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Abstract. The detection and attribution (D&A) of paleoclimatic change to external radiative forcing 
relies on regression of statistical reconstructions on simulations. However, this procedure may be biased 
by assumptions of stationarity and univariate linear response of the underlying paleoclimatic 15 
observations. Here we perform a D&A study, modeling paleoclimate data observations as a function of 
paleoclimatic data simulations. Specifically, we model tree-ring width (TRW) observations as a linear 
function of TRW simulations which are themselves forward modeled from realistic singly-forced and 
cumulatively forced climate simulations for the period 1401-2000. Temperature and moisture-sensitive 
TRW simulations detect distinct patterns in time and space. Temperature-sensitive TRW observations 20 
and simulations are significantly correlated for northern hemisphere averages, and their variation is 
attributed to volcanic forcing. In decadally smoothed temporal fingerprints, we find the observed 
responses to be significantly larger and/or more persistent than the simulated responses. The pattern of 
simulated TRW of moisture-limited trees is consistent with the observed anomalies in the two years 
following major volcanic eruptions. We can for the first time attribute this spatiotemporal fingerprint in 25 
moisture limited tree-ring records to volcanic forcing. These results suggest that use of nonlinear and 
multivariate proxy system models in paleoclimatic detection and attribution studies may permit more 
realistic, spatially resolved and multivariate fingerprint detection studies, and evaluation of the climate 
sensitivity to external radiative forcing, than has previously been possible.  

1 Introduction 30 
One of the crucial questions in climate change research is to determine how external radiative forcings 
bring about climate variation and change, if the forced response may be distinguished from the internal, 
unforced variability, and between different forcings, and if the model simulated change is consistent with 
that detected in observed or reconstructed climate. Major contributions to answer this question come 
from so-called “detection and attribution” (D&A) studies (see review by Hegerl and Zwiers, 2011) for 35 
methods, and Gillett et al. (2021) for a recent update. Methods are generally based on matching observed 
changes with patterns derived from climate model simulations, which were driven by single and multiple 
external forcings, including solar variability, volcanic aerosols, the well-mixed greenhouse gases, orbital 
variations, and land use change. The idea initiated in early work by Hasselmann (1979). After 
methodological refinements and advances in climate modeling in the early 1990s (e.g. Hasselmann, 40 
1993; Santer et al., 1993) there was growing evidence that the external greenhouse gas signal can be 
differentiated from climate variability generated within Earths’ climate system (Hegerl et al., 1996).  
Detection and attribution studies have been an important part of the Assessment Reports of Working 
Group I of the Intergovernmental Panel on Climate Change, from the calling for better detection of the 
role of human activities in climate forcing in the first Assessment report (1990), to formal detection and 45 
attribution studies comparing observed and simulated climate change in all Assessment reports since, 
with increasingly confident assessments of the detection of human influences and estimates of the human 
contribution derived from attribution results.  
Typically, D&A analyses have been limited to periods when instrumental observations of physically 
measurable variables and derived diagnostics are available, with global observation networks becoming 50 
dense enough for such studies about 100 to 150 years before present. This period allowed for attribution 
of trends in many thermodynamic and dynamic characteristics of the climate system, including global 
and regional temperature, temperature extremes, ocean heat content, tropopause height, specific 
humidity, zonal mean precipitation, air pressure fields to potential forcings (e.g. Hegerl et al., 1996; 
Santer, 2003; Polson et al., 2013a; Bindoff et al., 2014; Eyring et al., 2021; Gillett et al., 2021). While 55 
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instrumental observations cover the period of a major increase in greenhouse gases and other human 
influences, studying the climate system responses to non-anthropogenic external radiative forcings, such 
as solar variability or volcanic eruption, benefits from studying longer periods over which more 
realizations and/or longer-term processes are evident, and where the anthropogenic influence is less 
dominant. For instance, very few climatically important volcanic eruptions occurred in the past 150 years, 60 
but more than a dozen occurred over the past 600 years (Sigl et al., 2015) at nonuniform frequency in 
time, possibly creating long-term forcing of the climate system (McGregor et al., 2015; PAGES 2k Con-
sortium, 2019; Brönnimann et al., 2019).  Such longer-term studies would integrate longer-term 
