

¹ Overcoming model instability in tree-ring-based temperature ² reconstructions using a multi-species method: A case study from the

3 Changbai Mountains, northeastern China

- 4 Liangjun Zhu^{1,2}, Shuguang Liu¹, Haifeng Zhu³, David J. Cooper⁴, Danyang Yuan², Yu Zhu¹, Zongshan Li⁵,
- 5 Yuandong Zhang⁶, Hanxue Liang⁷, Xu Zhang⁸, Wenqi Song², Xiaochun Wang^{2,*}
- 6 ¹National Engineering Laboratory for Applied Technology of Forestry & Ecology in South China, College of Life Science and Technology,
- 7 Central South University of Forestry and Technology, Changsha 410004, China
- 8 ²Center for Ecological Research and Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, School of
- 9 Forestry, Northeast Forestry University, Harbin 150040, China
- 10 ³Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100864, China
- 11 ⁴Department of Forest and Rangeland Stewardship, Colorado State University, Fort Collins, CO 80523, USA
- 12 ⁵State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences,
- 13 Beijing 100085, China
- 14 6Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Research Institute of Forest
- 15 Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing 100091, China
- 16 ⁷Institute of Loess Plateau, Shanxi University, Taiyuan 030006, China
- 17 ⁸College of Forestry, Northwest A&F University, Yangling 712100, China
- 18 *Correspondence to: Xiaochun Wang (wangx@nefu.edu.cn)
- 19 Abstract. The unstable sensitivity of growth-climate relationships greatly restricts tree-ring-based paleoclimate reconstructions,
- 20 especially in areas with frequent "divergence" problems, such as the temperate zone in northeast China. Here, we propose an original
- 21 tree-species mixing method to overcome this obstacle and improve the stability and reliability of reconstruction models. We take the
- 22 tree-ring based growing-season minimum temperature reconstruction for the northern Changbai Mountains in northeast China as an
- 23 example to illustrate the method. Compared with previous temperature reconstruction models, our reconstruction model is more
- 24 stable and reliable and explains up to 68% of the variance. It is also highly consistent with historical records and tree-ring-based
- 25 temperature reconstructions from the nearby Xiaoxing'an Mountains and from across the Northern Hemisphere. Our reconstruction
- 26 uses two different tree species and is more accurate than temperature reconstructions developed from a single species. Over the past
- 27 259 years (AD 1757-2015), five significant cold periods and five warm periods were identified. The reconstruction indicates rapid
- 28 warming since the 1980s, which is consistent with other instrumental and reconstructed records. We also found the Atlantic
- 29 Multidecadal Oscillation plays a crucial role in driving the growing-season minimum temperature in the northern Changbai
- 30 Mountains.

31 1 Introduction

- 32 Global climates are changing rapidly, with unexpected consequences; in fact, climate change is a major threat to ecosystems and
- 33 societies in many parts of the world (IPCC, 2018;Allen et al., 2010;Liu et al., 2013). Understanding and quantifying the
- 34 characteristics, patterns, and driving mechanisms of past climate changes is essential to reducing the uncertainty in predicting future

35 climates (Fritts, 1976;Zhu et al., 2020a). However, the lack of long-term instrumental climate data severely limits our ability to 36 understand past climates; for this reason, long climate proxy records are urgently needed. 37 Tree rings, especially ring widths, are a critically important paleoclimate proxy (Fritts, 1976) and are widely used for reconstructing 38 climate at a high resolution over hundreds to thousands of years (Anchukaitis et al., 2017; Wilson et al., 2016). Such records are 39 invaluable for placing recent climatic changes in a long-term context, which can help considerably with planning appropriate 40 responses to future climate changes and extreme events. However, the statistical calibration and verification of tree-ring based 41 reconstructions is a rigorous process (Fritts, 1976) that requires a relatively stable growth-climate relationship over time. 42 Over the last several decades, many studies have addressed the "divergence problem", an anomalous reduction in tree-ring indices 43 and temperature sensitivity after rapid warming (D'Arrigo et al., 2008). Other studies have found an increased correlation between 44 tree-ring indices and temperature after rapid warming, such as in the case of Fraxinus mandshurica (FM) (Cao et al., 2018) and Larix 45 gmelinii (Zhang et al., 2016) in northeastern China. These two types of "unstable sensitivity" in growth-climate relationships 46 challenge the assumption of "uniformity principle" in dendroclimatology (Fritts, 1976), and thus brings more uncertainties in tree-47 ring-based inferences on past climate. 48 The Changbai Mountains are the highest in eastern Eurasia, covering nearly 2,000 square kilometers. Climate changes in the region 49 significantly affect human social-economic activities and ecosystem health. A number of tree-ring-based reconstructions have been 50 carried out in the region in the past two decades (Zhu et al., 2009;Shao and Wu, 1997;Lyu et al., 2016;Zhang et al., 2007;Wang et al., 51 2012;Yu, 2019). These studies have looked at the tree-ring widths of Pinus koraiensis (Zhu et al., 2009;Shao and Wu, 1997;Lyu et 52 al., 2016) and F. mandshurica (Zhang et al., 2007; Wang et al., 2012; Yu, 2019). However, some other studies report an evident 53 unstable sensitivity in the growth-climate relationships of Pinus koraiensis and F. mandshurica's both before and after warming (Cao 54 et al., 2018; Zhu et al., 2020b). These two species typify the two types of unstable growth-climate (temperature) relationships (P. 55 koraiensis: reduced sensitivity and F. mandshurica: increased sensitivity) in temperate forests, northeastern China (Cao et al., 56 2018;Zhu et al., 2015b;Zhu et al., 2020b;Wang et al., 2016). For this reason, climate reconstructions that are based on only one 57 species' tree-ring data may be biased toward that species' specific response to climate (Lyu et al., 2016; Wang et al., 2012). 58 In this study, we propose a hypothesize that the accuracy of reconstruction in areas with frequent "unstable sensitivity" problems can 59 be improved through mixing two species typifying the two types of unstable growth-climate (temperature) relationships. The 60 Changbai Mountains are especially prone to the unstable sensitivity in growth-climate relationships due to rapid warming (Cao et al., 61 2018;Zhu et al., 2020b;Zhu et al., 2018a). Hence, we use trees from the Changbai Mountains as an example by compositing tree-ring

- 62 data from species experiencing different types of unstable sensitivity. We aim to (1) develop a new tree-ring-based temperature
- 63 reconstruction for the Changbai Mountains by a mixing multi-species method; (2) verify and compare its accuracy and consistency
- 64 with other temperature records; (3) identify the patterns of past temperature changes and possible large-scale driving mechanisms.

