) and D–1204 (438–444 BCM level), which we tied into the Kraus Flats section, produce faunas 

that are consistent with B–1 (D–1410) and B–2 (D–1204), and also overlap with the ETM2 and H2 intervals, respectively. 395 

However, some localities show small offsets from their predicted position relative to the CIE record. Locality D–1311 (442 

BCM level), for example, falls within the interval associated with faunal event B–2, but is just above the CIE associated with 

H2. Locality D–1403 (420 BCM level) is within the ETM2 CIE but fell outside of the interval reported to contain faunal event 

B–1 (Fig. 6). Error in the stratigraphic correlations used to construct the BCM framework or averaging of specific collecting 

levels within localities could both contribute to these small offsets. Many of these localities have a relatively small number of 400 

specimens and would therefore have little effect on the faunal analysis (e.g., D–1403 has 34 specimens). The misplacement of 

richer localities, like D–1454 (1151 specimens) and D–1460 (405 specimens), would be more significant. These 

inconsistencies have likely muted the turnover signal observed by Chew (2015). Moreover, a confounding problem with 

correlating faunal turnover to many of these localities, is that fossiliferous horizons often occur at multiple levels within a 

locality. For example, in locality D–1350, mammal fossils have been collected both above and below the onset of the ETM2 405 

excursion and most collection records are not precise enough to indicate which specimens came from which levels. Thus, a 

turnover signal could be muted by mixing taxa from within the excursion with pre- and post-excursion taxa. This problem can 

be overcome only by recollecting such localities using even higher stratigraphic precision. 

More importantly, these results demonstrate that there is a reasonably large miscorrelation in the BCM levels of the localities 

south of Fifteenmile Creek, in the Basin Draw section, compared with north of the creek. South of Fifteenmile Creek, the BCM 410 

levels alone are not an accurate predictor of a locality’s position relative to the hyperthermals. For example, the BCM level of 

locality D–1459 (438 m) suggests that it should fall within H2. The stable isotope record from the Basin Draw section, together 

with dGPS elevations, suggest this locality is instead within ETM2 (Figs. 4 and 6). Additionally, the D–1454 and D–1460 

localities (409 BCM level) are not within a CIE, despite this BCM level occurring within faunal event B–1 and overlapping 

with ETM2 in other sections (e.g., Basal/D–1350). We sampled a smaller isotope section directly through the D–1454 locality 415 

to test whether incorrect correlation to the main section could have contributed to this offset or in fact it falls within a CIE. 
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The δ13C record through the locality is consistent with that from the main section and suggests that it is not within ETM2 

(Appendix A). It seems likely that the Basin Draw section localities should be shifted downwards by ~20 meters in the Bown 

et al. (1994) composite section. This would place the productive localities D–1454 and D–1460 within Biohorizon B and would 

likely strengthen the distinction between Biohorizon B and the subsequent faunal events B–1 and B–2 in a revised faunal 420 

analysis should further stratigraphic work demonstrate that this move is warranted. 

The isotope results presented here suggest that correlation of key localities should be tested by constructing new locality-

specific isotope records that can be directly tied to the mammal collection from the same locality, similar to the sections 

through D–1454, D–1207, and D–1532 (Appendix A). For example, the locality-specific isotope record for locality D–1207 

(448 BCM level) shows that this locality records the onset of the H2 CIE, rather than its end as implied by the stratigraphic 425 

range reported for faunal event B–2. Developing similar sections through other individual localities, where the primary fossil 

producing layer can be reliably constrained and tied into a local dGPS elevation and stable isotope record and then compared 

to other localities either within or outside of CIEs, would clarify observed faunal turnover and its potential relationship to 

climate fluctuations. Such precise correlations could also be used to investigate the apparent lack of faunal change near the 

486 m BCM level (Chew, 2015), where we do find a small negative CIE (Fig. 4). 430 

 

 

Figure 6: Selected Fifteenmile Creek fossil localities tied to the Bown et al. (1994) composite section. Shading follows 

