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Manuscript cp-2021-61 

Dr. Ran Feng, editor Climate of the Past  

Woon Mi Kim  
Physics Institute and Oeschger Centre for Climate Change Research, University of Bern  

Sidlerstrasse 5, 3012 Bern, Switzerland  
 August 11, 2021  

 

Dear Dr. Ran Feng,  

We would like to thank you again for the opportunity to resubmit our manuscript and also many 
thanks to the reviewers for their constructive feedbacks and insightful comments. We greatly 
appreciate the time that you and the reviewers dedicated to our manuscript. We have addressed all 
the reviewer’s comments carefully. Please find below our responses (in bold blue fonts) to the 
reviewers.  

In addition, note that we included some sentences about the forcing data we used, which were 
omitted during the first phase of the revision. We marked-up these inclusions in the revised 
manuscript (lines 125 – 126 and lines 128 – 129).  

Sincerely, 

 
Woon Mi Kim on behalf of all the authors 
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Response to reviewer 1 

Comments: 

1) L27: could cite Allen and Ingram (2002) for the different drivers of mean and extreme precipitation.  

We included the corresponding citation in lines 31, 36, 41 and 45.  

2) L28 (rich gets richer): could cite Chou et al. (2009); Chou and Neelin (2004)  

We included the corresponding citations in line 33.  

3) L30 “is constrained by the available atmospheric moisture”: to be more precise, it is constrained by 
the maximum available moisture content at a given temperature (qv⋆ is what Clausius-Clapeyron 
knows about, not qv), but global extremes occur in regions close to saturation, so it does make much 
difference for global extremes. It could make a difference for regional extremes, in regions where the 
values of rain percentiles are rather constrained by the relative occurrence of different precipitation 
regimes.  

In the revised manuscript, we included some sentences clarifying the corresponding part in lines 39 
– 41 and 43 – 45.  

Lines 39 – 45: “[…] changes in extreme precipitation are constrained by the available maximum low-
level atmospheric moisture at a given temperature following the Clausius–Clapeyron (C-C) 
relationship (Allen and Ingram, 2002; Pall et al., 2007). The reasoning is as follows: the low-level 
atmosphere can hold more moisture with increasing temperatures, which in turn leads to an 
increase in extreme precipitation (Trenberth et al., 2003; Pall et al., 2007; Fischer and Knutti, 2016). 
The rate of increase of extreme precipitation given by C-C is 6-7% per degree of warming. This 
relationship holds mostly true over higher latitudes where the air is usually closer to saturation and 
relative humidity is roughly constant (Allen and Ingram, 2002).” 

4) L72: you mention some model limitations later, but at this stage what is coming to mind is that you 
can add references for that fact that in CMIP5, the rich-gets-richer mechanism breaks in the tropics 
(Chadwick et al., 2013) and references for the drizzling bias (e.g. Stephens and Hu, 2010)  

Thank you very much for your suggestion. We included more about the limitations related to the 
“rich-gets-richer” mechanism in the initial part of the introduction in lines 34 – 38, also including 
Chadwick et al. (2013). However, we did not include Stephens and Hu (2010) as the drizzling bias is 
more related to the changes in global mean precipitation and its associated water vapor and water-
recycling, and it is not specifically related to the model limitations to represent extreme 
precipitation.  

Lines 34 – 38: “The “wet gets wetter, and dry gets drier” pattern denotes the intensification of the 
global hydrological cycle, which is controlled by a tropospheric energy budget (Boer, 1993; Allen 
and Ingram, 2002; Yang et al., 2003). Nevertheless, it is also noted that this pattern for the future 
mean precipitation is more heterogeneous over land areas in observations and climate models 
(Roderick et al., 2014; Byrne and O’Gorman, 2015) and breaks in the tropics in CMIP5 models 
(Chadwick et al., 2013).” 

5) L110: would there be any interest in having several ensemble members for the robustness of 
attribution of extremes to different modes of variability?  

