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Abstract. Oxygen and hydrogen isotope ratios in polar precipitation are widely used as proxies for local temperature. Used in

combination, oxygen and hydrogen isotope ratios also provide information on sea surface temperature at the oceanic moisture

source locations where polar precipitation originates. Temperature reconstructions obtained from ice core records generally rely

on linear approximations of the relationships among local temperature, source temperature and water-isotope values. However,

there are important nonlinearities that significantly affect such reconstructions, particularly for source-region temperatures.5

Here, we describe a temperature reconstruction method that accounts for these nonlinearities. We provide new reconstructions

of absolute surface temperature, condensation temperature, and source-region evaporation temperature for all long Antarctic

ice-core records for which the necessary data are available. We also provide thorough uncertainty estimates on all temperature

histories. Our reconstructions constrain the pattern and magnitude of polar amplification in the past and reveal asymmetries in

the temperature histories of East and West Antarctica.10

1 Introduction

Stable-isotope ratios of water have been the foundational proxy of polar paleoclimate research for more than a half-century

(Langway, 1958; Gonfiantini, 1959; Dansgaard, 1964). Primarily used as a temperature proxy, stratigraphic records of water-

isotope ratios in ice sheets provide detailed histories of Earth’s climate over hundreds of thousands of years (Dansgaard et al.,

1969; Petit et al., 1999), providing insight into the past magnitudes, spatial patterns, and phasing of climate change across the15

globe (Masson-Delmotte et al., 2006; Barbante et al., 2006; WAIS Divide Project Members et al., 2013, 2015). Both oxygen

and hydrogen have stable isotopes whose ratios (18O/16O and 2H/1H) are commonly expressed as deviations, δ18O and δD,

from Vienna Standard Mean Ocean Water (VSMOW):

δ =
Rx−Rstd
Rstd

(1)

where Rx is the ratio in the sample and Rstd is the ratio in VSMOW.20

Poleward transport of moisture by the climate system, the progressive removal of moisture from the atmosphere by conden-

sation and precipitation, and the fractionation of water isotope ratios during phase changes are all processes inherently linked
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to temperature, and together underpin the use of water isotope ratios in polar precipitation as a temperature proxy (Craig, 1961;

Epstein et al., 1963; Dansgaard, 1964; Gonfiantini, 1965). The strong empirical correlation between the water-isotope ratios

in precipitation and surface temperature supports this interpretation (Petit et al., 1999; Jouzel et al., 1997; Masson-Delmotte

et al., 2008). Air temperatures during condensation (Petit et al., 1999; Jouzel et al., 1997) and during initial moisture evapora-

tion (Vimeux et al., 2002) can be reconstructed from ice-core water-isotope records, if the relevant scaling relationships can be5

determined from theory, models, or observations (Vimeux et al., 2002; Kavanaugh and Cuffey, 2002; Stenni et al., 2010). Here,

we examine the widely-used assumption of linearity in the scaling relationships between water-isotope ratios and temperature.

1.1 Temperature reconstructions

Any interpretation of water isotope ratios as a proxy for temperature requires a model, whether conceptual, statistical, or

numerical. A conceptual model of progressive distillation and integrated fractionation (e.g. Dansgaard (1964)) is sufficient10

to qualitatively interpret variations in water isotope ratios as variations in temperature in the high latitudes. The simplest

quantitative interpretation of ice-core water-isotope records relies on the empirical correlation between observed water isotope

ratios of precipitation and surface temperature at the precipitation site (Petit et al., 1999; Jouzel et al., 1997). A limitation of

this approach is the possibility to conflate the “spatial slope" between water-isotopes and temperature, that is the relationship

observed across a range of modern sites, and the “temporal slope", the relationship at a single point through time (Jouzel15

et al., 1997). This approach also does not account for simultaneous and independent changes in evaporation conditions, which

can impact high latitude water isotopes ratios in several ways. Initial evaporation temperature, together with the condensation

temperature, determines the total temperature gradient through which moisture must be distilled to reach a given site. Further,

evaporative conditions set the initial isotopic values of the vapor before distillation. The isotope ratios of vapor above the ocean

depend on the temperature during evaporation, the isotopic values of the seawater, and the occurrence of kinetic fractionation20

during evaporation, which is driven by sub-equilibrium relative humidity and influenced by sea surface temperature and wind

speed (Merlivat and Jouzel, 1979; Jouzel et al., 1982).

A more complete approach to reconstructing temperature from water-isotope records is to employ numerical models that

account for the combined influence of variability in both evaporation and condensation temperatures, as well as other fac-

tors. Reconstructing two unknowns (i.e. both evaporation-source and condensation-site temperatures) requires two constraints,25

which are provided by the oxygen and hydrogen isotope ratios and the relationship between them. While the oxygen and hydro-

gen isotope systems have similar behavior in the atmosphere, there are differences in their response to the same environmental

conditions and to processes such as kinetic fractionation. The deuterium excess is the weighted difference between δ18O and

δD, dxs = δD−8× δ18O, and is commonly used to quantify these differences (Dansgaard, 1964; Merlivat and Jouzel, 1979).

Changes in water-isotope parameters measured in precipitation at an ice core site, ∆δ18O and ∆dxs, can be conceptualized30

as driven by changes in site and evaporation source temperature, ∆Tsite and ∆Tsource:

∆δ18O = γ1∆Tsite + γ2∆Tsource (2)
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∆dxs = β1∆Tsite +β2∆Tsource (3)

where β and γ are the partial derivatives of δ18O and dxs with site and source temperature, respectively. The magnitudes of β

and γ can be diagnosed from water-isotope distillation models for the ice-core site in question (Vimeux et al., 2002; Kavanaugh

and Cuffey, 2002; Stenni et al., 2010; Uemura et al., 2012). Once these slopes are established, the equations may be solved for

∆Tsite and ∆Tsource using records of δ18O and dxs (Vimeux et al., 2002; Stenni et al., 2010; Uemura et al., 2012).5

1.2 Nonlinearities in isotope fractionation and the deuterium excess definition

The temperature reconstruction approach described above depends on the assumption that the parameters, β and γ, are fixed

in time and independent of temperature. However, the β and γ parameters, as diagnosed from model simulations, are found

to be different for different ice-core sites with differing modern surface conditions (e.g. Stenni et al. (2010) and Uemura et al.

(2012)). This means that β and γ depend on the site conditions, which obviously change over time.10

Another issue with the linear reconstruction approach is the definition of the deuterium excess parameter (Uemura et al.,

2012; Markle et al., 2017). The origin of the slope in the definition of deuterium excess is an empirical fit to global precipitation

measurements (Dansgaard, 1964). However, a linear relationship between δ18O and δD is not fundamental (Craig, 1961);

equilibrium fractionation alone drives a nonlinear relationship between δ18O and δD (Markle et al., 2017). While the effects

of source-region conditions on deuterium excess of vapor are nearly linear during initial evaporation (Merlivat and Jouzel,15

1979; Uemura et al., 2008), the signal is not uniformly preserved as moisture is transported toward the deposition site. Kinetic

fractionation that occurs during transport (Jouzel et al., 1982) alters the deuterium excess of the vapor, as does equilibrium

fractionation during condensation, owing to biases in the linear definition (Markle et al., 2017). Thus the sensitivity of dxs in

precipitation to evaporation and condensation temperatures must vary as a function of the total condensation and fractionation

experienced during transport to any deposition site, and is thus a function of Tsite.20

Some of these issues have been addressed by redefining the deuterium excess parameter (Uemura et al., 2012; Markle et al.,

2017). Uemura et al. (2012) fit a second-order polynomial to a compilation of δ′18O and δ′D data, where δ′x = ln(1 + δx), and

defined a phenomenological, non-linear deuterium excess parameter:

dln = δ′D−
(
A× (δ′18O)2 +B× δ′18O

)
(4)

with coefficients A=−28.5 and B = 8.47 (note that the coefficients and δ′ values are unitless; for example δ′18O = 0.040 not25

40‰.

This definition of deuterium excess reduces the influence of kinetic fractionation during transport and the biases inherent

to the linear definition, making it a more faithful qualitative proxy for source-region conditions (Uemura et al., 2012; Markle

et al., 2017), and is particularly important at the coldest Antarctic sites where nonlinear effects overwhelm the dxs definition.

However, the same distillation processes that lead to biases in the linear definition of the deuterium excess parameter will also30

bias the results of temperature reconstructions if fixed sensitivities (Equations 2 and 3) are assumed.
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Here we examine these issues in water isotope-based temperature reconstructions and suggest an improved technique.

2 A (relatively) simple water isotope model

The quantitative reconstruction of temperatures from water isotope ratios rests on the encapsulation of fractionation processes

in models. Any investigation into nonlinearity in those relationships will depend on the representation of those physics. To

assess the importance of those nonlinearities, we construct a model that is relatively simple while still faithfully representing5

the observed relationships between the hydrogen and oxygen isotope ratios in polar precipitation. We describe the construction

of the Simple Water Isotope Model (SWIM) in detail in the Appendix. Here we describe the conceptual framework of the

model.

The underpinning of SWIM is shared by many water isotope models: the transport and distillation of moisture down clima-

tological temperature gradients. Moisture is evaporated from the oceans in the low and mid latitudes and transported toward the10

poles. As air cools, the saturated vapor pressure decreases nonlinearly, and moisture above saturation is removed by precipita-

tion. During these phase changes, water fractionates; the vapor and precipitation falling from it become increasingly depleted

in the heavier isotope. The total fractionation at any point is a consequence of the temperature gradient through which the water

is distilled, as well as the mean temperature of that gradient, owing to nonlinearity in the Clausius-Clapeyron relationship. A

change in the average condensation temperature at a site thus results in a change in the isotope ratios of precipitation at that15

site. This is the essential (though not sole) reason that high-latitude water-isotope ratios are a useful temperature proxy. It is

driven by two basic nonlinear processes, the Clausius-Clapeyron relationship and Rayleigh distillation (see A2.2).

Other processes can be important as well. The temperature dependence of fractionation factors, for example, generally

amplifies the temperature relationship. While any single precipitation event at a site may be subject to a variety of additional

factors and processes, the long term mean is strongly influenced by climatological moisture distillation.120

Our model distills moisture down thermodynamic pathways defined by temperature and pressure. Changes in water-isotope

ratios are driven neither by changes in space nor time but by changes in the thermodynamic variables that cause the water

to change phase. The temperature gradient of the pathway is prescribed from an initial evaporation temperature, T0, to a

final condensation temperature, Tc. The pathways are pseudo-adiabatic, consistent with isentropic moisture transport to the

Antarctic (Bailey et al., 2019) and the basic assumption of Raleigh distillation, that moisture is removed after precipitation. A25

superposition of many thermodynamic pathways is required to represent a single Antarctic precipitation site, reflecting both

the range of precipitation conditions experienced at a site as well as moisture transport from sources with a distribution of

evaporative conditions (Markle et al. (2017), Figure A8). An example of a set of these pathways is shown in Figure 1. We

use climatological correlations to relate initial evaporation air temperature, T0, to other initial conditions including sea surface

temperature, SST0, and relative humidity, RH0 (see A1.1).30

1This process is not incidental but rather fundamental to the climate system itself. The Earth’s surface absorbs shortwave radiation form the sun and

transfers that heat to the atmosphere. The majority of that transferred heat is latent, in the form of evaporated moisture. The basic climatological function

of the atmosphere and its motions is to transport heat from regions of net gain to regions of net loss, from low to high latitudes, and a large fraction of that

transported heat is also moisture.
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Figure 1. Simple Water Isotope Model. a) Condensation temperature-pressure pathways for pseudo-adiabatic distillation. Pathways are

colored by initial evaporation air temperature in all subplots. b) Mixing ratios for all pathways. c) δ18O of precipitation for all pathways. d)

Relationship between δ18O and dln of precipitation for all pathways. Black dots show water isotope values of annual averaged precipitation

from a compilation of global observations (see text), while grey dots show broader set of monthly observations from the GNIP data base

(IAEA, 2001).
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We consider the temperature dependence of kinetic and equilibrium fractionation during both evaporation and transport, as

well as mixed liquid and ice phases of precipitation. The model incorporates supersaturation at very cold conditions, which is

tuned to match the observed relationship between the oxygen and hydrogen isotope ratios in global precipitation (Figure 1.d)

rather than the relationships between those parameters and climate variables such as temperature. We investigate the sensitivity

of the model and the resulting reconstructions to uncertainties and assumptions including fractionation factors, evaporative5

closure assumptions, precipitation schemes, supersaturation, the pseudo-adiabatic pathway, initial climatological correlations

during evaporation, and non-uniqueness. We also investigate the influence of mixing both during evaporation and transport,

the potential influence of seasonality (and intermittency) of precipitation and evaporation, as well as the relationship between

surface temperature at a site and the vertically-integrated, precipitation-weighted condensation temperature above that site. We

make no attempt to model post-depositional processes.10

3 Temperature-dependent slopes

To investigate the sensitivity of water-isotope ratios of Antarctic precipitation to site and source conditions, we use SWIM

to model isotopic state spaces. We run SWIM through a large ensemble of temperature pathways defined by T = T0,T0−
dT, ...,Tc , with dT =0.1◦C. We run nearly 24,000 trajectories to fill the plausible parameter space of 0◦C ≤ T0 ≤ 28◦C and

−70◦C ≤ Tc ≤ 10◦C. We first examine the model with base assumptions and parameterizations2. We next investigate the15

sensitivity to these choices.

The modeled isotopic state spaces are shown as maps whose x and y coordinates are the condensation and evaporation

temperatures, Tc and T0 respectively, and whose z (color) dimension is the isotopic value of final precipitation in Antarctica:

δ18O in Figure 2.a, δD in Figure 2.b, dxs in Figure 2.c, and dln in Figure 2.d. The partial derivatives of these isotopic parameter

spaces with respect to Tc and T0, as functions of both Tc and T0, are shown in Figures 3 and 4, respectively.20

The gradients of both the δ18O and δD surfaces are predominantly in the direction of the condensation temperature (the

x-axis in Figure 2), emphasizing the strong condensation-temperature dependence of these parameters. However, the slopes

of both δ18O and δD are not strictly linear with condensation temperature Tc, clearly varying with its absolute value (and to

a much lesser extent with the evaporation temperature, T0, due to its influence on the total distillation gradient). Further, the

partial slopes of δ18O and δD with respect to the evaporation source temperature depend strongly on the absolute values of25

both the evaporation and condensation temperatures, evidenced by the changing angle of the contour lines in Figure 2. The

partial derivatives of the isotopic surfaces with respect to T0 and Tc are shown in Figures 3 and 4. It is important to recognize

that the partial derivatives with respect to T0 are not for the initial vapor at the point of evaporation, but for the precipitation

after the vapor has passed through the distillation pathway to the final precipitation site. The sensitivity of isotopic values of

precipitation to source region conditions is a function of the total distillation that the moisture experiences.30

2The base model includes local closure during evaporation, values of SST0 and RH0 for a given T0 determined by spline fit to NCEP/NCAR climatology,

and a tuned supersaturation such that S = 1− 0.00525T , where T is in ◦C. See Appendix for details.
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Figure 2. Water isotope state spaces as a function of the boundary conditions Tc, the condensation temperature, and T0, the mean evaporation

temperature. Surface shading and contour lines are the water isotope values of precipitation (in units of ‰) a) δ18O b) δD, c) linear deuterium

excess dxs, and d) nonlinear deuterium excess dln.

The modeled dxs surface shows strong slopes along both the condensation temperature and evaporation temperature axes

(Figure 2.c), as does modeled dln(Figure 2.d). The dln depends more strongly on the evaporation temperature than the dxs. In

particular, at the coldest condensation temperatures, variability in dxs is dominated by the condensation temperature, reflecting

the influence of kinetic fractionation during condensation and the nonlinear bias inherent to the historical linear definition (Ue-

mura et al., 2012; Markle et al., 2017). These model results (Figures 2, 3, and 4) demonstrate that the logarithmic definition of5

the deuterium excess parameter (dln) is a more faithful qualitative proxy for source-region conditions than the linear definition

(dxs). Even at very low condensation temperatures, dln still depends strongly on the initial evaporation temperature, whereas

linear dxs becomes more dependent on condensation temperature.
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Figure 3. Partial derivatives of isotope state spaces with respect to condensation temperature: a) ∂δ18O/∂Tc,b) ∂δD/∂Tc, c) ∂dxs/∂Tc, d)
∂dln/∂Tc. Shading and contours in all subplots is the slope in h/◦C.

