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Abstract. High-resolution, downscaled climate model data
are used in a wide variety of applications across environ-
mental sciences. Here we introduce a new, high-resolution
dataset, CHELSA-TraCE21k. It is obtained by downscaling
TraCE-21k data, using the “Climatologies at high resolu-
tion for the earth’s land surface areas” (CHELSA) V1.2 al-
gorithm with the objective to create global monthly clima-
tologies for temperature and precipitation at 30 arcsec spatial
resolution in 100-year time steps for the last 21 000 years.
Paleo-orography at high spatial resolution and for each time
step is created by combining high-resolution information
on glacial cover from current and Last Glacial Maximum
(LGM) glacier databases and interpolations using data from a
global model of glacial isostasy (ICE-6G_C) and a coupling
to mean annual temperatures from TraCE21k (Transient Cli-
mate Evolution of the last 21 000 years) based on the Com-
munity Climate System Model version 3 (CCSM3). Based on
the reconstructed paleo-orography, mean annual temperature
and precipitation were downscaled using the CHELSA V1.2
algorithm. The data were validated by comparisons with the
glacial extent of the Laurentide ice sheet based on expert
delineations, proxy data from Greenland ice cores, histori-
cal climate data from meteorological stations, and a dynamic
simulation of species distributions throughout the Holocene.
Validations show that the CHELSA-TraCE21k V1.0 dataset
reasonably represents the distribution of temperature and
precipitation through time at an unprecedented 1 km spatial
resolution, and simulations based on the data are capable of
detecting known LGM refugia of species.

1 Introduction

Since the Last Glacial Maximum (LGM), variation in climate
has caused multiple changes in the Earth surface, including
the rearrangement of species distributions or even species ex-
tinctions (Prentice et al., 1991; Velichko et al., 1997; Adams
and Faure, 1997; Williams et al., 2004; Yu et al., 2010; Bin-
ney et al., 2017). Yet we have not fully evaluated the histor-
ical underpinnings of these changes as we have often lacked
the climate data at the necessary spatial resolution. Biolog-
ical entities such as species usually encounter climatic con-
ditions at spatial resolutions < 1 km (Seo et al., 2009) that
are beyond the spatial resolution of numerical global circula-
tion models (GCMs), which run at much coarser spatial res-
olution (e.g., > 0.5◦). For many applications such as infer-
ence of ecological niches (Hutchinson, 1957), determination
of growing seasons (McMaster and Wilhelm, 1997), iden-
tification of species migrations (Engler and Guisan, 2009),
or modeling of high-resolution species distributions (Guisan
and Zimmermann, 2000; Guisan and Thuiller, 2005), tempo-
ral and spatial variability in temperature and precipitation is
of utmost importance. For such analyses, imprecisions in the
underlying climate data can strongly deteriorate the analyti-
cal power (Soria-Auza et al., 2010).

For the recent past, the gap between the coarse GCM res-
olution and the high resolution needed for many ecological
applications has been bridged using statistical downscaling
(Wilby et al., 1998; Wood et al., 2004; Schmidli et al., 2006;
Maraun et al., 2010; Karger et al., 2017a, 2020), dynami-
cal downscaling (Skamarock et al., 2021), or interpolation
of meteorological station data (Daly et al., 1997; Hijmans et

1



2 D. N. Karger et al.: CHELSA-TraCE21k

al., 2005; Meyer-Christoffer et al., 2015; Harris et al., 2020).
While all of these methods work comparably well for cur-
rent climatic conditions, station data are not available before
the 19th century (end of the 20th century for satellite data),
hampering an application of said methods to paleo-climatic
models. Most paleo-climatic data at high spatial resolution
are therefore based on climatologically aided interpolation
(or the change factor method) of GCM output (Brown et
al., 2018). This process uses the high-resolution informa-
tion of current-day climatologies and adds an interpolated
anomaly derived from a coarser-resolution GCM (Willmott
and Robeson, 1995; Hunter and Meentemeyer, 2005). While
this approach works rather well for short-term time series
where topography is relatively stable (Daly et al., 1997), it
becomes impractical for longer time series where the depen-
dence structure between variables (e.g., topography and cli-
mate) is dynamic (Maraun, 2013). This phenomenon is of
concern especially in the last 21 000 years, as the topography
in many regions on Earth has changed drastically due to the
retreating ice sheets and glaciers in polar regions and in high
mountain areas (Scotese, 2001). While numerical climate
models are able to simulate paleo-environmental conditions
comparably well (Sepulchre et al., 2020), they are computa-
tionally very demanding, and therefore they have not been
applied at ecologically relevant spatial resolutions of < 1 km
yet. Current global kilometer-scale models only show a sim-
ulation throughput of 0.043 SYPD (simulated years per day)
(Fuhrer et al., 2018), which is 25-fold lower than desired
computationally efficient simulations of 1 SYPD (Schulthess
et al., 2018; Schär et al., 2019). Even with state-of-the-art su-
percomputers and climate models this gap can only be mini-
mized by a factor of 20 (Neumann et al., 2019).

Climate impact studies, however, often only use a reduced
set of climate variables compared to those available from the
output of numerical climate models (Frieler et al., 2017).
Such studies therefore do not need a complete representa-
tion of all climate processes at high spatial resolution. In
ecological studies, for instance, precipitation is often used
along with minimum and maximum temperatures for analy-
ses of species occurrences (Woodward et al., 1990). Also, it
is common practice to describe species ranges by their cli-
mate envelopes; thus species distribution models (SDMs) are
often built using a relatively small set of climate predictors
based on monthly minimum and maximum temperature and
precipitation (Guisan and Zimmermann, 2000; Guisan and
Thuiller, 2005).

Here we present paleo-climatic data, downscaled from
the CCSM3_TraCE21k (Transient climate evolution of the
last 21 000 years using the Community Climate System
Model Version 3) model output (hereafter: TraCE21k) to a
30 arcsec resolution using the CHELSA V1.2 (Climatologies
at high resolution for the earth’s land surface areas) algorithm
(Karger et al., 2017a), which covers time steps of 100 years
from 21 ka to 1950 plus four additional time steps until 1990

(TraCE21k), for minimum and maximum temperatures, sur-
face precipitation, and paleo-orography.