65 2 Materials and methods

- 66 2.1 Study area
- 67 The study area is located in the northern part of the Changbai Mountains (Fig. 1). It is characterized by a temperate continental
- 68 monsoon climate with four distinct seasons. Based on climate data (http://data.cma.cn/) from the Songjiang and Dunhua
- 69 meteorological stations, the average annual temperature in the study area ranges from 1.3 °C to 4.85 °C. January (-17.08 °C) and July
- 70 (20.13 °C) are the coldest and warmest months, respectively (Fig. 2). The mean annual total precipitation is 652 mm (335-734 mm),
- 71 and 87.05% of the annual precipitation falls during the growing season (April to September) (Fig. 2). Over the past 60 years, the
- A average minimum temperature has increased significantly (p < 0.01) at a rate of 0.06 °C per year. There has been no significant
- 73 change in the total annual precipitation (Fig. 2a-c).
- 74 We carried out our study in the lower and middle elevation areas (700-1100 m a.s.l.) of the northern Changbai Mountains. All
- 75 sampling sites are characterized by typical broadleaf-Korean pine mixed forests with little human disturbance. Such forests represent
- 76 the zonal climax vegetation type of the temperate regions in northeastern China. The main tree species include *P. koraiensis*, *Abies*
- 77 nephrolepis, Picea jezoensis var. microsperma, F. mandshurica, Phellodendron amurense, Juglans mandshurica, Tilia amurensis,
- 78 Betula costata, Quercus mongolica, and Ulmus japonica. The soils are mainly dark-brown forest soil.

79

81 software (The MathWorks, Inc.). The basemap, presented with a light, natural palette, overlaid with the boundary line, combines satellite-

- 82 derived land cover data, shaded relief, and ocean-bottom relief made with Natural Earth. MathWorks® offers the basemap with
- 83 geographic axes and charts.

85 Figure 2. Monthly distribution and inter-annual variability of climate variables in the northern Changbai Mountains. (a) Mean (T),

- 86 minimum (T_{min}), and maximum (T_{max}) temperature and the monthly distribution of total precipitation (P). The inter-annual variability of
- 87 (b) total precipitation and (c) minimum temperature. The climate data for the period 1958-2016 were averaged using records from the
- 88 Songjiang (42.533° N, 128.25° E, 525 m a.s.l.) and Dunhua (43.367° N, 128.2° E, 591 m a.s.l.) meteorological stations.

89 2.2 Tree-ring data

- 90 From May to August in 2012, 2014, and 2016, at least one core per tree was extracted at breast height (1.3 m) from both *P. koraiensis*
- 91 and *F. mandshurica* trees at six forest sites in the Changbai Mountain using 5.15-mm increment borers. A total of 433 cores from 259
- 92 trees were used in this study (Table S1).
- All tree-ring cores were mounted, dried, and progressively surfaced in the laboratory until individual cells within annual rings were visible under a dissecting microscope. The cores were then visually cross-dated using the skeleton plot method to identify absent or false rings (Fritts, 1976;Stokes and Smiley, 1968). Ring widths were measured to a precision of 0.001 mm using the Velmex Tree-ring Measurement System (Velmex, Bloomfield, NY, USA). The COFECHA program was used to check the quality of cross-dating and measurement (Holmes, 1983). Conservative negative exponential curves or linear regression curves of any slope were used to remove age-related growth trends. Tree-ring chronologies were developed using the R package 'dplR' (Bunn, 2008). The inter-series correlation
- 99 (R_{bar}) and expressed population signal (EPS) were used to control the quality of the chronologies (Table S1) (Wigley et al., 1984).
- 100 2.3 Climate data and other records
- 101 Instrumental climate data, including monthly total precipitation and mean, minimum, and maximum temperature, were obtained for

102	the Songjiang and Dunhua meteorological stations from the China Meteorological Data Service Center (http://data.cma.cn/). The
103	distance between the eight sampling sites and its nearest weather station is between 20 and 80 km. The regional climate during the
104	growing season (April to September) was calculated by taking the arithmetic average of the data from the two weather stations (Fig.
105	2).
106	The actual (Enfield et al., 2001) and reconstructed (Mann et al., 2009;Gray, 2004) Atlantic Multidecadal Oscillation (AMO) index
107	was downloaded from http://climexp.knmi.nl/ and https://www.ncdc.noaa.gov/paleo-search/study/6324. All reference tree-ring-based
108	temperature sequences used in this study were requested from the authors of the relevant studies.
109	2.4 Statistical analyses and model verification
110	Pearson correlation and moving correlation methods were used to check the relationships between the chronologies. Correlation
111	analysis was used to identify the relationship between the tree-ring chronology and regional monthly or seasonal climate records. A
112	simple linear regression model was used to reconstruct the growing-season minimum temperature for the northern Changbai
113	Mountains. A traditional split-period calibration-verification method was used to test the regression model's goodness-of-fit (stability
114	and reliability) (Fritts, 1976).
115	Statistical parameters including the correlation coefficient (R), explained variance (R^2), reduction of error (RE), coefficient of
116	efficiency (CE) and sign test (ST) were used to verify the model. RE indicates whether a reconstruction provides a better estimate of
117	climate variability than simply using the mean value of the target climate in the calibration period. CE is similar to RE, but it tests
118	reconstruction skill against the mean value of the target climate in the verification period. RE and CE are rigorous verification
119	statistics; any positive RE and CE values indicate sufficient similarity between the estimated and actual sequences. Thus, positive RE
120	and CE values indicate that the model has a considerable predictive skill (Fritts, 1976). The ST was used to test the coherency
121	between the actual and estimated series by calculating the coherence and incoherence (Fritts, 1976).
122	To explore our reconstruction's spatial representativeness, we performed a spatial correlation between the actual and estimated
123	growing-season minimum temperature and the April-September gridded (0.5°×0.5°) CRU TS4.04 minimum temperature for the
124	period 1958-2015 using the KNMI Climate Explorer (http://climexp.knmi/nl). We defined warm (cold) periods as periods of at least
125	two consecutive years during which the 10-year low-pass filtered temperature value was greater than (less than) high than the
126	average (a) plus (minus) 0.5 times the standard deviation (δ) (8.3 °C for warm periods, 7.7 °C for cold periods). We used the multi-
127	taper method of spectral analysis to identify the periodicity of temperature variability (Mann and Lees, 1996). This method is
128	especially suitable for diagnosing and analyzing weak signals and has been widely used to analyze paleoclimate signals (Liu et al.,