A "bump" in the partial derivatives of all isotope parameters with respect to the condensation temperature is seen around

-30◦C, arising primarily from the transition between liquid and ice condensate (Figure 3), whose relationship to temperature

is prescribed in the model and based on satellite data (see Appendix A2.2). The slopes in this region also depend on the

parameterization of supersaturation. This local change in partial slope is smoothed somewhat when atmospheric mixing is

incorporated into the model (see Appendix A5), and the changes in slopes across the parameter space are larger than these5

local changes.

The temperature reconstruction technique described in Section 1.1 is based on the linearization of the slopes between δ18O,

dxs, condensation temperature, and evaporation temperature, and assumes the β and γ parameters in Equations 2 and 3

are fixed over the range of reconstructed ∆Tsite and ∆Tsource. Our results demonstrate that the assumption that β and γ
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Figure 4. Partial derivatives of isotope state spaces with respect to evaporation temperature: a) ∂δ18O/∂T0, b) ∂δD/∂T0, c) ∂dxs/∂T0, d)
∂dln/∂T0. Shading and contours in all subplots is the slope in h/◦C.

are independent of temperature (i.e. that the sensitivities are fixed and linear) is problematic. The parameters γ1 and γ2 in

Equation 2 are comparable to the slopes ∂δ18O/∂Tc and ∂δ18O/∂T0 in Figures 3 and 4. Although the slope of δ18O along

the condensation temperature axis, ∂δ18O/∂Tc, doesn’t change dramatically, it is clearly variable, as is ∂δ18O/∂T0. The slopes
∂dxs/∂Tc and ∂dxs/∂T0 (comparable to β1 and β2 in Equation 3, respectively) are highly variable. Indeed the dxs surface in

Figure 2 has a saddle at moderate condensation temperatures, over which ∂dxs/∂Tc changes sign (Figure 3.c). This shows that5

the assumption of constant β and γ parameters in isotope-based temperature reconstructions is valid only under narrow ranges

of ∆Tsite and ∆Tsource. For plausible changes in site temperatures, assuming a fixed γ, for example, may not only lead to

errors in magnitude but even to errors in the sign of γ, and ultimately ∆T . The use of a fixed γ can introduce spurious variability

into temperature reconstructions, particularly of T0, the evaporation source temperature.
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Evidence for the critical change in the sign of ∂dxs/∂Tc (Figure 3.c) can actually be seen directly in Antarctic ice core

records. Deuterium excess (dxs) records from core sites whose average conditions lie on the same side of this change in slope

are generally correlated over the last 60 thousand years, while sites whose average conditions lie on opposite sides of the

change in slope are weakly or even anti-correlated with each other (Figure 5). Comparison of dxs and dln between cores

further demonstrates this fundamental change in slope (Figure A20).5

Figure 5. Time series and cross correlation matrices for eight different deep Antarctic ice core sites. a, b) δ18O; c, d) dxs; and e, f) dln. In

the time series plots, each record is colored by its Holocene average δ18O value. See Section 4.2 in the text for details and references for the

ice core records. All original records are interpolated to even 50 yr time spacing on the Buizert et al. (2018) synchronized timescale where

possible, else they are plotted on original published timescales. All records are ordered by their approximate modern surface temperature in

the cross correlation matrices.
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The issue of variable isotope-temperature scalings is implicit in previous work. Uemura et al. (2012) for example, following

Stenni et al. (2010), used an isotope model to calculate the relevant β and γ parameters for several East Antarctic ice-core

sites. Using the same isotope model, they calculated different scalings for each site. However, by assuming these slopes are

constant for each site, they do not consider the possibility that one site’s conditions may have been more like another’s in the

past. Recognizing this as well as the inability of their model to simultaneously match observed site temperature and δ values,5

Uemura et al. (2012) create several reconstructions for the Dome Fuji site utilizing different linearizations of the model. They

do not however attempt a reconstruction that accounts for the nonlinearities in the water isotope-temperature relationships.

The solution to this issue of slope nonlinearity, within the linear isotope temperature reconstruction framework (Equations 2

and 3), is not obvious. The nonlinearities in the slopes of the isotope surfaces depend on the absolute condensation and evapora-

tion temperatures, the target of the reconstruction, which are of course not known a priori. We next present a novel temperature10

reconstruction framework, which takes into account the inherent non-linearities in the water-isotope fractionation process.

4 Nonlinear temperature reconstructions

4.1 Reconstruction method

For every pair of T0 and Tc inputs to SWIM there is a corresponding modeled value of δ18O, δD, and dln as shown in Figure 2.

We invert the modeled state space and project each independent temperature parameter onto a pair of dependent isotope values,15

e.g. δ18O and dln. This defines a set of maps, with x and y axes of δ18O and dln, and with z axes Tc and T0, shown in Figure 6.

To reconstruct Tc and T0, the inverted model results may be used as a lookup table: a pair of δ18O and dln measurements

determine a pair of Tc and T0 reconstructions (Figure A16). While previous reconstruction methods (e.g. Vimeux et al. (2002);

Kavanaugh and Cuffey (2002); Stenni et al. (2010)) linearize the slopes calculated by a water-isotope model around the modern

climate state, this method accounts for the changes in the slopes that depend on the mean state. Further, there is no need to find20

analytical solutions to the model or fit families of high-order polynomials to the results.

The boundary conditions Tc and T0 may be projected onto axes defined by any two isotope parameters, which may then

be used to reconstruct temperature. Since the only unique isotope information comes from the original δ18O, δD measure-

ments (dxs and dln being second-order parameters), any combination of those parameters may seem equally well-suited for the

purposes of temperature reconstruction. In practice, however, δ18O and dln are the optimal pair of parameters to use for tem-25

perature reconstruction. This result is examined in more detail in the Appendix. The fundamental reason is that the logarithmic

excess parameter, as a second constraint, provides an axis more orthogonal to the variability we are attempting to reconstruct.

This is also the same reason dln is a better qualitative proxy for source region temperature than dxs. After proposing the dln

parameter, Uemura et al. (2012) suggest that there is no added value in the logarithmic parameter over the traditional linear

dxs, in terms of the temperature reconstruction equations. While true for the linear temperature reconstruction equations, this30

is not the case when the nonlinearities of β and γ are accounted for.

Note that we could just as readily reconstruct RH0 instead of T0, since we assume climatological relationships between

them. We reconstruct T0 out of interest in the parameter from a climate dynamics perspective. In principle, our method can
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Figure 6. Inverted T0 and Tc surfaces as a function of modeled dln and δ18O of precipitation. a) Surface shading and contours show

condensation site temperature, Tc in ◦C, as a function of dln and δ18O of precipitation at a site. b) Surface shading and contours show

evaporation source temperature, T0 in ◦C, as a function of dln and δ18O of precipitation at a site.

be extended to reconstruct more than two variables simultaneously, such as Tc, T0, and RH0, by modeling multi-dimensional

parameter spaces. This of course requires additional measured constraints, which could include the δ17O of precipitation, the

accumulation rate, or other variables modeled in this framework, and is discussed in the Appendix.

4.2 Absolute temperature reconstructions

An advantage of the reconstruction technique presented here is that we are able to reconstruct absolute evaporation and con-5

densation temperatures, not just relative variability, as in previous techniques.
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There are several additional considerations important to making these reconstructions. First, we are often interested in the

surface air temperature for paleoclimate studies, rather than the condensation temperature. In the Appendix A3.2 we review

previous work on the relationship between surface and condensation temperature over Antarctica, and conduct novel analysis

using the high resolution MERRA2 reanalysis data (Gelaro et al., 2017). We also examine the seasonality and vertical distri-

bution of Antarctic precipitation and reevaporation. Based on these analyses we use a simple, linear temperature dependent5

relationship to estimate weighted, annual-mean surface air temperature from our condensation temperature reconstructions

and account for the uncertainty in this relationship. Similarly we examine the potential for bias from seasonality in evaporation

from the ocean. We also examine the influence of non-uniqueness on our temperature reconstruction technique arising from

below-freezing evaporation conditions (Appendix A8.4).

Finally, we conduct an extensive uncertainty analysis on our temperature reconstructions (Appendix A8). We calculate nu-10

merous isotope state spaces from the same temperature parameter space using multiple iterations of the model in which model

assumptions are altered and parameters are varied over plausible ranges. We calculate the uncertainty in our reconstructions

arising from the supersaturation parameterization, the evaporation fractionation factors, the evaporation closure assumption,

the precipitation scheme, the influence of vapor mixing during transport, as well as other model choices. We use the ensemble

of isotope state spaces to estimate both the absolute and relative uncertainty in our temperature reconstructions. As an example,15

the central reconstructions and their uncertainties for the evaporation and condensation temperatures for the WAIS Divide ice

core (WDC) are shown in Figure 7. Our reconstruction of relative temperature variability has much lower uncertainty than the

the reconstruction of absolute temperature, and we find lower uncertainty in the reconstruction of condensation temperature

than evaporation temperature.

We reconstruct condensation site and surface temperatures and evaporation source temperatures for eight different Antarctic20

deep ice-core sites for which there are δ18O and dln records (Figure 8). The records include WDC (Markle et al., 2017;

WAIS Divide Project Members et al., 2013; Steig et al., 2013) and Siple Dome (Brook et al., 2005; Schilla, 2007) from West

Antarctica, as well as the EDML (Stenni et al., 2010), EDC (Stenni et al., 2010), Vostok (Vimeux et al., 2002), Dome Fuji

(Uemura et al., 2012), Talos Dome (Stenni et al., 2011), and South Pole (SP, Steig et al. (2021)) records from East Antarctica.

We correct all records for changes in the isotopic composition of seawater (Bintanja and Van de Wal, 2008), δ18Osw, following25

the method outlined in Uemura et al. (2012) and Stenni et al. (2010).

4.3 Comparison of linear and nonlinear reconstruction techniques

4.3.1 Linear temperature reconstruction using SWIM

We evaluate the significance of our approach by comparing our nonlinear reconstructions of condensation and evaporation

temperature with reconstructions following the traditional linear approach.We calculate the equivalent linear β and γ coeffi-30

cients for each of eight ice core sites by regressing the Tc and T0 temperature fields to subsets of δ18O and dxs SWIM results

representative of different intervals of each core, including the Holocene (<10ka) and Last Glacial Period (20 to 30ka). We
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Figure 7. Temperature reconstructions and uncertainty estimates for the WAIS Divide ice core (WDC) site. a) moisture source mean evapo-

ration temperature and b) ice core site condensation temperature. Dark blue lines are the central estimate, while red lines show the bounds of

relative temperature uncertainty and cyan lines show the bounds of the absolute temperature uncertainty. Reconstructions resampled to even

40 year spacing.

find that the β and γ values significantly differ for each core and between the different time intervals, owing to the temperature

dependence of the sensitivities. In particular, β2 changes substantially between the Glacial and the Holocene.

We reconstruct relative changes in moisture-source and site surface temperature for each ice core location using the two sets

of linear β and γ coefficients found above and the traditional linear method. We then compare these linear reconstructions to

our full nonlinear reconstruction and show the difference in reconstructed surface temperature and evaporation temperature in5

Figure 9. We also show the residuals between the two linear reconstructions. In general, the residuals are not constant offsets,

but vary as a function reconstructed temperature demonstrating the temperature dependence of the slopes. They also differ,
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Figure 8. Temperature reconstructions for seven ice-core sites: WDC, EDC, EDML, Siple dome, Vostok, Dome Fuji, Talos Dome, and

the South Pole ice core (SP). a) Ice-core site locations on the Antarctic continent. Reconstructions of b) moisture source evaporation air

temperature, c) ice core site condensation air temperature, and d) ice core site surface air temperature. All records are resampled to even 200

year resolution for visual clarity. Thin, light grey lines in panels b-d) are the absolute temperature uncertainty, while thin dark grey lines

show the relative temperature uncertainty.

sometimes in sign, between the ice core sites. Linearization can obscure true variability or introduce spurious variability into

the reconstructions, depending on the actual conditions of the site over time.
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In the case of the surface temperature reconstruction, the errors introduced by linearization can be up to±1◦C depending on

the core site, and are generally smaller for the colder East Antarctic sites. In the case of evaporation temperatures, the introduced

errors are considerably larger, up to ±2◦C. Further, the total variability in reconstructed evaporation temperature is much

smaller than that in ice core site surface temperature. The errors introduced into the reconstructed evaporation temperatures

by ignoring the nonlinearities can be nearly as large as the total reconstructed variability. It is thus problematic to attempt5

reconstructing evaporation temperatures without accounting for nonlinearities.

In the Appendix A7 we show that using the nonlinear reconstruction technique yields greater correlation amongst all records

of Ts and especially of T0 (with increases in shared variance up to 38%, Figure A18). These results suggests that linear re-

constructions have obscured coherent underlying climate signals, especially in evaporation temperatures. This same reasoning

supports the qualitative use of the dln parameter over the linear dxs parameter (Figure A19; Markle et al. (2017)).10

Figure 9. Differences between reconstructed a) Ts and b) T0 using different reconstruction techniques for multiple core sites. Blue lines

show the difference between our full nonlinear reconstruction and a linear reconstruction using β and γ slopes linearized around Holocene

conditions. Red lines lines show the difference between our full nonlinear reconstruction and a linear reconstruction using slopes linearized

around Glacial conditions. Purple lines show the difference between the two linear reconstructions.

The relationship between δ18O and Tc is largely linear across a wide range of values of Tc, regardless of evaporation tem-

perature. The ice core site temperature reconstructions from the linear and nonlinear reconstruction techniques have relatively

small differences. However, as seen in Figure 9, there are small artifacts arising from slight nonlinearity in the δ18O-to-Tc
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relationship, particularly for relatively warm sites like those in West Antarctica. The primary source of this nonlinearity is the

change in total fractionation factor as the air parcel transitions between liquid-only and ice-only condensate. The SWIM model

retains liquid condensate at colder temperatures then previous models (e.g. Kavanaugh and Cuffey (2002)) in line with satel-

lite measurements (Hu et al., 2010). The resulting transition of fractionation factors drive the nonlinearities in the δ18O-to-Tc

relationship at temperatures relevant to West Antarctica, and ultimately resulting in larger differences between the linear and5

non-linear reconstruction techniques at those sites compared to cores from East Antarctica. Because our model uses a consis-

tent supersaturation parameterization in the model’s isotope and precipitation schemes, the relationship between δ18O and Tc

is actually more linear in SWIM than in other comparable models.

In the Appendix A9 we compare our temperature reconstructions for several East Antarctic ice cores to previously published

reconstructions using the linear technique with coefficients estimated from different water isotope models (Stenni et al. (2004),10

Stenni et al. (2010), Uemura et al. (2012)). The differences between our reconstructions and previous reconstructions arise both

from differences in the underlying isotope models as well as the reconstruction techniques. In general, the previously-published

linear reconstructions overestimate changes in both site and source temperature compared to our nonlinear reconstructions. For

example, we find smaller values of glacial to interglacial temperature change for most East Antarctic sites than previous

reconstructions.15

5 Discussion

Using the self consistent, nonlinear temperature reconstruction technique for eight different ice core sites, we next investigate

the patterns of Southern Hemisphere temperature change through time. In Figure 8 we show the nonlinear reconstructions

of Antarctic surface temperature and moisture-source evaporation temperature for the eight ice-core records. At the WDC

site in West Antarctica there is an independent estimate for the magnitude of glacial-interglacial temperature change from20

the borehole temperature profile (Cuffey et al., 2016). Our results are in good agreement with those findings, both in the

absolute value of reconstructed temperatures as well as the magnitude of glacial-interglacial change. Cuffey et al. (2016) find

11.3±1.8◦C warming at WDC during the deglaciation; we reconstruct 11.2±0.5◦C of warming (calculated as the difference

between the average surface temperature 27-24 ka and 11-9 ka, for direct comparison to Cuffey et al. (2016)). Using an

independent temperature reconstruction technique for the South Pole ice core, Kahle et al. (in review) find and interglacial25

site temperature warming of 8.12±0.96 ◦C, between 19.5-22.5 ka and 0.5-2.5 ka. Our reconstruction yields a site temperature

warming of 8.9±0.4 ◦C, for the same interval.