2 Input data

2.1 TraCE-21k transient climate simulations

The TraCE-21k (Transient climate evolution of the last
21 000 years) simulation using the CCSM3 (Community Cli-
mate System Model Version 3) climate model (Liu et al.,
2009; He, 2011; Marcott et al., 2011; Carlson et al., 2012)
provides information on climate change over the last 21 000
years, i.e., from the Last Glacial Maximum (LGM, hereafter
defined as 21 ka similar to Ehlers et al., 2011) to present.
The TraCE-21k simulation reproduces many main features
of post-glacial climate dynamics in various parts of the
world from low to high latitudes and includes abrupt climate
changes (Liu et al., 2009; He, 2011). The TraCE-21k simu-
lation output has a T31_gx3v5 resolution (Otto-Bliesner et
al., 2006). It uses a coarse-resolution dynamic global vegeta-
tion model (DGVM). The coupled atmosphere–ocean model
in CCSM3 is based on the Community Atmospheric Model
3 (CAM3), on 26 vertical hybrid coordinate levels. The land
and atmosphere components in CCSM3 in the TraCE-21k
simulations use the same resolution. The parameterizations
of the DGVM are largely based on the Lund–Potsdam–Jena
(LPJ) DGVM. The ocean model in CCSM3 uses the NCAR
(National Center for Atmospheric Research) version of the
Parallel Ocean Program (POP) with 25 vertical levels, and
the sea ice model is the NCAR Community Sea Ice Model
(CSIM).

2.2 Observational climatology: CHELSA V1.2

CHELSA (Climatologies at high resolution for the earth’s
land surface areas) V1.2 is a high-resolution (30 arcsec) cli-
mate dataset for Earth’s land surface areas (Karger et al.,
2017b). It includes monthly means of daily 2 m mean, mini-
mum, and maximum temperature and monthly precipitation
rates at 30 arcsec resolution for the time period 1979–2013.
CHELSA V1.2. is calculated with the CHELSA V1.2 topo-
graphic downscaling algorithm (Karger et al., 2017a), using
the ERA-Interim (ECMWF Re-Analysis-Interim) reanalysis
(Berrisford et al., 2009) as forcing data and GPCC (Global
Precipitation Climatology Center) data (Meyer-Christoffer et
al., 2015) for its bias correction.

2.3 Global model of glacial isostasy: ICE-6G_C (VM5a)

We used the output data of the ICE-6G_C (VM5a) (hereafter
ICE6G) model as a basis for the extent of the major ice sheets
at 1◦ resolution. ICE6G is a refinement of the ICE-5G (VM2)
(hereafter ICE5G) global model of glacial isostasy (Peltier,
2004) which has been widely used to model the distribution
of major ice sheets through time. ICE6G improves ICE5G
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by applying all available global positioning system (GPS)
measurements of vertical motion of the crust that constrain
the thickness of local ice cover as well as the timing of its
removal. ICE6G explicitly outputs changes in ice thickness
of major ice sheets (e.g., the Laurentide ice sheet) from the
LGM till today (Argus et al., 2014; Peltier et al., 2015) at
500-year time steps.

2.4 Observational glacial extent at Last Glacial
Maximum (LGM)

As the extent of the glaciers during the LGM, we use data
from Ehlers et al. (2011) that present a detailed overview of
Quaternary glaciations all over the world, with regards not
only to stratigraphy but also to major glacial landforms and
the extent of the respective ice sheets.

2.5 Observational current glacial extent: GLIMS

The GLIMS (Global Land Ice Measurements from Space)
project (Raup et al., 2007) at the NSIDC (National Snow and
Ice Data Center) provides data on global glacial extent and
other information about glaciers including metadata on how
those outlines were derived. Here we use this database to de-
lineate the current extent of the glaciers at high resolution
globally.

2.6 Global Multi-resolution Terrain Elevation Data 2010
(GMTED2010)

The Global Multi-resolution Terrain Elevation Data 2010
(GMTED2010) (Danielson and Gesch, 2011) dataset con-
tains elevation data for the globe collected from various
sources. Here we use the 30 arcsec version of the data that
represents the mean elevation of all 7.5 arcsec grid cells that
represent the highest available resolution of the data.

2.7 Bathymetric DEM

We use the General Bathymetric Chart of the Oceans
(GEBCO) 2014 (Weatherall et al., 2015) as bathymetry. Al-
though GEBCO also includes land surface altitude, we only
use it for the oceans, and we keep as land altimetric data those
of the CHELSA V1.2 algorithm (that being GMTED2010) to
maintain comparable topography at the land surface.

2.8 Global sea level change

We used data from Miller et al. (2005) for the estimation of
global sea level change from 21 ka to 1990. The data provide
global estimates of sea level change over the last 100 million
years. The entire time series of sea level change is based on
a variety of proxy data, with the data used here dating back
to the LGM, mainly based on tropical reef proxies (Miller et
al., 2005).

3 Methods

Downscaling is based on the CHELSA V1.2 algorithm
(Karger et al., 2017a) using forcing from TraCE-21k simula-
tions (Liu et al., 2009; He, 2011) and involving several pro-
cessing steps (Fig. 1). The CHELSA V1.2 algorithm needs
a dynamic forcing in the form of GCM output (Karger et
al., 2020) or gridded reanalysis data (Karger et al., 2017a,
2021b), as well as a surface orography (i.e., topography
above sea level) to run a suite of downscaling algorithms
for key climatic variables such as air temperature and pre-
cipitation. As the orography at different time steps between
21 ka and current times is not available at the high resolu-
tion required for the CHELSA V1.2 algorithm, we approx-
imated it using a combination of data from the digital el-
evation model GMTED2010 (Danielson and Gesch, 2011),
large-scale ice sheet configurations from ICE6G (Peltier et
al., 2015), high-resolution glacier extents from GLIMS for
current conditions (Raup et al., 2007) and LGM conditions
(Ehlers et al., 2011), and sea level change data from Miller et
al. (2005) (Fig. 1). We then ran the CHELSA V1.2 algorithm
on the paleo-orography using a bias-corrected version of the
TraCE-21k simulations as a forcing. Details on these steps
are described in the following sub-sections.