- 129 2019).
- 130 To better ascertain the accuracy of our temperature reconstruction and its consistency with regional records, we compared it with nearby 131 temperature records and local historical documents. We used direct comparisons of curve trends and Pearson correlations to evaluate 132 the consistency of our growing-season minimum temperature reconstruction and nearby tree-ring based temperature reconstructions. 133 A 10-year low-pass loess filtering method was used to highlight the low-frequency signals of temperature records and the actual 134 (Enfield et al., 2001) and reconstructed Atlantic Multi-decadal Oscillation (AMO) data. Z-scores were used to normalize the 135 temperature records and ensure that they were kept at the same scale. Pearson correlation was used to evaluate the relationship between 136 our temperature reconstruction and the AMO index. To further verify the influence of the AMO on local temperature, we conducted a 137 spatial correlation between our temperature reconstruction and global gridded sea surface temperatures (SST) (HadISST1 SST dataset, 138 1°×1°, 1870-2015) using the KNMI Climate Explorer (http://climexp.knmi/nl). The 20th century reanalysis data were used to produce 139 composite maps of the 500-mb vector wind and air temperature from April to September. These maps were then used to explore the 140 linkages between temperature and atmospheric circulation patterns in the Northern Hemisphere.
- 141 3 Results

142 **3.1** Consistency of tree growth and its response to climate

143 For both P. koraiensis and F. mandshurica, significant correlations exist among all site chronologies over their common period of 1855-

144 2011 (Table S2). Significant correlations between *P. koraiensis* and *F. mandshurica* chronologies, however, only exist for some sites.

145 The mixed-species regional chronology (ALL, in Table S2) correlates significantly with each site chronology and each combined

- 146 species chronology (Table S2).
- 147 Growing-season minimum temperature strongly affects the growth of both P. koraiensis and F. mandshurica in Changbai Mountains.

148 Most sites' tree-ring indices correlate significantly (p < 0.05) with April, May, June, July, August, and September minimum

149 temperatures (Table 1). The radial growth of *P. koraiensis* and *F. mandshurica* at all sites is positively correlated with the mean growing-

150 season (April-September) minimum temperature. The three combined chronologies (PK, FM, and ALL in Table 1) are all significantly

- 151 correlated with growing-season minimum temperature; the highest positive correlation is found between the mixed-species regional
- 152 chronology (ALL) and the growing-season minimum temperature (R = 0.824, p < 0.001).

153 However, there is a differential temporal instability in the growth-climate relationship between *P. koraiensis* and *F. mandshurica*. For

154 the combined *P. koraiensis* chronology (PK), there is a stronger positive correlation with the growing-season minimum temperature

- during the period 1958-1986 than the period 1987-2015. For the combined F. mandshurica chronology (FM), the correlation is stronger
- 156 during the second period than the first. However, the mixed-species regional chronology (ALL) shows significant correlations in both

157 the first and second periods (Table 1 & Fig. 3).

158

Figure 3. Correlation relationships between the growing-season minimum temperature and the combined *P. koraiensis* (PK), the combined
 F. mandshurica chronology (FM), and mixed-species regional chronologies (ALL) during the first part of the chronology (1958-1986) and

161 second part (1987-2015).

162 Table 1. Correlations between the site and regional chronologies and regional minimum temperature during the growing season (current

163 April to current September).

	Apr	May	Jun	Jul	Aug	Sep	Apr-Sep
DHPK (n = 54)	0.59**	0.48**	0.22	0.28*	0.08	0.51**	0.51**
LBSPK $(n = 58)$	0.58**	0.66**	0.65**	0.53**	0.22	0.54**	0.73**
LSHPK (<i>n</i> = 57)	0.34**	0.25	0.19	0.23	0.12	0.40**	0.36**
MLPK (<i>n</i> = 58)	0.31*	0.41**	0.35**	0.39**	0.37**	0.42**	0.51**
CBSFM $(n = 56)$	0.43**	0.65**	0.63**	0.48**	0.46**	0.54**	0.73**

_	HSFM (<i>n</i> = 57)	0.56**	0.71**	0.72**	0.50**	0.46**	0.57**	0.81**
	LBSFM (<i>n</i> = 58)	0.37**	0.52**	0.60**	0.53**	0.40**	0.48**	0.66**
	LSHFM $(n = 57)$	0.36**	0.55**	0.53**	0.43**	0.41**	0.48**	0.63**
_	PK (<i>n</i> = 58)	0.58**	0.58**	0.46**	0.45**	0.25	0.59**	0.67**
	FM (<i>n</i> = 58)	0.47**	0.66**	0.67**	0.52**	0.46**	0.55**	0.76**
	ALL (<i>n</i> = 58)	0.60**	0.71**	0.65**	0.56**	0.41**	0.66**	0.82**

164 Notes: * = p < 0.05, ** = p < 0.01. Tree-ring indices of combined *P. koraiensis* (PK), combined *F. mandshurica* (FM), and mixed species (ALL) were

165 calculated using a simple arithmetic average.

166 3.2 Tree-ring-based minimum temperature reconstruction

167 We attempted to reconstruct the growing-season minimum temperature for the northern Changbai Mountains based on the FM, PK,

168 and ALL chronologies using a linear regression model. Neither the FM nor the PK chronology is suitable for the reconstruction due to

169 negative CE and insignificant ST tests (Table 2). However, the ALL chronology combined with the FM and PK chronologies passes

170 the model test. The model equation is the following:

171 $T_t = 4.881 * I_t + 3.268, (R = 0.824, N = 57, F = 118.74, p < 0.0001)$ (1)

172 where the T_t and I_t are the growing-season minimum temperature and regional tree-ring index at the year t, respectively.

173	Table 2. Calibration and verification statistics for the growing-season mean temperature reconstruction.

	Calibration	R	Verification	R^2	RE	CE	ST
	1958-2015	0.67**	—	0.45**	0.45	_	(42, 16)**
РК	1987-2015	0.42*	1958-1986	0.30**	0.84	-0.22	(20, 9)
	1958-1986	0.54**	1987-2014	0.18*	0.77	-0.50	(20, 9)
	1958-2015	0.76**	_	0.58**	0.58	—	(49, 9)**
FM	1987-2015	0.58**	1958-1986	0.03	0.83	-0.23	(16, 13)
	1958-1986	0.18	1987-2014	0.33**	0.87	0.12	(23, 6)**
	1958-2015	0.82**	_	0.68**	0.67	—	(49, 9)**
ALL	1987-2015	0.63**	1958-1986	0.29**	0.89	0.20	(21, 8)*
	1958-1986	0.53**	1987-2014	0.39**	0.88	0.20	(22, 7)**

174 Notes: Statistical parameters that are not significant or that failed the verification test are highlighted in bold. * = p < 0.05, ** = p < 0.01.