We create a stack of each reconstructed temperature variable (the evaporation temperature T0, condensation temperature Tc,

and surface temperature Ts) for all eight ice core records (Figure 10). We weight the records equally; we do not adjust for the

spatial distribution of the cores, nor weight by area, latitude, or elevation.30

In Figure 10 one can see that the Antarctic-wide average surface temperature change during the last deglaciation was consid-

erably larger than the concurrent temperature change in the mean moisture evaporation source. In fact, average deglacial change
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Figure 10. Antarctic-wide stacks of reconstructed temperature histories. a) Moisture source evaporation temperatures, T0, of all ice core sites

are shown in light blue while the average of all records is shown in dark blue. b) All reconstructions of ice core site surface temperatures, Ts,

are shown in light red while the continent-wide average is shown in dark red. c) Anomalies of site averaged evaporation temperature (blue),

condensation temperature (gold), and surface temperature (red) are shown with respect to the mean value of the most recent 2,000 years. All

records are interpolated to even 50 year spacing. Where possible records are on the synchronized Buizert et al. (2018) timescale.

in Antarctic surface temperature was about three times as large as the changes in evaporation temperatures, while changes in

condensation temperature were about twice as large as the evaporation temperature changes.

In Figure 11 we show the pattern of glacial-interglacial temperature change across the Antarctic continent. The magnitude

of warming since the Last Glacial Maximum is calculated as the temperature difference between the Late Holocene (LH, 0-4

ka) and Last Glacial Maximum (19-23 ka), for comparison with other proxy reconstructions. There may be some uncertainty5

in the relative magnitudes of these changes owing to offsets in the individual timescales of each record. While the relative

magnitudes of interglacial change depend on the exact time periods used in the differencing, the pattern of changes in surface

temperature across the continent is robust. We make no corrections to the records for elevation changes or ice flow, lacking

sufficient constraints for all records. These effects are likely small in East Antarctica (Stenni et al., 2011), and smaller still in

West Antarctica (WAIS Divide Project Members et al., 2013).10
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Figure 11. Spatial pattern of temperature change since the Last Glacial Maximum. a) Warming between 19-23 ka and 0-4 ka for ice core

site surface temperatures (colored circles with black outline corresponding to different ice core sites as shown in map inset, uncertainty

in the temperature change shown as error bars), moisture source evaporation air temperature (colored circles, red outline and uncertainty),

and moisture source sea surface temperature (red circles). Moisture source warming is plotted at the mean latitude of the moisture source

distributions for each ice core site, while the latitudinal extent of each moisture source is indicated by the relative histograms along the x-

axis. Sea surface temperature warming form the MARGO compilation of SST estimates from ocean sediment cores are shown in open black

circles. b) Ice core site surface temperature changes and moisture source sea surface temperature changes shown in large colored circles with

black outline. MARGO compilation SST changes shown in small colored circles. c & d) Spatial pattern of temperature change from the

multi-model mean PMIP3 simulations of the LGM and pre-industrial. c) Multi model mean for all grid points shown in grey dots with the

zonal mean in black. Estimates of ∆Ts and ∆T0 from the ice core reconstructions are shown in colored circles as in a) for reference.

19

https://doi.org/10.5194/cp-2021-37
Preprint. Discussion started: 12 April 2021
c© Author(s) 2021. CC BY 4.0 License.



We find smaller glacial-interglacial temperature change for East Antarctic sites compared to previous reconstructions. Our

results show that the surface temperatures of the lower, warmer areas of West Antarctica warmed significantly more than the

higher, colder East Antarctic since the LGM. For example the average surface temperature warming between the LGM and LH

for the two lowest sites, WDC and Siple Dome, is 11.6◦C. The average warming at the two highest sites however, Dome Fuji

and Vostok, is significantly less, just 6.9◦C or 59% of that at the lower sites.5

In Figure 11 we plot the magnitude of warming since the LGM of Antarctic moisture source evaporation air temperatures for

all ice-core records as a function of the mean latitude of the moisture source distribution for each site (based on water-tagged

GCM simulations, see Appendix). Additionally we calculate the change in sea surface temperature (SST) during evaporation

(red circles Figure 11.a), using the T0−SST relationship from our model, for comparison to other SST proxy reconstructions.

While plotted as points, note that these changes in moisture source temperature reflect the integrated warming over the moisture10

source area. Moisture source distributions for each site are indicated by relative histograms along the latitude axis in Figure 11.a

(see Figure A8 for further information), colored to correspond to the ice core site. The moisture source points are plotted at

the longitude of the respective ice core sites in Figure 11.b, though in reality the MSDs have significant meridional extent

(c.f. Extended Data Figure 8, Buizert et al. (2018)), often asymmetrically to the west owing to the westerly winds. Changes

in T0 for Antarctic moisture sources may reflect both warming SSTs at fixed locations as well as potential changes in the15

mean latitude of the moisture source distributions, for example due to changes atmospheric circulation e.g. a meridional shift

in the mean westerly winds (Markle et al., 2017). Disentangling these two influences requires additional constraints and is

beyond the scope of this study. While the ice core T0 reconstructions have low spatial resolution owing to broad moisture

source distributions, they benefit from the temporal resolution and precision of the ice core age scales, compared to other proxy

records of temperature from the Southern Hemisphere mid latitudes.20

It is clear from Figure 11 that the Antarctic continent warmed two to three times as much as the Southern Hemisphere mid-

latitude moisture source areas since the Last Glacial Maximum. This result is in line with other paleoclimate reconstructions, as

well as modeling of the pattern of polar amplification since the LGM (Masson-Delmotte et al., 2006; Otto-Bliesner et al., 2006).

In particular our estimates of moisture source region changes agree with completely independent estimates from the MARGO

compilation of SST changes (Members et al. (2009), open circles Figure 11). There appears to be some zonal asymmetry in the25

warming of Southern Ocean surface temperatures in both our moisture source reconstructions and the MARGO compilation.

The waters around New Zealand and Australia that comprise the moisture source of Talos Dome appear to show the most

warming since the LGM.

These patterns of Southern Hemisphere warming are also in reasonable agreement with modeling expectations, e.g. from the

Paleoclimate Model Inter-comparison Project (PMIP3, Braconnot et al. (2012)). The multi-model mean pattern of Southern30

Hemisphere polar amplification from PIMP3 simulations is shown in Figure 11. There is broad similarity to our reconstructions,

though there are important differences as well. The spread in temperature change about the zonal mean over both the Antarctic

and ocean surface is similar between the model and the reconstructions. Our reconstructions show more warming in the ice

core moisture source areas equator-ward of the polar front than the PMIP3 mean, and less warming over the surface of West

Antarctica. We note that the magnitude and pattern of modeled Antarctic surface warming is predominately a function of35
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imposed changes in ice sheet surface elevation to PMIP3 experiments. The extreme warming seen in parts of West Antarctica

in the PMIP3 model mean (e.g. > 20 ◦C), outside the range found in our reconstructions, likely reflect unrealistically large ice

sheet thickness changes prescribed in PIMP3. Understanding the full set of processes responsible for the reconstructed pattern

of Southern Hemisphere polar amplification is a topic for future work.

6 Conclusions5

Ice-core records of the stable isotopes of water provide detailed histories of Earth’s climate. Both qualitative and quantitative

interpretation of these records requires understanding the relationships between fractionation processes and environmental

conditions.

Qualitatively, δ18O and δD are reliable indicators of relative change in condensation temperature, over a sufficiently long

timescale. The assumption of a roughly-linear relationship is generally justified, as shown in this study and previously. How-10

ever, the linear definition of deuterium excess, dxs, is an unreliable indicator of relative evaporation-site temperature change,

particularly at East Antarctic sites with very depleted δ18O and δD values. In these cases, the logarithmic definition of the

parameter, dln, is a more faithful qualitative proxy of evaporation temperature.

We can use models to make quantitative interpretations of water-isotope variability and to disentangle the combined influ-

ences of the source and site temperatures. To date, most water-isotope temperature inversions have assumed linear relationships15

(Kavanaugh and Cuffey, 2003; Vimeux et al., 2002; Stenni et al., 2011; Uemura et al., 2012). However, as shown here, this

assumption is flawed. Even in the simplified water-isotope models that underly most temperature reconstructions, there are in-

herent nonlinearities in the isotope-temperature relationships. Ignoring these nonlinearities distorts reconstructed temperature

variability. In the case of evaporation source temperature changes, these distortions may be a significant fraction of the total

reconstructed variability.20

There is a long standing debate regarding the interpretation of “spatial" and “temporal" slopes in the water isotope-temperature

relationship (e.g. Jouzel et al. (1997)). These discussions are conceptually useful. However, while space and time are obvious

coordinates through which to understand climate, they are not the most relevant for water-isotope fractionation. Neither space

nor time can independently cause water to change phase and fractionate.

The fundamental dimension through which to understand water isotope fractionation is temperature. In this study we use a25

relatively simple model to investigate the relationships of water isotopes in precipitation to temperature. While the distinction

between temporal and spatial slopes is not considered in this context, we are able to resolve the core question: is the water

isotope-temperature relationship fixed? It is not.

Our nonlinear reconstruction technique allows for the estimation of absolute temperatures in the past, in addition to their

variability, and is corroborated by independent temperature constraints. By taking into account the inherent nonlinearities of30

water isotope fractionation we are better able to constrain evaporation source region changes. Our reconstructions reveal a

spatial pattern of temperature change across the Antarctic continent in which West Antarctica warmed significantly more than
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East Antarctica since the Last Glacial Maximum. Further our reconstructions provide insight into the spatial pattern of polar

amplification, suggesting that the warming since the LGM in Antarctica was two to three times that in the mid latitudes.
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Appendix A: Simple Water Isotope Model

The Simple Water Isotope Model (SWIM) is based on existing numerical Rayleigh-type distillation models (Merlivat and

Jouzel, 1979; Jouzel and Merlivat, 1984; Ciais and Jouzel, 1994; Criss, 1999; Kavanaugh and Cuffey, 2003), though we make

several important improvements and updates. We first describe the physical environmental aspects of the model and then the

details of the fractionation scheme.15

A1 Environmental trajectory

Our model considers moisture transported from evaporative sources down an atmospheric temperature gradient (i.e. from the

midlatitudes toward the pole), driving condensation and fractionation. Our model operates in the dimension of temperature; we

consider pseudo-adiabatic temperature pathways from an initial surface air temperature, T0, to a final condensation temperature,

Tc, and discrete steps dT , and Euler numerics.20

A1.1 Source-region conditions

The moisture-source surface air temperature (Ta), sea surface temperature (SST ), and relative humidity (RH) influence

the fractionation of vapor evaporating from the ocean. We use modern climatological correlations to find initial values of

SST0 and RH0 given a specified initial air temperature, T0, using the 1980-2010 annual mean climatological fields from the
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NCEP/NCAR reanalysis project (Kalnay et al., 1996) and the ERA-Interim reanalysis (Dee et al., 2011). Correlations with

surface air temperature are better defined than spatial correlations and give greater flexibility to the model for use in different

climate states. Surface air temperature and SST are extremely well-correlated in the reanalysis (Figure A1) with a well-defined

near-linear relationship over most of the temperature range, except where the SSTs asymptote to the freezing point of seawater.

The relationships are nearly identical between the NCEP and ERA reanalysis products.5

Relative humidity gradients in the modern climate are fairly weak, though surface RH over the ocean is consistently higher

at lower surface temperatures on climatological timescales. While variable on short timescales, RH appears largely invariant

on timescales longer than interannual (Dai, 2006; Vimeux et al., 2002). We find that the over-ocean, surface relative humidity

is systematically about 5% higher in the NCEP reanalysis compared to the ERA reanalysis, though the relationship to surface

temperature is similar.10

Given a specified initial air temperature, T0, our model uses values of SST0 and RH0 based on fits to the modern clima-

tology. We use three methods to calculate the climatological relationships over the interval -10◦≤ Ta ≤ 28◦C: a cubic spline

with specified noise tolerance; the mean and median of SST and RH distributions within binned values of Ta; and high-order

polynomial fits. All methods show effectively indistinguishable relationships in both reanalysis products. We calculate the un-

certainty in these fits and test the model’s sensitivity. Our base model uses the cubic spline method which is least susceptible15

to edge effects, phase shifting, and maintains a smooth first derivative.

We find some differences in the Ta-to-SST fit between the Northern and Southern Hemispheres for air temperatures between

5◦ and -15◦C, as seen in Figure A1. In this study we will use the Southern Hemisphere fit for Ta-to-SST . We find no major

hemispheric differences for the Ta-to-RH fit, and find little impact of zonal asymmetry on either fit. We find relatively small

differences in the fit between Ta and SST0 for different seasons and somewhat larger seasonal changes in the Ta and RH020

relationship.We use the annual average fits hereafter and test the sensitivity of the water-isotope values of evaporation to these

seasonal differences.

The normalized relative humidity, RHn, is critical to kinetic fractionation of water isotopes during evaporation (Merlivat

and Jouzel, 1979; Risi et al., 2010) and depends on the three variables above:

RHn =
RH × es(Ta)
es(SST )

(A1)25

where es(Ta) and es(SST ) are the saturated vapor pressures of air at the surface air temperature and at the sea surface

temperature, respectively.

A1.2 Transport

After evaporation at initial air temperature, T0, and specified surface pressure, P0, moisture is transported toward the pole in

isolation, cooling and condensing along the way. The air parcel is cooled pseudoadiabatically defining a pressure trajectory, P30

as a function of temperature, T (Figure 1). As the air parcel cools, moisture above saturation is removed and the latent heat

released during the phase change keeps the air parcel warmer than in an otherwise equivalent isobaric pathway. Following the
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Figure A1. Climatological correlations between Ta, SST , and RH . Left: Annual mean climatological surface air temperature, Ta, and sea

surface temperature, SST , from the NCEP/NCAR reanalysis (Kalnay et al., 1996). Light blue dots are Northern Hemisphere (NH) grid

points, while dark blue dots are Southern Hemisphere (SH) grid points. The polynomial fit for the SH is in red. The error estimate on the

fit, σerr in orange, is the standard deviation of the misfit in the model. The 1:1 line is shown in black. Right: same as on the left but for the

surface air temperature over ocean, Ta, and surface relative humidity (RH) over oceans.

pseudoadiabatic assumption, we consider no other heat sources to the air parcel and moisture is removed immediately after

condensation. Below we investigate in the influence of air-parcel mixing on our model framework, which is a relaxation of the

adiabatic assumption.

We calculate a pseudoadiabat following the iterative routine described in Bakhshaii and Stull (2013) but taking into account

the saturated vapor pressures of both ice and liquid water condensate. The temperature dependent saturated vapor pressures of5

ice and liquid water (Murray, 1966; Murphy and Koop, 2005), together with air pressure P (T ) define saturated mixing ratios

for ice and liquid water,

rs =
Rd
Rwv

× es
P − es

(A2)

as functions of T , where Rd/Rwv is the ratio of gas constants of dry air and water vapor.

We consider air parcels with mixed ice and liquid condensate (Ciais and Jouzel, 1994), in which the ice fraction smoothly10

increases as temperatures decreases below freezing. Many models, including isotope-enabled GCMs, approximate the temper-

ature dependence of cloud ice-liquid fraction as piecewise linear functions (Hu et al., 2010), while others use smoothly varying

error integrals (Ciais and Jouzel, 1994; Kavanaugh and Cuffey, 2003). We use temperature-dependent functions for the cloud

ice fraction derived from satellite observations (Hu et al., 2010) over the Southern Ocean and over land snow and ice surfaces,

which preserve significantly more liquid water at colder temperatures than previous parameterizations (e.g. Kavanaugh and15

Cuffey (2003)).
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The specific heat at constant pressure, cp, latent heat, L, saturated vapor pressure, es, and saturated mixing ratio, rs, are

temperature-dependent and calculated for the liquid and ice phases individually. Effective values for the parcel as a whole

are calculated from the mixing fractions of each phase (Kavanaugh and Cuffey, 2003). For example, rs(eff) = rs(ice)F(ice) +

rs(liq)F(liq), where rs(ice) and rs(liq), are the saturated mixing ratios of ice and liquid, respectively, and F(ice) and F(liq) are

the (temperature dependent) fractions of each phase of condensate.5

Moisture is removed along the temperature pathway owing to the temperature-dependent changes in the saturated mixing ra-

tio, − dq/dT = drs(eff)/dT . This is a simplified view of large-scale precipitation, commonly used in similar models (e.g. Markle

et al. (2018)). We do not consider reevaporation of falling precipitation. There are several reasonable choices in the implemen-

tation of our simplified view of moisture removal, once air parcels are cooled from initial relative humidity to saturation. The

instantaneous moisture removal process may leave the air parcel at saturation, or at some specified level below saturation (e.g.10

RH = 90%), or at the air parcel’s initial level below saturation, in which case relative humidity is constant along the path. We

test the sensitivity of our model to these assumptions below, using constant relative humidity as our default.

