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Abstract. The detection and attribution (D&A) of paleoclimatic change to external radiative forcing 
relies on regression of statistical reconstructions on simulations. However, this procedure may be biased 
by assumptions of stationarity and univariate linear response of the underlying paleoclimatic observa-15 
tions. Here we perform a D&A study, modeling paleoclimate data observations as a function of paleo-
climatic data simulations. Specifically, we model tree-ring width (TRW) observations as a linear function 
of TRW simulations which are themselves forward modeled from realistic singly-forced and cumula-
tively forced climate simulations for the period 1401-2000. Temperature and moisture-sensitive TRW 
simulations detect distinct patterns in time and space. Temperature-sensitive TRW observations and sim-20 
ulations are significantly correlated for northern hemisphere averages, and their variation is attributed to 
volcanic forcing. In decadally smoothed temporal fingerprints, we find the observed responses to be 
significantly larger and/or more persistent than the simulated responses. The pattern of simulated TRW 
of moisture-limited trees is consistent with the observed anomalies in the two years following major 
volcanic eruptions. We can for the first time attribute this spatiotemporal fingerprint in moisture limited 25 
tree-ring records to volcanic forcing. These results suggest that use of nonlinear and multivariate proxy 
system models in paleoclimatic detection and attribution studies may permit more realistic, spatially re-
solved and multivariate fingerprint detection studies, and evaluation of the climate sensitivity to external 
radiative forcing, than has previously been possible.  

1 Introduction 30 
One of the crucial questions in climate change research is to determine how external radiative forcings 
bring about climate variation and change, and if the forced response may be distinguished from the in-
ternal, unforced variability. To address this question, so-called “detection and attribution” (D&A) meth-
ods have been developed (Hegerl and Zwiers, 2011); Gillett et al. (2021). Generally speaking, D&A 
studies match observed changes with patterns derived from climate model simulations driven by single 35 
and multiple external forcings, including solar variability, volcanic aerosols, the well-mixed greenhouse 
gases, orbital variations, and land use change. The idea initiated in early work by Hasselmann (1979). 
After methodological refinements and advances in climate modeling in the early 1990s (e.g. Hasselmann, 
1993; Santer et al., 1993) there was growing evidence that the external greenhouse gas signal may be 
differentiated from climate variability generated within Earth’s climate system (Hegerl et al., 1996).  De-40 
tection and attribution studies have been an important part of the Assessment Reports of Working Group 
I of the Intergovernmental Panel on Climate Change, from the calling for better detection of the role of 
human activities in climate forcing in the first Assessment report (1990), to formal detection and attrib-
ution studies comparing observed and simulated climate change in all Assessment reports since, with 
increasingly confident assessments of the detection of human influences and estimates of the human 45 
contribution derived from attribution results.  
Typically, D&A analyses have been limited to periods when instrumental observations of physically 
measurable variables and derived diagnostics are available, with global observation networks becoming 
dense enough for such studies about 100 to 150 years before present. This period allowed for attribution 
of trends in many thermodynamic and dynamic characteristics of the climate system, including global 50 
and regional temperature, temperature extremes, ocean heat content, tropopause height, specific humid-
ity, zonal mean precipitation, air pressure fields to potential forcings (e.g. Hegerl et al., 1996; Santer, 
2003; Polson et al., 2013a; Bindoff et al., 2014; Eyring et al., 2021; Gillett et al., 2021). While 19th and 
20th century instrumental observations cover a major increase in greenhouse gases and other human in-
fluences, studying the climate system response to non-anthropogenic external radiative forcings, such as 55 
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solar variability or volcanic eruptions, benefits from studying longer periods over which more realiza-
tions and/or longer-term processes are evident, and where the anthropogenic influence is less dominant. 
For instance, very few climatically important volcanic eruptions occurred in the past 150 years, but more 80 
than a dozen occurred over the past 600 years (Sigl et al., 2015) at nonuniform frequency in time, possibly 
creating long-term forcing of the climate system (McGregor et al., 2015; PAGES 2k Consortium, 2019; 
Brönnimann et al., 2019).  Such longer-term studies would integrate longer-term responses of the climate 
system to external radiative forcing, enabling a more complete picture of the equilibrium and transient 
response, and ultimately of the climate sensitivity to external radiative forcing. 85 
Paleoclimatology allows extension of the observational record into the past using indirect measurements 
of climatic conditions, which can be used to reconstruct past climate. Previous studies have detected a 
role of external forcing in the climate of the last millennium using annual mean surface temperature 
anomaly reconstructions on both a hemispheric scale (Hegerl et al., 2003; Schurer et al., 2013, 2014) and 
regionally (PAGES 2k-PMIP3 group, 2015). These analyses have found that volcanic forcing is detected 90 
with a smaller contribution from greenhouse gases that is detectable by 1900, and a contribution from 
solar forcing that was not detectable against climate variability. However, the reconstruction process 
itself introduces additional assumptions into detection and attribution studies that arise from the nature 
of the reconstructions, but which may not be justified. Many of these are demonstrated in pseudoproxy 
experiments (Smerdon et al., 2011) and through study of the extensive network of tree-ring width obser-95 
vations. These include assumed univariate, normally distributed and linear response of the paleoclimatic 
indicators to the target reconstruction variable (Evans et al., 2014; Wang et al., 2014); stationarity of 
patterns of regional and global scale climate variability (Wilson et al., 2010); seasonal and spatial repre-
sentation (St. George, 2014; Smerdon et al., 2011); and autoregression characteristics in observations 
and target variables (Cook et al., 1999). Limited adherence to assumptions in observations and statistical 100 
modeling has been found to introduce biases into reconstructed variables, even in large scale averages 
(PAGES2k Consortium, 2017) and may lead to the underestimation of errors in D&A studies that are 
necessary to separate the forced and unforced responses (Neukom et al., 2019). In particular, autocorre-
lation due to memory in TRW affects the response to volcanism which, if not accounted for, biases D&A 
results (Lücke et al., 2019). 105 
Progress in process understanding of paleoclimatic observations has led to the development of proxy 
system models (Evans et al., 2013), which may be used to identify systematic uncertainties and evaluate 
the extent of biases introduced by the reconstruction process into the D&A problem. One recent example 
is the Vaganov–Shashkin Lite (VSL) sensor model, which simulates standardized tree ring width (TRW) 
chronology variations based on monthly mean temperature, precipitation, and latitude. These inputs are 110 
used to estimate nondimensional growth arising from temperature and soil moisture conditions (GT, GM) 
either of which may stoichiometrically limit growth at each monthly time step: a multivariate and non-
linear mimic of the processes by which forests sense and filter climatic variability and imprint those 
results in observable tree ring width variations (Tolwinski-Ward et al., 2011a, b). VSL has been widely 
tested for parameter estimation and global applicability.   115 
Here we leverage VSL, historical gridded climate data products (Harris et al., 2014), singly and multiply 
forced climate simulations for the period 1401 to 2000 C.E. (Schurer et al., 2013), and the nearly 3000 
consistently detrended TRW observations (B14, Breitenmoser et al., 2014) to perform an extratropical 
northern hemisphere D&A exercise directly using observed and simulated TRW data (Fig. 1, Eq. 1): 

