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Abstract. The importance of Southern Ocean sea ice has come into the focus of polar research in the last couple of decades. 

Especially in West Antarctica, where sea ice has declined, its distribution and evolution play a critical role for the stability of 

nearby ice shelves. Organic geochemical analyses of marine surface sediments from the West Antarctic continental shelves 15 

permit a biomarker-based reconstruction of sea surface conditions in these vulnerable areas. We analysed highly branched 

isoprenoids (HBIs), such as the sea-ice proxy IPSO25 and phytoplankton-derived HBI-trienes, but also phytosterols and 

isoprenoidal glycerol dialkyl glycerol tetraethers (GDGTs), which are established tools for the reconstruction of primary 

productivity and sea surface temperatures, respectively. The combination of IPSO25 with a phytoplankton marker results in the 

semi-quantitative sea-ice index PIPSO25, which provides useful reconstructions of sea-ice conditions, avoiding misleading 20 

over- or underestimations of sea-ice cover. Comparisons of the biomarker-based sea-ice distribution patterns and GDGT-based 

temperatures with (1) sea-ice distributions obtained from satellite observations and (2) estimated sea-ice patterns and SSTs 

deduced from modelled data are in reasonable agreement, but also highlight specific aspects that need to be considered when 

interpreting biomarker data. We further discuss IPSO25 concentrations in the vicinity of ice shelves, where elevated values 

could be related to the occurrence of ice shelf basal melt water and platelet ice under landfast sea ice.  25 

1 Introduction 

One of the key components of the global climate system, influencing major atmospheric and oceanic processes, is floating on 

the ocean’s surface at high latitudes – sea ice (Thomas, 2017). Southern Ocean sea ice is one of the most strongly changing 

features of the Earth’s surface as it experiences considerable seasonal variabilities with decreasing sea-ice extent from a 

maximum of 20 x 106 km2 in September to a minimum of 4 x 106 km2 in March (Arrigo et al., 1997; Zwally, 1983). This 30 

seasonal waxing and waning of sea ice substantially modifies deep-water formation, the ocean-atmosphere exchange of heat 

and gas, strongly affects surface albedo and radiation budgets (Abernathey et al., 2016; Nicholls et al., 2009; Turner et al., 

2017) and also regulates ocean buoyancy flux, upwelling and primary production (Schofield et al., 2018).  

Southern Ocean sea-ice extent has undergone regionally contrasting changes since the beginning of satellite-based 

observations in 1979 (Parkinson, 2019). In the 40-year satellite record, sea-ice extent in East Antarctica is increasing, 35 

experiencing an abrupt reversal from 2014 to 2018 (even exceeding the drastic decay rates reported in the Arctic; Comiso et 

al., 2017; Parkinson, 2019; Parkinson and Cavalieri, 2012). Sea-ice extent in West Antarctica, however, is decreasing since 

the beginning of satellite-based observations 40 years ago (Parkinson and Cavalieri, 2012). Here, the Antarctic Peninsula has 

been affected by significant changes in sea-ice duration over the past few decades, undergoing a strong decrease in sea-ice 
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extent (Liu et al., 2004) and rapid atmospheric warming (Vaughan et al., 2003). The Larsen Ice Shelves A and B, located at 40 

the East Antarctic Peninsula, collapsed in 1995 and 2002, respectively, which Massom et al. (2018) linked to the loss of a sea-

ice buffer, enabling an increased flexure of the ice shelf margins by ocean swells. The Bellingshausen and Amundsen Seas are 

also affected by a stark sea-ice decline (Hobbs et al., 2016; Parkinson, 2019). Glaciers draining into the Amundsen Sea are 

thinning at an alarming rate, which has been linked to basal melting caused by relatively warm Circumpolar Deep Water 

(CDW) incursions into sub-ice shelf cavities, thinning the adjacent ice shelves from below (e.g., Jacobs et al., 2011). The 45 

disintegration of ice shelves reduces the buttressing force for the West Antarctic Ice Sheet, which may lead to a partial collapse 

of ice shelves in these catchments, eventually impacting global sea level rise significantly (Pritchard et al., 2012; Vaughan, 

2008). 