At very cold temperatures moisture is removed not at saturation but at a specified level of supersaturation. The presence of

both ice and liquid condensate in the cloud dictates a supersaturation of vapor over ice due to the difference in liquid and ice

vapor pressures (Jouzel and Merlivat, 1984). A paucity of condensation nuclei may lead to further supersaturation at very cold15

temperatures (Tegen and Fung, 1994). The total supersaturation is parameterized here to depend on temperature (discussed in

detail in Section A2.3).

A2 Isotope fractionation

In this section we outline the water-isotope fractionation scheme used in SWIM. We model equilibrium and kinetic fractiona-

tion of the 2H/1H, 18O/16O, and 17O/16O ratios in water. We use conventional notation in which R is the number ratio of heavy20

to light isotopes of a species, for example DR= 2H/1H and 18R= 18O/16O.

The fractionation factor is the ratio of R values between phases. For example, the fractionation factor between liquid and

vapor phases for δ18O is:

18αl−v =

(
18O
16O

)

liquid(
18O
16O

)

vapor

=
18Rl
18Rv

(A3)

We use the empirically-determined, temperature-dependent equilibrium fractionation factors between liquid and vapor,25
18αeq(l−v) and Dαeq(l−v), as well as those between vapor and ice, 18αeq(i−v) and Dαeq(i−v), (Majoube, 1970, 1971; Mer-

livat and Nief, 1967; Criss, 1999) with updates for the ice-vapor equilibrium fractionation factor found by Lamb et al. (2017).
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A2.1 Evaporation from the ocean

The isotopic values of vapor evaporating from the ocean are determined, in part, by the isotopic values of the seawater. By

definition, globally averaged seawater has δ values near 0‰. However the δ18O of seawater (δ18Osw) in the regions of Antarctic

moisture sources is more depleted than average, with a mean around -0.3‰, (Schmidt et al., 1999). We use the observed

correlation between δ18Osw and δDsw from a compilation of global seawater measurements (Schmidt et al., 1999) to find an5

initial δDsw given the specified initial δ18Osw (which changes with mean climate) and investigate the sensitivity of the model

to these initial conditions. We assume a 17Oxs of sea water equal to 0, where 17Oxs = δ′17O− 0.528× δ′18O, and is typically

reported in per meg.

The atmosphere above the global oceans is not at saturation on average, with relative humidity typically around 80% (Hart-

mann, 2015). Because of this steady-state disequilibrium, significant kinetic fractionation occurs during evaporation from the10

ocean. Kinetic fractionation depends both on the relative humidity and the wind speed at the air-ocean interface during evapo-

ration (Merlivat and Jouzel, 1979). The effective fractionation factor associated with diffusion and turbulence is,

αdiff =
(
D

D∗

)n
(A4)

where D and D∗ are the diffusivities of the light and heavy isotopes, respectively (Merlivat and Jouzel, 1979). The exponent

n ranges from 0 to 1 and relates to the wind regime and speed, and the ratio of turbulent to molecular diffusion. For the15

diffusive fractionation between H18
2 O and H16

2 O during initial evaporation, the fractionation factor 18αdiff equals 1.0 for

pure turbulence and 1.0028 for pure molecular diffusion (Merlivat and Jouzel, 1979; Barkan and Luz, 2007).

Following Kavanaugh and Cuffey (2003), we do not explicitly consider surface wind speeds. Instead we use the empirical

results of Uemura et al. (2008) and Uemura et al. (2010) for 18αdiff , who estimate the parameter based on measurements of

δD, δ18O, and δ17O in vapor above the Southern Ocean. Uemura et al. (2010) find a value of 18αdiff = 1.007± 0.0013 and20

1.008±0.0018, when optimizing for observations of dxs and 17Oxs of vapor, respectively. These results are within uncertainty

of each other and of independent analysis by Pfahl and Wernli (2009) which found a value of 1.0076. Using a complication of

vapor measurements (including Uemura et al. (2008), Uemura et al. (2010), Liu et al. (2014), Kurita et al. (2016), and Benetti

et al. (2017)), we find that 18αdiff = 1.009 leads to a good match between modeled and observed values of both dxs and
17Oxs of vapor when using the observed values of T0, SST , and RH at the time of the vapor measurements. We investigate25

the sensitivity of the model to this parameter below.

The diffusive fractionation factor between hydrogen and deuterium,Dαdiff may be determined experimentally by measuring

the ratio of diffusive fractionation factors (Merlivat, 1978; Luz et al., 2009):

φdiff =
Dαdiff − 1
18αdiff − 1

(A5)

Merlivat (1978) found a mean value for φdiff of 0.88 based on laboratory evaporation studies, and Luz et al. (2009) found30

that the value of φdiff depends on the evaporation temperature, ranging between 0.73 and 1.06 for temperatures between 10◦C

and 69.5◦C. We use a piecewise linear function based on the results of Luz et al. (2009) to relate φdiff and evaporation temper-

ature, and thus Dαdiff to 18αdiff . For evaporation temperatures colder than the experimental range of Luz et al. (2009) (< 10◦
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C), we use the measured value at 10◦C (φdiff = 1.06). The differences in model results for evaporation with a temperature

dependent φdiff and a constant φdiff = 0.88, are small (< 1‰ for initial δD of vapor).

For the fractionation of 17O/16O we use the following relationships, which are backed both by theory and empirical obser-

vation (Barkan and Luz, 2005, 2007): 17αeq =18 α0.529
eq for vapor and liquid in equilibrium, and 17αdiff =18 α0.518

diff for vapor

diffusion.5

The relationship between the initialR value of the vapor and the ocean due to kinetic fractionation depends on the normalized

relative humidity during evaporation, RHn, the equilibrium and diffusive fractionation factors, αeq(l−v) and αdiff . Following

Criss (1999) and Luz et al. (2009),

αevap =
Ro
Re

=
αeqαdiff (1−RHn)
1−αeqRHn (Rv/Ro)

(A6)

whereRo andRv are the isotopic ratios of the ocean water and the water vapor in the atmospheric boundary layer, respectively.10

Re is the ratio of the evaporate, the net vapor lost to the atmosphere, a quantity that is not directly-measurable (Criss, 1999).

If we assume that the only source of vapor to the boundary layer is the local evaporate, we may equate Rv and Re and solve

Equation A6 for Rv (Merlivat and Jouzel, 1979; Criss, 1999; Risi et al., 2010):

Rv =
Ro

αeq × (αdiff +RHn (1−αdiff ))
(A7)

The modeled isotopic composition of vapor evaporated from the ocean is shown in Figure A2. This “local" closure assump-15

tion is within the range of observations of water isotopes in vapor over the Southern Ocean and elsewhere (Uemura et al., 2008,

2010; Liu et al., 2014; Kurita et al., 2016; Benetti et al., 2017). However, the validity of the local closure assumption under

certain conditions is in question (Uemura et al., 2010; Risi et al., 2010). In addition to moisture from the ocean surface, the

boundary layer may receive moisture from advection, convection, subsidence, and reevaporation of precipitation. Risi et al.

(2010) explored this issue extensively, using a model that takes into account these other sources of moisture. They show that20

the local closure assumption leads to vapor that is too enriched in both δD and δ18O, and too low in dxs, and that these offsets

are a function of environmental conditions (Risi et al., 2010).

We investigate the influence of the closure assumption in a few ways. First, we examine closure globally rather than locally.

The mean ocean has δ values of about 0‰, and global average precipitation has δ18O=−4.5‰ and δD=−26.7‰, (Craig

and Gordon, 1965). Following Criss (1999) and considering the global average steady state in which the ocean is the ultimate25

vapor source for precipitation, the delta values of precipitation must reflect the net loss by evaporate from the ocean. Thus

globally, the ratio Ro/Re is 1.0267 for D and 1.0045 for 18O. Instead of equating Re and Rv locally, we define a global

αevap = (Ro/Re)global, and solve for Rv . Substitution into Equation A6 and rearranging leads to:

Rv =Ro

(
1− αeqαdiff (1−RHn)

αevap

)
(αeqRHn)−1 (A8)

Though an obviously blunt approach for determining local evaporation, this “global closure" assumption is the limit for a30

globally-mixed atmosphere. Modeled evaporation using both closure assumptions is compared to isotopic measurements of

Southern Ocean vapor in Figure A2.
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Figure A2. Modeled isotopic values of evaporation compared to Southern Ocean vapor measurements. a) Modeled δ18O versus SST using

the “local" closure assumption (red lines) and “global" closure assumption (blue lines). We use two different reanalysis data sets for the

SST and RH climatology, NCEP/NCAR (solid lines) and ERA Interim (dashed lines). Black dots are discrete vapor measurements from

the Southern Ocean made by Uemura et al. (2008) (U08), while grey, blue, red and yellow dots are continuous ship-based Southern Ocean

vapor measurements made by Liu et al. (2014) (L14), Kurita et al. (2016) (JARE55), and Benetti et al. (2017) (STRASSE, RARA AVIS),

respectively. b) Same as a) but for modeled δD versus SST . c) Same as a) but for modeled dxs versus SST . The vertical tails at low SST in

panels a) and b) result from SSTs asymptoting to the freezing point of seawater while air temperatures may continue to decrease.

Next, we consider specific mixing of evaporative conditions instead of the generalized globally-mixed case above. Rather

than the local ocean being the only source of vapor, we can consider a simple scenario in which the isotopic composition of

the boundary layer, Rv , is comprised of both local evaporate, Re, and vapor evaporated at some distal location and advected to

the site, Rv = (1−θ)Re+θRdistal, where θ is the fraction of non-local vapor with composition Rdistal. The local evaporative

conditions are defined by T0, while the distal conditions may be either warmer or colder than T0. Vapor is evaporated under5

those distal conditions (using a local closure assumption) and advected without fractionation before mixing with the local vapor

of composition Re. Figure A3 shows the isotopic composition of vapor over a range of T0, with a full range of contributions

from both a 5◦C warmer moisture source (T0 + 5◦C, red colors), a 5◦C colder moisture source (T0− 5◦C, blue colors). This

range of mixing leads to a spread of delta values of the initial vapor around the simple local closure assumption, though the

difference is generally less than that between the local and global closure assumptions.10

The isotopic values of vapor produced by any of these closure assumptions ("local", "mixed", or "global"), are within the

range of mean values of the observational data and show similar relationships to local environmental conditions like SST and

RH . These closure assumptions represent the bounds of a well-mixed and unmixed atmosphere, or something in between. The

amount of mixing in the boundary layer could change with location and with climate mean state. Rather than tying our model

to one closure assumption, we view mixing at evaporation as an inherent uncertainty.15

It is important to note that in Figure A2 we use climatological correlations between T0, SST , and RH while the obser-

vational data represent far shorter time intervals, mostly from one season. When using the observed values of T0, SST , and

RH at the time of the observational measurements (Uemura et al., 2008; Liu et al., 2014), we are able to capture the complex
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Figure A3. Relationship between isotopic composition of vapor and SST under different mixing scenarios. Positive values on the color scale

reflects the fraction of moisture from a 5◦C warmer moisture source mixed with the local moisture source (50= 50% moisture from local

source + 50% moisture from 5◦C warmer-than-local moisture source), while negative values reflect the fraction of moisture from a 5◦C

colder moisture source mixed with the local moisture source (-50 = 50% moisture from local source + 50% moisture from 5◦C colder-than-

local moisture source). Model results use NCEP/NCAR reanalysis for SST and RH climatology. Unmixed model results for a local closure

assumption shown in black dashed line and global closure assumption in solid black line.

variability in the isotopic values of the vapor on those given days. For example, in Figure A4 we compare modeled dxs of vapor

and modeled 17Oxs of vapor to Southern Ocean vapor observations, using the observed environmental conditions at the time

of the vapor measurements. The modeled relationships between dxs and 17Oxs with SST0 and RH0 are in good agreement

with observations.

We examine the sensitivity of initial evaporation to several model parameters discussed above in Figure A5. In all cases5

the modeled sensitivity to these parameterizations and uncertainties are relatively small compared to the natural variability in

observations of isotopic vapor compositions. The choice of reanalysis product used to derive the climatological relationships

between T0, SST0, and RH0, and the uncertainty in those fits, has relatively small effects on the results of evaporation (Fig-

ure A2, Figure A5.a-f). We also show the influence of the initial δ18Osw of the ocean (Figure A5.g-i) as well as the value of

αdiff (Figure A5.j-l).10

The direct comparisons of observed and modeled vapor composition using observed T0, SST0, and RH0 at the time of the

vapor measurements (Figure A4) suggests that a single effective αdiff may not fully capture the kinetic effects across the range

of surface conditions. While αdiff = 1.009 leads to a good fit between observed and modeled deuterium excess for much of

the range of surface conditions, there is a small persistent misfit for surface temperatures between 20◦C and 27◦C; where a

smaller αdiff is suggested (Figure A6). While it is possible to implement a temperature dependent αdiff to reduce this misfit,15

we prefer a fixed αdiff to avoid over fitting a relatively small dataset in the absence of further evidence or physical reasoning.

While we do not consider temperature-dependence of αdiff , we do consider a range of αdiff as an inherent uncertainty in our

model and account for this in the uncertainty analysis of our temperature reconstructions as discussed in Section A8.
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Figure A4. Comparison of modeled and observed isotope excess parameters and relationship to source-region conditions. a) Observed dxs

and SST relationship in Southern Ocean vapor from Uemura et al. (2008) (black dots, U08) and Liu et al. (2014) (grey dots, L14). SWIM

model results for evaporation under SST and RH conditions observed coincident with vapor measurements of Uemura et al. (cyan dots,

U08 model), and Liu et al. (purple dots, L14 model). b) Same as a) but for modeled and observed dxs to RH relationship from observations

of Uemura et al. The Liu et al. observations and model show a similar trend and are omitted for visual clarity. c) Observed 17Oxs and SST

relationship in Southern Ocean vapor from Uemura et al. (2010) (black dots, U10), and SWIM model results run under observed sea surface

conditions (cyan dots, U10 model). d) Same as c) but for observed and modeled 17Oxs and RH relationship in Southern Ocean vapor.

Update for new figure...

We note that it is of course also possible that other factors, rather than temperature dependence of αdiff , could account for

the apparent misfit, such as difference between the ship measured RH and Ta and that felt at the water’s surface, or specific

mixing of non local moisture in the boundary layer on the days of the ship-based measurements. Given the magnitude of the

misfit, it is also possible that spatial or temporal variability in δ18Osw and δDsw, could account for the misfit (Schmidt et al.,

1999).5

A2.2 Distillation

We next discuss the distillation of water isotopes during transport. As an air parcel cools, water condenses, fractionates, and is

removed as precipitation. The essential differential equation for Rayleigh distillation (Rayleigh, 1902; Dansgaard, 1964; Criss,

1999) is:
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Figure A5. a-f Sensitivity of modeled δ18O, δD, and dxs of vapor to uncertainty in the reanalysis-based fits between climatological Ta, SST ,

and RH in the NCEP/NCAR reanalysis. a) and b) show modeled isotope vapor relationship to uncertainty in the climatological Ta-to-SST

relationship. Red lines show model run using the central estimate of the fit, orange lines show the spread expected with ±σerr of the fit as

shown in Figure A1. c) and d) are the same as a) and b) but showing the central estimate (dark blue) and spread associated with±σerr (light

blue) in the climatological Ta-to-RH relationship shown in Figure A1. g-i) Sensitivity of modeled isotope values of vapor to the δ18Osw

of sea water. Values of δ18Osw from -0.5‰ to 0.5‰ are specified, representing most of the global variance in δ18Osw. Values of δDsw are

determined based on correlations of δ18Osw and δDsw from observations (Schmidt et al., 1999). j-l) Sensitivity of modeled isotope values

of vapor to a range of 18αdiff values from 1.007 to 1.010. Local closure assumed in all panels.

d ln(R)
d ln(f)

= α− 1 (A9)

31

https://doi.org/10.5194/cp-2021-37
Preprint. Discussion started: 12 April 2021
c© Author(s) 2021. CC BY 4.0 License.