3.1 Paleo-orography

The first step in estimating the paleo-orography was carried
out for the LGM (21 ka). For this time point, both estimates
of glacial extents from Ehlers et al. (2011) and estimates
of glacier thickness from ICE6G exist. We first combined
the topographic information from GMTED2010 on land and
that of GEBCO into a bedrock topography that provides
the current bedrock topography etopo

c (including current-day
glaciers; see ff.). To create a bedrock orography ebed

t (i.e., to-
pography adjusted for sea level without glaciers except for
currently glaciated areas), we used the information on past
sea level changes and set all elevations to 0 so that

ebed
t = e

topo
c − slt . (1)

To include the orography of the glaciers we first converted
the polygons of the glacial extents from Ehlers et al. (2011)
into point locations (Fig. 2a, black dots) and extracted their
elevation from ebed

t (Fig. 2a) at time t = 0 (LGM, 21 ka), re-
sulting in the surface elevation of the glacial boundaries (gb)
ebed

gbt
. To combine the high-resolution estimates from Ehlers

et al. (2011), with the coarser (1◦) resolution of ICE6G,
we randomly sampled 100 point locations per 1◦ grid cell
from ICE6G and again extracted the surface elevation of the
glaciers from ebed

t at the ICE6G time step that is nearest to
the time step t = 0 (LGM, 21 ka), resulting in eGt (Fig. 2b).
All points that did not fall within the high-resolution glacial
extent were omitted so that only points within the high-
resolution estimate of glacial extent from Ehlers et al. (2011)
remained (Fig. 2b). Then both point datasets ebed

gbt
and eorog

ICE6Gt
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Figure 1. Graphical representation of the different steps employed in downscaling TraCE-21k simulations using the CHELSA V1.2 algo-
rithm. Input datasets are indicated by a blue box; output data are indicated by a green box. Rhombi indicate processing steps; t indicates
discrete time steps, with t = 0 being the LGM. Red lines indicate processing steps that are run iteratively over all time steps; black lines
indicate computations that were run only once.

were combined to represent a point sample of the surface ele-
vation eGt within the high-resolution glacial extent of Ehlers
et al. (2011) (Fig. 2c). Next, this point sample was spatially
interpolated to a grid of 30 arcsec resolution applying multi-
level B-spline interpolations. By this, we achieved an inter-
polated gap-free high-resolution estimate of glacial surface
elevation eint

t at t = 0 (LGM, 21 ka) (Fig. 2d). The multilevel
B-splines use aB-spline approximation to eGt and start using
the coarsest grid φ0 from an overall set of grids φ0, φ1, . . .,
φn, with n= 14 generated using optimized B-spline refine-
ments (Lee et al., 1997). The resulting B-spline function
f0(eGt ) then gives the first approximation of eint

t = f0(eGt )
and leaves a deviation

11eint
t = e

int
t − f0(xc,yc) (2)

at each grid cell c location
(
xc,yc,e

int
t

)
. Then the next control

lattice φ1 is used to approximate f1(11eint
t c). This approxi-

mation is then repeated on the sum of

f0+ f1 = e
int
t − f0 (xc,yc)− f1 (xc,yc) (3)

at each grid cell c
(
xc,yc,e

int
t c
)
n times, resulting, in our case,

in the gap-free interpolated glacial surface eint
t . The interpo-

lated glacial surface was then combined with ebed
t to the to-

pography et (Fig. 2e) using

et =

{
e

topo
t ,e

topo
t ≥ eint

t

eint
t , otherwise .

(4)

The final orography eoro
t at time step t = 0 (i.e., topography

above sea level) (Fig. 2f) is then generated using

eoro
t =

{
0,et ≤ slt
et ,et > slt ,

(5)

with slt being the sea level at time step t . Although this ap-
proach includes changes in the glacial surface and sea level
rise, it ignores changes in bedrock elevation due to upwelling
after glacier melt.

3.2 Interpolation of glacier extent and thickness
between LGM and current

As high-resolution estimates of glacial surface elevation are
not available for time steps t other than the LGM and cur-
rent day, we use a combination of mean annual 2 m air
temperature data together with sea surface elevation slt and
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ICE6G orography eorog
ICE6Gt data to estimate eoro

t at each time
step t 6= 0 and t = 221. The rationale behind this approach
is that temperature and glacier extents are interdependent,
and a change in temperature will translate into a change in
glacial extent or thickness. The procedure to generate high-
resolution glacial surfaces is explained in the following sec-
tions.

3.2.1 Bias correction of air temperature

In a first step, the orography eoro
t with t = 0 (LGM, 21 ka)

was used to downscale mean annual temperature tast . GCMs
such as the CCSM3 normally exhibit a large bias in temper-
atures or precipitation (Cannon et al., 2015; Maraun, 2013).
We therefore applied a change factor bias correction based
on the bias observed between current annual-mean 2 m air
temperatures tasobs

cur from CHELSA V1.2 normals resampled
to a 0.5◦ grid resolution and that of TraCE21k simulated for
the same time period tasmod

cur , spline-interpolated using the
same multilevel B-spline interpolation method as described
in Sect. 3.1 to 0.5◦ grid resolution. The resolution of 0.5◦

follows the same procedure as used in the CHELSA V1.2
algorithm (Karger et al., 2017a). We used the time period
1980–1990 (= cur) to calculate this bias, as it is the only time
period for which CHELSA V1.2 data and TraCE21k overlap.
The change factor was then calculated as

1tas= tasobs
cur − tasmod

cur . (6)

This effectively preserves the trends observed in temperature
but simultaneously assumes that the bias has also been con-
served over time (Maraun, 2016). The bias-corrected temper-
atures tascor

t are then given by

tascor
t = tasobs

cur −1tas . (7)

3.2.2 Downscaling mean annual air temperature

To achieve a high-resolution approximation of near-surface
air temperatures (Fig. 2g), we used a lapse-rate-based down-
scaling from atmospheric temperature data at the TraCE-21k
pressure levels. The lapse rates 0 are based on a linear ap-
proximation from average temperatures taz at altitudes az
and vertical levels 26 (992.5 hPa) to 20 (600.5 hPa) of the
T31_gx3v5 grid that contain all surface elevations so that