State-of-the-art climate models are not yet fully able to depict sea-ice seasonality and sea-ice cover, which the 5th Assessment 

Report of the Intergovernmental Panel on Climate Change (Stocker et al., 2013) explains by a lack of validation efforts using 50 

proxy-based sea-ice reconstructions. Knowledge about (paleo-) sea-ice conditions in the climate sensitive areas around the 

West Antarctic Ice Sheet is hence considered as crucial for understanding past and future climate evolution. 

To date, the most common proxy-based sea-ice reconstructions in the Southern Ocean are conducted by the use of sympagic 

diatom assemblages, which are strongly dependent on their preservation within the sediments (Allen et al., 2011; Armand and 

Leventer, 2003; Crosta et al., 1998; Esper and Gersonde, 2014; Gersonde and Zielinski, 2000; Leventer, 1998). Dissolution 55 

effects within the water column or after deposition determine the preservation state of the small, lightly silicified microfossils 

and may alter the diatom record, leading to inaccurate sea-ice reconstructions (Leventer, 1998; Zielinski et al., 1998). To avoid 

ambiguous interpretations, the molecular remains of certain diatoms, specific organic geochemical lipids, have recently 

emerged as a robust proxy for reconstructing past (and present) Antarctic sea ice (Barbara et al., 2013; Collins et al., 2013; 

Denis et al., 2010; Etourneau et al., 2013; Lamping et al., 2020; Massé et al., 2011; Vorrath et al., 2019; 2020). Specifically, a 60 

di-unsaturated highly branched isoprenoid (HBI) alkene (HBI diene, C25:2) has been detected in both sea-ice diatoms and 

sediments in the Southern Ocean (Johns et al., 1999; Massé et al., 2011; Nichols et al., 1988) and the sympagic (i.e. living 

within sea ice) tube-dwelling diatom Berkeleya adeliensis was recently identified as producer, which preferably proliferates 

in platelet ice (Belt et al., 2016; Riaux-Gobin and Poulin, 2004). However, B. adeliensis seems rather flexible concerning its 

habitat, since it was also recorded in the bottom ice layer and seems to be well adapted to changes in texture during ice melt 65 

(Riaux-Gobin et al., 2013). Belt et al. (2016) introduced the term IPSO25 (“Ice Proxy of the Southern Ocean with 25 carbon 

atoms”) because of the structurally close relationship of this lipid to the counterpart IP25 in the Arctic. Hitherto, only a relatively 

small number of studies based on IPSO25 for recent and Holocene sea-ice reconstructions is available in the Southern Ocean 

(Barbara et al., 2010; 2013; Belt et al., 2016; 2018; Collins et al., 2013; Denis et al., 2010; Etourneau et al., 2013; Lamping et 

al., 2020; Massé et al., 2011; Tesi et al., 2020; Vorrath et al., 2019; 2020). Commonly, for a more detailed assessment of sea-70 

ice conditions, IP25 in the Arctic Ocean and IPSO25 in the Southern Ocean have been measured alongside complementary 

phytoplankton derived lipids, such as sterols and/or HBI-trienes, which are indicative of open-water conditions (Belt and 

Müller, 2013; Lamping et al., 2020; Müller et al., 2011; Vorrath et al., 2019; 2020). The combination of the sea-ice biomarker 

and a phytoplankton biomarker, the so called PIP25 index for the Arctic (Müller et al., 2011) and the PIPSO25 index for the 

Antarctic (Vorrath et al., 2019), allow for a more quantitative differentiation of contrasting sea-ice settings. A misinterpretation 75 

of an absent sea-ice biomarker, which can be the result of either no sea-ice cover or a severe sea-ice cover, that prevents light 

penetration hence limiting ice algae growth, can be circumvented with this approach.  