responses of the climate system to external radiative forcing, enabling a more complete picture of the 
equilibrium and transient response, and ultimately of the climate sensitivity to external radiative forcing. 65 
Paleoclimatology allows extension of the observational record into the past using indirect measurements 
of climatic conditions, which can be used to reconstruct past climate. Previous studies have detected a 
role of external forcing in the climate of the last millennium using annual mean surface temperature 
anomaly reconstructions on both a hemispheric scale (Hegerl et al., 2003; Schurer et al., 2013, 2014) and 
regionally (PAGES 2k-PMIP3 group, 2015). These analyses have found that volcanic forcing is detected 70 
with a smaller contribution from greenhouse gases that is detectable by 1900, and a contribution from 
solar forcing that was not detectable against climate variability. However, the reconstruction process 
itself introduces additional assumptions into detection and attribution studies that arise from the nature 
of the reconstructions, but which may not be justified. Many of these are demonstrated in pseudoproxy 
experiments (Smerdon et al., 2011) and through study of the extensive network of tree-ring width 75 
observations. These include assumed univariate, normally distributed and linear response of the 
paleoclimatic indicators to the target reconstruction variable (Evans et al., 2014; Wang et al., 2014); 
stationarity of patterns of regional and global scale climate variability (Wilson et al., 2010); seasonal and 
spatial representation (St. George, 2014; Smerdon et al., 2011); and autoregression characteristics in 
observations and target variables (Cook et al., 1999). Limited adherence to assumptions in observations 80 
and statistical modeling has been found to introduce biases into reconstructed variables, even in large 
scale averages (PAGES2k Consortium, 2017) and may lead to the underestimation of errors in D&A 
studies that are necessary to separate the forced and unforced responses (Neukom et al., 2019). In 
particular, autocorrelation due to memory in TRW affects the response to volcanism which, if not 
accounted for, biases D&A results (Lücke et al., 2019). 85 
Progress in process understanding of paleoclimatic observations has led to the development of proxy 
system models (Evans et al., 2013), which may be used to identify systematic uncertainties and evaluate 
the extent of biases introduced by the reconstruction process into the D&A problem. One recent example 
is the Vaganov–Shashkin Lite (VSL) sensor model, which simulates standardized tree ring width (TRW) 
chronology variations based on monthly mean temperature, precipitation, and latitude. These inputs are 90 
used to estimate nondimensional growth arising from temperature and soil moisture conditions (GT, GM) 
either of which may stoichiometrically limit growth at each monthly time step: a multivariate and 
nonlinear mimic of the processes by which forests sense and filter climatic variability and imprint those 
results in observable tree ring width variations (Tolwinski-Ward et al., 2011a, b). VSL has been widely 
tested for parameter estimation and global applicability.   95 
Here we leverage VSL, historical gridded climate data products (Harris et al., 2014), singly and multiply 
forced climate simulations for the period 1401 to 2000 C.E. (Schurer et al., 2013), and the nearly 3000 
consistently detrended TRW observations (B14, Breitenmoser et al., 2014) to perform an extratropical 
northern hemisphere D&A exercise directly using observed and simulated TRW data (Fig. 1, Eq. 1): 
  𝛼 =	𝛽! +	𝛽"	𝛼&        (1) 100 
With 𝛼 representing the paleoclimatic observations (TRW in this case), and 𝛼& representing the sensor 
modeled TRW simulations, themselves employing as input the output of a realistically forced climate 
model. Coefficients bo and b1 represent, respectively, the unforced and forced amplitudes of variability 
(for a more detailed introduction, see Section 2.4 below). This approach stands in contrast to prior studies, 
which perform the D&A analysis in the space of reconstructed northern hemisphere mean surface 105 
temperature at annual resolution (Schurer et al., 2013, 2014). It has the potential advantages of 
circumventing assumptions required in the reconstruction process, and exploiting the “several-to-one” 
mapping that might reinforce environmental signatures in TRW data, such as spatially and temporally 
correlated patterns of moisture and temperature variability that mimic drought indices (Cook et al., 1999, 
2004, 2010; Meko et al., 1995). Conversely, we may also identify key uncertainties in the sensor 110 
modeling, and the potential for the several-to-one mapping to obfuscate the detection and attribution of 
a forced response in the TRW observations.   
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Figure 1: Schematic overview of the performed analysis. General steps are indicated in bold, study-specific 115 
procedures in normal text. B14 refers to the Breitenmoser et al. (2014) data set, S/N stands for signal to noise 
ratio, T for temperature and PREC for precipitation. 