 𝛼 =	𝛽! +	𝛽"	𝛼&        (1) 120 
With 𝛼 representing the paleoclimatic observations (TRW in this case), and 𝛼& representing the sensor 
modeled TRW simulations, themselves employing as input the output of a realistically forced climate 
model. Coefficients bo and b1 represent, respectively, the unforced and forced amplitudes of variability 
(for a more detailed introduction, see Section 2.4 below). This approach stands in contrast to prior studies, 
which perform the D&A analysis in the space of reconstructed northern hemisphere mean surface tem-125 
perature at annual resolution (Schurer et al., 2013, 2014). It has the potential advantages of circumventing 
assumptions required in the reconstruction process, and exploiting the “several-to-one” mapping that 
might reinforce environmental signatures in TRW data, such as spatially and temporally correlated pat-
terns of moisture and temperature variability that mimic drought indices (Cook et al., 1999, 2004, 2010; 
Meko et al., 1995). Conversely, we may also identify key uncertainties in the sensor modeling, and the 130 
potential for the several-to-one mapping to obfuscate the detection and attribution of a forced response 
in the TRW observations.   
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 135 
Figure 1: Schematic overview of the performed analysis. General steps are indicated in bold, study-specific 
procedures in normal text. B14 refers to the Breitenmoser et al. (2014) data set, S/N stands for signal to noise 
ratio, T for temperature and PREC for precipitation. 

The remainder of this paper is organized as follows. First, we estimate and evaluate parameters for VSL, 
using gridded instrumental temperature (T) and precipitation (PREC) estimates and contemporaneous 140 
TRW observations (Section 2.2) in the period 1901-1970. Then VSL is used to build ensembles of sim-
ulated TRW series, in response to singly and cumulatively forced simulations of T and PREC, given 
uncertainty propagated through the parameter estimation process, and with bias corrections for simulated 
T and PREC ensembles (Section 2.3).  We then estimate the D&A coefficients and their propagated 
uncertainty (Eq. 2; Section 2.4). The results are analyzed locally, regionally, and globally for detection 145 
and attribution of a forced climate response, vis a vis the simulated and actual TRW observations (Section 
3). We discuss the results and the potential to extend the approach in Section 4; conclusions are drawn 
in Section 5.    

2 Data and Methods 
The inputs into and process of this detection and attribution study are illustrated in Fig. 1 and described 150 
below. 