Mechanisms contributing to ice shelf instability are manifold. As previously mentioned, relatively warm CDW is considered 

one of the main drivers for ice shelf thinning in the Amundsen Sea Embayment (Jacobs et al., 2011; Jenkins and Jacobs, 2008). 

Accordingly, changing ocean temperatures are another crucial factor for the fate of West Antarctic Ice Sheet stability (e.g., 80 

Colleoni et al., 2018). As for sea-ice reconstructions, organic geochemical lipids for reconstructing past and recent ocean 

temperatures in high latitudes have come into focus in the past decades, since the preservation of calcium carbonate 
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microfossils is not continuous in high latitude sediments (e.g., Zamelczyk et al., 2012). Archaeal isoprenoidal glycerol dialkyl 

glycerol tetraethers (isoGDGTs), sensitive to temperature change and relatively resistant to degradation processes, are well-

preserved in marine sediments (Huguet et al., 2008; Schouten et al., 2013). Hence, isoGDGTs are considered to be valuable 85 

tools for reconstructing ocean temperatures (Schouten et al., 2002). 

Our aim with this study is to provide insight into the application of biomarkers for sea ice as well as ocean temperature 

reconstructions. Estimates on recent sea-ice conditions along the eastern and western Antarctic Peninsula, the Amundsen and 

Weddell Seas, are based on the analyses of IPSO25, HBI-trienes and phytosterols in surface sediment samples from these areas. 

We further address the potential connection between IPSO25 and platelet ice formation under near-coastal fast ice, which is 90 

related to the presence of near-surface ice shelf basal melt water. An intercomparison of sea ice as well as temperature 

reconstructions (based on GDGT analyses) with (1) sea-ice distributions obtained from satellite observations and (2) estimated 

sea-ice distribution and SSTs deduced from modelled data provides for an evaluation of the proxy approaches. For a more 

semi-quantitative sea-ice estimate, the relatively new approach of PIPSO25 has been used to further assess the advantages and 

limitations of the sea-ice index as a potential tool to validate and improve numerical climate models to better understand 95 

current and past trends in sea-ice development in the Southern Ocean. 

2 Regional setting 

The areas of investigation in this study include the southern Drake Passage, the continental shelves of the West and East 

Antarctic Peninsula (~ 60° S) and the more southerly located Amundsen and Weddell Seas (~ 75° S; Fig. 1). The different 

study areas are all connected by the only current circumnavigating the globe, the Antarctic Circumpolar Current (ACC; 100 

Meredith et al., 2011; Rintoul et al., 2001). The ACC is the largest current system in the world characterised by a strong 

eastward flow, which finds its narrowest constriction in the Drake Passage. It is mainly composed of CDW, which is generally 

divided into the Upper CDW with low oxygen and high nutrient concentrations, and Lower CDW with high salinities (Rintoul 

et al., 2001). Along the Bellingshausen Sea, the Amundsen Sea and West Antarctic Peninsula (i.e., the Bransfield Strait), where 

the ACC flows close to the continental shelf edge, CDW is upwelling onto the shelf via bathymetric troughs, contributing to 105 

basal melt and retreat of the adjoining ice shelves (Jacobs et al., 2011; Jenkins and Jacobs, 2008; Klinck et al., 2004). In the 

Weddell Sea, where the ACC is located sufficiently far from the Antarctic continent, a subpolar cyclonic circulation is present 

south of the ACC, the Weddell Gyre. The Weddell Gyre is the main circulation in the Weddell Sea and the most important 

source of Antarctic Bottom Water (Deacon, 1979), with sea-ice formation as an important factor in generating these dense 

water masses (Harms et al., 2001). Wind and currents force a northward sea-ice drift in the western Weddell Sea along the 110 

coast of the East Antarctic Peninsula (Harms et al., 2001) until leaving it to melt in warmer waters to the North and up to the 