The remainder of this paper is organized as follows. First, we estimate and evaluate parameters for VSL, 
using gridded instrumental temperature (T) and precipitation (PREC) estimates and contemporaneous 
TRW observations (Section 2.2) in the period 1901-1970. Then VSL is used to build ensembles of 120 
simulated TRW series, in response to singly and cumulatively forced simulations of T and PREC, given 
uncertainty propagated through the parameter estimation process, and with bias corrections for simulated 
T and PREC ensembles (Section 2.3).  We then estimate the D&A coefficients and their propagated 
uncertainty (Eq. 2; Section 2.4). The results are analyzed locally, regionally, and globally for detection 
and attribution of a forced climate response, vis a vis the simulated and actual TRW observations (Section 125 
3). We discuss the results and the potential to extend the approach in Section 4; conclusions are drawn 
in Section 5.    

2 Data and Methods 
The inputs into and process of this detection and attribution study is illustrated in Fig. 1 and described 
below. 130 

2.1 Tree-ring width measurements 
We use the tree-ring width (TRW) collection described by and employed in (Breitenmoser et al., 2014) 
as the observational basis for the development and validation of VSL parameters, and as the D&A 
predictand (Eq 1). B14 consists of 2918 uniformly detrended and standardized tree-ring width 
chronologies from six continents and 163 species that have been upload to the International Tree-Ring 135 
Data Base (ITRDB, Zhao et al., 2019) until 2014. These series have been quality controlled for metadata 
errors, repetitive measurements, incorrect units, decimal point errors and misplaced positions (Tab. S1 
in Breitenmoser et al., 2014). Detrending for biological age trends and stand dynamics and 
standardization to dimensionless growth indices was done in a hierarchical approach. If possible, 
negative exponential curves and linear regression curves of any slope were fitted. In case both methods 140 
failed, “a smoothing spline was fit with a 50% cut-off frequency at 75 % of each series length” 
(ARSTAN, Cook, 1985; Breitenmoser et al., 2014). Multiple measurements at the same site have been 
combined into robust means (Cook and Kairiukstis, 1990), which are variance adjusted for changing 
sample size through time (Osborn et al., 1997). For every point in time, which is explicitly resolved as 
one value per growing season each year, a chronology is based on at least 8 samples. We use the 145 
autoregressive-standardized (Osborn et al., 1997; Frank et al., 2007) version of the available chronologies 
from B14. We require that the chronologies have at least 40 years observed within the period 1901 – 
1970. (See section 2.2 below) 
We restrict subsequent analysis of simulations and the D&A exercise to the extratropical northern 
hemisphere continental areas, where the vast majority of TRW observations are located, with high 150 
concentrations in the North America, Europe and northern Asia (Fig. 2). Record length varies from 100-
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600 years (Fig. 2). Series availability is generally greatest between the mid-19th century and the late 20th 
century (Fig. 3), and the longest records are equally distributed in longitude across the north hemisphere 
boreal terrestrial latitudes (Fig. 2). 

2.2 VSL parameter estimation 155 

For the purpose of VSL parameter estimation, we use the global, gridded instrumental temperature and 
precipitation data sets CRU TS 3.23 (Harris et al., 2014), regridded to 64 longitude x 32 latitude (~5.6º) 
using a distance-weighted average of the four nearest neighbor values. To correct for mean temperature 
biases, we  applied an adiabatic (-6 K/km) T correction to the regridded CRU product, based on 
differences between elevations of grid points and elevations of observed TRW chronologies (Evans et 160 
al., 2006). Parameters T1, T2, M1 and M2 describe the onset of growth (1) and point above which climate 
is no longer a limiting factor (2) for temperature (T) and moisture (M), respectively (Tolwinski-Ward et 
al., 2011a, 2013). We conditioned and validated all four parameters simultaneously using 
contemporaneous observations and VSL simulations within the period 1901-1970. The growth period is 
defined as a 16-month interval. To integrate monthly incremental growth arising from pre-season and 165 
growing season, the growth integration period starts in September of the previous year and ends in 
December of the current year in the northern hemisphere (previous March to current June for the southern 
hemisphere), the same period as in Tolwinski-Ward et al. (2011a) and Breitenmoser et al. (2014). Other 
VSL parameters are not calibrated, but taken from other studies (Evans et al., 2006; Fan, 2004; Huang et 
al., 1996; Tolwinski-Ward et al., 2011a, 2013; Vaganov et al., 2006; van den Dool, 2003). Within the 170 
chosen parameter estimation time window 1901-1970, with available N >=40, half of the years for which 
observed TRW data were available were chosen at random for parameter estimation (“calibration” Tol-
winski-Ward et al., 2013). The other half were reserved for validation of the estimated parameters, via 
simulation using the estimated parameters, T and PREC not used to estimate the parameters, and 
comparison with the TRW observations withheld from the calibration process. The process was then 175 
repeated, using now the second half of data for parameter estimation (calibration), and the first half for 
validation of this parameter set. Up to 200 parameter sets were stored as valid, if all four calibration and 
validation correlations between simulated and observed TRW were all independently significant at the 
p<0.1 level; all others failing this validation test were discarded. 

2.3 VSL simulations, 1401-2000 180 
Temperature and precipitation input data for VSL are derived from climate model simulations. We use 
the set of simulations described in Schurer et al. (2014), which have been conducted with HADCM3 , 
interpolated to the same 64 x 32 grid as described in Section 2.2, to produce TRW simulations driven by 
singly and cumulatively forced climate simulations (Table 1). Because simulated T and PREC are 
spatially and seasonally biased relative to historical gridded T and PREC, we first bias-correct the 185 
HadCM3 T and PREC fields by computing T and PREC anomaly fields and adding them to (scaling 
them by) the CRU TS3.23 T climatology (PREC variability) for the overlapping period 1901-2000 C.E. 
This step also ensures that systematic differences in mean simulated T and PREC will not systematically 
bias VSL simulations based on parameter estimates conditioned on the historical CRU TS3.23 T and 
PREC products. We then identified the primary limiting factor for simulated growth (at p<0.05, assuming 190 
a binomial distribution) and divided the simulated chronologies into primarily temperature, moisture 
(M), both, or neither limited TRW simulations. The median, over parameter estimate realizations, of T 
and M TRW simulations, were then separately weighted by inverse distance between observed and 
simulated grid point, observed expressed population signal (EPS, Wigley et al., 1984), and observed 
mean correlation between increment series within a chronology (RBAR, Cook and Kairiukstis, 1990) 195 
and averaged. Observed TRW were gridded and averaged in the same way as described above for 
subsequent D&A analysis (see Fig. 1 for a schematic overview of the entire process chain). Because 
centennial-scale climate variability may not be consistently preserved in the TRW records (Cook et al., 
1995; Franke et al., 2013), and these timescales are poorly sampled in the 600 year period available for 
study, we removed low frequency variability by applying a 71-year high pass LOESS filter to both 200 
observed and simulated gridded TRW and focus our analyses on this residual interannual to multidecadal 
variance at annual resolution. The choice of annual resolution reflects the observational resolution 
(Section 2.1), the time-integrating nature of the sensor model (Section 2.2), the uncertainty of 
implementing radiative forcing estimates in the climate simulations (Gao et al., 2008), and the response 
timescale of the climate system to the large scale forcing. We call the results, on which we base the 205 
detection and attribution analyses, climate-sensor simulations. This nomenclature reflects modeling of 
both the climate in response to external radiative forcing(s), and the tree ring width observation that is 
basis for the comparison with actual TRW observations. 
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Table 1: All forcing and single forcing HADCM3 simulations as well as control runs used in this study (V: 210 
volcanic, S: solar, G: greenhouse gases, L: land-use, A: tropospheric aerosols).    