2.1 Tree-ring width measurements 
We use the tree-ring width (TRW) collection described by and employed in (Breitenmoser et al., 2014), 
now referred to as B14, as the observational basis for the development and validation of VSL parameters, 
and as the D&A predictand (Eq 1). B14 consists of 2918 uniformly detrended and standardized tree-ring 155 
width chronologies from six continents and 163 species that have been upload to the International Tree-
Ring Data Base (ITRDB, Zhao et al., 2019) until 2014. These series have been quality controlled for 
metadata errors, repetitive measurements, incorrect units, decimal point errors and misplaced positions 
(Tab. S1 in Breitenmoser et al., 2014). Detrending for biological age trends and stand dynamics and 
standardization to dimensionless growth indices was done in a hierarchical approach. If possible, nega-160 
tive exponential curves and linear regression curves of any slope were fitted. In case both methods failed, 
“a smoothing spline was fit with a 50% cut-off frequency at 75 % of each series length” (ARSTAN, 
Cook, 1985; Breitenmoser et al., 2014). Multiple measurements at the same site have been combined 
into robust means (Cook and Kairiukstis, 1990), which are variance adjusted for changing sample size 
through time (Osborn et al., 1997). For every point in time, which is explicitly resolved as one value per 165 
growing season each year, a chronology is based on at least 8 samples. We use the autoregressive-stand-
ardized (Osborn et al., 1997; Frank et al., 2007) version of the available chronologies from B14. We 
require that the chronologies have at least 40 years observed within the period 1901 – 1970 (see section 
2.2 below). 
We restrict subsequent analysis of simulations and the D&A exercise to the extratropical northern hem-170 
isphere continental areas, where the vast majority of TRW observations are located, with high concen-
trations in the North America, Europe and northern Asia (Fig. 2). Record length varies from 100-600 
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years (Fig. 2). Series availability is generally greatest between the mid-19th century and the late 20th 
century (Fig. 3), and the longest records are equally distributed in longitude across the north hemisphere 
boreal terrestrial latitudes (Fig. 2). 180 

2.2 VSL parameter estimation 
For the purpose of VSL parameter estimation, we use the global, gridded instrumental temperature and 
precipitation data sets CRU TS 3.23 (Harris et al., 2014), regridded to 64 longitude x 32 latitude (~5.6º) 
using a distance-weighted average of the four nearest neighbor values. To correct for mean temperature 
biases, we  applied an adiabatic (-6 K/km) T correction to the regridded CRU product, based on differ-185 
ences between elevations of grid points and elevations of observed TRW chronologies (Evans et al., 
2006). Parameters T1, T2, M1 and M2 describe the onset of growth (1) and point above which climate is 
no longer a limiting factor (2) for temperature (T) and moisture (M), respectively (Tolwinski-Ward et 
al., 2011a, 2013). We conditioned and validated all four parameters simultaneously using contempora-
neous observations and VSL simulations within the period 1901-1970. The growth period is defined as 190 
a 16-month interval. To integrate monthly incremental growth arising from pre-season and growing sea-
son, the growth integration period starts in September of the previous year and ends in December of the 
current year in the northern hemisphere (previous March to current June for the southern hemisphere), 
the same period as in Tolwinski-Ward et al. (2011a) and Breitenmoser et al. (2014). Other VSL param-
eters are not calibrated, but taken from other studies (Evans et al., 2006; Fan, 2004; Huang et al., 1996; 195 
Tolwinski-Ward et al., 2011a, 2013; Vaganov et al., 2006; van den Dool, 2003). Within the chosen pa-
rameter estimation time window 1901-1970, with available N >=40, half of the years for which observed 
TRW data were available were chosen at random for parameter estimation (“calibration” Tolwinski-
Ward et al., 2013). The other half were reserved for validation of the estimated parameters, via simulation 
using the estimated parameters, T and PREC not used to estimate the parameters, and comparison with 200 
the TRW observations withheld from the calibration process. The process was then repeated, using now 
the second half of data for parameter estimation (calibration), and the first half for validation of this 
parameter set. Up to 200 parameter sets were stored as valid, if all four calibration and validation corre-
lations between simulated and observed TRW were all independently significant at the p<0.1 level; all 
others failing this validation test were discarded. 205 

2.3 VSL simulations, 1401-2000 
Temperature and precipitation input data for VSL are derived from climate model simulations. We use 
the set of simulations described in Schurer et al. (2014), which have been conducted with HADCM3 , 
interpolated to the same 64 x 32 grid as described in Section 2.2, to produce TRW simulations driven by 
singly and cumulatively forced climate simulations (Table 1). Because simulated T and PREC are spa-210 
tially and seasonally biased relative to historical gridded T and PREC, we first bias-correct the HadCM3 
T and PREC fields by computing T and PREC anomaly fields and adding them to (scaling them by) the 
CRU TS3.23 T climatology (PREC variability) for the overlapping period 1901-2000 C.E. This step also 
ensures that systematic differences in mean simulated T and PREC will not systematically bias VSL 
simulations based on parameter estimates conditioned on the historical CRU TS3.23 T and PREC prod-215 
ucts. Using the methodology as described in (Tolwinski-Ward et al., 2013), their Fig 8, we then identified 
the primary limiting factor for simulated growth (at p<0.05, assuming a binomial distribution) and di-
vided the simulated chronologies into primarily temperature, moisture (M), both, or neither limited TRW 
simulations. The median, over parameter estimate realizations, of T and M-sensitive TRW simulations, 
were then separately weighted by inverse distance between observed and simulated grid point, observed 220 
expressed population signal (EPS, Wigley et al., 1984), and observed mean correlation between incre-
ment series within a chronology (RBAR, Cook and Kairiukstis, 1990) and averaged. Observed TRW 
were gridded and averaged in the same way as described above for subsequent D&A analysis (see Fig. 
1 for a schematic overview of the entire process chain). Because centennial-scale climate variability may 
not be consistently preserved in the TRW records (Cook et al., 1995; Franke et al., 2013), and these 225 
timescales are poorly sampled in the 600 year period available for study, we removed low frequency 
variability by applying a 71-year high pass LOESS filter to both observed and simulated gridded TRW 
and focus our analyses on this residual interannual to multidecadal variance at annual resolution. The 
choice of annual resolution reflects the observational resolution (Section 2.1), the time-integrating nature 
of the sensor model (Section 2.2), the uncertainty of implementing radiative forcing estimates in the 230 
climate simulations (Gao et al., 2008), and the response timescale of the climate system to the large scale 
forcing. We call the results, on which we base the detection and attribution analyses, climate-sensor 
simulations. This nomenclature reflects modeling of both the climate in response to external radiative 
forcing(s), and the tree ring width observation that is basis for the comparison with actual TRW obser-
vations. 235 
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Table 1: All forcing and single forcing HADCM3 simulations as well as control runs used in this study (V: 
volcanic, S: solar, G: greenhouse gases, L: land-use, A: tropospheric aerosols).    