Note that our response to this comment is the same as what we responded before during the 
discussion phase:  
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Thank you for this idea. Using a large ensemble would always be ideal for assessing the robustness 
of modes of internal variability in climate simulations. However, there is a technical constraint on 
performing several ensemble members of these 3351 year-long simulations with daily time 
resolution. In the case of CMIP5, very few simulations are available at daily time resolutions 
covering the past millennium.  

Nevertheless, as our analysis considered all the possible conditions of the modes of variability linked 
with a large number of daily extreme precipitation events during the entire 3351 years, we assume 
that this amount of data can increase the robustness of the association of extreme precipitation 
with the modes of variability in CESM. 

6) L120: Is there any uncertainty reported on the forcing data that could propagate to uncertainties in 
extreme rainfall characteristics?  

The forcing data have for sure some inherent uncertainties coming from the reconstructions. 
However, based on the studies on the present-day and future extreme precipitation, extreme 
precipitation is more dependent on the surface temperature (Pendegrass et al., 2015; Sillmann et 
al., 2017) and internal variability (Sillmann et al., 2017), rather than the introduced external forcing, 
for instance, the emission scenarios and solar forcing. Hence, we assume that the uncertainty in 
extreme rainfall characteristics caused by the forcing data would be minimal.  

We included some texts about uncertainties from the external forcings in lines 243 – 247 in the 
method section (Sect. 3.2) and in lines 491 – 493 in the result section (Sect. 4.4).  

Lines 243 – 247: “It is important to mention that all reconstructed external forcings such as TSI and 
volcanic eruptions contain inherent uncertainties derived from reconstruction models or methods 
and from the dating of past events (Sigl et al., 2015; Jungclaus et al., 2017; Matthes et al., 2017). An 
attempt to reduce such uncertainties is an active research topic (Sigl et al., 2015; Matthes et al., 
2017) that is beyond the scope of this study. A possible implication of uncertainties from the 
external forcings in our analysis is briefly discussed in the result section (Sect. 4.4).” 

Lines 491 – 493: “Moreover, this limited influence of external forcings on extreme precipitation 
signifies that the inherent uncertainties of external forcings have a minimal effect on the 
characterization of pre-industrial extreme precipitation.” 

7) L168 “each cluster is composed of consecutive days of extremes”: which threshold is used to 
separate the clusters, how is it chosen, and is it spatially uniform?  

The temporal threshold is set to the distance between the extremes within a cluster. In our study, 
the value of this threshold is one day. In other words, the maximum temporal distance allowed 
among the extremes in one cluster is one day, hence, the minimum distance among the clusters is 
two days. This temporal threshold of one day is a commonly used value in many GEV analyses (Coles 
et al, 2001; Sugahara et al., 2008), as it does not significantly reduce the number of data to be 
analyzed. At the same time it guarantees statistical independence among the de-clustered extremes. 
We do not necessarily expect that the clusters are uniformly distributed over space and time.  

We reformulated the corresponding sentence in the revised manuscript to make it clearer.  

Lines 180 – 183: “For this, we de-cluster the extreme precipitation at each grid point by taking the 
maximum value within each cluster. Each cluster is composed of consecutive days of extremes and 
the extremes separated by a maximum of one day to other extremes. In other words, the minimum 
temporal distance allowed between the extremes within a cluster is one day, and between the 
clusters is two days (Coles et al., 2001).” 
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8) L181: I am bit confused, it is not clear to me how the data is sampled for the calculation of a given 
non-stationary GPD. For stationary GPDs, I thought you were using the entire time series at each 
location and computed the shape, scale parameters for that whole distribution over time. For non-
stationary distributions, it seems that you somehow fit σ0 and σ1 for the entire dataset, but how do 
you get the evolution of the tail distribution over time for each (x,y) point? Do you compute the rain 
distribution and the GPD for data sampled on moving windows, then obtain a σ(t) and regress it over 
time to get σ0 and σ1? 

As we mentioned in the previous discussion phase, we included the detail on the estimation method 
for the parameters σ, σ0, σ1 and ξ through maximum likelihood in lines 189 – 196.  