175

176 The model explains 68% of the temperature variation. A similar or parallel trend is found between the reconstructed and observed

growing-season minimum temperatures ($R^2 = 0.68, p < 0.01$) and between their first-order differences ($R^2 = 0.13, p < 0.01$) during the

178 calibration period from 1958 to 2015 (Fig. 4a & 4b). A significant spatial correlation pattern is found between the actual and

179 reconstructed growing-season minimum temperature and the gridded (0.5°×0.5°) April-September averaged CRU TS4.04 minimum

184

- 180 temperature over northeast Asia (Fig. S3). The positive RE and CE in the verification periods (Table 2) indicate that our reconstruction
- 181 model has a robust skill and acceptable reliability in estimating the growing-season temperature (Fritts, 1976). The R^2 and ST statistics
- 182 are all significant at the 95% or 99% confidence levels, which indicates that our model is stable and reliable in the two calibration
- 183 periods (Table 2).

Figure 4. Minimum temperature reconstruction for the northern Changbai Mountains, northeastern China. (a) Comparisons between reconstructed and observed April-September minimum temperature during the calibration period 1958-2015. (b) Comparisons between the first-order differences of reconstructed and observed April-September minimum temperatures for the period 1959-2014. (c) April-September minimum temperatures for the northern Changbai Mountains from 1757 to 2015 (cyan line) with a 10-year low-pass filter (red line). The *a* and δ indicate the average (8.03) and standard deviation (0.59) values of the minimum temperature during the whole span, respectively.

191 3.3 Growing season temperature variations

In the northern Changbai Mountains, the growing-season minimum temperature has a high interannual and decadal variance with a mean (*a*) of 8.03 and a standard deviation (δ) of ±0.59 during the past 259 years (Fig. 4c). The record contains five warm periods (1762-1776, 1828-1831, 1927-1930, 1936-1947, and 1991-2012) and five cold periods (1797-1800, 1811-1820, 1836-1856, 1898-1918, and 1956-1982) (Table 3). The periods 1991-2012 and 1836-1856 are the most prolonged and most severe warm and cold periods, respectively. Most cold years/periods occur during the 19th century, and most warm years/periods occur during the 20th century. There is a clear rapid warming trend after the 1980s. The top ten warmest and coldest years are listed in Table 3. Spectral analysis of the full reconstruction (1757-2015) reveals significant (p < 0.01) annual cycle peaks at 2.7, 3, and 3.5 years, and decadal cycle peaks at 59.6

200

199 and 78.4 years (Fig. 5).

201 Figure 5. Multi-taper power spectra for the growing-season minimum temperatures from AD 1757 to 2015 in the northern Changbai

202 Mountains. The 99% confidence level relative to red noise is shown by the dashed red line. The lengths of the sig nificant cycles are

203 indicated in the figure.

204 Table 3. The top 10 most extreme warm/cold years and extreme warm/cold periods in the northern Changbai Mountains.

Warm/Cold years							Warm/Cole	d periods	
Rank	Cold	Tmin	Warm	Tmin		Period	Duration	Mean	Warm/Cold
1	1838	6.71	2012	10.05		1762-1776	15	8.47	Warm
2	1839	6.88	2008	9.83		1797-1800	4	7.38	Cold
3	1841	6.93	2010	9.74		1811-1820	10	7.39	Cold
4	1965	6.94	2009	9.69		1828-1831	4	8.44	Warm
5	1913	6.96	2013	9.66		1836-1856	21	7.46	Cold
6	1815	6.98	2002	9.47		1898-1918	21	7.50	Cold
7	1816	7.01	2001	9.37		1927-1930	4	8.69	Warm
8	1799	7.03	2005	9.30		1936-1947	12	8.55	Warm
9	1976	7.04	2006	9.26		1956-1982	18	7.47	Cold
10	1813	7.07	1994	9.18		1991-2012	22	8.90	Warm

205 4 Discussion

206 4.1 Climate-growth relationships and their stability

207 We found that the radial growth of P. koraiensis and F. mandshurica is significantly positively correlated with growing-season

208 minimum temperature. This result is consistent with those of other dendrochronological studies of P. koraiensis (Zhu et al., 2009;Shao

and Wu, 1997) and F. mandshurica (Zhu et al., 2015a;Li and Wang, 2013;Zhu et al., 2020b) in northeastern China, and of other species

210 at high latitudes in the Northern Hemisphere (Zhu et al., 2020b;Anchukaitis et al., 2017;Wilson et al., 2016). High growing-season

211	minimum temperatures are often accompanied by a long growing-season and a high photosynthetic efficiency, which results in wider
212	rings (Fritts, 1976). In contrast, trees tend to form narrow rings in years with low growing-season minimum temperatures.
213	As previous studies have shown, P. koraiensis and F. mandshurica show contrasting response patterns to rapid warming (Cao et al.,
214	2018;Zhu et al., 2015b;Zhu et al., 2020b;Wang et al., 2016). In the case of <i>P. koraiensis</i> , temperature sensitivity is slightly weakened
215	after warming (Zhu et al., 2015b). This divergence phenomenon has been reported by many studies, especially in northern forests
216	(D'Arrigo et al., 2008;Zhu et al., 2018a). Although many previous tree-ring studies from the surrounding area have suggested that this
217	divergence phenomenon is associated with temperature-induced drought stress (Zhu et al., 2018a;Zhu et al., 2015b), the exact causes
218	are still unknown. Other possible causes include nonlinear thresholds or time-dependent responses to rapid warming, the delayed
219	snowmelt and related changes in seasonality, the differential growth-climate relationships inferred for mean, maximum, and
220	minimum temperatures, and global dimming (D'Arrigo et al., 2008).
221	Unlike P. koraiensis, the growth of F. mandshurica has been significantly enhanced by warming, a result that is consistent those of
222	other studies of F. mandshurica in northeastern China (Cao et al., 2018;Zhu et al., 2020b). The reasons for this enhancement are still
223	not clear. Zhang et al. (2016) pointed out that the radial growth of Larix gmelinii is more sensitive to temperature after rapid warming
224	because of changes in the moisture availability caused by the permafrost thaw. Previous studies have shown that drought stress in
225	early spring is a key factor limiting vessel formation and tree growth (Zhu et al., 2020b). The enhanced temperature sensitivity of F.
226	mandshurica is likely related to the temporal coincidence between cambial activity and snowmelt and related changes in seasonality.
227	The unstable sensitivity of <i>P. koraiensis</i> or <i>F. mandshurica</i> to temperature (Fig. 3) has been proved widespread in northeast China
228	(Cao et al., 2018; Zhu et al., 2015b; Zhu et al., 2020b; Wang et al., 2016). Hence, previous temperature reconstructions based only on
229	tree-ring widths of P. koraiensis (Zhu et al., 2009;Shao and Wu, 1997;Lyu et al., 2016) or F. mandshurica (Zhang et al., 2007;Wang
230	et al., 2012; Yu, 2019) may have some uncertainty. Our results confirmed that the unstable sensitivity of <i>P. koraiensis</i> or <i>F.</i>
231	mandshurica to temperature before and after warming hindered the possibility of paleoclimate reconstruction based on single species
232	tree-ring data. Both two reconstruction models based on the combined P. koraiensis and combined F. mandshurica chronologies do
233	not pass the model test (Table 2). However, the opposite patterns in temperature sensitivity of <i>P. koraiensis</i> and <i>F. mandshurica</i> make
234	it possible to improve the performance of tree-ring-based temperature reconstruction by multiple tree species (Table 2).
235	4.2 Higher quality of our reconstruction and its comparison with regional records