-10 0 10 20 30 40

observed d
XS

-10

0

10

20

30

40

m
o

d
e

le
d

 d
X

S

a)

18

diff
=1.007

18

diff
=1.008

18

diff
=1.009

18

diff
=1.010

-10 0 10 20 30 40

observed 17O
XS

(per meg)

-10

0

10

20

30

40

m
o

d
e

le
d

 
1

7
O

X
S
(p

e
r 

m
e

g
)

b)

Figure A6. Relationship between observed and model dxs (a) and 17Oxs (b) of vapor over the Southern Ocean. Observed vapor values are

from Uemura et al. (2008, 2010) (large dots) and Liu et al. (2014) (small dots). Modeled values use the reported T0, SST0, and RH0 from

the observations and four different values of 18αdiff (shown in color of dots). 1:1 line shown in black.

where f is the fraction of initial water vapor remaining in the air parcel. The amount of moisture at any temperature along the

pathway is found by integrating the changes in the saturated mixing ratio rs owing to pseudoadiabatic cooling from the source

(Dansgaard, 1964) . Thus,

f =
q

q0
=

rs
rs0

(A10)

In general, condensation occurs in the model at saturation, and thus the temperature dependent equilibrium fractionation5

factor αeq is used in Equation A9. However at cold conditions there may be supersaturation of vapor over ice leading to

additional kinetic fractionation. Following previous models (Jouzel and Merlivat, 1984), the total fractionation, αtot factor is

αtot = αeqαk. Equation A9 thus becomes:

d ln(R) = (αtot− 1)d ln(f) (A11)

The kinetic modification factor, αk, depends on the supersaturation of vapor over ice, Si:10

32

https://doi.org/10.5194/cp-2021-37
Preprint. Discussion started: 12 April 2021
c© Author(s) 2021. CC BY 4.0 License.



αk =
Si

αeq × D
D∗ (Si− 1) + 1

(A12)

Following Jouzel and Merlivat (1984), we use the ratio of diffusivities for oxygen isotopes D16/D18 = 1.0285 during moisture

transport, representative of pure molecular diffusion and ignoring the negligible ventilation effect. Likewise we use D1/D2 =

1.0251 for the ratio of diffusivities of hydrogen isotopes. These values imply a constant φdiff during transport equal to 0.88

(Jouzel and Merlivat, 1984), rather than the temperature dependent φdiff used in the evaporation scheme. We prefer this value5

for simplicity, consistency with earlier work, and for a lack of experimental measurements of φdiff at the colder temperatures

experienced during transport.

In the mixed-phase portion of the transport pathway, the effective fractionation factors are determined by the mixing fractions

of ice and liquid condensate. Following Kavanaugh and Cuffey (2003),

αeff = αtot(l−v)F(liq) +αtot(i−v)F(ice) (A13)10

The temperature dependence of the ice and liquid fraction is shown in Figure A7.a and based on satellite observations (Hu

et al., 2010).

A2.3 Supersaturation

The supersaturation of vapor over ice is a critical parameterization in water-isotope distillation models. The true relationship

of supersaturation to environmental conditions is the result of complex cloud-microphysics (Hong et al., 2004). Because of15

its strong influence on water-isotope fractionation and the uncertainty in the underlying physics, the supersaturation is often

parameterized to depend on temperature and tuned to fit water-isotope models to observations (Jouzel and Merlivat, 1984;

Kavanaugh and Cuffey, 2003; Schoenemann et al., 2014). Jouzel and Merlivat (1984) parametrized the supersaturation as a

function of temperature and note that available water-isotope data could not distinguish among possible functional forms of the

parameterization (e.g. linear, exponential, etc.). Their linear parametrization has been used extensively in water-isotope models20

since:

Si = a− b×T (A14)

where a and b are tuned to fit observational data.

It is important to note here that the prescribed mixing of liquid and ice in the cloud imply a supersaturation of vapor

over ice that follows the blue curve shown in Figure A7.b, which is inconsistent with the supersaturation driving kinetic25

fractionation as prescribed in Equation A14. The presence of both liquid and ice phases in a cloud is not the only potential

source of supersaturation. The lack of condensation nuclei, for example, allows supersaturation to remain high in cold, ice-

only conditions (Hong et al., 2004), rather than returning to unity as the cloud becomes entirely ice-phase. It is common for
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water-isotope models, even those in some GCMs (e.g. Schoenemann et al. (2014)), to have multiple variables equivalent to

supersaturation in different aspects of the same model, such as the isotope-fractionation and precipitation schemes, which may

not be self-consistent. Because the environmental supersaturation experienced by the air parcel is related to the relationship

between temperature and moisture removal (that is d ln(f)/dT ), and the supersaturation driving kinetic fractionation relates

temperature to δ values (largely through Eq. A12), an inconsistency in the model’s view of supersaturation can influence the5

modeled water isotope-temperature relationship in unphysical ways.

To resolve this physical inconsistency, precipitation only occurs in SWIM when the the parcel reaches the prescribed super-

saturation by dictating an effective saturated mixing ratio of the air parcel, in which rs(eff) = rs(ice)Si. Ensuring consistent

supersaturation across the model leads to a smoother relationship between temperature and the δ values of precipitation. This

is in contrast to rather complex curvature in the temperature-water isotope relationship that results if inconsistent relationships10

between saturation and temperature are used in the precipitation and fractionation schemes, which is generally incompatible

with observations. In line with previous work (Jouzel and Merlivat, 1984), we find that using only the supersaturation implied

by the mixing of ice and liquid, across all aspects of the model, results in a relationship between δ18O and δD irreconcilable

with observations. Were the air parcel to return to non-supersaturated conditions in the ice-only portion of the cooling path-

way, the simultaneous transition to equilibrium-only fractionation would drive a slope of ∂δ18O/∂δD that is not compatible with15

measured values in Antarctic precipitation. This gives additional credence to sustained supersaturation at cold temperatures.

A3 Application to Antarctic ice core sites

A3.1 Moisture source distributions

The atmospheric circulation transports moisture poleward of ≈ 30◦S (Figure A8a). The mean evaporation latitude of moisture

that precipitates at any given site can be estimated from moisture-tagged GCM experiments (Markle et al., 2017). The difference20

between the mean latitudes of moisture evaporation and precipitation steadily increases between the subtropics and the pole

(Figure A8a and b). The mean evaporative latitude of moisture that precipitates in Antarctica ranges between 44 and 50◦S

(Figure A8c). The surface elevation of the ice sheet is a strong predictor of the mean latitude of precipitation with higher

elevation sites having more equator-ward moisture sources (Figure A8d) due to topographic isolation (Sodemann and Stohl,

2009; Bailey et al., 2019). There are some notable asymmetries in this general pattern. The large embayments are areas of25

comparatively high-latitude mean moisture source, such as the Victoria Land coast in the Ross Sea region.

The mean moisture source latitude is, however, not the full story. The moisture reaching any Antarctic site does not originate

from just a single mean source-latitude nor follow a single temperature pathway. The contribution of moisture evaporated from

different latitudes to the final precipitation at a site defines a moisture source distribution (Markle et al., 2017), which reflects

the combination of the spatial pattern of evaporation, cumulative rainout, and the influence of atmospheric circulation. Here30

we diagnose annual mean moisture-source distributions (MSDs) as a function of latitude from a moisture-tagged run of the

Community Atmosphere Model (CAM) for East and West Antarctic sites (details are given in Markle et al. (2017)), shown in

Figure A8e. Moisture source distributions derived from other methods like trajectory modeling are similar (e.g. Sodemann and
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Figure A7. Supersaturation of vapor over ice. a) Fractions of ice (cyan) and liquid (blue) condensate as a function of temperature. Curves

are derived from satellite based measurements (Hu et al., 2010). b) Supersaturation as a function of temperature. The blue curve shows

supersaturation based solely on the saturated vapor pressures of ice and liquid, and the mixing fractions based on the curves shown in panel

a), and the pseudoadiabatic assumption (“ILS"). The red curve shows the linear parameterization of supersaturation (“linear") used in the

model, Si = 1− 0.00525◦C−1×T .

Stohl (2009); Markle et al. (2012); Buizert et al. (2018)). These MSDs dictate the influence of evaporation source conditions

(Ta, RH , SST ) on moisture reaching any Antarctic site. There are some zonal asymmetries in surface conditions over the

Southern Hemisphere oceans, but the strong latitudinal gradients are the largest source of spatial variance in these conditions

at climatological time scales.
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While the mean latitudes of moisture sources vary between Antarctic sites, largely as a function of site elevation, Antarctic

MSDs are not fundamentally distinct in latitude, but rather span broadly overlapping swaths of the Southern Hemisphere, from

the Antarctic coast to the tropics (Figure A8e). The difference in weighted mean moisture source latitude between Antarctic

ice core sites is less than 10◦ of latitude, while the moisture source distribution for any one site spans over 40◦of latitude. Local

evaporation is a small contribution to the moisture precipitating at Antarctic sites. On average moisture is transported more5

than 20◦ of latitude to reach Antarctica.

Given the broad range of evaporative conditions that contribute to moisture precipitating at an ice core site, what is the mean-

ing of the Tsource that can be reconstructed from water isotope records? It is the moisture-weighted evaporative temperature,

determined by the convolution of the spatial pattern of the MSD and the underlying surface temperatures (Figure A24, (Markle

et al., 2017)). Both surface temperatures at fixed locations and the pattern of the MSD can change independently. The water10

isotope records alone do not allow the disentanglement of these two patterns which may have different temporal evolution

(Markle et al., 2017).

To understand the moisture transport and water isotope distillation to Antarctic sites it is important to consider evaporation

from the range of conditions comprising the moisture source distribution. We thus use an ensemble of temperature pathways

for Antarctic precipitation defined by a range of Antarctic condensation temperatures as well as the broad range of evaporation15

temperatures underlying the Antarctic moisture source distributions. The means of these distributions vary across the continent.

A3.2 Condensation site conditions

During transport, moisture is cooled from initial surface air temperature at evaporation to subsequent condensation tempera-

tures. The condensation temperature is not the same as the surface temperature where that precipitation falls. Indeed, there is a

vertical and temporal distribution of condensation contributing to precipitation that falls at any point on the surface, analogous20

to the horizontal and temporal distribution of evaporation contributing the moisture ultimately transported to any precipitation

site. What is the meaning of Tc reconstructed from ice core records? It is the vertical profile of temperature weighted by the

vertical profile of condensation that yields net accumulation to a site. The weighted condensation temperature has a distinct

relationship to the surface temperature across the globe.

Antarctica has strong climatological inversions such that temperature aloft is often warmer than the surface (Connolley,25

1996). Masson-Delmotte et al. (2008) review the relationship between the condensation temperature and the surface temper-

ature (Ts) over Antarctica, and compare the surface temperature to the weighted annual-mean condensation temperature in

both ERA-40 reanalysis (1980-2002) and MAR, a high-resolution mesoscale model forced by ERA-40 (c.f. Fig. 8, Masson-

Delmotte et al. (2008)). In both models the upper bound of the Antarctic condensation temperature appears to be set by the peak

inversion temperature, though condensation temperatures are on average colder than the peak inversion temperature (meaning30

simply that condensation occurs at aa range of temperature up to the peak inversion temperature). Masson-Delmotte et al.

(2008) calculate a best fit of the surface to condensation temperature slope as 0.65◦C/◦C in the ERA-40 data, consistent with

previous work that found a slope of 0.67◦C/◦C (Connolley, 1996; Jouzel and Merlivat, 1984). The spread of condensation

temperatures in the higher-resolution MAR model suggests colder condensation temperatures than in the lower resolution
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Figure A8. Moisture sources and transport to Antarctica from moisture tagged CAM experiment. a) Difference, in degrees latitude, between

the latitude of precipitation and mean latitude of evaporation (effectively mean transport in degrees of latitude to any site). b) Mean latitude

of evaporation vs latitude of precipitation. All longitudes are shown in the black line; longitudes encompassing West Antarctica is shown in

the blue line while longitudes encompassing East Antarctica is shown in red. c) The mean evaporation latitude (in ◦S) of precipitation falling

at all Antarctic grid points. Select ice core sites shown in white. d) The relationship between mean evaporation latitude and site elevation

across Antarctica. Select ice core locations shown in color. e) Latitudinal moisture source distributions for select Antarctic Ice core sites,

colored by site elevation.

reanalysis (Masson-Delmotte et al., 2008). The strength of the Antarctic inversion diminishes with increasing surface temper-

ature (Connolley, 1996), and relatively warm Antarctic surface temperatures (e.g. >−20◦C) are associated with condensation

temperatures colder than the surface temperature (Masson-Delmotte et al., 2008).

37

https://doi.org/10.5194/cp-2021-37
Preprint. Discussion started: 12 April 2021
c© Author(s) 2021. CC BY 4.0 License.



We analyze the relationship between surface temperature and condensation temperature in monthly MERRA-2 reanalysis

from 2008 through 2017 (Gelaro et al., 2017). We show the climatological, zonal mean, vertical profile of air temperature,

the sum of the convective and large-scale precipitation source production rate, and the rate of reevaporation and sublimation

of precipitation in Figure A9. The relationship between the climatological weighted condensation temperature and the surface

air temperature at every grid point is shown in Figure A10. Note that this calculation accounts for the seasonality of pre-5

cipitation throughout the atmospheric column, as well as the reevaporation and sublimation of falling precipitation. Ignoring

reevaporation and sublimation leads to qualitatively similar results.

The primary take-away is that the MERRA2 data show a generally linear relationship between condensation and surface

temperature for typical Antarctic surface temperatures. That relationship, however, is not linear at warmer surface tempera-

tures. Indeed, even at surface temperatures below zero, the relationship is not strictly linear, but rather steepens with decreasing10

temperature. The relationship between the surface air temperature and the weighted condensation temperature (for surface

temperatures below -10◦C) has an average slope between 0.61 and 0.64◦C/◦C depending on whether one accounts for reevap-

oration and whether the comparison is between the surface or 2-meter air temperature. Note that this slope is weighted toward

the surface temperature of regions comprising more model grid points. Further, the slope clearly steepens with decreasing

temperature, reaching ≈ 0.71−0.75◦C/◦C at the very coldest Antarctic surface temperatures. Given the uneven distribution of15

grid points in temperature space, it is difficult to estimate the robustness of this steepening of slope.

Using our non-linear temperature reconstruction method, we model the condensation temperature for every pair of δ18O

and δD samples in the MD08 and GNIP data sets (Masson-Delmotte et al., 2008; IAEA, 2001) that also have a reported mean

surface temperature. We compare the relationship between the modeled condensation temperature and the reported surface

temperature in Figure A10. The pattern of this reconstructed relationship is remarkably consistent with that found in the20

MERRA2 data set, even to some extent at warm surface temperatures. This is despite the potential for offsets between the

reported surface temperature and that at the time of the precipitation for the MD08 and GNIP precipitation samples, differing

time intervals, potential moisture biases in the column in MERRA2 (Bosilovich et al., 2017), as well as the lack of processes

in our isotope distillation model that should be important, for example, in tropical convection, or for example that might alter

Antarctic precipitation after deposition.25

Examining all modeled condensation temperatures for samples in the MD08 and GNIP data sets with reported surface

temperatures below 15◦C, we find slopes between 0.62 and 0.67 ◦C/◦C. For just the Antarctic precipitation samples in the

MD08 data set we find a best fit slope between the reported surface temperature and our modeled condensation temperature

of 0.67-0.69◦C/◦C (Figure A10), depending on the model assumptions (0.69◦C/◦C under our base assumptions) and whether

below-freezing source evaporation is included (see below), in good agreement with previous Antarctic observational studies30

(Connolley, 1996; Jouzel and Merlivat, 1984). These slopes sit well within the range found in the MERRA2 data. We also

reconstruct the condensation temperatures for the top-most samples from several deep ice cores and compare those to the

reported annual average temperatures for those sites (Figure A10). We find a best fit slope between 0.68-0.70◦C/◦C, depending

on whether we average samples from the last 50 or 100 years, though only five points describe these lines.
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Figure A9. MERRA2 Reanalysis Data 2008-2017. A) Annual mean zonal mean air temperature as a function of pressure and latitude. B)

Annual mean zonal mean precipitation source, kg of water per kg of air per second. C) Annual mean zonal mean reevaportion and sublimation

of falling precipitation, in same units and color scale as panel B.