Lines 189 – 196: “The parameter estimation for a stationary GPD model through a maximum 
likelihood is given as follows: under the assumption that the exceedances zi, …, zk are independent 
variables where k is the number of exceedances, the log-likelihood function l for the parameters σ 
and ξ is: 

𝒍(𝝈, 𝝃)=	-	k	log(σ)		-	 0𝟏 + 𝟏
𝝃
3∑ 𝒍𝒐𝒈(𝟏 + 𝝃𝒛𝒊

𝝈
)	𝒌

𝒊'𝟏      for    (1 + σ−1ξ zi)>0 ,    i=1,...,k 

𝒍(𝝈)=	-	k	log(σ)		-	𝝈(𝟏	 ∑ 𝒛𝒊	𝒌
𝒊'𝟏     for    ξ = 0 

Having the parameter vector β with β = [σ,ξ], the maximization of the pair of log-likelihood l(σ,ξ) 
with respect to the β is performed. This maximization leads to the maximum likelihood estimate of 
the scale σ and shape ξ. The maximization is done numerically, as no analytical solution is possible 
(Coles et al., 2001).” 

Lines 203 – 205: “Time dependent scale and shape parameters for the non-stationary model are also 
estimated using the maximum likelihood method following Eq. 3, assuming σ(t) = σ0 + σ1C(t) or σ(t) 
= σ0 +σ1t (Colesetal.,2001; Sugahara et al.,2009). The parameter vector β in this case is β= [σ0, σ1, ξ] 
(El Adlouni et al., 2007).” 

9) L244 (Mann-Kendall trend test): I don’t know this test, would you have a reference? Is it standard 
practice? 

We added some references (Mann, 1945; Wilks, 2011; e.g., Wesler et al., 2013) in lines 280. 

10) L246 (Mann-Whitney U-test): I don’t know this test, would you have a reference? Is it standard 
practice? 

We added some references (Mann and Whitney, 1947; Wilks, 2011; e.g., Kim and Raible, 2021) in 
lines 282. Note that nonparametric test such as the Mann-Whitney U-test are commonly used in 
particular for extreme events which are by definition not normal distributed (which is the 
assumption of the commonly used student t-test).  

11) L284 “the de-clustering method is (typo) only around 40% of the initial numbers of extremes”: same 
comment as above, does that depend on the threshold used to define clusters? Is it uniform? 

The response for this comment is the same as what we responded during the discussion phase (see 
#7): 

The number of de-clustered extremes depends on the size of the clusters that are defined by the 
level of temporal threshold. If the temporal threshold among the extremes is softened (for example, 
instead of 1-day distance, taking 5-day distance), the size of each cluster would be large, and the 
final de-clustered values would be reduced as the de-clustering method only takes a maximum 
extreme in each cluster.  
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12) L286: interesting comparison of the extremal index between tropical and extra-tropical regions. It 
seems there could be a correspondence with the convective-organization view- point, saying that 
organization is more likely to occur at high SSTs, and which would be consistent with clusters mainly 
occurring in the tropics. 

Thank you for this hint. We added a sentence:  

Lines 320 – 324: “In some regions in the tropics, the de-clustering method leaves only around 40% 
of the initial numbers of extremes, indicating that the reduction of extreme events is particularly 
strong over this latitudinal belt, a known region of convective organization with temporal clustering.” 

13) L350-351 “distinguishing the regions”: do you mean that ‘the POT analysis allows to separate 
distinct and coherent contiguous regions for similar types of distributions’, or do you mean that the 
regions that are exhibited somehow map onto known regimes, i.e. the regions on Fig. 5b? 

It means the former. We changed the corresponding sentence to:  

Lines 388 – 389: “the results show that the POT analysis is able to identify the large-scale 
characteristics of extreme precipitation by separating distinct and coherent regions for similar types 
of distributions.” 

14) Figure 2: What would the distributions look like with a logarithmic y-axis? Maybe that would allow 
to better illustrate when there is a finite upper-bound. Is it hard to see as it is shown now. 