236 In general, our reconstruction reflects warm/cold patterns that have been observed in other temperature records (Fig. 6) and local

237 historical documents (Wen, 2008) from northeastern China. This suggests that similar processes control temperatures across northeast

- China. Spatial field correlations between our reconstructed temperature and the gridded $0.5^{\circ} \times 0.5^{\circ}$ growing-season temperatures are significant (p < 0.05) across much of northeast Asia (Fig. S3). Compared with the existing reconstructed temperatures for the Changbai Mountains, our reconstruction is more consistent with reconstructed temperatures from the nearby Xiaoxing'an Mountains of northeast China (XXA, Zhu et al. (2015a)) and from the extratropical Northern Hemisphere (NH, Wilson et al. (2007)) at low- and highfrequency scales (Fig. 6e-f). Common cold/warm periods and similar fluctuation patterns during the past two centuries indicate that
- 243 our reconstruction is accurate and reliable.

Figure 6. Comparison of temperature records in northeastern China and the extratropical Northern Hemisphere. (a) The tree-ring index (TRI) of combined *P. koraiensis* (PK) and combined *F. mandshurica* (FM) in the northern Changbai Mountains. (b) The April-September minimum temperature reconstruction in the northern Changbai Mountains in this study (TS). (c) The February-April mean temperature reconstruction for the Changbai (CB) Mountains by Zhu et al., (2009). (d) The April-July minimum temperature reconstruction for the Laobai (LB) Mountains by Lyu et al., (2017). (e) The February-March minimum temperature reconstruction for the Xiaoxing'an (XXA) Mountains by Zhu et al., (2015). (e) The extratropical Northern Hemisphere (NH) temperature reconstruction by Wilson et al., (2007). All of the above series were standardized using Z-scores; low-pass filtration was then carried out using a 10-year loess filter. Blue (cold) and red

253 reconstruction are highlighted in green.

- 254 A significant positive correlation was found between our reconstruction and the February-April mean temperature (CB, Zhu et al. 255 (2009)) and April-July minimum temperature (LB, Lyu et al. (2016)) in the Changbai Mountains at low and high frequencies (Fig. 6c-256 d). Although the three records display highly synchronous variations, there are several notable differences. The most obvious 257 differences occur in the years of 1800-1850 and 1870-1950, especially at low frequencies (Fig. 6a-d). These differences may be due to 258 the reconstruction bias of using a single species. The two temperature records (CB and LB in Fig. 6) in Changbai Mountains were both 259 based on tree-ring widths of P. koraiensis (Zhu et al., 2009;Lyu et al., 2016), which is known to have an unstable growth-climate 260 relationship (Zhu et al., 2015b). There are two temperature records based on the ring widths of F. mandshurica for the Changbai 261 Mountains (Yu, 2019; Wang et al., 2012), but we were unable to access these records. Nevertheless, a visual comparison of our reconstruction and the two temperature sequences indicates some differences (Yu, 2019;Wang et al., 2012). 262 263 In general, our mixed-species temperature reconstruction shows absolute advantages, with higher accuracy and reliability than previous 264 temperature reconstructions that use only one species (P koraiensis or F mandshurica). This ingenious tree species mixing method
- significantly improves the model stability and reliability. It provides a valuable reference for tree-ring-based paleoclimate
- 266 reconstructions in areas with unstable growth-climate relationships.

267 4.3 Linkages to the Atlantic Multidecadal Oscillation

- 268 The Atlantic Multidecadal Oscillation (AMO) has been shown to play a key role in influencing global climate (Knight et al., 2006),
- especially in North America (Nigam et al., 2011;Oglesby et al., 2012;Gan et al., 2019) and Europe (Vicente-Serrano and López-
- 270 Moreno, 2008;Brgel et al., 2020). In this study, we found that the AMO has a strong effect on the growing-season minimum
- 271 temperature in the northern Changbai Mountains, which is in line with previous tree-ring-based temperature reconstructions in
- 272 northeastern China (Zhu et al., 2015a;Zhu et al., 2017;Li and Wang, 2013;Lyu et al., 2016). Temperature in the northern Changbai
- 273 Mountains fluctuates on 59.6- and 78.4-year cycles, which is consistent with the 60-80-year cycle (AMO) of the North Atlantic SST
- anomalies (Gray, 2004) (Fig. 7). We found strong and significant spatial correlations between our reconstructed temperature and the
- 275 SST anomalies over the Atlantic Ocean (Fig. 7a), and between the actual AMO index and the April-September land surface CRU
- 276 TS4.04 minimum temperature in the Changbai Mountains (Fig. 7b). These correlations reveal a potential linkage between the AMO
- and the temperature in the northern Changbai Mountains. Similar significant (p < 0.01) and positive correlations exist between the
- 278 temperature reconstruction for the northern Changbai Mountains and the actual (annual: R=0.378, decadal: R=0.7) (Enfield et al.,
- 279 2001) and reconstructed (Gray: annual: R=0.285, decadal: R=0.494; Mann: decadal: R=0.643) (Mann et al., 2009;Gray, 2004) AMO

280 indices at both annual and decadal scales (Fig. 8), further confirming the effect of the AMO on temperature in the Changbai

281 Mountains.

282

- 283 Figure 7. The influence of the AMO on the growing-season minimum temperature in the northern Changbai Mountains. (a) Spatial
- 284 correlation between reconstructed April-September averaged minimum temperatures with Sea Surface Temperatures at a global scale. The
- 285 spatial correlation was calculated for April-September and covers the period from 1870 to 2015. (b) Spatial correlation of the actual AMO
- 286 (Enfield et al., 2001) with April-September land surface minimum temperature from the CRU TS4.04 for the period 1958-2015. Maps with
- 287 filled p-values > 5% were masked out.