Based on the above results we use the equation Tc = 0.69◦C/◦C Ts−8.2◦C as our base estimate to reconstruct Antarctic sur-

face temperatures, however we consider an uncertainty of±0.02◦C/◦C in the slope. Our base estimate leads to good agreement

with the observed relationship between global δ18O and surface temperature (Figure A11).
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Figure A10. Weighted condensation temperature as a function of surface temperature. a) MERRA2 reanalysis data, 2008-2017. Seasonally

and vertically weighted condensation temperature (accounting for reevaporation and condensation) for every grid point in the Southern

Hemisphere against 2m air temperature (black) and surface temperature (dark grey). The same relationship with 2m air temperature is shown

for the Northern Hemisphere in light grey dots. b) The reported surface temperature and the SWIM-modeled condensation temperature using

pairs of δ18O and δD in the Masson-Delmotte et al. (2008) data base (’MD08’, blue dots), from both Southern Hemisphere sites (black dots)

and Northern Hemisphere sites (light grey dots) in the GNIP data base, and the average of the top 50 years of sites from several deep ice core

sites (red dots). Solid black lines are 1:1.
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Figure A11. a) Observed relationship between δ18O of precipitation and reported surface temperature in the Masson-Delmotte et al. (2008)

data base (’MD08’, blue dots), as well as the GNIP data base both from both Southern Hemisphere (black dots) and Northern Hemisphere

(light grey dots). b) Modeled relationship between δ18O of precipitation and surface temperature, using our linear scaling, colored by initial

evaporation air temperature (in ◦C).

A3.3 Seasonality

Does seasonality in the hydrological cycle systematically bias climatological information in ice-core water-isotope records?

While the difference between precipitation-weighted surface temperature and annual mean surface temperature is often dis-

cussed, this is not strictly the relevant comparison from the perspective of water isotope ratios of precipitation. As discussed

above, the critical comparison is between the annual mean surface temperature and the condensation weighted temperature5

(integrated over both time and altitude). Our analysis of the MERRA2 reanalysis data (Figure A10) takes seasonal variation

in precipitation and the vertical temperature profile into account. Differences in seasonality of condensation at different sites

contributes to the spread around the central relationship. It is nevertheless useful to investigate potential bias in the precipitation

weighted surface temperature, since direct observations of Antarctic surface temperature are more common than full profiles

of the atmospheric column.10

The potential for precipitation-weighting to bias annual average surface temperature depends on the phase angle between

the seasonal cycles of precipitation and temperature. Only strong correlation or anti-correlation between the two cycles leads

to persistent biasing. The potential for bias also depends on the ratio between stochastic and seasonal variability in both

temperature and accumulation. If non-seasonal variance in accumulation is very large compared to the amplitude of the seasonal

cycle in accumulation, for example, then the potential for bias is small. We examine seasonality in monthly surface temperature15

and snowfall over Antarctica in the ERA Interim reanalysis as well as global precipitation in the MERRA2 reanalysis. While

the the annual average Antarctic surface temperature and the precipitation-weighted surface temperature are often different in

either reanalysis product, we find little systematic bias. Across the Antarctic the month-to-month and year-to-year variance
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in snowfall is large compared to the climatological seasonal cycle. The stochastic sampling of the seasonal cycle in surface

temperature overwhelms the potential bias introduced by the average seasonality of precipitation. Further, the timing of the

climatological annual cycle in snowfall varies across the continent, whereas the annual temperature-cycle is quite coherent.

The potential for seasonal bias thus varies dramatically between sites, even in the absence of the dominant stochastic sampling.

We compare the annual average surface temperature to the precipitation-weighted annual temperature at every grid point5

in the Southern Hemisphere. The mean bias for sites with typical Antarctic surface temperatures is less than 0.33◦C, with the

precipitation-weighted temperature being slightly colder on average. We find no systematic dependence of this bias on the

surface temperature itself. While individual sites do show differences up to 4◦C over the interval examined, our analysis does

not suggest such differences are persistent at a site. None of these analyses of monthly data take into account potential biases

at the scale of individual precipitation events. The intermittency of Antarctic snow fall likely complicates the relationship10

between condensation-weighted and annual-mean temperature at the seasonal and annual scale. At the same time, however,

precipitation intermittency reduces potential seasonal biasing at climatological timescales, by degrading any coherence in the

seasonal cycles of accumulation and temperature.

Could seasonality in evaporation bias reconstructed source region T0? We examine the seasonality of Southern Hemi-

sphere evaporation in the monthly MERRA2 reanalysis, comparing the annual average over-sea surface temperatures to15

the evaporation-weighted annual temperatures. Between 35◦and 65◦S, the bulk of Antarctic moisture sources, evaporation-

weighted surface temperatures are slightly colder than mean annual surface temperatures (the mean difference is 0.123◦C,

with 95% of points between−0.25◦C and 0.5◦C). South of the climatological sea ice zone, mean evaporation temperatures are

a couple degrees warmer than mean annual surface temperatures on average, though our moisture tagging analysis suggests

that these areas contribute at most a couple percent of the total moisture arriving at typical Antarctic sites.20

A4 Tuning the Simple Water-Isotope Model

We tune the Simple Water Isotope Model by adjusting the temperature dependence of the supersaturation of vapor over ice.

Given insufficient observational and physical constraints, we parameterize the supersaturation as a linear function of temper-

ature (Jouzel and Merlivat, 1984) as above, Si = a+ b×T , set a= 1 and tune the slope, b. The supersaturation has a strong

influence on the kinetic fractionation (Equation A12) and thus the relationship between δD and δ18O in vapor and precipitation.25

We tune the model to yield the observed relationship between δD and δ18O in global precipitation, rather than the relationship

between δ values and environmental variables such as surface temperature.

Our target observational data set includes water isotope measurements of precipitation from Antarctica and around the globe.

The bulk of this compilation is that published by Masson-Delmotte et al. (2008). We include additional published surface snow

and precipitation measurements from the GNIP database (IAEA, 2001), from surface traverses at Dome A (Xiao et al., 2013;30

Pang et al., 2015), Dahe et al. (1994), and a 17Oxs compilation from Schoenemann et al. (2014). We also include previously

unpublished measurements from a transect of snow pits and shallow firn cores across the main divide of the West Antarctic

Ice Sheet. Samples from five sites were collected spanning 80 km across the ice flow divide in the 2012/13 summer season.

Samples were measured at IsoLab, University of Washington, Seattle WA, USA. Measurement techniques are described in
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Markle et al. (2017). Measurements were made using laser spectroscopy (Picarro L2120-i analyzer). Data are reported relative

to the VSMOW (Vienna Standard Mean Ocean Water) standard, and normalized to SLAP.

The global relationship between δD and δ18O has an approximate slope of 8, as codified in the historical definition of the

deuterium excess parameter (Dansgaard, 1964). However the slope is not fundamental (Craig, 1961); as discussed in Section 1.2

the true observed relationship is nonlinear (Uemura et al., 2012), as is the theoretical relationship even in the absence of kinetic5

fractionation (Markle et al., 2017). Uemura et al. (2012) find an empirical fit between δ′D and δ′18O in a global data set of

precipitation.They use a 2nd order polynomial fit, which is the basis for the logarithmic deuterium excess parameter (Uemura

et al., 2012; Markle et al., 2017) (Equation 4). From Equation A9, we can see that theoretical relationship between δD and δ18O,

given any amount of distillation, depends on the ratio of exp(Dαtot)/exp(18αtot), where each αtot is itself a nonlinear function of

temperature as outlined throughout Section A2.2. The ratio of exponential functions can be estimated to any arbitrary degree10

of accuracy with a polynomial function.

Our modern data set includes several new sets of measurements in addition to those used in Uemura et al. (2012). We find

similar coefficients in a 2nd-order polynomial fit between δ′18O and δ′D in our larger data set compared to those found by

Uemura et al. (2012): A=−29.2 and B = 8.45 (see Equation 4). Because these coefficients are not significantly different

than those previously published, and for consistency with that work, we use the coefficients found by Uemura et al. (2012)15

(A=−28.5 and B = 8.47) to define a logarithmic deuterium excess parameter, dln. We find no benefit nor justification for

using higher order fits to this data set.

We run the SWIM model to produce an ensemble of temperature trajectories representing a wide range of possible evapo-

ration and condensation temperatures (T0 varies from 0 to 28◦C; Tc from 27 to -60◦C). We then compare the resulting cloud

of modeled δ′18O, δ′D, and dln, finding a 2nd-order polynomial fit between the modeled δ′D and δ′18O from the ensemble20

of temperature trajectories. We tune the model by iteratively adjusting the b value in the supersaturation parameterization to

minimize the difference between the modeled and observed relationship between δ′D and δ′18O (Equation 4). This is easily

visualized in a plot of δ′18O and dln (e.g. Figure A12.a), as the average δ′18O-to-dln relationship is flat, in measured samples,

by definition.

Using the local closure assumption we find an optimal tuning of Si = 1− b×T , for b= 0.00525 ◦C−1 as shown in Fig-25

ure A12. The observational data allow large ranges of the value of b to be rejected as shown in Figure A13b and c; the fit

coefficients of the resultant δ′D and δ′18O are clearly irreconcilable with observations. While it is possible to optimize b as

described above, there are limitations to this tuning procedure and the observational data may not allow discrimination within

a small range of b values. In principle we should not expect a 2nd-order polynomial fit between modeled δ′D and δ′18O to

be identical to the observed fit: the observational target data represent a variety of timescales from sub-seasonal to multi-year30

averages; the sites are neither evenly nor randomly distributed over the Antarctic continent; and the sites represented in the

observational data set have specific moisture source distributions, mean latitudes of evaporation, and evaporation temperatures,

which are not known a priori.

Because higher elevation, colder Antarctic sites likely have more equator-ward MSDs (Figure A8), we should expect more

depleted δ′18O in the target data to be associated with slightly warmer T0 (that is modeled results from a single value of T035
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should not be strictly flat in the δ′18O-dln space). If we take the MSDs determined from the GCM experiments described

earlier as representative, and assuming the climatological meridional profile in surface air temperature, we should expect a

1-2◦C increase in T0 between δ′18O values of -40‰ and -55‰ in the observational data set. This is a fairly small shift in

mean T0 compared to the range of T0 that may contribute to a site, but should give some downward curvature to model results

of equal T0 at the coldest Tc values.5

The appropriate weighting of model realizations with different T0 could vary within our tuning cost function, in principle,

depending on the site of the target data. However without knowing the true moisture source distribution and conditions for each

sample in the target data a priori, assigning a single objective weighting scheme is difficult. We prefer values of b in which the

more depleted observational data transect model realizations of slightly warmer T0, though this is not a strong constraint on

the tuning. While one can reasonably reject most possible values of b (as in Figure A13), we cannot justifiably discern between10

others within a small range (e.g. 0.005≤ b≤ 0.0055). This gives a small, but inherent uncertainty to the model tuning, and

in turn our temperature reconstructions. In spite of these limitations, the tuning procedure reproduces the observed isotope

relationships well.

The model tuning is not especially sensitive to which reanalysis data set is used for correlations of the initial evaporation

conditions nor the season of evaporation. The model is however sensitive to which closure assumption is used.15

While the linear, temperature-dependent parameterization of supersaturation is both simple and widely used, the physical

processes determining supersaturation are complex. To understand the sensitivity of the model to this parameterization we also

test a nonlinear parametrization of supersaturation, Si = a− b×T − c×T 2. If the physical source of the high supersaturation

at very cold conditions is related to the absence of condensation nuclei, the supersaturation may not linearly increase at very

cold temperatures, as there could be diminishing returns as the atmosphere becomes increasingly clean. A small but positive20

c parameter that gradually decreases the slope in Si with decreasing temperature could be plausible. Only very small values

of the second-order term, c, those of order 5× 10−6 ◦C−2, are reconcilable with the observed δ′18O to dln relationship. The

modern data cannot readily distinguish whether the added complexity of the nonlinear parameterization is a better fit than the

simple linear parameterization. For this reason, the linear parameterization is the most justifiable choice, though the uncertainty

associated with this parameterization on temperature reconstructions will be examined below.25

A5 Air Parcel Mixing within SWIM

We have so far assumed that the moisture-weighted average of a set of independent pseudoadiabatic pathways, defined by a

range of evaporation and condensation temperatures, can approximate the conditions experienced by precipitation falling at a

polar site. We now aim to test the limits of this approximation and assess the influence of atmospheric mixing on the isotopic

composition of air masses within the simple model framework.30

The influence of air mass mixing during evaporation is considered in the discussion of the closure assumption above. Here we

consider mixing during transport of air masses with different initial evaporation conditions, different condensation histories, and

different temperature, moisture content, and isotopic values at the time of mixing. The central question is whether the processes
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Figure A12. Tuning SWIM with linear supersaturation parameterization. a) The modeled δ18O and dln of precipitation (colored circles),

for a range of condensation and evaporation temperatures. Color shading shows source region evaporation temperature in ◦C. Black dots

are the target data set as described in the text. Modeled results are for the optimized supersaturation parameterization (Si = 1− b×T ,

b= 0.00525◦C−1) using the local closure assumption and the NCEP/NCAR reanalysis data set for source region correlations. b) Same

as panel a) for the modeled and target δ18O and δD of precipitation. c) Same as panel a) for the modeled and target δ18O and dxs of

precipitation.

of mixing can result in isotopic values of final precipitation that are significantly different than the moisture-weighted average

of precipitation from un-mixed pathways. There are three processes associated with mixing to consider:

1. Non-uniqueness. Parcels that experienced different evaporation conditions can arrive at a condensation site of a given

temperature with different isotopic values.
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Figure A13. Comparison of tuned and rejected supersaturation parameterizations, Si = 1− b×T . a) Tuned example: b= 0.00525◦C−1.

Same as in Figure A12a. The modeled δ18O and dln of precipitation (colored circles) and target data set (black dots). Color shading shows

source region evaporation temperature in ◦C. b) Same as panel a), but for a rejected tuning: b= 0.003◦C−1. The modeled dln curve upward

strongly with δ18O, incongruently with the target data. c) Same as panel a), but for another rejected tuning: b= 0.007◦C−1. The modeled

dln curve downward strongly with δ18O and incongruently with the target data.

2. Mixing-induced condensation. Mixing two saturated or undersaturated air parcels of different temperatures may result

in an oversaturated mixed parcel, due to nonlinearity in the Clausius-Clapeyron relationship. This process leads to addi-

tional condensation and fractionation (as well as warming due to latent heat release) and thus a more depleted isotopic

value for a given temperature compared to the moisture weighted average of unmixed pathways.
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3. Nonlinear mixing. For isobaric mixing of equal-massed air parcels, the final mixed temperature reflects their mass-

weighted average (plus the effect of any latent heat release). However the relative abundances of water isotopes mix

with the moisture content of the air parcels rather than their total mass. Thus while the temperatures have mixed linearly,

the isotopic values of the resultant mixed parcel will be weighted nonlinearly toward those of the warmer and wetter

parcel. The result is that the mixed parcel has a less depleted isotopic value for a given final temperature compared to the5

moisture weighted average of the the unmixed-parcels.

Moisture-weighted differences between mixed and unmixed parcels only occur when air masses of different temperatures

mix. Physically this may represent colliding fronts at synoptic scales. We consider two air parcels evaporated from identical

starting conditions but which mix at different temperatures.

The influence of processes 2 and 3 are largest when the relative humidities of both parcels are at saturation, and the magnitude10

of the influences increase both as the difference in temperature between the two parcels increase and as the absolute temperature

of the parcels increase. As temperature decreases the nonlinearity of the mixing of moisture approaches the linear (mass-

weighted) mixing of temperature.

To assess the range of temperature differences associated with synoptic scales in the Southern Hemisphere, we examine

the difference in daily-mean two-meter air temperature from the ERA Interim reanalysis (Dee et al., 2011) over the Southern15

Hemisphere oceans. In summer, the day-to-day temperature differences have a standard deviation of less than 0.9◦C and in

winter they have a standard deviation of less than 1.5◦C (other reasonable metrics of synoptic-scale variability such as lagged

2 or 5-day temperature differences, or grid point to grid point differences are similar). While there is surely the potential for

strong mixing for any given synoptic event, for the purposes of paleoclimate reconstruction we are interested in the long term

average of many storm events, and thus the statistics of mixing generally.20

We use the simple model to assess the range of final isotopic values of precipitation that can arise from two air parcels,

which evaporated at the same initial conditions, then mixed at a range of different temperatures during transport. Air parcels

are evaporated at specified initial air temperature (T0 = 10◦C) , cooled, and randomly mixed at any combination of temper-

atures whose difference does not exceed a threshold, then cooled the remainder of the temperature pathway to -30◦C. We

assume no preferential temperature of mixing, and no preferential difference in temperature during mixing, though normally25

distributed probability of mixing with temperature differences up to 5◦C (a high-end estimate based on the above analysis of

daily temperature differences). This process is repeated 10,000 times to create a distribution of final δ18O (Figure A14.a), δD

(Figure A14.b), and dln (Figure A14.c) values of precipitation at -30◦C, which is compared to the values from a parcel distilled

along the same temperature pathway with no mixing (vertical red line in panels a-c, closed circle in panel d).