Powell Basin (Vernet et al., 2019). At the northern tip of the Antarctic Peninsula, Transitional Weddell Sea Water (TWW) 

branches off into the Bransfield Strait and is characterised by colder temperatures and higher salinities as a result of extended 

sea-ice formation in the Weddell Gyre (Collares et al., 2018; Thompson et al., 2009). Here, it encounters the well-stratified, 

warm, and fresh Bellingshausen Sea Water (BSW; Fig. 1), which is entering the Bransfield Strait from the West (Sangrà et al., 115 

2011). Since 1978, satellite observations show strong seasonal shifts of sea-ice cover at the Antarctic Peninsula, which is less 

pronounced in the more southerly Amundsen and Weddell Seas (Fig. 2a-c). Mean monthly sea-ice concentrations (SIC) for 

winter (JJA), spring (SON) and summer (DJF) reveal a permanently ice-free Drake Passage, while the West and East Antarctic 

Peninsula shelf areas are influenced by a changing sea-ice cover in the course of a year (Fig. 2a-c). For the Amundsen and 

Weddell Seas, satellite data reveal a closed seasonal sea-ice cover with up to ~ 90 % concentration during winter and spring 120 

(Fig. 2a+b), and a late break-up of sea-ice cover to a minimum concentration of ~ 30 % during summer (Fig. 2c). 
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3 Material and methods 

3.1 Sediment material 

In total, we analysed a set of 41 surface sediment samples from different areas of the Southern Ocean (Fig. 1), all have been 

retrieved by multicorers during RV Polarstern expeditions in the past years. 16 surface sediment samples from the Amundsen 125 

Sea continental shelf were collected during RV Polarstern expeditions PS69 in 2007 (Gohl, 2007) and PS104 in 2017 (Gohl, 

2017). 25 surface sediment samples from the southeastern and southwestern Weddell Sea continental shelf were collected 

during RV Polarstern expeditions PS111 in 2018 (Schröder, 2018) and PS118 in 2019 (Dorschel, 2019). This set of samples 

was complemented by 26 surface sediment samples from the Bransfield Strait/West Antarctic Peninsula for which the 

analytical results were already published by Vorrath et al. (2019).  130 

3.2 Bulk sediment and organic geochemical analyses 

The sediment material was freeze-dried and homogenized with an agate mortar and stored in glass vials at -20 °C before and 

after these initial preparation steps to avoid degradation of targeted molecular components. The analysis of total organic carbon 

(TOC) contents was conducted on 0.1 g of sediment after removing inorganic carbon (total inorganic carbon, carbonates) with 

500 µl 12 N hydrochloric acid. Measurements were conducted by means of a carbon-sulphur determinator (CS 2000; Eltra) 135 

with standards being measured for calibration before sample analyses and after every tenth sample to ensure accuracy (error ± 

0.02 %). 

Lipid biomarker extraction of the sediment (4 g for PS69 and PS104; 6 g for PS111 and PS118) was done by ultrasonication 

(3 x 15 min), using dichloromethane:methanol (3 x 6 ml for PS69 and PS104; 3 x 8 ml for PS111 and PS118; 2:1 v/v) as 

solvent. Prior to this step, the internal standards 7-hexylnonadecane (7-HND; 20 µl/sample for PS69 and PS104 and 30 140 

µl/sample for PS111 and PS118), 5⍺-androstan-3-ol (40 µl/sample) and C46 (100 µl/sample) were added to the sample for 

quantification of HBIs, sterols and GDGTs, respectively. Via open-column chromatography, with SiO2 as stationary phase, 

fractionation of the extract was achieved by eluting the apolar fraction (HBIs) and the polar fraction (sterols and GDGTs) with 

5 ml n-hexane and 5 ml DCM/MeOH 1:1, respectively. The polar fraction was subsequently split into two fractions (sterols 

and GDGTs) for further processing. The sterol fraction was silylated with 300 µl bis-trimethylsilyl-trifluoroacetamide 145 