289 Figure 8. The influence of the Atlantic Multidecadal Oscillation (AMO) on the growing-season minimum temperature in the northern

291 temperature and the reconstructed annual Sea Surface Temperature anomalies for the North Atlantic (AMO index) from Gray (2001). (c) 292 The reconstructed temperature and the reconstructed AMO index from Mann et al., (2009). The red line in (a)-(c) denotes the reconstructed 293 growing-season minimum temperature from this study (thin line) and its 10-year low-pass loess filter (bold line). The blue line in (a)-(c) 294 denotes the AMO index from this study (thin line) and its 10-year low-pass loess filter (bold line). Correlations are shown in each panel. 295 Double asterisks denote correlation significance at the 99% confidence level. 296 Previous studies have also confirmed that the AMO can strongly influence China's climate (Li et al., 2015; Wang et al., 2013), with 297 impacts on temperature and drought in the southwest (Fang et al., 2019;Shi et al., 2017;Zeng et al., 2019), northwest (Chen et al., 298 2013), and northeast (Liu et al., 2019;Zhu et al., 2018b;Zhu et al., 2020a). The SST anomalies in the North Atlantic or AMO can 299 change oceanic-atmospheric-land surface interactions and directly affect the local climate in eastern Asia (Wang et al., 2013; Wang et 300 al., 2009). Temperature in the northern Changbai Mountains is significantly (p<0.01) positively correlated with the actual AMO 301 indices from prior April to current September (Table S3). The composite April-September air temperature anomaly for the three 302 AMO extreme periods during the past 100 years also confirms our results (Fig. 9). Temperature over our study area had a positive 303 temperature anomaly during the two warm periods from 1935 to 1955 and 2000 to 2020. However, it has a negative anomaly during

304 the cold periods from 1970 to 1990 (Fig. 9b-d). The 500-mb vector wind data confirm that a strong atmospheric circulation

305 originating in the North Atlantic traverses all of Eurasia before dropping over northeast Asia (Fig. 9a). This circulation brings

306 warm/cold air masses from the Atlantic Ocean and Eurasia to northeastern China (Fig. 9a). The AMO may also affect temperature in

307 the Changbai Mountains by modulating other large-scale circulation patterns. For example, large-scale circulation related to Pacific

308 Ocean-atmospheric coupling processes, such as the El Niño-Southern Oscillation and the Pacific Decadal Oscillation, could affect

309 local temperatures in northeastern China (Zhang and Thomas, 2007; Dong et al., 2006; Zhu et al., 2017).

311 Figure 9. The (a) averaged April to September 500-mb vector wind in the Northern Hemisphere and the (b-d) 20th century reanalysis V3 air

312 temperature composite anomaly for three different AMO phase periods during the growing-season (April-September). (b) Warm phase

314 5 Conclusion

310

315 We propose a novel tree-species mixing method to improve the accuracy of tree-ring-based reconstructions in areas with unstable 316 growth-climate relationships. This method significantly improves the model stability and reliability of a temperature 317 reconstruction for the northern Changbai Mountains. During the calibration period from 1958 to 2015, the model explains 68% 318 of the growing-season minimum temperature variation. During the past 259 years (AD 1757-2015), five warm periods (1762-319 1776, 1828-1831, 1927-1930, 1936-1947, and 1991-2012) and five cold periods occurred (1797-1800, 1811-1820, 1836-1856, 1898-1918 and 1956-1982). Our reconstruction shows good consistency and high accuracy with nearby tree-ring-based 320 321 reconstructions and historical records. This reconstruction successfully captures the warming observed in the instrumental record 322 since the 1980s. Within the 259-year record, we find significant (p < 0.01) annual cycle peaks at 2.7, 3, and 3.5 years, and decadal 323 cycle peaks at 59.6 and 78.4 years. The AMO plays a key role in modulating temperature in the northern Changbai Mountains. 324 325 Data availability. The temperature reconstruction in the Changbai Mountains will be uploaded to NOAA, and all the data published in

- 326 this study will be available for non-commercial scientific purposes.
- 327 Author contributions. For this article, LZ and XW conceived the study; LZ, HZ, DY and XZ collected the data; LZ, DC, DY, YZ,
- 328 HL and XW elaborated the methodology; LZ, SL, ZL, YZ and DY analysed the data; LZ, SL and XW led the writing of the manuscript;
- 329 LZ, DC, WS, ZL, YZ and XW revised the manuscript.
- 330 Competing interests. The authors declare that they have no conflict of interest.

³¹³ from 1935 to 1955, (c) cold phase from 1970 to 1990, and (d) warm phase from 2000 to 2020.

- 331 Acknowledgments. This research was supported by the Science and Technology Innovation Program of Hunan Province (2020RC2058), the
- 332 China Postdoctoral Science Foundation (2020M682600), the Research Foundation of the Bureau of Education in Hunan Province
- 333 (20B627), and the Start-up Scientific Research Foundation for the Introduction of Talents at the Central South University of Forestry
- 334 and Technology (2020YJ012).