Fig. 4, where stratigraphically lowest, middle, and highest carbon isotope excursions are outlined by blue, yellow and 

red shading, respectively. The stratigraphic intervals associated with the faunal events described in Chew (2015) are 435 

shown as grey shaded regions. Points for the fossil localities incorporate some stratigraphic uncertainty and averaging 

of collecting levels discussed in the text. For more detailed ranges of collecting levels associated with the localities, see 

Fig. 3. 
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5.5 Effects of landscape heterogeneity on terrestrial carbon isotope records 

The degree of isotopic fractionation in terrestrial systems can vary depending on environmental factors, many of which are 440 

known to fluctuate during hyperthermals. Together, these factors can complicate efforts to use paleosol carbonate δ13C to 

reconstruct atmospheric δ13C fluctuations, which is critical for understanding the source of carbon input during hyperthermals 

as well as understanding how these changes could be recorded differently across a landscape. These fractionation steps can be 

broadly grouped into those associated with local vegetation (e.g., fractionation associated with photosynthesis and respiration) 

and those related to soil processes (e.g., microbial respiration, diffusion through soil, and calcite precipitation) (Koch, 1998).  445 

Carbon isotope fractionation in plants is dependent on light, water availability, temperature, soil nutrients, and atmospheric 

pCO2 (e.g., O’Leary, 1988; Farquhar et al., 1989). The strongest single environmental control on δ13C values in C3 vegetation 

is water availability to plants, which accounts for about half of the variability, with plants discriminating less against 13C during 

drier times (Ehleringer, 1993; Stewart et al., 1995; Diefendorf et al., 2010; Kohn, 2010, 2016). Position on the landscape can 

also affect water stress on vegetation by affecting soil drainage. Thus, differences in precipitation and local drainage can have 450 

large effects on δ13C values (Codron et al., 2005). Floral composition and vegetation density can also affect fractionation of 

carbon isotopes by plants. For example, gymnosperms have higher δ13C values than angiosperms (Smith et al., 2007), so local 

differences in the relative abundance of these plants could affect soil δ13C values. Closed forest canopies tend to hold in 

moisture and receive lower levels of solar radiation, which result in slower photosynthetic rates in C3 plants (Ehleringer et al., 

1986; Stewart et al., 1995). Both of these factors, along with possible recycling of 13C-depleted CO2 below the canopy, result 455 

in lower δ13C values in C3 leaves (Van der Merwe and Medina, 1991; Cerling and Quade, 1993; Cerling et al., 2004). In 

contrast, C3 plants in open areas where plants receive greater solar radiation are enriched in 13C (Ehleringer et al., 1986). 

Increased carbon isotope discrimination by plants under higher atmospheric pCO2 conditions has also been observed and 

proposed as a significant driver of terrestrial CIE amplification during the PETM (Schubert and Jahren, 2012, 2013). However, 

more recent studies have suggested this effect is transient, and not relevant to carbon isotope changes over long timescales 460 

(Kohn, 2016). 

Within soils, respiration from plant roots is traditionally considered not to fractionate carbon significantly (Lin and Ehleringer, 

1997; Koch, 1998), although carbon isotope fractionation of up to 6–10 ‰ has been documented during respiration 

(Ghashghaie et al., 2003). The degree of fractionation during respiration can vary between species and under different 

environmental conditions. For example, Brüggeman et al. (2011) show a wide range of microbial respiration fractionation 465 

values in the presence of C3 plants from -6 ‰ to +8 ‰ with an average of ~ +0.5 ‰. Microbial methanogenesis can also 

contribute 13C-depleted methane to soils, thereby decreasing the δ13C of the soil gas, although this process is largely restricted 

to water-logged soils (Wynn et al., 2005), which are not found in our study area. Elevated atmospheric pCO2 has been shown 

to enhance respiration by both plants and microorganisms (Karberg et al., 2005), potentially contributing to differences in 

carbon isotope values across the landscape during hyperthermals.   470 
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Cerling (1984) found that soil CO2, on average, should be ~4.4 ‰ enriched in 13C relative to soil respired CO2 due to diffusion. 