Number of simulations Forcings Period 
(Year C.E.) 2 NO forcing 

Control run 
1401– 2000 

4 V, S, G, L, A 1401 – 2000 
3 V 1401 – 2000 
4 S 1401 – 2000 

	

2.4 Detection and Attribution    
To solve for the D&A coefficients in (Eq. 1), we use the total least squares (TLS) D&A technique to 
account for errors in both dependent and independent variables within the regression procedure (Allen 215 
and Stott, 2003) to account for internal variability in both observations and model simulations. We follow 
the analysis used in Allen and Stott (2003), Polson et al., (2013a), and Schurer et al. (2013), which 
estimates a best fit regression coefficient (β) given by the equation: 

𝛼 = 	𝛽	(𝛼& − 	𝜈) + 	𝜈         (2) 
In this study, 𝛼& are the simulated tree-ring widths and 𝛼 are the observed tree-ring widths, either at each 220 
grid box or spatially and/or temporally aggregated to increase the signal to noise ratio. ν are realizations 
of internal variability. Confidence intervals are obtained with the bootstrap method described in DelSole 
et al. (2019). They are calculated by randomly sampling, with replacement, pairs of values from the 
arrays of observed and simulated tree-ring widths to form new arrays the same length as the originals. A 
new scaling factor is then calculated by regressing the resampled model onto the resampled observations. 225 
This process is repeated 10000 times and a 5%–95% confidence interval is estimated from the 
distribution. If the distribution of beta values is significantly greater than 0 (p<0.05) then the effect of 
the response to the forcing is considered to have been detected. If the distribution of β-values is 
significantly less than unity, the response in the climate-sensor simulations is too large; the response in 
climate-sensor simulations is significantly greater than observed, and the simulated climate sensitivity is 230 
smaller than observed. Conversely, if the scaling range is significantly greater than unity, the simulated 
climate-sensor response is significantly smaller than observed in TRW, and the climate sensitivity of the 
model may be inferred to be larger than observed.  The estimate of the unforced variability as the residual 
of the D&A regression model provides another important result that needs to be compared with unforced 
variability of climate simulations (control runs) as a check of variability (PAGES 2k Consortium, 2019). 235 

3 Results 
3.1 Parameter estimation, TRW simulations and TRW observations		
1664 of 2761 TRW chronologies in the B14 compilation were climate sensitive and therefore 
successfully simulated and retained for further analysis. With small differences between climate 
simulations, and using the methodology as described in (Tolwinski-Ward et al., 2013), their Fig 8, 21% 240 
of the successfully simulated chronologies are temperature sensitive, ca. 57% are moisture sensitive, ca. 
11% are both moisture and temperature sensitive, and ca. 11% are not climate sensitive, i.e. neither 
moisture nor temperature sensitive (Fig 2).  Distributions of temperature, moisture, both temperature and 
moisture, and neither temperature nor moisture sensitivity overlap in space. There are many moisture-
sensitive TRW chronologies found in North America, the Mediterranean and other arid regions (Fig. 2, 245 
top right panel). However, there are also temperature-sensitive chronologies (upper left panel) and mixed 
responders (lower left panel) which are collocated in arid regions (upper left panel). Chronologies found 
to be neither temperature nor moisture sensitive (Fig 2, lower right panel) tend to be found at the highest 
latitudes, but not exclusively so. 
 250 
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Figure 2: Limitations determined for all TRW chronologies with valid parameter sets, separated into 

temperature sensitive (top left), moisture sensitive (top right), both T and M sensitive (bottom left) and 
neither T nor M sensitive (bottom right). (Maps created with Matlab mapping package M_map (Pawlowicz, 