Number of simulations Forcings Period 
(Year C.E.) 2 NO forcing 

Control run 
1401– 2000 

4 V, S, G, L, A 1401 – 2000 
3 V 1401 – 2000 
4 S 1401 – 2000 

	240 

2.4 Detection and Attribution    
To solve for the D&A coefficients in (Eq. 1), we use the total least squares (TLS) D&A technique to 
account for errors in both dependent and independent variables within the regression procedure (Allen 
and Stott, 2003) to account for internal variability in both observations and model simulations. We follow 
the analysis used in Allen and Stott (2003), Polson et al., (2013a), and Schurer et al. (2013), which esti-245 
mates a best fit regression coefficient (β) given by the equation: 

𝛼 = 	𝛽	(𝛼& − 	𝜈) + 	𝜈        (2) 

In this study, 𝛼& are the simulated tree-ring widths and 𝛼 are the observed tree-ring widths, either at each 
grid box or spatially and/or temporally aggregated to increase the signal to noise ratio. ν are realizations 
of internal variability. Confidence intervals are obtained with the bootstrap method described in DelSole 250 
et al. (2019). They are calculated by randomly sampling, with replacement, pairs of values from the 
arrays of observed and simulated tree-ring widths to form new arrays the same length as the originals. A 
new scaling factor is then calculated by regressing the resampled model onto the resampled observations 
to represent uncertainty due to random noise. This process is repeated 10000 times and a 5%–95% con-
fidence interval is estimated from the distribution. If the distribution of beta values is significantly greater 255 
than 0 (p<0.05) then the effect of the response to the forcing is considered to have been detected. If the 
distribution of β-values is significantly less than unity, the response in the climate-sensor simulations is 
too large; the response in climate-sensor simulations is significantly greater than observed, and the sim-
ulated climate sensitivity is smaller than observed. Conversely, if the scaling range is significantly greater 
than unity, the simulated climate-sensor response is significantly smaller than observed in TRW, and the 260 
climate sensitivity of the model may be inferred to be larger than observed.  The estimate of the unforced 
variability as the residual of the D&A regression model provides another important result that needs to 
be compared with unforced variability of climate simulations (control runs) as a check of variability 
(PAGES 2k Consortium, 2019). 

3 Results 265 

3.1 Parameter estimation, TRW simulations and TRW observations  
1664 of 2761 TRW chronologies in the B14 compilation were climate sensitive and therefore success-
fully simulated and retained for further analysis. With small differences between climate simulations, we 
found that 21% of the successfully simulated chronologies are temperature sensitive, ca. 57% are mois-
ture sensitive, ca. 11% are both moisture and temperature sensitive, and ca. 11% are not climate sensitive, 270 
i.e. neither moisture nor temperature sensitive (Fig 2).  Distributions of temperature, moisture, both tem-
perature and moisture, and neither temperature nor moisture sensitivity overlap in space. There are many 
moisture-sensitive TRW chronologies found in North America, the Mediterranean and other arid regions 
(Fig. 2, top right panel). However, there are also temperature-sensitive chronologies (upper left panel) 
and mixed responders (lower left panel) which are collocated in arid regions (upper left panel). Chronol-275 
ogies found to be neither temperature nor moisture sensitive (Fig 2, lower right panel) tend to be found 
at the highest latitudes, but not exclusively so. 
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Figure 2: Limitations determined for all TRW chronologies with valid parameter sets, separated into tem-
perature sensitive (top left), moisture sensitive (top right), both T and M sensitive (bottom left) and neither 
T nor M sensitive (bottom right). (Maps created with Matlab mapping package M_map (Pawlowicz, 2022)) 285 