(BSTFA; 2h at 60 °C). Compound analyses of HBIs and sterols were carried out on an Agilent Technologies 7890B gas 

chromatograph (GC; fitted with a 30 m DB 1MS column; 0.25 mm diameter and 0.25 µm film thickness) coupled to an Agilent 

Technologies 5977B mass selective detector (MSD; with 70 eV constant ionization potential, ion source temperature of 230 

°C). The GC oven was set to: 60 °C (3 min), 150 °C (rate: 15 °C/min), 320 °C (rate: 10 °C/min), 320 °C (15 min isothermal) 

for the analysis of hydrocarbons and to: 60 °C (2 min), 150 °C (rate: 15 °C/min), 320 °C (rate: 3 °C/min), 320 °C (20 min 150 

isothermal) for the analysis of sterols. Helium was used as carrier gas. The identification of HBI and sterol compounds is based 

upon their GC retention times and mass spectra (Belt, 2018; Belt et al., 2000; Boon et al., 1979). Lipid quantification was 

obtained by setting the individual, manually integrated, GC-MS peak area in relation to the peak area of the respective internal 

standard and normalization to the amount of extracted sediment. Quantification of IPSO25 and HBI Z-triene was achieved 

using their molecular ion (IPSO25: m/z 348 and HBI Z-triene: m/z 346) in relation to the fragment ion m/z 266 of the internal 155 

standard 7-HND (Belt, 2018). Quantification of sterols was achieved by comparison of the fragment ion of the individual sterol 

with the fragment ion m/z 348 of the internal standard 5⍺-androstan-3-ol. Instrumental response factors for the target lipids 

were considered as recommended by Belt et al. (2014) and Fahl and Stein (2012). All biomarker concentrations were 

subsequently normalized to the TOC content of each sample to account for different depositional settings within the different 

study areas.  160 

For calculating the phytoplankton-IPSO25 (PIPSO25) index, we used the equation introduced by Vorrath et al. (2019): 

PIPSO&' 	= 	
*+,-./

*+,-./	0	 1234516789458	:7;9<;	=	>
 .            (1) 
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where c (c = mean IPSO25/mean phytoplankton marker) is applied as a concentration balance factor to account for high 

concentration offsets between IPSO25 and the phytoplankton biomarker (see Table S1 for c-factors of individual PIPSO25 

calculations). 165 

Following the approach by Müller and Stein (2014) and Lamping et al. (2020), samples with exceptionally low (at detection 

limit) concentrations of both biomarkers have been assigned a PIPSO25 value of 1 (see chapter 4.1.2). This accounts for five 

sample stations in the Weddell Sea PS111/13-2, /15-1, /16-3, /29-3; /40-2 (marked as orange x in Fig. 1). 

The GDGT fraction was dried under N2, redissolved with 120 µl hexane:isopropanol (v/v 99:1) and then filtered using a 

polytetrafluoroethylene (PTFE) filter with a 0.45 µm pore sized membrane. GDGT measurements were carried out using high 170 

performance liquid chromatography (HPLC; Agilent 1200 series HPLC system) coupled to an Agilent 6120 mass spectrometer 

(MS), operating with atmospheric pressure chemical ionization (APCI). The injection volume was 20 µl. For separating the 

GDGTs, a Prevail Cyano 3 µm column (Grace, 150 mm * 2.1 mm) was kept at 30 °C. Each sample was eluted isocratically 

for 5 min with solvent A = hexane/2-propanol/chloroform; 98:1:1 at a flow rate of 0.2 ml/min, then the volume of solvent B = 

hexane/2-propanol/chloroform; 89:10:1 was increased linearly to 10 % within 20 min and then to 100 % within 10 min. The 175 

column was back-flushed (5 min, flow 0.6 ml/min) after 7 min after each sample and re-equilibrated with solvent A (10 min, 

flow 0.2 ml/min). The APCI was set to the following: N2 drying gas flow at 5 l/min and temperature to 350 °C, nebulizer 

pressure to 50 psi, vaporizer gas temperature to 350 °C, capillary voltage to 4 kV and corona current to +5 µA. Detection of 