0 =
n(
∑
aztaz

)− (
∑
az

)(
∑
taz

)

n(
∑
a2
z
)− (

∑
az

)2 . (8)

Temperature at the surface at a high spatial resolution (tas)
was then calculated by

tast = 0t · eoro
t + tascor

t . (9)

3.2.3 Glacier extent approximation using mean annual
air temperature

We assume that air temperature is correlated to glacier ex-
tent and use this relationship to estimate the boundaries of

glaciers for each time step separately. To do so, we use mean
annual 2 m air temperature at the boundary of the interpo-
lated high-resolution glacier orography. We then transformed
the glacier elevations eint

t to a polygon Gt and then trans-
formed the outline of this polygon to a point sampling of the
glacier boundaries at time t = 0. Mean annual 2 m air tem-
peratures at this glacier boundary were then extracted for this
point sample, which gives the local annual-mean air tempera-
ture tasgb

t=0 under which a glacier had a boundary at the LGM.
To set this in relation to current mean annual air temperatures
at current glacier boundaries tasgb

t=221 (with t = 221 being the
year 1990), we calculated the difference between current and
LGM boundary temperatures. The resulting point locations
for both tasgb

t=0 and tasgb
t=221 were then spatially interpolated

using a multilevel B-spline (as described in Sect. 3.1) to re-
sult in a gap-free surface and then subtracted, resulting in
1tasobs

cur (Fig. 2g).
As the orography for the next time step is not known yet,

we estimated the near-surface air temperature tasest
t+1 for the

reduction in glacier extent similarly to the time step before
so that

tasest
t+1 = 0t+1∗e

oro
t + tascor

t+1 . (10)

The binary glacial extent Gt+1 at t + 1 is then approximated
as

Gt+1 =

{
1, tasest

t+1 < tasgb
t +

1tasobs
cur

−1·(
∑
t−t) ∧G0 = 1

0,otherwise .
(11)

This glacial extent is then used again to estimate the com-
bined topography at t + 1 in the same way as described in
Sect. 3.1. As ICE6G has a 500-year resolution we used the
ICE6G orography that is closest to each time step. As ICE6G
only includes information on the major ice sheets, smaller
ice sheets in the Alps do not include a sample of eorog

ICE6Gt .
In the case of smaller ice sheets, the surface orography from
ICE6G is replaced by a point sample of the elevation of the
glacier boundary under current conditions eorog

gbc
(Fig. 2h).

The glacier orography in this case is then created by using
a spline interpolation between ebed

gbt
and eorog

gbc
. In Eq. (11) the

second term in the condition forGt+1 linearly scales1tasobs
cur

over the entire number of time steps. This correction is nec-
essary, as otherwise the entire bias would be added at the
first time step, resulting in an unrealistically strong shift in
the glacial extent. We then repeated the transformation of the
glacial extent Gt+1 to all point locations and repeated the
procedure for the temperature coupling to estimate the orog-
raphy eoro

t+1. Near-surface air temperatures for t+1 have then
been approximated using

tast+1 = 0t+1 · e
oro
t+1+ tascor

t+1 . (12)
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3.3 Downscaling mean monthly precipitation rates

3.3.1 Orographic wind effects

The estimation of high-resolution precipitation follows a
variant of the CHELSA V1.2 algorithm (Karger et al.,
2017a). The CHELSA V1.2 algorithm assumes that orogra-
phy is one of the main drivers of precipitation (Spreen, 1947;
Basist et al., 1994; Daly et al., 1997; Sevruk, 1997; Böhner,
2006; Gao et al., 2006; Böhner and Antonic, 2009; Karger et
al., 2017a). In tropical convective regimes, precipitation typ-
ically increases up to the condensation level around 1000–
1500 m above surface, while the exponentially decreasing
moisture content in the mid- to upper troposphere results in
a drying above the condensation level and in non-linear pre-
cipitation lapse rates (Körner, 2007). Furthermore, negative
precipitation lapse rates are common under the extremely
dry polar climates. In contrast, at mid-latitudes and in the
subtropics, precipitation generally increases with increasing
elevation due to advection. As a consequence, summits of
the Alps or other high mountain ranges exhibit high rainfall
(Rotunno and Houze, 2007), and lapse rates for precipita-
tion are almost linear (Weischet and Endlicher, 2008). To ap-
proximate the effects of orographic precipitation we used the
CHELSA V1.2 algorithm, which is explained in more detail
below.

We used 10 m u-wind and v-wind components of TraCE-
21k to calculate wind direction. Both wind components were
projected to a world Mercator projection at a 4 km grid res-
olution using a multilevel B-spline interpolation similar to
the one described in Sect. 3.1. Windward and leeward effects
are assumed to be best represented at resolutions larger than
1 km (Daly et al., 1994); we therefore chose a grid resolution
of 4 km for the underlying digital elevation model. The wind
effect H was then calculated using

HW =

∑n
i=1

1
dWHi

tan−1
(
dWZi
d0.5

WHi

)
∑n
i=1

1
dLHi

+

∑n
i=1

1
dLHi

tan−1
(
dLZi
d0.5

LHi

)
∑n
i=1

1
dLHi

(13)

HL

∑n
i=1

1
ln(dWHi)

tan−1
(
dLZi
d0.5

WHi

)
∑n
i=1

1
ln(dLHi)

, (14)

where dWHi and dLHi refer to the horizontal distances be-
tween the focal 4 km grid cell in the windward and leeward
direction, and dWZi and dLZi are the corresponding vertical
distances compared with the focal 4 km cell following the
wind trajectory. The second summand in the equation for
HW, where dLHi < 0, accounts for the leeward impact of pre-
viously traversed mountain chains. The horizontal distances
in the equation for HL, where dLHi ≥ 0, lead to a longer-
distance impact of leeward rain shadow. The final wind ef-
fect parameter is calculated as H =HLHW. Both equations
were applied to each grid cell at the 30 arcsec resolution in a
world Mercator projection. Orographic precipitation effects

are less pronounced just above the surface, as well as in the
free atmosphere above the planetary boundary layer (Daly et
al., 1997; Oke, 2002; Stull, 1988; Karger et al., 2020). The
highest impact of orography is considered just at the bound-
ary layer height where the airflow interacts with the terrain.
We used the lifted condensation level (LCL) as an indicator
of the altitude at which the wind effect exerts the highest con-
tribution to precipitation. The LCL has been calculated using
the mean air temperature (tas) and mean near-surface relative
humidity (hurs) using