2022)) 255 
We found that bootstrapped VSL parameter estimates were in many cases distinctly non-normal in 
distribution for some or all of the four parameters, and for some TRW simulations. Distributions were 
sometimes uniformly distributed across the prior expected parameter ranges, unimodal non-normal, and 
even bimodal. Because there were not necessarily well-defined means or medians across parameter sets 
and simulations, we used all valid parameter sets to produce TRW simulations. Hence, we propagate 260 
uncertainty arising from stochastic variation in the climate simulations through parameter and structural 
uncertainty in the ring width sensor model.   
Because the fingerprint of external radiative forcing may or may not be distinct and unique in temperature 
and moisture, we use the fit of VSL diagnostic variables GT and GM (estimate of nondimensional growth 
arising from temperature and soil moisture conditions, respectively) to binomial distributions to 265 
determine whether each simulation is primarily controlled by temperature, moisture, both or neither 
control at the p<0.05 significance level (Tolwinski-Ward et al., 2013). We perform a similar analysis to 
determine the same primary growth controls in the TRW observations, using the same diagnostics from 
the parameter estimation exercise. We then average TRW observations to the simulation grid resolution 
for temperature and moisture-limited simulations separately. Where there are multiple observed TRW 270 
chronologies available within a particular grid box, we construct a weighted average using inverse grid-
point distance and intra-chronology mean incremental growth series correlation as weighting factors.     
TRW simulations (Sections 2.2, 2.3) are developed for all locations, where TRW observations exist and 
the parameter estimation has been successful, i.e. for most of the extratropical northern hemisphere (Fig. 
3). We exclude the southern hemisphere in this because only 5 temperature-sensitive chronologies and 1 275 
moisture-sensitive chronology are located there. The record length of the simulations is constrained by 
TRW observations (see 2.1 and Fig. 3). The longest records are equally distributed in longitude across 
the north hemisphere boreal terrestrial latitudes (Fig. 3). Thus, statistics assessed across the simulations 
and observations are best described as representing the northern hemisphere temperate and subpolar 
terrestrial regions. Furthermore, we note that the locations of temperature and moisture-sensitive 280 
chronologies overlap (Fig 2) but are generally not coincident (Fig. 3): for either the observed or simulated 
sets, only about 1/3 are both coincident in space and significantly correlated with each other (Fig. 2). 
Hence, for the remainder of the analysis presented here, we develop and discuss the temperature and 
moisture-sensitive results separately.    
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 285 
Figure 3: Numbers of years (color scale) available for comparison between gridded, observed and climate-
sensor simulated TRW chronologies, within the period 1401-2000. Top row: observed (left) and simulated 
(right) temperature-sensitive chronologies. Simulated chronologies are masked by observational 
availability, and in some cases (e.g., subpolar Eurasia) are neither moisture nor temperature-sensitive or 
else are both temperature and moisture sensitive, and do not appear in either simulation map. Lower 290 
panels: as for top panels, except for moisture-sensitive chronologies. (Maps created with Matlab mapping 
package M_map (Pawlowicz, 2022))     

Figure 4 shows the growth functions GT and GM for the subsets of temperature and moisture-sensitive 
identified TRW chronologies (section 3.1).  Although VSL has well-known limitations, for instance the 
lack of a soil moisture model allowing for snow, and despite the potential for an unrealistic and coarsely 295 
resolved annual cycle in the HadCM3 simulations, the results suggest plausible seasonality of the growth 
response of the TRW simulations.  In particular, GT for T sensitive chronologies is maximum but limiting 
in June-October with a median response (black line) maximum for July-September. GM for the T 
sensitive subset of chronologies is not limiting through the same period.  Similarly, for M sensitive 
chronologies, GM is limiting between July-December.  GE (the scaling associated with insolation 300 
(energy) as a function of latitude) is limiting (GE <0.7) after September for latitudes poleward of 20N 
(results not shown), and GT is not limiting through the warm months. 
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Figure 4: Simulated intra-year partial growth response functions GT (left column) and GM (right column) 
for T sensitive (top row) and M sensitive (bottom row) simulations using ALL climate simulations, with 305 
parameters conditioned and validated using observed TRW data within the period 1901-1970.  Heavy solid 
lines are median values across all simulations. 

 

 
Figure 5. Top: mean series for observed (black) and ALL-forcing simulated temperature-sensitive 310 
chronologies (red). Annually resolved and a 11-year Hanning window filtered time series are 
shown with thin and bold lines, respectively. Labels quantify the Pearson correlation (r), effective 
degrees of freedom (edf, Hu et al., 2017) and the p-value. x-axis units are years CE. Bottom: the 
same above but for moisture-sensitive observations (black) and simulations (blue). Note, this plot 
shows the global means of standardized TRW at all grid boxes with data before high-pass filtering 315 
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and variance adjustment. There are small differences in numbers of observed and simulated 
chronologies that arise from both the observational masking and from the simulation parameter 
validation procedure (Section 2).  
 