We found that bootstrapped VSL parameter estimates were in many cases distinctly non-normal in dis-
tribution for some or all of the four parameters, and for some TRW simulations. Distributions were 
sometimes uniformly distributed across the prior expected parameter ranges, unimodal non-normal, and 
even bimodal. Because there were not necessarily well-defined means or medians across parameter sets 
and simulations, we used all valid parameter sets to produce TRW simulations. Hence, we propagate 290 
uncertainty arising from stochastic variation in the climate simulations through parameter and structural 
uncertainty in the ring width sensor model.   
Because the fingerprint of external radiative forcing may or may not be distinct and unique in temperature 
and moisture, we use the fit of VSL diagnostic variables GT and GM (estimate of nondimensional growth 
arising from temperature and soil moisture conditions, respectively) to binomial distributions to deter-295 
mine whether each simulation is primarily controlled by temperature, moisture, both or neither control 
at the p<0.05 significance level (Tolwinski-Ward et al., 2013). We perform a similar analysis to deter-
mine the same primary growth controls in the TRW observations, using the same diagnostics from the 
parameter estimation exercise. We then average TRW observations to the simulation grid resolution for 
temperature and moisture-limited simulations separately. Where there are multiple observed TRW chro-300 
nologies available within a particular grid box, we construct a weighted average using inverse grid-point 
distance and intra-chronology mean incremental growth series correlation as weighting factors.     
TRW simulations (Sections 2.2, 2.3) are developed for all locations, where TRW observations exist and 
the parameter estimation has been successful, i.e. for most of the extratropical northern hemisphere (Fig. 
3). We exclude the southern hemisphere in this because only 5 temperature-sensitive chronologies and 1 305 
moisture-sensitive chronology are located there. The record length of the simulations is constrained by 
TRW observations (see 2.1 and Fig. 3). The longest records are equally distributed in longitude across 
the north hemisphere boreal terrestrial latitudes (Fig. 3). Thus, statistics assessed across the simulations 
and observations are best described as representing the northern hemisphere temperate and subpolar ter-
restrial regions.  310 
Furthermore, we note that the locations of temperature and moisture-sensitive chronologies overlap (Fig 
2) but are generally not coincident (Fig. 3): for either the observed or simulated sets, only about 1/3 are 
both coincident in space and significantly correlated with each other (Fig. 2). Hence, for the remainder 
of the analysis presented here, we develop and discuss the temperature and moisture-sensitive results 
separately.    315 
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Figure 3: Numbers of years (color scale) available for comparison between gridded, observed and climate-
sensor simulated TRW chronologies, within the period 1401-2000. Top row: observed (left) and simulated 
(right) temperature-sensitive chronologies. Simulated chronologies are masked by observational availabil-320 
ity, and in some cases (e.g., subpolar Eurasia) are neither moisture nor temperature-sensitive or else are 
both temperature and moisture sensitive, and do not appear in either simulation map. Lower panels: as for 
top panels, except for moisture-sensitive chronologies. (Maps created with Matlab mapping package 
M_map (Pawlowicz, 2022))     