LCL= 20+ (tas/5) · (100− hurs) (15)

(Lawrence, 2005). The LCL has been interpolated to a
30 arcsec resolution using a B-spline interpolation. To create
a boundary-layer-height-corrected wind effect HB, the wind
effect grid H containing LCL was then proportionally dis-
tributed to all grid cells falling within a respective T31 grid
cell using

HB =
H

1−
(
|z−LCLz|−zmax

h

) , (16)

with zmax being the maximum distance between the LCL
at elevation z and all grid cells at a 30 arcsec resolution
falling within a respective T31 grid cell. In Eq. (16), h is
a constant of 9000 m, and z is the respective elevation from
GMTED2010 (Danielson and Gesch, 2011) with

LCLz = LCL+ zGCM+ f , (17)

zGCM being the elevation of the TraCE21k grid cell and f
being a constant of 500 m which takes into account that the
level of highest precipitation is not necessarily at the lower
bound of the LCL, but slightly higher (Karger et al., 2017a).

The wind effect algorithm cannot distinguish extremely
isolated valleys inside highly elevated mountain areas (Frei
and Schär, 1998). Such valleys are situated in areas where
the wet air masses flow over an orographic barrier and are
prevented from flowing into deep valleys. These effects are
mainly confined to large mountain ranges and are not as
prominent in small- to intermediate-sized mountain ranges
(Liu et al., 2013). To account for these effects, we used a vari-
ant of the windward–leeward equations with a linear search
distance of 300 km in circular steps of 5◦ from 0 to 355◦ for
each grid cell. The calculated leeward index was then scaled
towards higher elevations using

E =

∑n
i=1

1
dWHi

tan−1
(
dLZi
dWHi

)
∑n
i=1

1
dLHi


z
h

. (18)

The c value was set to 9000 m, and h has been set to 9000 m.
E ·HB will give the first approximation of the orographic pre-
cipitation intensity pI.
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3.3.2 Bias-correcting precipitation and downscaling

Precipitation, similar to temperature, exhibits a rather large
bias in TraCE-21k (Figs. 3, 4). To remove this bias, we ap-
plied a change factor bias correction similar to the one de-
scribed in Sect. 3.2.1 with the reference period 1980–1990.
Here, we used a multiplicative change factor to avoid pre-
cipitation rates< 0. Additionally, we included a constant of
c = 0.0001 kg m−2 per month to avoid division by zero so
that

1prm = (prmod
curm
+ c)/(probs

curm
+ c) , (19)

with m being the respective month of the year. The bias-
corrected precipitation rate for pcor

m is then calculated by

prcor
m = probs

curm
/1prm . (20)

To achieve the distribution of monthly precipitation pro given
the approximated orographic precipitation intensity pIc at
each grid location (xc,yc), we used a linear relationship be-
tween prcor

m and prIc using

pro =
pIc

1
n

∑n
i=1pIci

· prcor
m , (21)

where n equals the number of 30 arcsec grid cells of pI that
fall within a 0.5 grid cell of pcor

m .

3.4 Downscaling mean monthly near-surface air
temperatures

The downscaling of monthly near-surface air temperatures
(tas, tasmax, tasmin) follows the methods described in
Sect. 3.2.2, with the only difference being that instead of
mean annual temperature, tasmax and tasmin are used, where
tas= (tasmax+ tasmin)/2. The temperatures have again first
been bias-corrected using

1tasmaxm = tasmaxobs
curm
− tasmaxmod

curm
(22)

1tasminm = tasminobs
curm
− tasminmod

curm
(23)

and

tasmaxcor
mt
= tasmaxobs

curm
−1tasmaxm (24)

tasmincor
mt
= tasminobs

curm
−1tasminm , (25)

with m being the respective month of the year in Eqs. (22)–
(25).

4 Output validation

Direct validation of the temperature (Fig. 1) and precipita-
tion (Fig. 2) output at high resolution for paleo-time series
relies on proxies, as direct observations of both variables are
not available. Although global temperature time series exist,

they only give global means and do not allow validation of
the performance of a 1 km paleo-climatic dataset. Therefore,
to validate the CHELSA-TraCE21k dataset we complement
a simple comparison of the simulated time series to proxy
data and current observations with approaches of validating
derived parameters from the simulated temperature and pre-
cipitation that directly benefit from a very high horizontal
resolution.

4.1 Validation using current (historical) observations

We used data from the Global Historical Climate Network
(GHCN) monthly database V.3 (Lawrimore et al., 2011) to
validate the performance of the downscaling algorithm dur-
ing the last time step of the CHELSA-TraCE21k for which
station data are available. To do so we calculated monthly cli-
matologies for each month for tasmax, tasmin, and pr from
both TraCE-21k and CHELSA-TraCE21k. We then com-
pared the values measured at each station to those simulated
in both TraCE-21k and CHELSA-TraCE21k.

The original TraCE-21k data show large deviations and
root mean square errors (RMSEs) from the observed data
(Fig. 3). This is expected as a climate model running for such
long time periods needs to have coarse resolution, as well
as a large degree of generality and realism, which decreases
the accuracy of a model when compared to observations.
The temperature variables perform well in TraCE-21k, with
r ∼ 0.8 for all months, but have deviations and RMSE similar
to those of precipitation, which most likely can be attributed
to the coarse resolution of the climate model. TraCE-21k also
seems to overestimate temperature extremes for both tasmax
and tasmin (Fig. 4).

The precipitation, however, does not perform well in the
model, with r ∼ 0.4 and large deviations from actual values
(Fig. 3), and overall precipitation seems to be too low in the
model (Fig. 4).

The CHELSA V1.2 algorithm improves the correlation be-
tween observed and modeled data and decreases the stan-
dard deviation for all three parameters (Fig. 3). The down-
scaling for the temperature variables increases the correla-
tion to r ∼ 0.95 for all months and decreases the standard
deviation substantially (Fig. 3). Similarly, the performance
of the precipitation estimation in CHELSA-TraCE21k in-
creases, which is reflected in an r value of ∼ 0.7 and a lower
standard deviation and RMSE (Fig. 3). The underestimation
of precipitation in the TraCE21k is reduced, but the down-
scaling algorithm still has a considerable bias (Fig. 3) during
the historical period.