3.2. Comparison of observed and sensor-simulated TRW 320 
To detect an external-forcing signal in noisy, local observations, the signal-to-noise ratio has to be 
enhanced. This is commonly achieved by averaging in space and/or time (Sections 1, 2.4). We begin 
with analysis of global mean TRW variability at all locations where tree growth is either temperature or 
moisture limited, for comparisons between TRW observations and climate-sensor simulations driven 
with ALL forcings (Table 1). The variance of the average over all grid boxes increases back in time 325 
because of the decreasing numbers of records (Fig. 5), likely reflecting increasing uncertainty; the 
variance in the beginning of the 15th century is twice as large as that observed at the end of the 20th 
century. To reduce sensitivity of the detection and attribution analysis to observational uncertainty, we 
homogenize the variance through time by multiplication of a time dependent scaling factor that is 
estimated by linear regression of the observed variance on the variance of TRW climate-sensor 330 
simulations from the control simulations. 
Results suggest limited but significant correlation between global mean observed and simulated TRW 
temperature-sensitive simulations, for both annual and decadally-filtered series (Fig. 5). Nonsignificant 
correlations are found for moisture-sensitive observations vs simulations at both annual and decadal 
timescales (Fig. 5). We find similar results for correlations between VOLC-forced simulations and 335 
temperature and moisture-sensitive observations (T sensitive: r1=0.22, edf=201, p=0.001; r11=0.48, 
edf=19, p=0.02; M sensitive: r1=0.01, edf=380, p=0.40; r11=0.00, edf=54, p=0.51). Correlations are not 
significant for comparisons between observed and SOLAR-forced or unforced TRW simulations (results 
not shown). 
Based on these results, we test for detection of patterns in the TRW following volcanic eruptions in 340 
temperature and moisture-sensitive TRW chronologies, using a composite analysis across the 7 largest 
(above 95th quantile) volcanic forcing event responses based on Crowley and Unterman (2013) between 
1670 and 1970 (Fig. 6). We do not use the full period back to 1401 because only few locations have data 
reaching that far back in time. However, including up to 12 eruptions where available leads to a very 
similar pattern (not shown). The event size is measured in stratospheric Atmospheric Optical Depth 345 
(AOD, Table 2) Consistent with the results for averaged temperature-sensitive chronologies, we find a 
reduction in simulated tree growth in the first two years after the eruption in nearly all locations 
worldwide (Fig. 6, top right). Observed tree growth at the temperature sensitive sites is reduced in most 
locations, but not as homogenously as in the simulations (Fig. 6, top left). Possible reasons may be related 
to the small sample size, uncertainties in the reconstruction of the volcanic forcing (Sigl et al., 2015), a 350 
low climate signal-to-noise ratio in ring width, and an enhanced signal-to-noise ratio in the simulations, 
which are represented by their 4-member ensemble mean (Tab. 1). Additionally, moisture influences 
may not be perfectly removed from the temperature-sensitive observations, because some of the positive 
growth anomalies appear in locations for which tree growth tends to be generally moisture limited (in 
southwestern North America, north European lowlands and the eastern Mediterranean (St. George and 355 
Ault, 2014). Thus, the composite observed temperature-sensitive response may in part also reflect 
increased moisture in dry regions following volcanic eruptions (Iles and Hegerl, 2015). 
Table 2: Largest volcanic eruptions used in the composite analysis based on atmospheric optical depth. 

Crowley and Unterman, 2013 
1442 1456 1594 1600 1641 1673 1694 1809 1815 1832 1884 1903 
Sigl et al., 2015 
1453 1458 1595 1601 1641 1695 1783 1809 1815 1832 1836 1884 

 
For our moisture-sensitive comparison, we do not find a global volcanic response of the same sign, but 360 
rather regions with uniform responses (Fig. 6, bottom row). The simulated composite (Fig 6, bottom row, 
rightmost panel) produces anomalously lower (higher) growth at high (low) latitudes. We show the 
composite for observations based on two forcings, Crowley and Unterman (2013) that was used to force 
the climate simulations (Fig 1; Table 2) and the more recent and probably more realistic inferred Global 
Volcanic aerosol Forcing (GVF, in W/m2) by Sigl et al. (2015). For the composite based on Crowley and 365 
Unterman (2013), we find positive growth anomalies around the Mediterranean and in southwestern 
North America, and negative anomalies in Eurasia, with more prominent composite positive than 
negative regions. The observed composite based on the Toohey and Sigl (2017) chronology produces a 
small negative composite response in eastern North America and small positive response in western 
North America, which is weaker but consistent with the pattern in the simulations (Fig. 6, bottom row, 370 
middle and right panels).  
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Figure 6: Composite average ring width anomaly (standardized units) in temperature-sensitive TRW 
chronologies in the first two years after volcanic eruptions in observations and VOLC-forcing simulations 
(top). Because relatively few TRW records are available for 1400-1700 (Fig 2), the composite includes  the 7 375 
strongest eruptions between 1670 and 1970 based on the eruption chronologies of Crowley et al. (2013) (left 
and right column) and Sigl et al. (2015 middle column). Bottom row: as for top row, except for moisture-
sensitive TRW observations and simulations. 
 