We modified the figure 2 by including a plot that shows all the density distributions together (Figure 
2.e). We did not change the y-axis to a logarithmic one, as the resulting plot with a logarithmic axis 
seemed less convincing than showing all the distribution together with the same x and y coordinate 
values. 

15) Figure 7, middle panel title: “mean above 99th threshold” would me more explicit. 

The part of the caption is modified as: “The thresholds for extreme precipitation (defined as the 
99th percentiles of daily precipitation relative to the 3351-year distributions)” 

16) Appendix A, L761-762: several variables are used and I assume they are normalized with mean and 
variance before analysis so that the RMSE can be compared numerically. But is there a reference RMSE 
value, a threshold above/below which the error is large/small, or is it just for relative comparison 
across modes? 

Yes, the variables are normalized and standardized before the calculation. As you said, it is the 
relative comparison across the modes. Although we did not mention it in the manuscript, we 
excluded an EOF pattern from the model that theoretically should agree with the observed EOF, but 
it presents high RMSE relative to the observed pattern.  

Besides the criterion based on RMSE, we selected the modes that are similar and detected as well 
by Fasullo et al. (2020) which used the CMIP models including the CESM family models, and by Lim 
(2014) which used the reanalysis. Both studies estimated the modes of variability based on the EOF 
analysis. In the revised manuscript, we mention the two studies we have based the analysis on.  

Also, note that in the revised version, we moved all information we put before in the appendix to 
the supplement.  
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Response to reviewer 2 
 
Major comment: 
 
1) Main suggestions is related to the link between temperature and extreme precipitations. Whereas 
the manuscript focused on the external drivers of extreme precipitation and on the impact of natural 
modes of climate variability, one question that probably will come to the mind of many readers is 
whether or not warm decadal (or miltidecadal periods) generally are accompanied by more intense 
daily precipitation extremes. The introduction indicates that, for the future, the Clausius-Clapeyron 
equation does suggest that for future warming mean and extreme precipitation should increase. Can 
we see that relationship already in the past in this simulation ? How large should the 'warm' or cold 
regions be so that the temperature impacts extreme precipitation (e.g. whole hemispheres or 
continents) ? If yes, would it be worth to investigate this link in climate reconstructions, as far as proxies 
for extreme precipitation might be found ? 
 
As we responded in the previous discussion phase, we repeated the GEV analysis using the global 
mean and regional temperature anomalies as covariates for extreme precipitation and included the 
result with the new analysis in the revised manuscript in the method (Sect. 3.2, lines 268 – 273) and 
result (Sect. 4.4, lines 468 – 487) sections. We found that not the global, but the regional surface 
temperatures are statistically connected with extreme precipitation, mostly over the extratropical 
land areas and the tropical ocean.  
Also note that we modified Fig. 11 and the abstract based on the result of the new analysis.  
 
Lines 268 – 273: “TS is obtained by subtracting the 1501 BCE–1849 CE monthly means of surface air 
temperature from each monthly value in the simulations. Two kinds of TSs are considered for the 
non-stationary analysis: one is the globally-averaged means of TS (TS-G; Fig. S4) and another is the 
spatially (latitude and longitude) gridded TS (TS-R). The former is to assess the influence of global 
temperature and the latter is to assess the influence of regional temperature on daily extreme 
precipitation. Both TSs are resolved monthly and similar to the modes of internal variability, they 
are not interpolated to daily time resolution. The influences of TSs are compared to those of the 
modes of variability.” 
 