The resultant distributions are skewed and bimodal. The moisture-weighted means of the mixed distributions are shown in30

the vertical black lines, while the unmixed final values are shown in the vertical red lines. The means of the distribution are less

depleted than the unmixed parcel, owing largely to process 3. Influence of process 2 can also be seen in the additional peak at

more depleted values. These distributions vary as a function of both T0 and Tc, though the differences in moisture-weighted-

means between mixed and unmixed parcels are relatively small and consistent.
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The idealized tests above show the influence of mixing (at different temperatures) of air parcels that evaporate from identical

source conditions. Perhaps more realistically, air parcels from different sources can mix at different air temperatures, in which

case all three mixing processes above are important. This can act to broaden the distribution associated with a given moisture-

weighted mean isotopic value. In Figure A14.e-h we show the distribution of isotopic value of precipitation at -30◦C from

a simulation of 10,000 randomly mixed air parcels as described above, except that the two parcels have two different initial5

evaporation temperatures, 5◦C and 15◦C. We compare the distribution to the values associated with unmixed parcels originating

at each evaporation temperature, as well as the moisture weighted mean of the unmixed parcels. Differences between the mean

isotopic values of mixed and unmixed parcels are less than 0.2‰ for δ18O, 1.5‰ for δD, and 0.01‰ for dln. Interestingly,

although the distributions are broader in this scenario compared to the scenario in which the moisture parcels come from the

same evaporative conditions, the difference between the moisture-weighted means of mixed and unmixed parcels are actually10

smaller. This is presumably because the skewed influence of process 3 (which drives the persistent bias above) contributes less

to the total distribution. The relationship between δ18O and condensation temperature and the relationship between dln and

evaporation temperature are similar whether or not mixing is present. Below we investigate the influence of mixing on our

temperature reconstruction technique.

A6 Optimal coordinates for reconstruction technique15

Consider a water sample with mean values of δ18O and δD and normally distributed uncertainties σ18 and σD. These uncer-

tainties may arise from measurement uncertainty or in the mean δ value over some time or depth range represented by that

sample. The dxs and dln values of the sample have corresponding σxs and σln, respectively, resulting from the propagation of

σ18 and σD. How do these uncertainties influence the temperature reconstruction?

In Figure A15 we examine the estimation of T0 using coordinates of δ18O and δD (Figure A15.a), δ18O and dxs (Fig-20

ure A15.b), and δ18O and dln (Figure A15.c). The uncertainty in the position of the measurement along both the x axis (δ18O)

and y axis (either δD, dxs, or dln) combine to give the total uncertainty in the position on the T0 surface, shown as the targets

in (Figure A15.a-c). The total combined uncertainty in the estimation of T0 is shown as probability density functions (PDFs)

for each method in Figure A15.d. All estimates yield the same mean value of reconstructed T0, however the widths of the

probability density functions are different for each method. The δD method yields the broadest PDF and thus most uncertain25

reconstruction. While the PDFs for the dxs and dln reconstructions are similar, the dln reconstruction has a narrower PDF

and thus more confident reconstruction. This is because the T0 isotherms are most separated along and most perpendicular to

the dln axis. The advantage of the separation of isotherms along the dln axis is in part compensated by the broadening of σln

compared to σxs, due to the propagation of uncertainties. However the angle of the isotherms to the y-axis is more important.

Given a normal distribution of uncertainty along the y axis, perpendicular isotherms of the variable we wish to reconstruct will30

result in the narrowest possible distribution of that uncertainty across isotherms. If the angle of the isotherms deviates from

perpendicular, as in the case with dxs at more depleted δ18O values, that uncertainty will be spread across a wider range of

isotherms. The axis of the influence of T0 on dxs (and δD) is rotated with respect to its axis of variability in dxs.
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Figure A14. Influence of air-mass mixing during transport on water isotope ratios of precipitation. a-d) Air parcels from the same initial

evaporation conditions (namely T0 = 10◦C) are distilled, stochastically mixed over a range different temperatures during transport, and

distilled to a final precipitation temperature (-30◦C). Histograms of the final δ18O (panel a), δD (panel b), and dln (panel c), are shown

and the moisture weighted means of those distributions are shown in the vertical black line. For comparison the final isotopic compositions

from an unmixed pathway from 10◦C to -30◦C are shown in the vertical red lines. The distribution in δ18O-dln space of the 10,000 mixed

pathways is shown in d). e-h) Same as for panels a-d) but for stochastically mixed air parcels arising from two different initial evaporation

conditions (T0 = 5◦C and T0 = 15◦C). Moisture weighted means of the mixed pathways are shown in vertical black lines while the moisture

weighted means for equivalent unmixed pathways are in red. In h) model results are colored by the moisture-weighted T0 resulting form the

mixed pathways.

This result is of course ultimately tied to the same reasons that dln provides a better qualitative proxy of source region

changes than dxs. The initial imprint of the source conditions are better preserved in dln than dxs. The infidelity of the historical

definition of the parameter is the result of nonlinear biases from the linear slope of the definition, the nonlinear nature of

equilibrium fractionation, and the cumulative influence of kinetic fractionation during transport (Markle et al., 2017).

In Figure A16 we show the SWIM results (under our base assumptions) overlain with every pair of δ18O and dln measure-5

ments (corrected for changes in seawater δ18O) form the eight Antarctic deep ice core records examined in this study.

A7 Correlation of nonlinear and linear reconstruction techniques

We compare the nonlinear temperature reconstructions of all eight ice core sites to linearized reconstructions using SWIM

results for Holocene conditions as described in Section 4.3.1. We interpolate all records to even time spacing and compute

correlation matrices amongst cores for T0 and Ts, using the linear and non-linear, technique (Figure A17). Reconstructed site10

surface temperatures, Ts, are extremely well correlated amongst all cores using either technique, though there is marginal im-
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Figure A15. a) Evaporation source temperature, T0, contours as a function of modeled δ18O and δD of precipitation. Uncertainty in δ18O

and δD for an interval or sample are shown as PDFs of uncertainty along the respective axes. The intersection of these PDFs on the T0

surface result in a 2-dimensional PDF in the reconstructed value of T0, shown as a target. b, c) Same as panel a) but for the evaporation

source temperature projected on to the δ18O and dxs axes and the δ18O and dln axes, respectively. Uncertainties in δ18O and δD in panel

a) are propagated into the PDF on the dxs and dln axes, in b, c). d) The uncertainty in the reconstructed evaporation source temperature

(Tsource = T0), owing to the weighting of the combined 2-dimensional PDFs from panels a) (in blue), b) (in red), and c) (in purple).
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Figure A16. Inverted T0 and Tc surfaces as a function of modeled dln and δ18O of precipitation as in Figure 6. Overlain are pairs of dln and

δ18O measurements for eight different deep ice core records, whose site locations are shown on the inset map. See Section 4.2 in the text for

details on ice core records.

provement in correlation using the nonlinear technique. In the case of evaporation temperatures, T0, there is dramatic improve-

ment in coherence amongst the records when using the nonlinear technique. The increase in shared variance (R2) explained

using the non linear technique is shown in Figure A18. Note that the largest increase in shared variance is associated with the

Siple record. This makes sense given the conditions of that site compared to the others and the patterns of partial slopes in

Figures 3 and 4.5

By accounting for the fundamental nonlinearities in water isotope distillation we are able to reveal more coherent underlying

climate signals in source region temperatures, which are otherwise obscured by linear temperature reconstruction techniques.

For analogous reasons, Markle et al. (2017) argued that the logarithmic deuterium excess parameter dln is a more faithful

qualitative proxy of source region conditions than the linearly define dxs. Compare the correlation matrices of the excess

parameters in Figure A19. The nonlinearly reconstructed T0 and dln parameter share the same correlation pattern amongst10

the ice cores, and show substantially more coherence than either linearly reconstructed T0 or dxs. The correlation pattern of
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dln and dxs between all core sites (Figure A20) reveal how nonlinear effects alter the traditionally defined dxs at the coldest

Antarctic temperatures. The broad change from positive to negative correlation of dln to dxs across sites is a reflection of the

change in sign of ∂dxs/∂Tc as a function of Tc.
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Figure A17. Correlation (R) matrices for temperature reconstructions of all core sites. a) Correlation among reconstructions of T0 using a

linearization of SWIM results for isotopic conditions of the Holocene. b) Correlation among reconstructions of T0 using the full nonlinear

SWIM results. c) Correlation among reconstructions of Ts using a linearization of SWIM results for isotopic conditions of the Holocene. d)

Correlation among reconstructions of Ts using the full nonlinear SWIM results. All records are ordered by their approximate modern surface

temperature.

A8 Temperature reconstruction uncertainty

In this section we investigate uncertainty in our temperature reconstructions by examining the sensitivity of our results to5

assumptions and parameterizations in the model. We can compare reconstructed Tc and T0 from a set of δ18O and dln mea-

surements, using multiple iterations of the model in which the value of a parameter or an underlying assumption has been

varied. In Figure A21 we show Tc and T0 reconstructions for the WDC record (Markle et al., 2017) arising from a number of

model parameters and assumptions, discussed below. Because our reconstruction technique takes into account nonlinearities,

differences in reconstructed temperatures may have mean offsets, and may have differences in variability that vary as a func-10

tion of δ18O and dln. Thus uncertainty arising from a given parameter may vary between ice core sites. In general, varying a

parameter in the model results in patterns of the partial slopes in δ18O and dln with Tc and T0 that are similar, but shifted in
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Figure A18. The increase in R2 (shared variance) of the nonlinear reconstructions of T0 for all sites over the the linear reconstructions

(linearized around Holocene conditions). All records are ordered by their approximate modern surface temperature.

the Tc and T0 space. A consequence of this is that the uncertainty in absolute values of reconstructed Tc and T0 is generally

larger than uncertainty in their relative variability.

It is useful to distinguish between uncertainty in the true value of a parameter in the modern climate and the possibility that

the effective value may change as a function of climate. Further, not all sources of uncertainty are independent. Varying the

value of some parameters may require retuning the model before calculating the isotope state spaces. By ignoring this we risk5

conflating uncertainty in the reconstruction with bias in the reproduction of the modern mean state.

A8.1 Sensitivity to model parameters

There is uncertainty in our reconstructions associated with the tuning procedure. While we can constrain the possible values

of the b parameter in the supersaturation function by comparison to modern data, variations within a small range should not

be ruled out given the imperfect constraint of modern observations. In Figure A21 we show the resultant uncertainty in the10

temperature reconstruction from uncertainty in the supersaturation parameterization (b= 0.0051 to 0.0054◦C−1). Uncertainty

arising from other aspects of the distillation scheme, such as the value of the diffusive fractionation factors during transport,

are encapsulated by the tuning uncertainty since adjusting those parameters require retuning the model.
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Figure A19. Correlation matrices for a) δ18O, b) δD, c) dxs, and d) dln among all core sites. All records are ordered by their approximate

modern surface temperature.

Aspects of the initial evaporation scheme introduce uncertainty into our reconstructions. The value of α18
diff during evapo-

ration is important in setting the initial isotopic values of vapor. While we find the value 1.009 to give the best fit to modern

observations, values within a small range may be defensible (Figure A6). The local closure assumption used in the evaporation

scheme has known limitations (Risi et al., 2010), representing an end-member scenario for possible evaporative conditions.

While less applicable to past climate mean states, the global closure assumption provides an extreme test of the model’s sensi-5

tivity. Using the global rather than local closure assumption can lead to differences in reconstructed absolute T0 up to 1.5 ◦C

for the WDC record, while differences in absolute Tc are smaller (≤ 1 ◦C). Relative variability in T0 and Tc is similar when

using either closure assumption, and ≤ 0.3◦C.

We also examine the influence of the source relative humidity parameterization on our temperature reconstructions. In

our base model we use climatological correlations to determine an initial relative humidity given an initial air temperature;10

colder surface air temperatures over the ocean are associated with slightly higher relative humidity. We show the difference

in reconstructions due to using either the NCEP or ERA Interim reanalysis. We can also ask how different our reconstructed

Tc and T0 in WDC would be if we used fixed mean values of initial relative humidity, rather than values that depend on T0.

These differences are not true uncertainties in the reconstruction as variable surface relative humidity is a more physically

defensible choice than a fixed relative humidity, though these tests serve to demonstrate the robustness of the reconstruction15

to model assumptions. In a similar vein we can examine the sensitivity of the model to our precipitation parameterization, and

the potential choices of that parameterization discussed in Section A1.2.
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Figure A20. Correlation matrix between dxs and dln between all core sites. All records are ordered by their approximate modern surface

temperature.

A8.2 Influence of mixing on temperature reconstruction

We assess the potential influence of atmospheric mixing on our temperature reconstruction framework by comparing the maps

of T0 and Tc as functions of δ18O and dln to maps produced by a large ensemble of model runs that incorporate stochastic

mixing. We consider a range of final condensation temperatures from -20◦C to -50◦C. We generate random pairs of pseudoa-

diabatic cooling pathways ending at every value of Tc and random values of T0 pulled from a normal distribution (with mean5

of 12◦C and standard deviation of 4◦C) similar to the modern Antarctic moisture source distributions. Air parcels cooled down

these two paths are stochastically mixed at points along the path, and cooled to the final Tc. To mix, parcel temperatures must

be above an absolute threshold temperature (-15◦C) and have a relative difference within 5◦C, as described above. This results

in a conservative estimate of the influence of mixing: mixing at lower temperatures reduces the average difference between

mixed and unmixed pathways since the effects of mixing are larger when absolute humidity is higher. We take 50 random10

mixtures from each of 2 × 50 random cooling pathways, for each value of Tc between -20◦C and -50◦C in increments of

0.1◦C (a total of 1.5× 104 unmixed and 7.5× 105 mixed cooling paths). We then interpolate the results of both the mixed

pathways and the moisture-weighted averages of the unmixed pathways to create maps of T0 and Tc as functions of δ18O

and dln (at resolution of 0.1 ‰, Figure A22). Due to the stochastic mixing these maps are unevenly populated. The potential

influence of mixing on our reconstruction technique can be seen in the difference between the mean Tc and T0 maps resulting15
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Figure A21. Temperature reconstruction sensitivity to model parameterizations. Tc and T0 reconstructions using WDC δ18O and dln (re-

sampled to 10 year resolution) and SWIM model runs. Black lines show base model in all panels while colored lines are results in which

model parameters and assumptions are varied: a-b) evaporation condition correlations based on NCEP (black) and ERA (red) reanalysis

data; c-d) Global (blue) and local (black) closure assumption during evaporation. e-f) A range of values for 18αdiff ; g-h) a range of values

for the b parameter in the supersaturation parameterization, as well as a nonlinear parameterization (‘c’) as described in the text; i-j) several

versions of the precipitation parameterization in which all moisture is removed above saturation (‘sat’), all moisture is removed above initial

RH (RH =RH0, constant RH along path), and all moisture is removed above fixed 80% or 90% RH.
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from the mixed (denoted with subscript M) and unmixed pathways (Figure A22). In Figure A22 we show the histograms of

∆Tc = Tc,M −Tc and ∆T0 = T0,M −T0. We test a range of mixing and threshold values in multiple Montecarlo simulations.

In all cases the mean values of Tc,M −Tc and T0,M −T0 are very near zero, (< |± 0.06◦C| for Tc, and < |± 0.02◦C| for T0).

The spread of the histograms in Figure A22, represent the inherent uncertainty in our reconstruction technique when mixing

is neglected. This uncertainty is less than ±0.2◦C for Tc and ±0.35◦C for T0 in all tests. We find similar results when using5

isobaric rather than pseudoadiabatic cooling pathways. Including moisture sources with T0 < 0◦C in our mixing analysis has

no significant influence on the mean difference between the weighted mean maps of either Tc or T0, though expanding the

range of moisture sources to include T0 < 0◦C, does increase the range of T0,M −T0, by over a degree, in agreement with the

analysis of unmixed pathways.

Figure A22. The influence of air parcel mixing on modeled isotope state spaces. a & e) The water isotope ratios of precipitation resulting

from 7.5×105 stochastically mixed distillation pathways, colored by Tc and T0, respectively. b & f) The water isotope ratios of precipitation

resulting from the corresponding 1.5×104 unmixed distillation pathways, colored by Tc and T0, respectively. c & g) The difference in Tc and

T0, respectively, between the mixed and unmixed pathways as a function of the δ18O and dln space. d & h) Histograms of the differences,

∆Tc and ∆T0, from all points in the δ18O and dln space, resulting from mixing.