3.3 Detection and Attribution analysis 380 
We detect and attribute a response to volcanic forcing in both, the spatial mean temperature timeseries 
and the spatio-temporal pattern of moisture limited tree-ring records. As large volcanic eruptions disturb 
the climate system for a few years, we show results 3-year and 11-year moving averages. For the 3-year 
smoothed temperature-sensitive TRW averaged over all grid boxes, we find a significantly detectable 
scaling factor b not significantly different from one; in other words, observed and simulated temperature 385 
sensitive chronologies agree within uncertainty (Fig. 7, left panel). This is true for both, the all-forcing 
and the volcanic-forcing based TRW simulations (bALL and bVOLC). For decadal averages (Fig. 7, middle 
panel), both scaling factors are likely greater than 1, and indicate that the observed responses are larger 
and/or more persistent than the simulated responses. This is consistent with superposed epoch analysis 
results for volcanic eruptions using treering data (see Lücke et al., 2019). 390 
 

 
Figure 7: Left: Beta values and uncertainties for 3-year moving averages (following DelSole et al., 2019) in 
the TLS D&A analysis for temperature-sensitive TRW (Fig 2, top panels). ALL and VOLC indicate 
regression on the all-forcing and volcanic-only based TRW simulations, respectively. Middle: as in left 
panel, except for 11-year running means; uncertainties adjusted for serial autocorrelation. Right: as in left 
panel, except for moisture-sensitive TRW (Fig 2, bottom panels) but with the aggregate mean response 
grouped by the two regions based on the positive or negative response of the TRW simulations (Fig 6, 
bottom right). Uncertainty ranges are based on 90% confidence intervals of scaling factors.   

 
As described above, moisture sensitive trees show positive growth anomalies in some regions and 
negative anomalies in other regions. We define a two-region spatio-temporal pattern identified in the 
moisture sensitive TRW simulations (Fig. 6, bottom right panel).  Again b-values not significantly 395 
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different from one for both ALL and VOLC forced simulations (Fig. 7, right panel) allow us to attribute 
moisture changes in response to volcanism.  
 