Figure 4 shows the growth functions GT and GM for the subsets of temperature and moisture-sensitive 325 
identified TRW chronologies (section 3.1).  Although VSL has well-known limitations, for instance the 
lack of a soil moisture model allowing for snow, and despite the potential for an unrealistic and coarsely 
resolved annual cycle in the HadCM3 simulations, the results suggest plausible seasonality of the growth 
response of the TRW simulations.  In particular, GT for T sensitive chronologies is maximum but limiting 
in June-October with a median response (black line) maximum for July-September. GM for the T sensi-330 
tive subset of chronologies is not limiting through the same period.  Similarly, for M sensitive chronol-
ogies, GM is limiting between July-December.  GE (the scaling associated with insolation (energy) as a 
function of latitude) is limiting (GE <0.7) after September for latitudes poleward of 20N (results not 
shown), and GT is not limiting through the warm months. 
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Figure 4: Simulated intra-year partial growth response functions GT (left column) and GM (right column) 
for T sensitive (top row) and M sensitive (bottom row) simulations using ALL climate simulations, with pa-
rameters conditioned and validated using observed TRW data within the period 1901-1970.  Heavy solid 
lines are median values across all simulations. 340 
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Figure 5. Top: mean series for observed (black) and ALL-forcing simulated temperature-sensitive 
chronologies (red). Annually resolved and a 11-year Hanning window filtered time series are 
shown with thin and bold lines, respectively. Labels quantify the Pearson correlation (r), effective 
degrees of freedom (edf, Hu et al., 2017) and the p-value. x-axis units are years CE. Bottom: the 
same above but for moisture-sensitive observations (black) and simulations (blue). Note, this plot 350 
shows the global means of standardized TRW at all grid boxes with data before high-pass filtering 
and variance adjustment. There are small differences in numbers of observed and simulated chro-
nologies that arise from both the observational masking and from the simulation parameter vali-
dation procedure (Section 2).  
 355 
3.2. Comparison of observed and sensor-simulated TRW 
To detect an external-forcing signal in noisy, local observations, the signal-to-noise ratio has to be en-
hanced. This is commonly achieved by averaging in space and/or time (Sections 1, 2.4). We begin with 
analysis of global mean TRW variability at all locations where tree growth is either temperature or mois-
ture limited, for comparisons between TRW observations and climate-sensor simulations driven with 360 
ALL forcings (Table 1). The variance of the average over all grid boxes increases back in time because 
of the decreasing numbers of records (Fig. 5), likely reflecting increasing uncertainty; the variance in the 
beginning of the 15th century is twice as large as that observed at the end of the 20th century. To reduce 
sensitivity of the detection and attribution analysis to observational uncertainty, we homogenize the var-
iance through time by multiplication of a time dependent factor that is estimated by linear regression of 365 
the observed variance on the variance of TRW climate-sensor simulations from the control simulations. 
Results suggest limited but significant correlation between global mean observed and simulated TRW 
temperature-sensitive simulations, for both annual and decadally-filtered series (Fig. 5). Nonsignificant 
correlations are found for moisture-sensitive observations vs simulations at both annual and decadal 
timescales (Fig. 5). We find similar results for correlations between VOLC-forced simulations and tem-370 
perature and moisture-sensitive observations (T sensitive: r1=0.22, edf=201, p=0.001; r11=0.48, edf=19, 
p=0.02; M sensitive: r1=0.01, edf=380, p=0.40; r11=0.00, edf=54, p=0.51). Correlations are not signifi-
cant for comparisons between observed and SOLAR-forced or unforced TRW simulations (results not 
shown). 
Based on these results, we test for detection of patterns in the TRW following volcanic eruptions in 375 
temperature and moisture-sensitive TRW chronologies, using a composite analysis across the 7 largest 
(above 95th quantile) volcanic forcing responses for events between 1670 and 1970 (Fig. 6). We show 
the composite for observations based on two forcings, stratospheric Atmospheric Optical Depth (AOD) 
reconstructed by Crowley and Unterman (2013) that was used to force the climate simulations (Fig 1; 
Table 2) and the more recent and probably more realistic inferred Global Volcanic aerosol Forcing (GVF, 380 
in W/m2) by Sigl et al. (2015). We do not use the full period back to 1401 because only a few locations 
have data reaching that far back in time. However, including up to 12 eruptions where available leads to 
a very similar pattern (not shown). Consistent with the results for observed averaged temperature-sensi-
tive chronologies, we find a reduction in simulated tree growth in the first two years after the eruption in 
nearly all locations worldwide (Fig. 6, top right), with perhaps a more statistically significant cooling 385 
response in the Crowley and Unterman (2013) event chronology. Observed tree growth at the tempera-
ture sensitive sites is reduced in most locations, but not as homogenously as in the simulations (Fig. 6, 
top left). Possible reasons may be related to the small sample size, uncertainties in the reconstruction of 
the volcanic forcing (Sigl et al., 2015), a low climate signal-to-noise ratio in ring width, and an enhanced 
signal-to-noise ratio in the simulations, which are represented by their 3-member ensemble mean (Table 390 
1). Additionally, moisture influences may not be perfectly removed from the temperature-sensitive ob-
servations, because some of the positive growth anomalies appear in locations for which tree growth 
tends to be generally moisture-limited (in southwestern North America, northern European lowlands and 
the eastern Mediterranean (St. George and Ault, 2014) Thus, the composite observed temperature-sensi-
tive response may in part also reflect increased moisture in dry regions following volcanic eruptions (Iles 395 
and Hegerl, 2015). 
 
Table 2: Largest volcanic eruptions used in the composite analysis based on atmospheric optical depth. 

Crowley and Unterman, 2013 
1442 1456 1594 1600 1641 1673 1694 1809 1815 1832 1884 1903 
Sigl et al., 2015 
1453 1458 1595 1601 1641 1695 1783 1809 1815 1832 1836 1884 

 
For our moisture-sensitive comparison, we do not find a global volcanic response of the same sign, but 400 
rather regions with uniform responses (Fig. 6, bottom row). The simulated Crowley and Unterman (2013) 
based event composite (Fig 6, bottom row, rightmost panel) produces positive growth anomalies around 
the Mediterranean and in western North America, and negative anomalies in Eurasia and eastern North 
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America, with more prominent composite positive regions than negative regions. The observed compo-
site based on the Toohey and Sigl (2017) chronology produces no negative composite response in eastern 425 
North America and a small positive response in southwestern North America, the latter of which is con-
sistent with simulations (Fig. 6, bottom row, middle and right panels).  

  
Figure 6: Composite average ring width anomaly (standardized units) in temperature-sensitive TRW chro-
nologies in the first two years after volcanic eruptions in observations and VOLC-forcing simulations (top). 430 
Because relatively few TRW records are available for 1400-1700 (Fig 2), the composite includes  the 7 strong-
est eruptions between 1670 and 1970 based on the eruption chronologies of Crowley et al. (2013) (left and 
right column) and Sigl et al. (2015 middle column). Bottom row: as for top row, except for moisture-sensitive 
TRW observations and simulations. Closed circles indicate statistical significance (p-values of t-test < 0.05) 
 435 
3.3 Detection and Attribution analysis 
We detect and attribute a response to volcanic forcing in both, the spatial mean temperature timeseries 
and the spatio-temporal pattern of moisture limited tree-ring records. As large volcanic eruptions disturb 
the climate system for a few years, we show results 3-year and 11-year moving averages. For the 3-year 
smoothed temperature-sensitive TRW averaged over all grid boxes, we find a significantly detectable 440 
scaling factor b not significantly different from one; in other words, observed and simulated temperature 
sensitive chronologies agree within uncertainty (Fig. 7, left panel). This is true for both, the all-forcing 
and the volcanic-forcing based TRW simulations (bALL and bVOLC). For decadal averages (Fig. 7, middle 
panel), both scaling factors are likely greater than 1, and indicate that the observed responses are larger 
and/or more persistent than the simulated responses. Increased persistence is consistent with superposed 445 
epoch analysis results for volcanic eruptions using treering data (see Lücke et al., 2019). 
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Figure 7: Left: Beta values and uncertainties for 3-year moving averages (following DelSole et al., 2019) in 
the TLS D&A analysis for temperature-sensitive TRW (Fig 2, top panels). ALL and VOLC indicate re-
gression on the all-forcing and volcanic-only based TRW simulations, respectively. Middle: as in left panel, 
except for 11-year running means; uncertainties adjusted for serial autocorrelation. Right: as in left panel, 
except for moisture-sensitive TRW (Fig 2, bottom panels) but with the aggregate mean response grouped 
by the two regions based on the positive or negative response of the TRW simulations (Fig 6, bottom right). 
Uncertainty ranges are based on 90% confidence intervals of scaling factors.   