Factors such as grain size or soil moisture may affect the range of expected carbon isotope fractionation due to diffusion within 

soils, potentially contributing to some of the variation across paleosols in a landscape, though little is known about these 

potential effects. Carbon isotopes also show a slight temperature dependent fractionation during carbonate precipitation, 

though these effects are negligible relative to many of the other factors discussed here, and the fractionation associated with 475 

carbonate precipitation in soils is generally approximated to be ~ +10.5 ‰ (Koch, 1998). It has also been shown that when 

atmospheric pCO2 is high or respiration rates are low, atmospheric CO2 can penetrate deeper into the soil profile and soil 

carbonates will incorporate a larger proportion of atmospheric CO2 (enriched in 13C) relative to plant respired CO2 (depleted 

in 13C) (Cerling, 1984). This process is non-linear with depth, however, and pedogenic carbonate nodules collected below 30 

cm depth will continue to incorporate predominantly plant respired CO2.  480 

Several of the factors discussed above can reasonably be rejected as being significant contributors to the observed differences 

in δ13C values between McCullough Peaks and Fifteenmile Creek, including atmospheric pCO2 variation and any resulting 

changes in photosynthesis or penetration depth in the soil, temperature effects on calcite precipitation, plant and microbial 

respiration in soil, and diffusion. Factors that could play a large role include soil drainage, water stress on vegetation, and floral 

composition and density. Abels et al. (2016) found that precipitation change during the post-PETM hyperthermals appears to 485 

have been negligible, based on mean annual precipitation estimates using the CALMAG proxy. This contrasts with drier 

conditions interpreted during the PETM from various soil proxies and fossil leaves (Wing et al., 2005; Kraus et al., 2013; 

Abels et al., 2016). Paleosol analysis across the Bighorn Basin shows that soil drainage varies significantly even across a small 

geographic area (e.g., Kraus, 1992, 1997). Secord et al. (2008) inferred vegetation structure based on carbon isotopes in 

mammalian tooth enamel from the Fifteenmile Creek area and found that vegetation was relatively dense, but that the forests 490 

had an open canopy. The “canopy effect,” resulting from highly 13C-depleted leaves in the understory (e.g., Cerling et al., 

2004), also appears to be absent in mammalian enamel from the northern Bighorn Basin (Koch et al., 1995) based on the model 

in Secord et al. (2008). Given the strong control that water availability has on leaf values, this appears to be the most likely 

cause of differences in absolute δ13C values and in differences in CIE magnitude observed here, although differences in floral 

composition between the two locations cannot be ruled out as contributing to these differences. 495 

6 Conclusions 

The ETM2, H2 and potentially I1 hyperthermals are recognized for the first time in pedogenic carbonate from the southern 

Bighorn Basin (Fifteenmile Creek area). Correlation of the ETM2 and H2 carbon excursions with the faunal record, supports 

previous suggestions that some mammalian turnover in the early Wasatchian North American Land Mammal Age, following 

the PETM, is associated with early Eocene hyperthermals. The new isotope records presented here also highlight some of the 500 

complexities of lithological correlation between the low-lying exposures in Fifteenmile Creek area and support the use of an 

independent means of stratigraphic correlation, such as precise elevation, in conjunction with mammalian biostratigraphy and 
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carbon isotope chemostratigraphy. The magnitudes of the ETM2 and H2 CIEs (2.4 ‰ and 1.3 ‰, respectively) are smaller 

than what is seen farther north in the McCullough Peaks region of the Bighorn Basin (3.8 ‰ and 2.8 ‰). We suggest that local 

variation in water availability to plants, and potentially other vegetation and soil processes, likely account for much of the 505 

differences in carbon isotope values observed between the two locations. 

Appendix A 

Carbon isotopes stratigraphy through fossil localities  

Three locality-specific stratigraphic sections were collected for stable isotope analysis to identify whether they captured a CIE. 