A8.3 Combined Uncertainty estimates10

To calculate the total uncertainty in our temperature reconstructions, we examine the combined influence of the major inde-

pendent sources of uncertainty. These include tuning via the supersaturation function, the closure assumption, mixing in the

atmosphere during transport, the precipitation parameterization, the diffusive fractionation factor during evaporation, and the

relationship between initial air temperature and relative humidity. We calculate the absolute uncertainty for each Tc and T0

reconstruction interpolated at each pair of δ18O and dln measurements, as the absolute difference in reconstructions arising15
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form perturbations to parameter values or assumptions. To estimate the uncertainty in relative temperature changes we subtract

the mean of each reconstruction before calculating differences due to parameter perturbations.

We estimate the uncertainty due to model tuning as the mean absolute difference from the base-scenario for reconstructions

using values of b= 0.0051 to 0.0054 in the supersaturation function. Likewise the impact of uncertainty in the value of the

diffusive fractionation factor is estimated as the mean absolute difference of reconstructions using 18adiff = 1.009± 0.001.5

We estimate the uncertainty introduced by the precipitation parameterization as the the mean absolute difference from the

base-scenario of reconstructions using each of the alternate assumptions outlined in Section A1.2, applied symmetrically to the

base scenario. We estimate the uncertainty arising from our assumed relationship between T0 and RH0 as the mean absolute

difference in reconstructions using climatological fits from the NCEP/NCAR and ERA Interim reanalysis.

Based on the tests in Section A2.1, a conservative estimate of the uncertainty arising from mixing at the evaporation source is10

half the absolute mean difference in reconstructions employing the local and global closure assumptions, applied symmetrically

about the base-scenario (local closure). Because of the stochastic nature of our atmospheric mixing simulations, our estimates

of the Tc and T0 differences are nonuniform and unevenly populated, making interpolation in the δ18O-dln space challenging

(see Section A5). We thus take a conservative estimate of the absolute and relative uncertainty introduced by mixing during

transport as the mean and standard deviation of the differences in the mixed and unmixed reconstructions across the entires15

state space, respectively (see Figure A14).

We add the uncertainty from each independent source in quadrature as functions of δ18O and dln, symmetric around the

base scenario. Finally, we include the additional uncertainty in our estimates of relative Ts variability arising from the Tc to Ts

relationship outlined in Section A3.2. We use the mean absolute difference of reconstructions using Tc ∝ 0.69±0.02◦C/◦C Ts

to estimate this uncertainty, which is added in quadrature to with the above uncertainties in Ts. An example of this spread of20

uncertainty on the WDC Ts reconstruction is shown in Figure A23. Reconstructions of Ts, Ts, and T0 for several major ice

core records along with the combined relative uncertainty in those reconstructions is shown in Figure 8.

A8.4 Uniqueness and source temperature

All Antarctic sites have mean initial evaporation air temperatures above 0◦C, according to the the moisture source distributions

from water-tagged GCM experiments (Figure A24). In fact, 85-95% of all moisture that arrives at Antarctic sites in our mod-25

eling, initially evaporates from locations with annual average surface air temperatures above freezing. The relatively small but

non-zero contribution of moisture from evaporation temperatures below freezing poses an interesting challenge to our temper-

ature reconstruction method. While it is widely known that there is not a unique value of δ18O for every value of condensation

temperature owing to the influence of evaporation temperature, there are not necessarily unique pairs of δ18O and dln for every

pair of Tc and T0, if T0 can be both above and below freezing. The Tc and T0 surfaces fold over on themselves in the δ18O30

and dln space, for values of T0 below 0◦C. An example of such a folded surface is shown in Figure A25. Given a lack isotopic

vapor measurements for evaporation air temperatures much below 0◦C and that our evaporation scheme is not well calibrated

for such conditions, these results are purely illustrative.
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comparison the results from a weaker slope of 0.65◦C/◦C are shown in blue. This range of scaling factors has little impact on the reconstructed

temperature history.

Those caveats aside, we investigate the sensitivity of our temperature reconstructions to this potential non-uniqueness in the

water-isotope state spaces. We run SWIM through a large field of T0 values, from -28◦C to 28◦C. We can in principle resolve

the non-uniqueness problem by combining reconstructions from either side of the folded surface, based on the contribution

of total moisture represented by each pair of non-unique paths. Knowing that below-zero moisture sources contribute far less

to the total moisture reaching Antarctic sites (Figure A24), we examine two reasonable methods of moisture-weighting the5

reconstructions. In the first we simply weight each pair of reconstructed temperatures by the final mixing ratio (rs(eff)) of

each modeled distillation path. This approach has the advantage of allowing contributions to vary with temperature and thus

mean climate, and leads to roughly 10-20% contributions from below 0◦C moistures sources to modern Antarctic sites (using

a local closure assumption). However, this approach ignores the influence of dynamics and topographic-energetic isolation

in determining Antarctic moisture source distributions, ultimately overestimating contributions from below 0◦C moistures10

sources to higher-elevation, colder sites compared to our GCM-based MSD estimates. In this rs(eff)-weighted scheme, higher

Antarctic sites have a relatively greater contribution from colder moisture sources than warmer sites, owing to the curvature

in the Clausius-Clapeyron relationship. Our moisture tagging analysis and previous studies (e.g Bailey et al. (2019)) suggest,

however, that transport dynamics should lead to the opposite relationship. An alternate approach is to specify fixed contributions

from above and below 0◦C moistures sources (e.g. 90% T0 > 0◦C, 10% T0 < 0◦C). While these average relative contributions15

are based on our moisture tagging analysis, we do not specify contributions as a function of site elevation or mean climate.
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Reconstructions based on these approaches (both calculated and specified moisture weighting) are shown in Figure A26 for

the WDC record. Considering the non-uniqueness leads to very small differences in reconstructed Tc and T0 variability:

the standard deviation of differences in reconstructed Tc is less than 0.07◦C, using either method, and less than 0.19◦C for

T0. Attempting to account for this non uniqueness does however lead to persistent mean offsets in absolute temperature, in

particular we find colder absolute values of reconstructed T0 for all ice core sites.5

While these results are interesting, this attempt to account for non-uniqueness likely does not actually improve the absolute

temperature reconstructions. Given the shape of the folded temperature surfaces in the modeled δ18O and dln space, and the

actual values of δ18O and dln in ice core measurements, the model must extrapolate to extremely cold T0 values for the

below 0◦C side of the folded surface. These values of T0 are far colder (>10◦C colder) than realistic evaporation temperatures

likely to contribute moisture to high Antarctic sites given energetic constraints (Bailey et al., 2019) and our moisture tagging10

GCM experiments. Further, as stated above, our evaporation scheme is not well calibrated to such evaporation conditions.

Near surface relative humidity in particular is not well constrained by our climatological correlations in these circumstances.

Our model likely underestimates the depletion of the initial evaporate in these circumstances, meaning that the reconstruction

solves for a very cold T0 when a much warmer one (and perhaps a reduced RH0) is actually correct. The net result of these

considerations is that the analysis above should represent a quite conservative estimate of the influence of non-uniqueness on15

our temperature reconstructions and their relative variability; the real effect is likely much smaller though difficult to quantify

precisely.
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Figure A24. Annual mean temperature of moisture source regions from moisture tagged GCM experiments. a) Annual mean, zonal mean

surface air temperature vs. latitude (blue) overlain with annual mean MSDs for several ice core sites, colored by MSD-weighted annual-mean

air temperature. b) MSD-weighted annual-mean air temperature for every model grid point over the Antarctic. Note that this is not strictly

the evaporation-weighted air temperature.

A9 Comparison to previous reconstructions

We next reconstruct site and source temperatures for four East Antarctic ice-core records and compare to previously published

linear reconstructions. We use records of δ18O and δD measurements (and calculate dxs and dln) from the Vostok (Jouzel20
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Figure A25. Isotope model results colored by initial evaporation air temperature T0 (◦C), using base model assumptions. For initial evapo-

ration air temperatures below 0◦C there are non-unique results in the δ18O and dln space.

et al., 1997; Uemura et al., 2012), EPICA Dome Concordia (EDC) (Stenni et al., 2004, 2010), EPICA Dronning Maud Land

(EDML) (Stenni et al., 2010), and Dome Fuji records (Uemura et al., 2012). After sea water correction, we use the ice core δD

and dxs for the linear reconstruction, and δ18O and dln for the nonlinear reconstruction. The linear reconstruction parameters

from several studies are compiled by Uemura et al. (2012) (c.f. Tables 1 and 2 in Uemura et al. (2012)). Previous reconstruction

techniques solve for the source temperature, Tsource, equivalent to our evaporation temperature, T0, and for the site surface5

temperature, Tsite. We convert our reconstructed condensation temperatures, Tc, to surface temperatures following the method

in Section A3.2.

A comparison of relative changes in site and source temperatures are shown in Figure A27. The nonlinear reconstruction

results of this study are shown in black, while published linear inversions for each core are shown in color. The difference

between the results of this study and the previous temperature reconstructions arise from differences between the linear and10

nonlinear reconstruction techniques as well as differences in the underlying water-isotope models used for the estimation of

scaling relationships. In many cases, the previously-published linear inversions overestimate changes in both site and source

temperature compared to the nonlinear reconstruction.
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Figure A26. Temperature reconstructions for WDC accounting for below zero evaporation air temperatures. a) Reconstructions of Tc un-

der base conditions (blue; no contribution form T0 < 0◦C), with contribution from T0 < 0◦C weighted by final rs (red), and with 90%

contribution from T0 > 0◦C, 10% from T0 < 0◦C (gold). b) Same as in a) but for reconstructions of T0.

The over-estimation of reconstructed temperature change by the linear reconstruction makes physical sense. The largest

source of nonlinearities in the water isotope to temperature relationships are in the deuterium excess parameter, ∂dxs/∂Tc and
∂dxs/∂T0. If one assumes these slopes are linear over a given range in T0 and Tc, when in reality they are nonlinear, one will

attribute a given change in ∆dxs to a larger change in temperature than is actually required. This over estimate of the required

temperature change will be distributed across the reconstructed site and source temperatures in proportion to the values of the5

β and γ parameters. The same reasoning is true for nonlinearities in the relationships between δD or δ18O and the temperature

boundary conditions, though the nonlinearities in these slopes are much smaller.

The residuals between relative temperature change in the nonlinear and previous linear reconstructions are shown in Fig-

ure A28. Residuals in the site temperature reconstructions are on the order of ±2◦C (Figure A28.a). The residuals are not

random but rather correlated to the reconstructions themselves, pointing to nonlinear biases.10

The previous reconstructions use a different scaling between surface and condensation than that used in this study (see Sec-

tion A3.2). However, the differences between the nonlinear reconstruction and the linear reconstructions do not arise solely

because of this different surface-condensation temperature scaling. The residuals between reconstructed condensation temper-
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Figure A27. Reconstructions of relative change in Antarctic surface temperature (∆Tsite, left panels) and source region evaporation tem-

perature (∆Tsource, right panels), for four East Antarctic ice-core site: Vostok, EDC, EDML, and Dome Fuji. The non linear reconstructions

(this study) are shown in black while published linear reconstructions are shown for each site in color. The linear coefficients for the published

reconstructions are compiled in (Uemura et al., 2012) (c.f. Tables 1 and 2). Linear methods labeled U12 for Vostok, EDC, and EDML were

calculated by a simple Rayleigh-type model (Uemura et al., 2012). Reconstructions U12a-e for Dome Fuji represent a sensitivity study from

Uemura et al. (2012). Reconstructions S03 and S09 are from Stenni et al. (2004) and Stenni et al. (2010).

atures are shown in Figure A28b. These differences are somewhat damped compared to those of the surface temperatures,

owing to different assumed slopes in the condensation to surface temperature relationship, but are of similar magnitude and the

time series of the residuals are again correlated to the reconstructions themselves.

The residuals between the reconstructed evaporation temperature anomalies (Figure A28c) have a large spread ranging from

about +3◦C to -5◦C. While the magnitudes of source temperature residuals are comparable to those of site temperature, they5

are far more significant, representing from 50% to over 200% of the total reconstructed variability in the source temperature.

The residuals between the reconstructed evaporation temperature anomalies (Figure A28c) have a large spread ranging from

about +3◦C to -5◦C. As discussed above the largest source of potential biases are in the deuterium excess relationships to

temperature, and should be greatest in the reconstruction of source temperatures. While the magnitude of source temperature

63

https://doi.org/10.5194/cp-2021-37
Preprint. Discussion started: 12 April 2021
c© Author(s) 2021. CC BY 4.0 License.



50 100 150 200 250 300 350

age (ka)

-2

0

2

R
e
s
id

u
a
ls

S
u
rf

a
c
a
e
 T

e
m

p
e
ra

tu
re

 (
°
C

) a)

50 100 150 200 250 300 350

age (ka)

-1

0

1

2

3

R
e
s
id

u
a
ls

C
o
n
d
e
n
s
a
ti
o
n
 T

e
m

p
e
ra

tu
re

 (
°
C

)

b)

Vostok

EDC

EDML

Fuji

50 100 150 200 250 300 350

age (ka)

-6

-4

-2

0

2

4

R
e
s
id

u
a
ls

S
o
u
rc

e
 T

e
m

p
e
ra

tu
re

 (
°
C

) c)

Figure A28. Differences between our full nonlinear reconstruction and multiple previously published linear reconstructions (Stenni et al.

(2004), Stenni et al. (2010), Uemura et al. (2012)) of a) ice core site surface temperature, b) site condensation temperature, and c) evaporation

source temperature, for multiple core sites. Colors correspond to reconstructions shown in Figure A27; Vostok is in cyan, EDC in reds, EDML

in blue, and Dome Fuji in shades of purple).

residuals is comparable to those of site temperature, they are far more significant, representing between 50% to over 200% of the

total reconstructed variability in the source temperature. This is related to the issues surrounding the qualitative interpretation
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of source region changes from dxs versus dln (Markle et al., 2017; Uemura et al., 2012) (see Section 1.2) and ultimately a

consequence of the same distillation effects.

A10 Three-parameter reconstructions5

In the approach outlined above, we have considered the boundary conditions Tc and T0 to be the only independent input

variables. In particular, we have assumed that the source region relative humidity, RH0, is a dependent variable whose value

is not fixed but determined by climatological correlation to T0. Most previous linear reconstructions have calculated scaling

factors based on fixed values of RH or the average of variation in RH over some range (Uemura et al., 2012; Winkler et al.,

2012).10

We can relax the assumption that RH0 is dependent on T0 and reconstruct three independent climate variables (Tc, T0, and

RH0) if we have three independent constraints. While δ18O and dln alone are not sufficient, the 17Oxs = δ′17O− 0.528δ′18O

(Landais et al., 2008) can in principle provide the necessary additional information. We can allow Tc, T0, and RH0, to all

vary as independent variables, defining a three-dimensional parameter-space, through which SWIM is run to produce three-

dimensional isotope state-spaces.15

While promising, this method currently has practical limitations. Our model does not reproduce the observed 17Oxs to δ18O

relationship in Antarctic precipitation to sufficient precision to offer useful constraints. This may be a consequence of model

limitations such as missing physical processes. Alternatively (or additionally) uncertainties in the absolute values of 17Oxs in

Antarctica precipitation may be too large to offer useful discrimination amongst variations in Tc, T0, and RH0 (Schoenemann

et al., 2014).20

The 17Oxs of Antarctic precipitation in our model is sensitive to the supersaturation, diffusivities, and other parameters

driving kinetic fractionation. Both small changes in the supersaturation parameterization, and uncertainties in the absolute

value of 17Oxs, lead to large changes in the absolute value of reconstructed source-region conditions (T0 and RH0). It is worth

noting that absolute values of 17Oxs are three orders of magnitude smaller than the deuterium excess. Further, preliminary

testing suggests that there may be significant non-uniqueness to address, that is a position in the three-parameter space, defined25

by δ18O, dln, and 17Oxs, does not necessarily lead to unique values of the boundary conditions.

This general approach is scalable. Additional quantities that are both influenced by the environmental pathway and measur-

able in an ice core, for example accumulation rate (Fudge et al., 2016), water isotope diffusion lengths (Johnsen et al., 2000),

or the concentration of aerosols (Markle et al., 2018), may be added to the model. These additional proxies can allow for the

reconstruction of additional independent variables and the relaxation of assumptions. Alternatively it may be possible to use30

the same approach to optimize model parameters like the supersaturation. We leave this task to future work.
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