 
As described above, moisture sensitive trees show positive growth anomalies in some regions and nega-455 
tive anomalies in other regions. We define a two-region spatio-temporal pattern identified in the moisture 
sensitive TRW simulations (Fig. 6, bottom right panel).  Again scaling factors not significantly different 
from one for both ALL and VOLC forced simulations (Fig. 7, right panel) allow us to attribute moisture 
changes in response to volcanism.  
 460 
4 Discussion 
Detection and attribution studies using paleoclimatic data have previously focused on regression of re-
constructed climate variables on realistically forced climate simulations (PAGES 2k Consortium, 2019; 
Schurer et al., 2014).  In this study, we have attached a validated, realistically multivariate and nonlinear, 
intermediate complexity proxy-sensor model (Evans et al., 2013; Tolwinski-Ward et al., 2013, 2015) to 465 
enable the D&A framework within the space of the paleoclimatic observation – in this study, tree ring 
width chronologies. Because this particular sensor model is a scaled and time-integrated transformation 
of temperature and precipitation variations into a single diagnostic, which is commonly observed across 
the terrestrial landscape, the potential for fingerprinting either distinct univariate or integrated plant-
stress-like signatures of the different radiative forcings becomes possible. The approach also substitutes 470 
structural and parametric uncertainty in the sensor model for the uncertainty arising from inversion of 
multivariate paleoclimatic observations for univariate climatic reconstruction, and so provides a comple-
mentary assessment of the uncertainty that propagates into the D&A results.  
We find that the global mean forced response in temperature-sensitive TRW chronologies is consistent 
with observations within the 1401-2000 period, a result that supports the prior work using global mean 475 
surface temperature reconstructions as predictand (Hegerl et al., 2006 and references therein), and im-
plicitly the use of temperature-sensitive TRW chronologies for producing those results. However, we 
also find that moisture and temperature sensitive chronologies (Fig. 3) form distinct subgroups in space 
(Fig. 2) and in temporal average (Fig. 4). The fingerprint of climate forcing, as determined by comparison 
between all-series averaged temperature and moisture sensitive observations and simulations is statisti-480 
cally significant in temperature, but not in moisture, for both ALL and VOLC forced simulations (Fig. 
7).  
For the attribution analysis targeting volcanic forcing (Figs. 6, 7), we find disagreement in the amplitude 
of the temperature-sensitive forcing as a function of timescale, with the observed annual/3-year/decadal 
timescale variance being smaller/equal/greater than the simulated variance (Fig. 7, left and middle pan-485 
els). One explanation would be that the simulated peak temperature response to volcanic forcing is un-
realistically large. This has been observed for the HadCM3 climate model simulation in a previous study 
(Schurer et al., 2013). Volcanic forcings used to produce the climate simulations may also be oversim-
plified in time and/or space relative to actual forcing (Stevenson et al., 2017), or its timing may be incor-
rect (yielding suppressed amplitude in reconstructions). For many eruptions with an unknown date, the 490 
eruption was set to January 1 and the AOD is entered into the model in four equal latitude bands only, 
proportional to the amount of Sulphur in the Antarctic and Greenland ice cores (Crowley and Unterman, 
2013). Because TRW simulations are a simplified representation of actual TRW variation, they neglect 
the observational uncertainty and the potential for superimposed and competing influences, such that the 
simulated TRW response to forcing may be relatively large. This is indeed the case; for either VOLC or 495 
ALL forcing, simulated variance is about one-third larger than observed variance (results not shown).  
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A further explanation could be that autocorrelations in observed and simulated TRW are different. We 
find observed mean TRW autocorrelation to be about two-thirds larger than that of VOLC forced simu-
lations (results not shown). Consequently, we find the observed TRW variance at decadal resolution to 500 
be significantly greater than simulated TRW variance. This result suggests that i) the observed response 
contains decadal timescale non-climatic variation not adequately removed by observational signal pro-
cessing (Cook and Kairiukstis, 1990), ii) mechanisms represented in the climate simulations are inade-
quate to represent slower response timescales of volcanic forcing (Miller et al., 2012), iii) mechanisms 
of forest response to volcanic forcing via soil moisture, air temperature or insolation variations, as rep-505 
resented in VSL, are insufficient to represent the observed lower frequency response (Esper et al., 2015; 
Lücke et al., 2019) or a combination of all three factors. Previous studies found scaling factors to increase 
as more smoothing is applied (Schurer et al., 2013). However, they did not reach the point of a signifi-
cantly larger response in observations than simulations.  
Previous studies based on historical observations found that volcanic eruptions produced positive pre-510 
cipitation and streamflow anomalies in the Mediterranean and the southwestern United States, whereas 
negative anomalies were observed at high latitudes, and in western North America, the Indian and  south-
east Asian region and the tropics (Iles et al., 2013; Iles and Hegerl, 2015). This is in agreement with the 
CMIP5 simulated precipitation response (Fig. 1a in Iles and Hegerl, 2015), although the pattern in ob-
served precipitation was very noisy and not clearly observed. In contrast, the response was identifiable 515 
in observed streamflow data which covers a longer period and integrates the precipitation response. Rea-
sons that the precipitation response couldn’t be detected are likely to include the small number of erup-
tions in the instrumental period over which a composite was formed, combined with low signal-to-noise 
ratio for precipitation (Fig. 1a in Iles and Hegerl, 2015), and the complex precipitation response pattern 
with regions of increases and decreases which is more difficult to detect (see also Polson et al., 2013b). 520 
We would obtain similarly non-detection and non-attribution were we to define regions manually (e.g. 
Northern Europe vs Mediterranean or Western vs Eastern North America), or for a smaller integration 
over the years following an eruption. This finding is in agreement with (Rao et al., 2017), who see the 
effect in tree-ring reconstructed PDSI only in a very small region of north western Europe, southern 
Spain and northern Morocco, and with Fischer et al. (2007), who found increased precipitation in the 525 
Mediterranean and Scandinavia, and decreased precipitation in Northwestern and Central Europe fol-
lowing volcanic eruptions, although not statistically significant in many locations and accompanied by 
high uncertainty in the reconstructed precipitation response. For such small-scale regions, our TRW net-
work is too sparse, our simulation grid too coarse and the time span of the TRW series is too limited to 
calculate robust composites. The present study respects some of these challenges by extending the anal-530 
ysis several centuries into the past (Table 1), integrating the forced response over time and space (Fig 7), 
and forming the attribution model using the native observed variable rather than a reconstructed climatic 
variable (Section 1; Fig. 1). We find a similar pattern in moisture sensitive TRW (Fig 6). Simulations are 
most consistent with the expected pattern if the composite is based on the same forcing chronology as 
that used to drive the underlying HadCM3 simulations (Crowley and Unterman, 2013). The pattern in 535 
TRW observations agrees better with the more recent volcanic forcing chronology of Sigl (2015). This 
suggests the latter forcing series reconstruction may be more consistent with the response as observed in 
TRW. However, the two forcing chronologies are similar enough, that the two-region detection and at-
tribution analysis (Fig 7, right panel) produces the significant detection of both the ALL and VOLC 
forced TRW signals, within uncertainty of unity, lending support to the conclusions of (Iles and Hegerl, 540 
2015). 
 
