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Reconstructing burnt area during the Holocene: an Iberian case study
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This SI contains the following sections: (1) information about the preparation of the Iberia pollen data, (2) the analyses used
to select the final GLM, (3) the justification of the use of the fourth root transformation of burnt area faction in the fxTWA-
PLS analysis, (4) testing of the impact of using of micro and macro charcoal on the burnt area fraction reconstructions, and (5)

comparisons of the fxTWA-PLS reconstructions with reconstructions based on alternative methods (WA-PLS, TWA-PLS).

This SI includes the following Figures and Tables:

Figure S1. Partial correlations test based on data sets for the Iberian Peninsula that include annual observations at 0.5° for the
period between 2001 and 2016. The data are all transformed according to Table S2 prior to the test.

Figure S2. Partial residual plots of the final model (Table S3, last column). The plot includes (1) the expected value (blue
line); (2) a confidence interval for the expected value (grey band); (3) partial residuals (dark grey dots).

Figure S3. Composite plots for macroscopic and macroscopic charcoal separately of 15 charcoal sites with both macroscopic
and microscopic entities using the locfit() function with half-width=300, number of bootstrap samples=1000. The locally
estimated scatterplot smoothing is shown in blue; The upper and lower 95th-percentile confidence intervals are shown in grey.
Figure S4. The fitted plots and residual plots of WA-PLS and TWA-PLS methods, with and without fx correction.

Figure S5. Composite curves of reconstructed burnt area using WAPLS and TWAPLS, with and without fx correction, using
the locfit() function with half-width=300, number of bootstrap samples=1000. The locally estimated scatterplot smoothing is

shown in blue; The upper and lower 95th-percentile confidence intervals are shown in grey.



35 Table S1. Pollen taxa in the Iberian dataset (205 taxa). Pollen taxa using in deriving the fire-vegetation relationship and fire
reconstructions are shown in bold (139 taxa).
Table S2. Environmental variables and transformation methods
Table S3. The process of the model selection. Regression coefficients (t value) and pseudo-R? of each model are shown. The
final model is shown in bold.

40 Table S4. Leave-out cross-validation fitness of WA-PLS and TWA-PLS methods, with and without fx correction, showing



45

S1. Preparation of the Iberian pollen data

Non-pollen palynomorphs (e.g. fungi, algae), introduced species, and fire-insensitive plants (e.g. obligate aquatics) were
removed before analysis on the assumption that these were not diagnostic of changing fire regimes. Some pollen taxa are not
identified consistently by palynologists or occur at very few sites, so some pollen types were amalgamated to higher taxonomic

groups (genera for trees, families for herbaceous taxa) for consistency across the records (Table S1).

Table S1. Pollen taxa in the Iberian dataset (205 taxa). Pollen taxa using in deriving the fire-vegetation relationship and fire

reconstructions are shown in bold (139 taxa).

Taxon:

Abies Acer Aconitum Adonis

Aesculus Aizoaceae Alnus Amaranthaceae
Amaryllidaceae Anacardiaceae Apiaceae Aquilegia
Araliaceae Arbutus Arctostaphylos Aristolochiaceae
Artemisia Asparagaceae Asphodelaceae Asteraceae
Asteraceae Liguliflorae Asteroideae Astragalus Berberidaceae
Berberis Betula Boraginaceae Brassicaceae
Buxus Calicotome Calluna Campanulaceae
Caprifoliaceae Carduoideae Carpinus betulus Carpinus orientalis Ostrya
Caryophyllaceae Castanea Cedrus Celastraceae
Celtis Ceratonia Chamaerops Cichorioideae
Cistaceae Cistus Clematis Colchicaceae
Convolvulaceae Coriaria Cornus Corylus
Crassulaceae Crataegus Cucurbitaceae Cupressaceae
Cyperaceae Cytinaceae Daphne Delphinium
Dennstaedtiaceae Dryas Elaeagnus Empetrum
Ephedra Ephedraceae Equisetum Erica

Ericaceae Eriocaulaceae Euphorbiaceae Fabaceae
Fabaceae herbs Fagus Frangula Fraxinus
Genisteae Gentianaceae Geraniaceae Grossulariaceae
Halimium Haloragaceae Hedera Helianthemum
Helleborus Hippophae Huperzia Hymenophyllaceae
Hypericaceae Hlex Iridaceae Jasminum
Juglans Juncaceae Juncaginaceae Koenigia