4.2 Comparison with temperature proxies from ice core
data

We compared the downscaled temperatures with the Green-
land ice core reconstructions of Buizert et al. (2014, 2018)
to check the performance of the downscaling at eight ice
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Figure 2. Illustration of several steps performed to estimate the surface orography and the temperature and precipitation fields in CHELSA-
TraCE21k during the Last Glacial Maximum (21 ka). The upper row gives an example of the interpolation of the European ice sheets; the
lower row shows an example of the resulting orography and environmental variables in the western part of the European Alps. (a) Topographic
information at t = 0 (LGM) is combined with information on past sea levels and the boundary of ice sheets (black dots) for which the surface
elevation is extracted. (b) Within the extent of ice sheets, surface elevation is extracted from the ICE6G orography for a random sample
of points for t = 0. (c) Both point samples from (a) and (b) are combined and interpolated (d) to estimate the orography of the glaciers.
(e) The interpolated glacier orography and the sea-level-adjusted topography are then combined. (f) The high-resolution (30 arcsec) orography
(shown here for the western Alps) is then used as a basis at t = 0 for (g) a lapse-rate-based downscaling of air temperature. (h) From the high-
resolution temperatures, information on the glacier boundaries during the LGM (black) and current times (red) is extracted, and the difference
is interpolated to correct the temperature-based shrinking and expansion of the glaciers. (i) Based on the orography the windward–leeward
index is calculated (shown for July 21 ka), which builds the basis for the (j) precipitation approximation.

Figure 3. Taylor diagrams comparing the relationship between TraCE-21k (blue) and CHELSA-TraCE21k (red). Data are shown for the
20th-century time period with average monthly observational data from the Global Historical Climate Network (GHCN) for the time period
1950–1990. Each dot represents a specific month.
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Figure 4. Scatterplots comparing precipitation, maximum, and minimum temperature. Data are aggregated from TraCE-21k and CHELSA-
TraCE21k for the 20th-century time period with observational data from the Global Historical Climate Network (GHCN) for the time period
1950–1990.

core locations on the Greenland Ice Sheet (GIS). Although
both temperature reconstructions and GCM-generated tem-
peratures have uncertainties connected to them (Erb et al.,
2018), the ice core data are so far the best possible validation
dataset that spans the entire deglaciation period from 21 ka to
1990 (Buizert et al., 2014, 2018). To assess the performance
gain of the downscaling over the coarse-resolution TraCE21k
data, we compare the ice core annual-mean near-surface tem-
perature reconstructions with both the CHELSA-TraCE21k
and the original TraCE-21k temperature data.

Compared to the temperature reconstructions from ice
cores, the downscaled CHELSA-TraCE21k model had re-
duced bias at four of the ice core sites located at the edges
of the GIS (ReCAP, Agassiz, Hans Tausen Iskappe, Camp
Century) but increased the bias, RMSE, and mean absolute

error (MAE) at the remaining four sites at the center of the
GIS (NEEM, NGRIP, GISP2, Dye 3) (Fig. 5). Overall, both
CHELSA-TraCE21k and TraCE21k show a warm bias be-
fore the Heinrich 1 event (i.e., the break-off of large groups
of icebergs from Greenland into the North Atlantic, 16.8 ka)
and roughly after the 8.2 ka event at four of the sites (ReCAP,
Agassiz, Hans Tausen Iskappe, Camp Century). At four sites
(ReCAP, Agassiz, Hans Tausen Iskappe, Camp Century) a
cold bias is present after the Younger Dryas (Fig. 5). At the
four other sites, CHELSA-TraCE21k usually shows a warm
bias before the H1 and TraCE-21k a cold bias before the H1
(Fig. 5). After the Younger Dryas (12.9–11.6 ka), both mod-
els show a cold bias at these sites. At the Camp Century
site, the TraCE-21k data are close to the δ15N-based tem-
perature reconstructions before the H1 event, and CHELSA-
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TraCE21k shows a warm bias, while after the Younger Dryas
the situation is reversed (Fig. 5).

The bias observed after downscaling might be related to
biases in all the different input sources, such as the TraCE-
21k bias being amplified, a bias in the ice core proxy data
itself, or the bias correction using the simple change factor
method. With the available data, these potential causes can-
not be clearly disentangled but should be kept in mind for
applications of the data.

4.3 Validation of glacier extent

Although the downscaling algorithm might increase the per-
formance of the temperature and precipitation estimates dur-
ing the historical period, this does not imply that this im-
provement is equal during the entire transient time series. To
further validate the data, we therefore compared it to more
derived parameters for which time series data exist.

As the ice core temperature reconstructions have associ-
ated uncertainties, it is impossible to disentangle if potential
differences between the ice core data and the model data are
due to uncertainties in the reconstructions. To validate the
downscaled temperature data further, we used the interpo-
lated extent of glaciers in CHELSA-TraCE21k and compared
it to glacial-extent data from Dyke (2004). The data con-
sist of expertly delineated glacier maps based on a chrono-
logical database of radiocarbon dates and contain > 4000
dates located in North America (Dyke, 2004). To compare
both datasets, we first calculated the glacial extent from
CHELSA-TraCE21k by assigning a binary value to each
1 km grid cell in a Lambert conformal conic projection so
that each data point compared equals 1 km2 either being cov-
ered by a glacier [1] or being free of a glacier [0]. We as-
signed a 1 if the simulated glacier height was above the
paleo-terrain elevation and a 0 if it was lower than or equal
to the paleo-terrain elevation. The paleo-terrain elevation
was calculated using the current terrain elevation minus the
sea level difference between current day and that of the re-
spective paleo-time step. As the current terrain elevation al-
ready includes extent glaciers, this elevation-dependent pro-
cedure of assigning glacial extents would result in the current
glaciers being assigned a 0. Therefore, we assigned all grid
cells covered by extent glaciers a 1.