5 Conclusion	
We have estimated the contribution by all forcing and volcanic forcing to treering data, based on a de-
tection and attribution study using observed and modeled tree-ring width data directly for the exercise. 545 
We found that temperature and moisture sensitive TRW contain different signatures of the forced climate 
response over the past six centuries. Specifically, we find that the signature of the ALL- and VOLC-
forcing response is most evident across the mean of all temperature-sensitive chronologies, but not across 
the mean of all moisture sensitive chronologies. The amplitude of the temperature-sensitive forced re-
sponse is larger than expected from the model simulations in decadally filtered results, suggesting inac-550 
curacies in the representation of forcing and/or response on those timescales in observations, simulations, 
or both sources of information. Additionally, we detect and attribute a previously identified spatial pat-
tern in moisture-sensitive response to volcanic forcing at annual timescales, with a dipole drying/mois-
tening pattern similar to the one previously identified by others within the historical time period and with 
direct moisture observations. In this study we demonstrate for the first time that climate change D&A 555 
can be conducted directly on paleoclimatic observations and their multivariate, non-linear proxy system 
simulations, allowing for a much more reliable model evaluation than possible if using reconstructed 
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climate variables. The results may realistically diverge from those obtained by D&A studies using uni-565 
variate surface temperatures reconstructed from similar datasets, because the underlying observations 
may in reality be multivariate, nonlinear responders. Further studies could improve upon this proof of 
concept by incorporating stable isotopic observations in combination with isotope enabled climate model 
simulations, and by accessing a longer time interval for developing composite analyses, additional data 
types, and a larger ensemble of realistically forced climate simulations.  570 
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the Climate Research Unit: https://crudata.uea.ac.uk/cru/data/hrg/. The B14 TRW data collection is 575 
available at the World Data Center for Climate (WDCC) at DKRZ, where it was used as input data for 
a data assimilation based climate reconstruction called EKF400 (Franke et al., 2017): http://cera-
www.dkrz.de/WDCC/ui/Compact.jsp?acronym=EKF400_Input_Data_v1.1. Results illustrated in Fig-
ures 2-7 are available from the NCEI/WDS for Paleoclimatology, landing page:  
https://www.ncei.noaa.gov/access/paleo-search/study/36773 . 580 
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