Lines 468 – 487: “The result does not vary much when TS-G is included as covariate (Fig. 11b). Only 
a few sporadic points that denote the influence of TS-G on extreme precipitation appear over the 
Southern Hemisphere, indicating that the changes in the global mean temperature affect little the 
long-term variability of extreme precipitation compared to the modes of variability. However, the 
influence of the surface temperature in Fig. 11b changes when the regional temperature anomalies 
TS-R instead of TS-G are included as covariates (Fig. 11c). The dominance of TS-R over the modes of 
variability is highlighted in many land areas and the tropical oceans. The land areas where TS-R is 
more important are found largely at the extratropical latitudes in the Northern and Southern 
Hemispheres, covering a large part of northern Asia and North America, southern South America 
and Africa, Australia, the African transition zone, and the Arabian Peninsula. It is clear that over 
northern Asia, the influences of PNA and NAM that appeared previously in Fig. 11a and b are masked 
by those of TS-R. TS-R also prevails over the tropical Pacific, where ENSO takes place. In this region, 
the values of TS-R overlap with the NIÑO index, which is calculated as an average of the surface 
temperature anomalies of the same area. Hence, it is reasonable to interpret the predominance of 
TS-R in the tropical Pacific to be similar to the influence of ENSO. However, this pattern of TS-R 
simply indicates that the regional temperatures are statistically more associated with the regional 
extreme precipitation than the averaged temperature condition, thus the NIÑO index, over the area. 
The here found associations of TS-R with extreme precipitation over land are in line with the 
preceding studies (Pendergrass et al., 2015; Sillmann et al., 2017; Sun et al., 2021), which have 
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demonstrated that the present-day and future extreme precipitation are regulated by surface 
temperature. Here, it is also shown that TS-R does not outperform all the modes of variability over 
the entire land areas. There are regions, including some in the extratropics, where the modes of 
variability still play more important roles in regional extreme precipitation. Some of these regions 
are North America, northern South America, west- and southern Europe, and southern Asia, where 
ENSO, PDO, EA-WR, and PSA exhibit statistically significant associations.” 
 
Minor comments: 
 
2) 'Although, eruptions alter both the intensity and frequency of extreme precipitation,.'  
Change Although to However 
 
We modified the respective sentence in lines 18 – 20 to: 
 “Tropical volcanic eruptions affect extreme precipitation more clearly in the short term up to a few 
years, altering both the intensity and frequency of extreme precipitation. However, more apparent 
changes are found in the frequency than the intensity of extreme precipitation.”  
 
3) 'Extreme daily precipitation, which often causes devastating flood events, is a complex phenomenon 
due to its rare occurrence and short-lived nature' 
I guess that this are not necessarily the reasons why extreme precipitation is a complex phenomenon. 
These may, however, be reasons why it is difficult to analyse extreme precipitation. 
 
We modified “complex phenomenon” to “difficult phenomenon to study” in line 26.  
 
4) ' When the sample size is small and the estimated ξ is negative, there is a bias in the estimation of ξ 
towards a larger standard error (Blender et al., 2017)' 
 
This sentence could be a bit confusing at first sight. I guess that here 'sample size' refers to the number 
of exceedances (?), but some readers would rather interpret 'sample size' as the total number of data 
(above and below the threshold). In any case, this sentence is not clear to me, since in both cases the 
'sample size' would be the same for all grid-cells: either 1% of the available data (threshold set at the 
99% percentile) or the all the available data. So why do some grid-cells have a smaller sample size than 
others? 
 
Thank you for pointing this out. As you said, the “sample size” means the number of exceedances, 
but after these exceedances being de-clustered to guarantee the statistical independence among 
the values as mentioned in lines 179 – 182. Although in the beginning, every cell has the same 5% 
or 1% of their total number of data, the de-clustering method can reduce these numbers at each 
grid points up to 40%, as shown in Figs. 6 and 7. We changed “sample size” to “number of 
exceedances” and reformulated the corresponding sentence to clarify errors in negative shape 
parameters.  
 
Lines 168 – 171: “When the number of exceedances is small, and the estimated ξ is negative, there 
is a bias in the estimation of ξ towards a larger standard error. This occurs because since any sample 
has a finite maximum, there is a bias towards estimated distributions with an upper limit, hence the 
negative estimated shape parameter (Giles et al., 2016).” 
 
Lines 183 – 185 : “[…] The result of the de-clustering can be quantified through an extremal index, 
which is the ratio between the number of extremes after being de-clustered and the initial number 
of extremes. These de-clustered exceedances are the values used for the analysis.” 
 