If a CIE fell entirely within the fossil producing levels of a single locality, future fossil collecting could target these areas for 510 

more refined faunal analyses that would eliminate uncertainty related to stratigraphic averaging and correlation between 

sections. The three localities: D–1454 (409 BCM), D–1207 (448 BCM), and D–1532 (485 BCM) were selected because they 

are found at important levels associated faunal events B–1 (D–1454) or B–2 (D–1207) or near an unresolved CIE (D–1532). 

These smaller locality-specific sections can then be compared to their nearest main section using the BCM levels and elevation 

to further assess spatial variability in δ13C and confirm the correlations (Fig. A1). The carbon isotope values are relatively 515 

consistent over short distances in Fifteenmile Creek (Fig. A1). The Bown et al (1994) composite level (BCM) and dGPS 

elevation are also both fairly reliable stratigraphic indicators over short traces and correlate the locality sections to the main 

sections in consistent ways (Fig. A1). An exception to this is correlating the D–1207 locality to the Kraus Flats section, where 

the BCM level lines up with the H2 excursion, but the dGPS elevations have them offset from each other. D–1207 (448 BCM 

level) is the only one of these three localities that falls within an excursion (H2). This level is predicted to be within the B–2 520 

faunal event in Chew (2015) (435 to 448 m). D–1207 has two taxa that first appear in faunal event B–2 (Hexacodus sp. and 

Protorohippus venticolum), and this locality therefore represents a place where the carbon isotope stratigraphy and 

biostratigraphy are consistent and suggest that it falls within H2 and the B–2 faunal event. It also illustrates a need to use both 

BCM and dGPS for precise correlation of carbon isotope stratigraphy in this area. 

 525 
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Figure A1: Carbon isotope stratigraphy through the (a) D–1532 (485 BCM level), (b) D–1207 (448 BCM level), and (c) 

D–1454 (409 BCM level) fossil localities (black) along with the nearest main section (grey). Points represent average 

δ13C from a stratigraphic level. All data are shown according to their Bown et al. (1994) equivalent meter level (left) 

and differential GPS elevation (right). 530 

Appendix B 

Inter-laboratory offsets and correction 

Comparison of the carbon and oxygen isotope data from samples run at both CUBES–SIL and UMSIL shows that CUBES–

SIL produces generally lower values than UMSIL in this dataset’s range of values. This offset to lower values is systematic 
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and is larger at progressively lower values. This issue affects both isotopes but is particularly true for carbon, which suggests 535 

that subtle differences in instrumentation and standardization procedure are the causes of this offset. UMSIL uses a 

ThermoFisher MAT253 attached to a Kiel IV automated preparation device and data are normalized using a best-fit linear 

regression to NBS-18 and NBS-19 reference materials (δ13C = -5.01 ‰ and +1.95 ‰, δ18O = -23.2 ‰ and -2.20 ‰, 

respectively) by regressing measured, 17O-corrected values against the published values for the standards. Corrections are 

determined for both carbon and oxygen and these corrections are checked routinely using either NBS-18, NBS-19, or both, 540 

and tend to be stable over several months.  

CUBES–SIL uses a Thermo Delta V gas source, continuous flow isotope ratio mass spectrometer. Samples are measured along 

with 3–4 standards that either have internationally accepted values or are in-house standards that have values determined 

relative to these standards (e.g., NBS-18, NBS-19, and LVSEC for light 13C standards). Measurements of the standards bracket 

sample measurements in each run and are used to assess behaviors of the instrument that may need to be corrected. Standards 545 

covering the full range of signal intensities observed in the samples are measured to assess effects of linearity. Standards are 

also run intermittently throughout the analytical session to evaluate instrument drift over the course of a run. Lastly, the overall 

offset of the standards from accepted values is evaluated. These corrections are done independently for carbon and oxygen and 

are checked using a monitoring standard that is treated as an unknown. In this dataset, linearity and drift were often negligible, 

and corrections for these effects were only applied when needed. Raw or linearity/drift corrected values were then corrected 550 

to final values similarly to UMSIL, by applying a regression between two standards that span a range in values. Runs 1–13 

and 15 used NBS-18 as the negative anchor for both δ13C and δ18O, while runs 14, 16, and 17 used a MERCK carbonate as the 

negative δ13C anchor point (δ13C = -35.6 ‰), to better standardize for the range of δ13C values found in typical terrestrial 

carbonates, following recommendations in Coplen et al. (2006). 