Lamiaceae
Ligustrum
Linum
Lysimachia
Melanthiaceae
Myrica

Nigella

Ononis
Osmundaceae
Papaveraceae
Picea

Pistacia
Poaceae
Polygonum
Potentilla
Pterocarya
Ranunculaceae
Rhamnaceae
Ribes

Rubus
Sanguisorba group
Sciadopityaceae
Sorbus
Teucrium
Trollius
Vaccinium
Violaceae

Zygophyllaceae

Larix

Liliaceae
Lonicera
Lythraceae
Mercurialis
Myrtaceae

Olea
Ophioglossaceae
Oxalidaceae
Parrotia

Pinus
Plantaginaceae
Polemoniaceae
Polypodiales
Primulaceae
Quercus deciduous
Ranunculus
Rhamnus
Rosaceae
Rutaceae
Santalaceae
Scrophulariaceae
Tamarix
Thalictrum
Ulmus
Valerianaceae

Viscum

Lavandula
Linaceae
Loranthaceae
Malvaceae
Montiaceae
Nartheciaceae
Oleaceae
Orchidaceae
Oxyria Rumex
Periploca

Pinus diploxylon
Platanus
Polygalaceae
Populus
Prunus
Quercus evergreen
Resedaceae
Rhododendron
Rosmarinus
Salix
Sapotaceae
Smilax
Taxaceae
Thymelaeaceae
Ulmus Zelkova
Verbenaceae

Vitex

Ledum

Linnaea
Lycopodium
Maytenus
Moraceae
Nerium
Onagraceae
Orobanchaceae
Paeonia
Phillyrea

Pinus haploxylon
Plumbaginaceae
Polygonaceae
Portulacaceae

Pteridaceae

Quercus intermediate

Retama

Rhus
Rubiaceae
Sambucus
Saxifragaceae
Solanaceae
Taxus

Tilia
Urticaceae
Viburnum

Ziziphus




50 S2. Selection of the final GLM

We initially examined 13 variables that have been shown in global analyses to influence burnt area. Table S2 provides

information on the source of each of the data sets, their original resolution, and the transformation used prior to analysis.

Table S2. Environmental variables and transformation methods.

Environmental variables Data source Resolution Transformation Reference

Dry days per month CRUNCEP V7 0.5° x 0.5° Logarithmic Viovy, 2018

Diurnal temperature range (K) CRUNCEP V7 0.5° % 0.5° Logarithmic Viovy, 2018

Maximum temperature (K) CRUNCEP V7 0.5° % 0.5° Logarithmic Viovy, 2018

Wind speed (m/s) CRUNCEP V7 0.5° % 0.5° Logarithmic Viovy, 2018

Gross primary production (gC m? day™") FLUXCOM 0.5° x 0.5° Logarithmic Jung et al., 2020

Tree cover (%) VCF 0.05° x 0.05° Cell fraction Hansen and Song, 2018

Non-tree cover (%) VCF 0.05° x 0.05° Cell fraction Hansen and Song, 2018

Cropland (km?) HYDE 3.2 0.083° x 0.083° Cell fraction Klein Goldewijk et al., 2017

Total rainfed other crops (no rice) (km?) HYDE 3.3 0.083° x 0.083° Cell fraction Klein Goldewijk et al., 2017

Grazing land (km?) HYDE 3.2 0.083° x 0.083° Cell fraction Klein Goldewijk et al., 2017

Total population density (inhabitants km2) ~ HYDE 3.2 0.083° x 0.083° Square root Klein Goldewijk et al., 2017

Urban population density (inhabitants km?) HYDE 3.2 0.083° x 0.083° Square root Klein Goldewijk et al., 2017

Rural population density (inhabitants km2) ~ HYDE 3.2 0.083° x 0.083° Square root Klein Goldewijk et al., 2017
55
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The process of final model selection: The partial correlation test (Fig. S2) shows that tree cover is highly correlated with both
GPP (0.63) and non-tree cover (0.69), and rainfed cropland is highly correlated with total cropland (0.62). The three population
variables are also strongly correlated with one another (> 0.80). There are moderate correlations between maximum
temperature of the warmest month, maximum diurnal temperature range, and maximum dry days per month (> 0.40). We
tested the impact of including or removing highly and moderately correlated variables before selecting the final model. Tree
cover was not included in any GLM model because of its high correlation with both GPP and non-tree cover. The GLM model
including cropland has a higher pseudo-R? than the model including total rainfed cropland (Table S3: first 2 columns), so only
total cropland was retained. Comparison of the GLM models using total, urban and rural population density (Table S3: 2-4
columns) shows that only urban population density is statistically significant and the model with urban population density has
the best fit (pseudo-R?=0.20). All the variables in this model, except for maximum temperature, are statistically significant (P

< 0.1). Given the lack of statistical significance of maximum temperature and the moderate correlations between maximum
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temperature and both diurnal temperature range and dry days per month (Fig. S2), we constructed three models leaving out
one variable in turn. We obtained pseudo-R? values of 0.20, 0.17 and 0.20 respectively for these three models (Table S3: the
last 3 columns). The model which does not include maximum temperature has the best fit (pseudo-R?*= 0.20). The final model

was constructed using eight variables (Table S3: the last column).