335 References

- 336 Allen, C. D., Macalady, A. K., Chenchouni, H., Bachelet, D., McDowell, N., Vennetier, M., Kitzberger, T., Rigling, A., Breshears, D.
- 337 D., Hogg, E. H., Gonzalez, P., Fensham, R., Zhang, Z., Castro, J., Demidova, N., Lim, J. H., Allard, G., Running, S. W., Semerci, A.,
- 338 and Cobb, N.: A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests, Forest
- 339 Ecol Manag, 259, 660-684, 10.1016/j.foreco.2009.09.001, 2010.
- 340 Anchukaitis, K. J., Wilson, R., Briffa, K. R., Buntgen, U., Cook, E. R., D'Arrigo, R., Davi, N., Esper, J., Frank, D., Gunnarson, B. E.,
- 341 Hegerl, G., Helama, S., Klesse, S., Krusic, P. J., Linderholm, H. W., Myglan, V., Osborn, T. J., Zhang, P., Rydval, M., Schneider, L.,
- 342 Schurer, A., Wiles, G., and Zorita, E.: Last millennium Northern Hemisphere summer temperatures from tree rings: Part II, spatially
- 343 resolved reconstructions, Quaternary Sci Rev, 163, 1-22, 10.1016/j.quascirev.2017.02.020, 2017.
- 344 Brgel, F., Frauen, C., Neumann, T., and Meier, H. E. M .: The Atlantic Multidecadal Oscillation controls the impact of the North
- 345 Atlantic Oscillation on North European climate, Environ Res Lett, 15, 104025, 2020.
- 346 Bunn, A. G.: A dendrochronology program library in R (dplR), Dendrochronologia, 26, 115-124,
- 347 https://doi.org/10.1016/j.dendro.2008.01.002, 2008.
- 348 Cao, J., Zhao, B., Gao, L., Li, J., Li, Z., and Zhao, X.: Increasing temperature sensitivity caused by climate warming, evidence from
- 349 Northeastern China, Dendrochronologia, 51, 101-111, 2018.
- Chen, F., Yuan, Y., Chen, F., Wei, W., Yu, S., Chen, X., Fan, Z., Zhang, R., Zhang, T., and Shang, H.: A 426-year drought history for 350
- 351 Western Tian Shan, Central Asia, inferred from tree rings and linkages to the North Atlantic and Indo-West Pacific Oceans, The
- 352 Holocene, 23, 1095-1104, 2013.
- 353 D'Arrigo, R., Wilson, R., Liepert, B., and Cherubini, P.: On the 'Divergence Problem' in Northern Forests: A review of the tree-ring
- 354 evidence and possible causes, Glob Planet Change, 60, 289-305, 2008.
- 355 Dong, B. W., Sutton, R. T., and Scaife, A. A.: Multidecadal modulation of El Nino-Southern Oscillation (ENSO) variance by Atlantic
- 356 Ocean Sea Surface Temperatures, Geophys Res Lett, 33, 93-93, 2006.
- 357 Enfield, D. B., Mestas - Nuez, A. M., and Trimble, P. J.: The Atlantic Multidecadal Oscillation and its relation to rainfall and river
- 358 flows in the continental U.S, Geophys Res Lett, 28, 2077-2080, 2001.
- 359 Fang, K., Guo, Z., Chen, D., Wang, L., Dong, Z., Zhou, F., Zhao, Y., Li, J., Li, Y., and Cao, X.: Interdecadal modulation of the
- 360 Atlantic Multi-decadal Oscillation (AMO) on southwest China's temperature over the past 250 years, Clim Dynam, 52, 2055-2065, 2019.
- 361
- 362 Fritts, H. C.: Tree Rings and Climate, edited by: Fritts, H. C., Academic Press, London, 1-567 pp., 1976.
- 363 Gan, Z., Guan, X., Kong, X., Guo, R., Huang, H., Huang, W., and Xu, Y.: The Key Role of Atlantic Multidecadal Oscillation in
- 364 Minimum Temperature over North America during Global Warming Slowdown, Earth Space Sci, 6, 387-398, 2019.
- 365 Gray, S. T.: A tree - ring based reconstruction of the Atlantic Multidecadal Oscillation since 1567 A.D, Geophys Res Lett, 31, 261-366 268, 2004.
- 367 Holmes, R. L.: Computer-assisted quality control in tree-ring dating and measurement, Tree-Ring Bulletin, 43, 69-78, 1983.
- 368 IPCC: Global Warming of 1.5°C, Intergovernmental Panel on Climate Change, Geneva, Switzerland, 2018.
- 369 Knight, J. R., Folland, C. K., and Scaife, A. A.: Climate impacts of the Atlantic Multidecadal Oscillation, Geophys Res Lett, 33,

- 370 2006.
- 371 Li, M., and Wang, X. C.: Climate-growth relationships of three hardwood species and Korean pine and minimum temperature
- 372 reconstruction in growing season in Dunhua, China, J Nanjing Forestry Uni (Natural Sciences Edition), 3, 29-34, 2013.
- 373 Li, S., Jing, Y., and Luo, F.: The potential connection between China surface air temperature and the Atlantic Multidecadal
- 374 Oscillation(AMO) in the Pre-industrial Period, Sci China Earth Sci, 10, 1814-1826, 2015.
- 275 Liu, H., Park Williams, A., Allen, C. D., Guo, D., Wu, X., Anenkhonov, O. A., Liang, E., Sandanov, D. V., Yin, Y., Qi, Z., and
- 376 Badmaeva, N. K.: Rapid warming accelerates tree growth decline in semi-arid forests of Inner Asia, Global Change Biol, 19, 2500-
- 377 2510, 10.1111/gcb.12217, 2013.
- 378 Liu, R., Liu, Y., Li, Q., Song, H., Li, X., Sun, C., Cai, Q., and Song, Y.: Seasonal Palmer drought severity index reconstruction using
- 379 tree-ring widths from multiple sites over the central-western Da Hinggan Mountains, China since 1825 AD, Clim Dynam, 1-14,
- 380 <u>https://doi.org/10.1007/s00382-019-04733-0</u>, 2019.
- 381 Lyu, S., Li, Z., Zhang, Y., and Wang, X.: A 414-year tree-ring-based April–July minimum temperature reconstruction and its
- 382 implications for the extreme climate events, northeast China, Clim Past, 12, 1879-1888, 2016.
- Mann, M. E., and Lees, J. M.: Robust estimation of background noise and signal detection in climatic time series, Climatic Change,
 33, 409-445, 1996.
- 385 Mann, M. E., Zhang, Z. H., Rutherford, S., Bradley, R. S., Hughes, M. K., Shindell, D., Ammann, C., Faluvegi, G., and Ni, F. B.:
- 386 Global Signatures and Dynamical Origins of the Little Ice Age and Medieval Climate Anomaly, Science, 326, 1256-1260,
- 387 10.1126/science.1177303, 2009.
- 388 Nigam, S., Guan, B., and Ruiz-Barradas, A.: Key role of the Atlantic Multidecadal Oscillation in 20th century drought and wet
- 389 periods over the Great Plains, Geophys Res Lett, 38, 239-255, 2011.
- 390 Oglesby, R., Feng, S., Hu, Q., and Rowe, C.: The role of the Atlantic Multidecadal Oscillation on medieval drought in North
- 391 America: Synthesizing results from proxy data and climate models, Global Planet Change, 84-85, 56-65, 2012.
- 392 Shao, X. M., and Wu, X. D.: Reconstruction of climate change on Changbai Mountain, Northeast China using tree-ring data,
- 393 Quaternary Sci, 17, 76-85, 1997.
- 394 Shi, S., Li, J., Shi, J., Zhao, Y., and Huang, G.: Three centuries of winter temperature change on the southeastern Tibetan Plateau and
- its relationship with the Atlantic Multidecadal Oscillation, Clim Dynam, 49, 2017.
- 396 Stokes, M. A., and Smiley, T. L.: An introduction to tree-ring dating, University of Chicago Press, Chicago, xiv, 73 p. pp., 1968.
- 397 Vicente-Serrano, S. M., and López-Moreno, J. L: Nonstationary influence of the North Atlantic Oscillation on European
- 398 precipitation, J Geophys Res-Atmos, 113, D20120, doi: 10.1029/2008JD010382, 2008.
- 399 Wang, J., Yang, B., Ljungqvist, F. C., and Zhao, Y.: The relationship between the Atlantic Multidecadal Oscillation and temperature
- 400 variability in China during the last millennium, J Quaternary Sci, 28, 653-658, 2013.
- 401 Wang, W., Zhang, J., Dai, G., Wang, X., Han, S., Zhang, H., and Wang, Y.: Variation of autumn temperature over the past 240 years
- 402 in Changbai Mountains of Northeast China: A reconstruction with tree-ring records, Chinese J Ecol, 31, 787-793, 2012.
- 403 Wang, X., Zhang, M., Ji, Y., Li, Z., and Zhang, Y.: Temperature signals in tree-ring width and divergent growth of Korean pine
- 404 response to recent climate warming in northeast Asia, Trees-Struct Funct, 31, 1-13, 2016.
- 405 Wang, Y., Li, S., and Luo, D.: Seasonal response of Asian monsoonal climate to the Atlantic Multidecadal Oscillation, J Geophys
- 406 Res-Atmos, 114, D02112, 10.1029/2008JD010929, 2009.
- 407 Wen, k.: Meteorological disasters dictionary of China, edited by: Qin, Y., Meteorological Press, 2008.
- 408 Wigley, T. M. L., Briffa, K. R., and Jones, P. D.: On the Average Value of Correlated Time Series, with Applications in
- 409 Dendroclimatology and Hydrometeorology, J Climate Appl Meteor, 23, 201-213, 1984.
- 410 Wilson, R., D'Arrigo, R., Buckley, B., Büntgen, U., Esper, J., Frank, D., Luckman, B., Payette, S., Vose, R., and Youngblut, D.: A