To compare the simulated glacial extent to the expertly
delineated extent, we rasterized the polygons provided by
Dyke (2004) for the years 18–1 ka to the 1 km resolution, ex-
tent, and projection of the simulated glacial cover and assign
a 1 where the polygon intersects with a 1 km raster cell and a
0 otherwise.

We then calculated three different test values to identify
if the simulations correctly predict the presence and absence
of a glacier. As the dataset is highly unbalanced between ab-
sences of glaciers [0] and presences of glaciers [1] through
time we use balanced accuracy, which is defined as (sensi-

tivity+ specificity)/2. Additionally we report Cohen’s kappa
and the true-skill statistic (Allouche et al., 2006).

The test validations of the glacial extent show a good per-
formance over most time steps (Fig. 6), but with a notable
drop in accuracy at 8 ka, where all validation metrics drop
significantly. Aside from the drop at 8 ka, the performance of
the glacial-extent simulations performed well. The marked
drop in performance around 8 ka might be due to the 8.2 ka
event, which marked a strong decrease in global tempera-
tures, most likely due to meltwater fluxes from the collapsing
Laurentide ice sheet. The strong coupling between tempera-
ture and glacial extent in CHELSA-TraCE21k generates an
increase in glacial extent more than a sudden collapse dur-
ing this time period, which seems to override the signal from
the ICE6G forcing data in CHELSA-TraCE21k. Addition-
ally, we used the data from the extent of the ice sheets over
Fennoscandia from 22 to 10 ka (Stroeven et al., 2016) for all
time steps for which ICE6G data and data from Stroeven et
al. (2016) were available. The results (Supplement Fig. S1)
show, similar to the Laurentide ice sheet, that the accuracy is
relatively high until 10.5 ka, with a drop in accuracy at 10 ka.
Therefore, we assume that the temperature coupling does in-
troduce errors in the time between 10 and 6 ka, as is evident
from the comparison with the ice sheets of North America
and over Fennoscandia.

5 Plausibility test using dynamic simulation of
effective plant refugia

Transient long-term climatic data have a wide range of possi-
ble applications, ranging from population genetics (Leugger
et al., 2022; Yannic et al., 2020), community ecology (Sta-
ples et al., 2022), and biodiversity buildup (Garcés-Pastor et
al., 2022; Alsos et al., 2022) to evolutionary biology (Cerezer
et al., 2022), just to name a few. Here we use one application
in paleoecology as a plausibility test to additionally check
if the transient CHELSA-TraCE21k data can reliably detect
known LGM refugia of plant species. Climatic changes dur-
ing the last glacial cycle since the LGM have had a signif-
icant influence on the distribution of ecosystems (Williams
and Jackson, 2007), species (Hewitt, 1999; Hampe and Jump,
2011), and as a result on intraspecific genetic structures and
speciation (Alsos et al., 2012; Yannic et al., 2014, 2020; Pel-
lissier et al., 2015).

Tracing the distribution of species through time is, how-
ever, challenging as the spatio-temporal distributions of
species strongly depend on environmental suitability (Guisan
and Zimmermann, 2000), spatial accessibility of a given lo-
cation (Svenning and Skov, 2004; Normand et al., 2011),
and species dispersal abilities (Engler and Guisan, 2009).
A dynamic simulation of species distributions can integrate
all these aspects and therefore provides a valuable test bed
for climatic data (Nobis and Normand, 2014). However, the
spatio-temporal resolution of climate data needed for such
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Figure 5. Comparison of temperature anomalies from current times (1950–1990) for the CHELSA-TraCE21k time series data (blue), the
TraCE21k data (red), and the temperature reconstructions from ice cores (black) for eight sites across Greenland. The gray horizontal line
indicates the current observed temperature during the period 1981–2010 from CHELSA V2.1. data. Temperatures are plotted as anomalies
from the current temperature recorded at the respective location of the ice cores.

simulations has been limited to comparable coarse-grain cli-
matic data (Gherghel and Martin, 2020), which usually cre-
ates a mismatch between the climate derived from the model
and the climate actually experienced by an organism (Seo et
al., 2009).

Here, we use the downscaled transient temperature and
precipitation from CHELSA-TraCE21 since 17 ka (the cold-
est recorded temperatures in the CHELSA-TraCE21k model
for Europe) to reconstruct refugia of the deciduous tree gray
alder (Alnus incana) in Europe before post-glacial climate
warming. Similar to Nobis and Normand (2014), we first
calibrated a generalized linear model (GLM) (Nelder and
Wedderburn, 1972) using current presences and absences of
gray alder within polygons of the Atlas Florae Europaeae
(AFE) (Jalas and Suominen, 1976) as the response variable
and current annual-mean temperature and precipitation from
CHELSA-TraCE21k as predictors calculated as zonal-mean
values of 5×5 km rasterized AFE polygons. Despite the sim-
plicity of the model it showed a fair to good model fit, with
a 10-fold cross-validated area-under-the-receiver-operating-
characteristic-curve (AUC) value of 0.89.

Then, the GLM model was used to predict the suitabil-
ity of gray alder from 17 ka till today in 500-year steps with
5 km resolution and Lambert azimuthal equal-area projec-
tion. Glaciated areas were defined as unsuitable and were
taken from the CHELSA-TraCE21k glacial reconstructions.
We used the resulting time series of climatic suitability as in-
put to the KISSMig (Keep it simple stupid migration) model
(Nobis and Normand, 2014), which iteratively uses a sim-
ple 3× 3 cell algorithm to calculate the spatial spread from
a given origin from 17 ka to present. Presences and absences
were weighted equally for the initial GLM calibration, and

KISSMig used squared suitability values to fulfill basic em-
pirical expectations (see http://purl.oclc.org/wsl/kissmig, last
access: 30 December 2019).

We tested for each AFE polygon of the current gray alder
distribution all 25× 25 km areas across Europe as potential
refugia. All 5×5 km grid cells of those areas suitable at 17 ka
were kept as refugia if the respective AFE polygon was ac-
cessible, and the spread pattern generated the lowest number
of false positives when compared to the current AFE distri-
bution. Because the migration ability of gray alder was un-
known a priori, KISSMig simulations used 1 to 10 iterations
for each 500-year step, corresponding to a maximum mi-
gration rate of 10 to 100 m a−1. For each iteration number,
the combined spread pattern from all detected effective refu-
gia was compared with the current distribution based on F1
scores. The optimized iteration number was identified by op-
timizing F1, which showed for gray alder a maximum migra-
tion rate of 50 m a−1. For a comparison with genetic clusters
(Dering et al., 2016), the locations of that study were linked
to the detected effective refugia with the shortest Euclidean
distance for simplicity.