Figure S1. Partial correlations test based on data sets for the Iberian Peninsula that include annual observations at 0.5° for the

period between 2001 and 2016. The data are all transformed according to Table S2 prior to the test.
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Table S3. The process of the model selection. Regression coefficients (t value) and pseudo-R? of each model are shown. The

final model is shown in bold.

1 2 3 4 5 6 7
Include Include Include Include Remove Remove Remove
total total rural urban diurnal dry days maximum
rainfed population  population  population  temperatur  per month temperature
cropland density density density ¢ range
Diurnal temperature range ~ 1.95° 1.86 2.38" 1.77 1.19 1.90°
Dry days per month 7.81°* 7.66"" 7.56"" 7.66"" -1.01™* 8.46™"
Maximum temperature -0.50 0.01 -0.19 0.07 7.60 4.07"
Wind speed 2.00* 2.04 2.05" 2.07 0.69 1.89 2117
GPP 9.54™* 9.76™* 9.49™ 9.85" 1.43™ 9.41™ 10.10"
Non-tree cover 7117 727 7.19" 7.33" 744 9.50"* 7.34"
Cropland -3.95"* -4.08"* -3.95"* 9.76" -4.86"" -4.04™"
Total rainfed cropland -3.62"
Grazing land -4.64™* -4.29"* -4.19" -4.36™" 417 -4.96"* -4.36™"
Total population density -1.55 -1.07
Rural population density 0.06
Urban population density -1.68 -2.32° -1.38 -1.69
Pseudo-R? 0.2008 0.2031 0.2013 0.2020 0.2012 0.1654 0.2031

Notes: ‘p <0.1; *p <0.05; **p <0.01; ***p <0.001.



80 Figure S2 shows the partial residuals obtained for the final model.

Figure S2. Partial residual plots of the final model (Table S3, last column). The plot includes (1) the expected value (blue
line); (2) a confidence interval for the expected value (grey band); (3) partial residuals (dark grey dots)
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85 S3. Justification for the use of the fourth root of the palaeo burnt area fraction used in the fxTWA-PLS analyses

Fire accelerates as it spreads. During the time between t = 0 (when it starts) and t = t1 (when it stops), the total distance covered

by the fire front is given by:
Total distance = fothOS (t) x dt
where ROS (t) is the rate of spread as a function of t. If ROS (t) = a X t, then this integral is given by:
90 Total distance = % X t?
thus, ROS is proportional to the square of the fire duration.
However, the area covered by a fire is approximately proportional to the square of the distance covered by the fire front.

Therefore, the area burnt is proportional to the fourth power of the duration of the fire. Any environmental factors influencing

95 fire duration will be strongly amplified in burnt area, using the fourth root removes this amplification.
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S4. Impact of using of micro and macro charcoal on the burnt area fraction reconstructions

The charcoal data used in these analyses was generated in several different ways and includes counts of both microcharcoal
and macrocharcoal. Some sites had only macroscopic charcoal, some only microscopic charcoal, and a small number of sites
included both. Macrocharcoal is often thought to be associated with local fires, and microcharcoal to represent regional fires.
In order to test whether size had any impact of the composite reconstructions, we compared the 15 charcoal sites with both
macroscopic and microscopic records (Fig. S3). Since this analysis suggests there is no difference in the curves obtained, we

used both types of record in our analyses, though preferring macrocharcoal at those sites with both kinds of records.