- 411 matter of divergence: Tracking recent warming at hemispheric scales using tree ring data, J Geophys Res, 112,
- 412 <u>https://doi.org/10.1029/2006JD008318</u>, 2007.
- 413 Wilson, R., Anchukaitis, K., Briffa, K. R., Buntgen, U., Cook, E., D'Arrigo, R., Davi, N., Esper, J., Frank, D., Gunnarson, B., Hegerl,
- 414 G., Helama, S., Klesse, S., Krusic, P. J., Linderholm, H. W., Myglan, V., Osborn, T. J., Rydval, M., Schneider, L., Schurer, A., Wiles,
- 415 G., Zhang, P., and Zorita, E.: Last millennium northern hemisphere summer temperatures from tree rings: Part I: The long term
- 416 context, Quaternary Sci Rev, 134, 1-18, 10.1016/j.quascirev.2015.12.005, 2016.
- 417 Yu, J.: Response of radial growth of main tree species of broad-leaved Korean pine forest to climate change in Changbai Mountain
- 418 and temperature reconstruction, 1-111, Beijing Forestry University, Beijing, 2019.
- 419 Zeng, A. Y., Zhou, F., Li, W., Bai, Y., and Zeng, C.: Tree-ring indicators of winter-spring temperature in Central China over the past
- 420 200 years, Dendrochronologia, 58, 125634, 2019.
- 421 Zhang, H., Han, S., Li, Y., and Zhang, J.: Reconstruction of temporal variations of precipitation in Changbai Mountains area over
- 422 past 240 years by using tree-ring width data, Chinese J Ecol, 26, 1924-1929, 2007.
- 423 Zhang, R., and Thomas, D. L.: Impact of the Atlantic Multidecadal Oscillation on North Pacific climate variability, Geophys Res
- 424 Lett, 34, 229-241, 2007.
- 425 Zhang, X. L., Bai, X. P., Chang, Y. X., and Chen, Z. J.: Increased sensitivity of Dahurian larch radial growth to summer temperature
- 426 with the rapid warming in Northeast China, Trees-Struct Funct, 30, 1799-1806, 10.1007/s00468-016-1413-6, 2016.
- 427 Zhu, H. F., Fang, X. Q., Shao, X. M., and Yin, Z.: Tree ring-based February-April temperature reconstruction for Changbai Mountain
- 428 in Northeast China and its implication for East Asian winter monsoon, Clim Past, 5, 661-666, 2009.
- 429 Zhu, L., Li, Z., Zhang, Y., and Wang, X.: A 211 year growing season temperature reconstruction using tree ring width in
- 430 Zhangguangcai Mountains, Northeast China: linkages to the Pacific and Atlantic Oceans, Int J Climatol, 37, 2017.
- 431 Zhu, L., Cooper, D. J., Yang, J., Zhang, X., and Wang, X.: Rapid warming induces the contrasting growth of Yezo spruce (Picea
- 432 *jezoensis* var. *microsperma*) at two elevation gradient sites of northeast China, Dendrochronologia, 50, 52-63, 2018a.
- 433 Zhu, L., Yao, Q., Cooper, D. J., Han, S., and Wang, X.: Response of *Pinus sylvestris* var. mongolica to water change and drought
- 434 history reconstruction in the past 260 years, northeast China, Clim Past, 14, 1213-1228, 2018b.
- 435 Zhu, L., Cooper, D. J., Han, S., Yang, J., Zhang, Y., Li, Z., Zhao, H., and Wang, X.: Influence of the Atlantic Multidecadal Oscillation
- 436 on drought in northern Daxing'an Mountains, Northeast China, CATENA, 105017, https://doi.org/10.1016/j.catena.2020.105017,
- 437 2020a.
- 438 Zhu, L., Cooper, D. J., Yuan, D., Li, Z., Zhang, Y., Liang, H., and Wang, X.: Regional scale temperature rather than precipitation
- 439 determines vessel features in earlywood of Manchurain ash in temperate forests, J Geophys Res-Biogeo, 125, JGRG21771,
- 440 10.1029/2020JG005955, 2020b.
- 441 Zhu, L. J., Li, S. Y., and Wang, X. C.: Tree-ring Reconstruction of Feb-Mar Mean Minimum Temperature Back to AD 1790 in
- 442 Yichun, Northeast China, Quaternary Sci, 35, 1175-1184, 10.11928/j.issn.1001-7410.2015.05., 2015a.
- 443 Zhu, L. J., Yang, J. W., Zhu, C., and Wang, X. C.: Influences of gap disturbance and warming on radial growth of Pinus koraiensis
- 444 and Abies nephrolepis in Xiaoxing' an Mountain, Northeast China, Chinese J Ecol, 34, 2085-2095, 2015b.