Current genetic clustering of populations indicates that the
modeling of A. incana distributions at 17 ka shows that sim-
ulations based on CHELSA-TraCE21k successfully detected
glacial refugia in the southern Alps, southern Norway, north-
ern Norway, the Balkans, and eastern Romania (Fig. 7). The
situation in eastern Europe is more complex, with most refu-
gia located in Russia. However, since we only used the cur-
rent distribution of A. incana in western Europe the results
might be biased towards the east.

http://purl.oclc.org/wsl/kissmig


12 D. N. Karger et al.: CHELSA-TraCE21k

Figure 6. (a) Comparisons of estimated glacial extents of the Laurentide ice sheet from 16 to 11 ka. Blue delineates the interpolated ice
sheet extent from CHELSA-TraCE21k, and red shows the estimated extent from Dyke (2004). While the retreat of the main Laurentide ice
sheet is similar in both estimations, the Cordilleran ice sheet covering the Rocky Mountains retreats faster in the estimations by Dyke (2004)
compared to CHELSA-TraCE21. (b) Performance comparison using three different metrics (balanced accuracy, Cohen’s kappa, and true-skill
statistic) from a comparison of CHELSA-TraCE21k and Dyke (2004).

6 Conclusions

Although both the original TraCE-21k and the down-
scaled CHELSA-Trace21k data track the relative tempera-
ture change well compared to ice cores, both models have
relatively high temperature biases in absolute temperatures.
Both the original data and the downscaled data have a warm
bias before the Younger Dryas and a cold bias after it rel-
ative to the ice core proxy data. There are several reasons
for this: coupled atmosphere–ocean general circulation mod-
els (GCMs) such as CCSM3 cannot provide regional-scale

or unbiased information on a variety of climatic processes
(Meehl et al., 2007). Temperatures from ice cores them-
selves are only based on proxy data, and the overall perfor-
mance of such proxy data in estimating absolute tempera-
tures is connected to biases themselves (Erb et al., 2018).
The downscaling of the CHELSA-Trace21k data involves a
trend-preserving (Hempel et al., 2013) change factor step
to explicitly preserve the trends in TraCE-21k. If, however,
these trends are already underestimated by the TraCE-21k
data, they will also be present in the downscaled data.
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Figure 7. Distribution of Alnus incana in Europe (based on the
Atlas Flora Europaea; Jalas and Suominen, 1976) in current times
(line shaded/hatched) and reconstructed effective refugia at 17 ka
(dark-green alpha hull polygons) using dynamic species distribution
modeling based on KISSMig and CHELSA-TraCE21k. The entire
suitable habitat for A. incana at 17 ka is indicated as light green. Al-
though almost all of south-central Europe was suitable for A. incana
at 17 ka, it might not have occurred at all locations due to dispersal
constraints, which are considered in the dark-green KISSMig recon-
structed distribution. Colored circles indicate the population genetic
structure of A. incana, taken from Dering et al. (2016), where each
color represents a genetic cluster. Lines indicate the most likely ef-
fective refugia a genetic cluster can be associated with, given dis-
persal and climatic constraints. Current genetic clustering of popu-
lations indicates that the modeling of A. incana distributions at 17 ka
successfully detected glacial effective refugia in the southern Alps
(dark blue), southern Norway (light blue), northern Norway (pink),
the Balkans (dark red), eastern Romania (turquoise), and the Black
Sea (dark red and violet). As we only use the current distribution of
A. incana within the AFE extent the results might be biased outside
of it.

The estimation of glacial extents shows an accuracy
of > 80 % compared to expert delineations of the glacial
extent of the Laurentide ice sheet. There is, however, a
clear drop in accuracy at the 8 ka event, when atmospheric
methane concentration decreased, leading to a cooling and
drying of the Northern Hemisphere (Kobashi et al., 2007).
The strong coupling of the ice interpolations with only tem-
perature might cause the decrease in performance as the
downscaling algorithm ignores changes in precipitation that
are only present in the driving ICE6G data. As the downscal-
ing assumes an increase in glacial boundaries with cooling,
this effect might not be realistic under an overall drying cli-
mate, and the fast shifts in temperatures over only 150 years
(Kobashi et al., 2007) might also not be well represented in a
model with 100-year resolution. Another problem in the esti-

mation of the glacial extent might involve errors from the ap-
pliedB-spline interpolation. The resulting ice cover from this
interpolation can, in some areas, only be a few meters thick,
not representing real glaciers, but rather a spatial autocorre-
lation artifact of the interpolation approach used (e.g., see
Fig. S1; 13 ka). Another source of error is that changes in
bedrock due to the release of pressure from the melting ice
sheets are not yet included in the algorithm. This can poten-
tially result in several hundred meters of bias in affected areas
that have not been taken into account in the current version
of the algorithm.

The CHELSA-Trace21k data seem to be able to recreate
the distribution of temperature and precipitation in a mean-
ingful manner so that the use of the data in subsequent anal-
ysis produces meaningful results. The reconstruction of the
refugia for Alnus incana shows that the combination of high-
resolution climate data with a dynamic distribution model
was able to accurately detect refugia, even those of a few
kilometers in extent (Parducci et al., 2012), which cannot be
detected using coarse climate data.

Code availability. Downscaling codes are based on Karger et
al. (2017a), and all modules used are open source and inte-
grated into SAGA-GIS, available here: https://sourceforge.net/
projects/saga-gis/ (Conrad and Wichmann, 2015). The code unique
to this study is written in R and creates the paleo-orography
and glacier interpolations and is also available on Zenodo
(https://doi.org/10.5281/zenodo.4545753, greenmind1980, 2021).

Data availability. All post-processed data and additional input
files other than those provided by TraCE21k can be accessed
at envidat.ch (https://doi.org/10.16904/envidat.211, Karger et al.,
2021a). The data are published under a Creative Commons Attri-
bution 2.0 Generic (CC BY 2.0) license.
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