Figure S3. Composite plots for macroscopic and macroscopic charcoal separately of 15 charcoal sites with both macroscopic
and microscopic entities using the locfit() function with half-width=300, number of bootstrap samples=1000. The locally

estimated scatterplot smoothing is shown in blue; The upper and lower 95th-percentile confidence intervals are shown in grey.
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S5. Comparisons of WA-PLS and TWA-PLS reconstructions with and without fx correction

Weighted Averaging Partial Least-Squares (WA-PLS) regression (ter Braak et al., 1993; ter Braak and Juggins, 1993; Salonen
et al., 2012) is widely used for climate reconstructions, but there is a known tendency for the reconstructed values to be
compressed towards the middle of the range of the climate variable as expressed in the training data set. Tolerance-weighted
Weighted Averaging Partial Least-Squares with a sampling frequency correction (fxTWA-PLS: Liu et al., 2020) is a
modification of WA-PLS, designed to reduce the compression of reconstructions towards the centre of the climatic range
sampled by the training dataset by accounting for the climatic tolerances of individual pollen taxa and the frequency (fx) of
the sampled climate variable in the training dataset. Since fxTWA-PLS has not previously been used to reconstruct burnt area

fractions, we tested whether this approach reduced compression in the burnt area fraction reconstructions when compared to
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WA-PLS. We also tested the impact of using the sampling frequency correction (fx) separately for both WA-PLS and TWA-
PLS. Cross-validation fitness assessment (Table S4) and visual comparison of the fitted plots and residuals (Fig. S4) indicate
that ixTWA-PLS reduces the compression bias more than other methods and also has higher predictive power. The composite

curves produced using each approach are shown in Fig. S5.

Table S4. Leave-out cross-validation fitness of WA-PLS and TWA-PLS methods, with and without fx correction, showing

results for all the components. The last significant number of components are shown in bold.

Method ncomp R? RMSEP ARMSEP p bo b, bo.se bi.se
1 0.292 0.049 -15.716 0.001 0.090 0.309 0.002 0.015
2 0373 0.046 5,622 0.001 0.077 0.406 0.002 0.017
3 0.422 0.044 4226 0.001 0.072 0.446 0.002 0.016
WAPLS 4 0.437 0.044 -1.196 0.003 0.069 0.465 0.002 0.017
5 0.453 0.043 -1.276 0.133 0.066 0.491 0.002 0.017
6 0.461 0.043 -0.723 0.204 0.064 0.500 0.002 0.017
7 0.463 0.043 -0.324 0375 0.065 0.502 0.002 0.017
8 0.469 0.043 -0.358 0.297 0.063 0.514 0.003 0.017
1 0277 0.049 -14.917 0.001 0.097 0.269 0.002 0.014
2 0363 0.047 -5.683 0.001 0.077 0399 0.002 0.017
3 0.435 0.044 -5.952 0.001 0.069 0.465 0.002 0.017
4 0.469 0.042 3.101 0.001 0.065 0.498 0.002 0.017
TWA-PLS
5 0.484 0.042 -1.524 0.019 0.063 0510 0.002 0.017
6 0.497 0.041 -1.304 0.037 0.062 0.521 0.002 0.016
7 0.501 0.041 20313 0.360 0.061 0.528 0.002 0.017
8 0.507 0.041 -0.554 0.201 0.060 0.539 0.002 0.017
1 0.291 0.055 4861 0.056 0.075 0510 0.004 0.025
2 0363 0.053 4,749 0.006 0.052 0.622 0.004 0.026
3 0.415 0.048 -8.864 0.001 0.054 0.615 0.003 0.023
Vﬁ}f };CS 4 0.431 0.047 2.016 0.011 0.060 0.606 0.003 0.022
comeoie 5 0.439 0.047 -0.669 0.008 0.059 0.614 0.003 0.022
6 0.420 0.048 1.896 0.959 0.066 0.581 0.003 0.021
7 0.388 0.050 5.155 1.000 0.070 0.570 0.003 0.023
8 0.409 0.049 2462 0.001 0.068 0.580 0.003 0.022
1 0276 0.054 -6.820 0.003 0.086 0.444 0.003 0.023
2 0365 0.050 -7.599 0.001 0.065 0.554 0.003 0.023
3 0.435 0.047 5311 0.009 0.057 0.628 0.003 0.022
T‘V"V’i‘zijfs 4 0.467 0.045 -4.852 0.001 0.061 0.610 0.003 0.020
AN 5 0.454 0.046 1615 0.849 0.062 0.603 0.003 0.021
6 0.468 0.045 21,735 0.005 0.062 0.606 0.003 0.020
7 0.487 0.044 -1.455 0.094 0.057 0.638 0.003 0.021
8 0.458 0.046 4292 0.998 0.058 0.634 0.003 0.022

10



125 Figure S4. The fitted plots and residual plots of WA-PLS and TWA-PLS methods, with and without fx correction.
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Figure S5. Composite curves of reconstructed burnt area using WA-PLS and TWA-PLS, with and without fx correction, using
the locfit() function with half-width = 300, number of bootstrap samples = 1000. The locally estimated scatterplot smoothing

130 is shown in blue; The upper and lower 95th-percentile confidence intervals are shown in grey.
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