4 Discussion 
Detection and attribution studies using paleoclimatic data have previously focused on regression of 400 
reconstructed climate variables on realistically forced climate simulations (PAGES 2k Consortium, 2019; 
Schurer et al., 2014).  In this study, we have attached a validated, realistically multivariate and nonlinear, 
intermediate complexity proxy-sensor model (Evans et al., 2013; Tolwinski-Ward et al., 2013, 2015) to 
enable the D&A framework within the space of the paleoclimatic observation – in this study, tree ring 
width chronologies. Because this particular sensor model is a scaled and time-integrated transformation 405 
of temperature and precipitation variations into a single diagnostic, which is commonly observed across 
the terrestrial landscape, the potential for fingerprinting either distinct univariate or integrated plant-
stress-like signatures of the different radiative forcings becomes possible. The approach also substitutes 
structural and parametric uncertainty in the sensor model for the uncertainty arising from inversion of 
multivariate paleoclimatic observations for univariate climatic reconstruction, and so provides a 410 
complementary assessment of the uncertainty that propagates into the D&A results.  
We find that the global mean forced response in temperature-sensitive TRW chronologies is consistent 
with observations within the 1401-2000 period, a result that supports the prior work using global mean 
surface temperature reconstructions as predictand (Hegerl et al., 2006 and references therein), and 
implicitly the use of temperature-sensitive TRW chronologies for producing those results. However, we 415 
also find that moisture and temperature sensitive chronologies (Fig. 3) form distinct subgroups in space 
(Fig. 2) and in temporal average (Fig. 4). The fingerprint of climate forcing, as determined by comparison 
between all-series averaged temperature and moisture sensitive observations and simulations is 
statistically significant in temperature, but not in moisture, for both ALL and VOLC forced simulations 
(Fig. 7).  420 
For the attribution analysis targeting volcanic forcing (Figs. 6, 7), we find disagreement in the amplitude 
of the temperature-sensitive forcing as a function of timescale, with the observed annual/3-year/decadal 
timescale variance being smaller/equal/greater than the simulated variance (Fig. 7, left and middle 
panels). One explanation would be that the simulated temperature response to volcanic forcing is 
unrealistically large. This has been observed for the HadCM3 climate model simulation in a previous 425 
study (Schurer et al., 2013). Volcanic forcings used to produce the climate simulations may also be 
oversimplified in time and/or space relative to actual forcing (Stevenson et al., 2017), or its timing may 
be incorrect (yielding suppressed amplitude in reconstructions). For many eruptions with an unknown 
date, the eruption was set to January 1 and the AOD is entered into the model in four equal latitude bands 
only, proportional to the amount of Sulphur in the Antarctic and Greenland ice cores (Crowley and 430 
Unterman, 2013). Because TRW simulations are a simplified representation of actual TRW variation, 
they neglect the observational uncertainty and the potential for superimposed and competing influences, 
such that the simulated TRW response to forcing may be relatively large. This is indeed the case; for 
either VOLC or ALL forcing, simulated variance is about one-third larger than observed variance (results 
not shown).  435 
A further explanation could be that autocorrelations in observed and simulated TRW are different. We 
find observed mean TRW autocorrelation to be about two-thirds larger than that of VOLC forced 
simulations (results not shown). Consequently, we find the observed TRW variance at decadal resolution 
to be significantly greater than simulated TRW variance. This result suggests that i) the observed 
response contains decadal timescale non-climatic variation not adequately removed by observational 440 
signal processing (Cook and Kairiukstis, 1990), ii) mechanisms represented in the climate simulations 
are inadequate to represent slower response timescales of volcanic forcing (Miller et al., 2012), iii) 
mechanisms of forest response to volcanic forcing via soil moisture, air temperature or insolation 
variations, as represented in VSL, are insufficient to represent the observed lower frequency response 
(Esper et al., 2015; Lücke et al., 2019) or a combination of all three factors. Previous studies found 445 
scaling factors to increase as more smoothing is applied (Schurer et al., 2013). However, they did not 
reach the point of a significantly larger response in observations than simulations.  
Previous studies based on historical observations found that volcanic eruptions produced positive 
precipitation and streamflow anomalies in the Mediterranean and the Southwest of the United States, 
whereas negative anomalies were observed at high latitudes, and in western North America, the Indian 450 
to South-East-Asian region and the tropics (Iles et al., 2013; Iles and Hegerl, 2015). This was in 
agreement with the CMIP5 simulated precipitation response (Fig. 1a in Iles and Hegerl, 2015), although 
the pattern in observed precipitation was very noisy and not clearly observed. In contrast, the response 
was identifiable in observed streamflow data which covers a longer period and integrates the precipitation 
response. Reasons that the precipitation response couldn’t be detected are likely to include the small 455 
number of eruptions in the instrumental period over which a composite was formed, combined with low 
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signal-to-noise ratio for precipitation (Fig. 1a in Iles and Hegerl, 2015), and the complex precipitation 
response pattern with regions of increases and decreases which is more difficult to detect (see also Polson 
et al., 2013b). We would obtain similarly non-detection and non-attribution were we to define regions 
manually (e.g. Northern Europe vs Mediterranean or Western vs Eastern North America), or for a smaller 460 
integration over the years following an eruption. This finding is in agreement with (Rao et al., 2017), 
who see the effect in tree-ring reconstructed PDSI only in a very small region of north western Europe, 
southern Spain and northern Morocco, and with Fischer et al. (2007), who found increased precipitation 
in the Mediterranean and Scandinavia, and decreased precipitation in Northwestern and Central Europe 
following volcanic eruptions, although not statistically significant in many locations. For such small-465 
scale regions, our TRW network is too sparse, our simulation grid too coarse and the time span of the 
TRW series is too limited to calculate robust composites. The present study sidesteps or respects some 
of these challenges by extending the analysis several centuries into the past (Table 1), integrating the 
forced response over time and space (Fig 7), and forming the attribution model using the native observed 
variable rather than a reconstructed climatic variable (Section 1; Fig. 1). We find a similar pattern in 470 
moisture sensitive TRW (Fig 6). Simulations are most consistent with the expected pattern if the 
composite is based on the same forcing chronology as that used to drive the underlying HadCM3 
simulations (Crowley and Unterman, 2013). The pattern in TRW observations agrees better with the 
more recent volcanic forcing chronology of Sigl (2015). This suggests the latter forcing series recon-
struction may be more consistent with the response as observed in TRW. However, the two forcing chro-475 
nologies are similar enough, that the two-region detection and attribution analysis (Fig 7, right panel) 
produces the significant detection of both the ALL and VOLC forced TRW signals, within uncertainty 
of unity, lending support to the conclusions of (Iles and Hegerl, 2015). 
 
5 Conclusion	480 
We have performed a detection and attribution study using observed and modeled tree-ring width data 
directly for the exercise. We found that temperature and moisture sensitive TRW contain different 
signatures of the forced climate response over the past six centuries. Specifically, we find that the 
signature of the ALL- and VOLC-forcing response is most evident across the mean of all temperature-
sensitive chronologies, but not across the mean of all moisture sensitive chronologies. The amplitude of 485 
the temperature-sensitive forced response is larger than expected from the model simulations in decadally 
filtered results, suggesting inaccuracies in the representation of forcing and/or response on those 
timescales in observations, simulations, or both sources of information. Additionally, we detect and 
attribute a previously identified spatial pattern in moisture-sensitive response to volcanic forcing at 
annual timescales, with a dipole drying/moistening pattern similar to the one previously identified by 490 
others within the historical time period and with direct moisture observations. In this study we 
demonstrate for the first time that climate change D&A can be conducted directly on paleoclimatic 
observations and their multivariate, non-linear proxy system simulations, allowing for a much more 
reliable model evaluation than possible if using reconstructed climate variables. The results may 
realistically diverge from those obtained by D&A studies using univariate surface temperatures 495 
reconstructed from similar datasets, because the underlying observations may in reality be multivariate, 
nonlinear responders. Further studies could improve upon this proof of concept by incorporating stable 
isotopic observations in combination with isotope enabled climate model simulations, and by accessing 
a longer time interval for developing composite analyses, additional data types, and a larger ensemble of 
realistically forced climate simulations.  500 
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