Both UMSIL and CUBES–SIL used NBS-18 as the negative δ13C for most measurements. NBS-18 is ~4–10 ‰ higher than 555 

most of the measurements in this dataset, so the linear regression that is used for the scale correction in both labs is extrapolated 

far beyond that lowest anchor point. As a result, uncertainties in this regression in both labs, while small, can result in 

differences in sample values that are larger than analytical uncertainty. If this were the cause of the difference in sample values 

between CUBES–SIL and UMSIL, one would expect to see correlation between the values from both labs, as well as a 

progressively larger offset between sample values at more negative δ13C values. A strong correlation and positive slope are 560 

seen between the isotope ratios measured at CUBES–SIL relative to UMSIL in both δ13C and δ18O values for a small subset 

of samples that were run in both labs (Fig. B1). The strength of the correlation for δ13C suggests that we can correct data run 

from one lab to be on scale with the other lab (R2 = 0.88, S = 0.37 ‰). We compared a subset of values produced at CUBES–

SIL using either NBS-18 or the lower MERCK standard for the same sample. This showed no systematic difference in the 

values (Fig. B2), which suggests that CUBES–SIL data are internally consistent, despite the extrapolation of the scale 565 

correction for many of the runs. Given that, and that the majority of this dataset was analyzed at CUBES–SIL, we have chosen 

to correct the UMSIL data to these values, using the regression equations for both carbon and oxygen (Fig. B1). After applying 

the correction, the UMSIL data become more negative, while still following the same stratigraphic patterns in δ13C (Fig. B3). 
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While we think that this correction scheme is most appropriate for these data, we recognize that it may complicate comparisons 

to other previously published work that do not use δ13C standards that account for values in this range. Further, because the 570 

δ13C correlation between labs is strong, the magnitudes of the CIE’s are not appreciably affected in the combined data after 

correction. Oxygen isotope values exhibit a weaker correlation between the labs (R2 = 0.74), indicating that considerably more 

noise is added by combining the data. However, highly precise δ18O values are not important for our interpretations. 

 

 575 

Figure B1: Ten replicate samples analyzed at the University of Colorado Boulder (CUBES–SIL) and University of 

Michigan (UMSIL), shown according to their δ13C (a) and δ18O (b). Black lines indicate a 1:1 relationship between the 

two labs and blue lines with shading represent the regressions between the two labs that were used to correct the data. 
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Figure B2: δ13C values for standards and a subset of samples that were run in a session that used NBS-18 as a low δ13C 580 

anchor, as well as in a session that used MERCK as the low δ13C anchor. Most fall on the 1:1 line (black line), and the 

two samples that fall off the line show no systematic offset suggesting the difference in those values is not due to the 

difference in anchor standard. 
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Figure B3: Pedogenic carbonate δ13C showing samples that were analyzed in the UMSIL lab uncorrected (a) and 585 

corrected (b), using the carbon regression equation from Fig. B2. Points represent individual sample measurements. 

The corrected UMSIL values (b) are used throughout the text. 

Appendix C 

Oxygen Isotopes 

A seven-point moving average through all samples in the composite section do not show clear excursions in the oxygen isotope 590 

record (Fig. C1). Moreover, there is no discernible difference between excursion and non-excursion δ18O values when these 

intervals are binned together and averaged (see supplemental data). 
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Figure C1: Pedogenic carbonate δ13C (a) and δ18O (b) according to their composite stratigraphic level. Points represent 595 

individual sample measurements. Red line is a seven-point moving average through the values. 

Data availability 

Raw and processed stable isotope data, as well as R scripts used for data processing and creating figures are available in Open 

Science Framework (OSF) and can be accessed here:  
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