GDGTs was achieved by means of selective ion monitoring (SIM) of [M+H]+ ions (dwell time 76 ms). Determination and 

quantification of the molecular ions of GDGT-0 (m/z 1302), GDGT-1 (m/z 1300), GDGT-2 (m/z 1298), GDGT-3 (m/z 1296) 180 

and crenarchaeol (m/z 1292) as well as of brGDGT-III (m/z 1050), brGDGT-II (m/z 1036) and brGDGT-I (m/z 1022) was done 

in relation to the molecular ion m/z 744 of the internal standard C46-GDGT. The late eluting hydroxylated GDGTs (OH-GDGT-

0, OH-GDGT-1 and OH-GDGT-2 with m/z 1318, 1316 and 1314, respectively) were quantified in the scans (m/z 1300, 1298, 

1296) of their related GDGTs, as described by Fietz et al. (2013).  

TEXL
86 values and their conversion into temperatures were determined following Kim et al. (2010): 185 

TEXBCD = LOG [HIHJK&]
HIHJKM 0 HIHJK& 0 HIHJK&

 ,                                (2) 

SSTJNO	[°C] 	= 	67.5	x	TEXBCD + 	46.9.                              (3) 

Temperature calculations based on OH-GDGTs were carried out according to Lü et al. (2015): 

RI − OH´ = -^KHIHJKM 0&	=	[-^KHIHJK&]
-^KHIHJK_ 0 -^KHIHJKM 0[-^KHIHJK&]

 ,          (4) 

SST-^	[°C] 	= 	 (RI − OH´	 − 	0.1)	/	0.0382.           (5) 190 

To determine the relative influence of terrestrial organic matter input, the BIT-index was calculated following Hopmans et al. 

(2004): 

BIT = 	 i;HIHJK* 0 i;HIHJK** 0[i;HIHJK***]
j2;<87;>27<56 0 i;HIHJK* 0 i;HIHJK** 0[i;HIHJK***]

	.            (6) 

3.3 Numerical model  

3.3.1 Model description 195 

AWI-ESM2 is a state-of-the-art coupled climate model developed by Sidorenko et al. (2019) which comprises an atmospheric 

component ECHAM6 (Stevens et al., 2013) as well as an ocean-sea ice component FESOM2 (Danilov et al., 2017). The 

atmospheric module ECHAM6 is the most recent version of the ECHAM model developed at the Max Planck Institute for 

Meteorology (MPI) in Hamburg. The model is branched from an early release of the European Center (EC) for Medium Range 

Weather Forecasts (ECMWF) model (Roeckner et al., 1989). ECHAM6 dynamics is based on hydrostatic primitive equations 200 
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with traditional approximation. We used T63 Gaussian grid which has a spatial resolution of about 1.9 x 1.9 degree (1.9 ° or 

210 km). There are 47 vertical layers in the atmosphere. 

Momentum transport arising from boundary effects is configured using the subgrid orography scheme as described by Lott 

(1999).  Radiative transfer in ECHAM6 is represented by the method described in Iacono et al. (2008). ECHAM6 also contains 

a Land-Surface Model (JSBACH) which includes 12 functional plant types of dynamic vegetation and 2 bare-surface types 205 

(Loveland et al., 2000; Raddatz et al., 2007). The ice-ocean module in AWI-ESM2 is based on the finite volume discretization 

formulated on unstructured meshes. The multi-resolution for the ocean is up to 15 km over polar and coastal regions, and 135 

km for far-field oceans, with 46 uneven vertical depths. The impact of local dynamics on the global ocean is related to a 

number of FESOM-based studies (Danilov et al., 2017). The multi-resolution approach advocated by FESOM allows one to 

explore the impact of local processes on the global ocean with moderate computational effort (Danilov et al., 2017). AWI-210 

ESM2 employs the OASIS3-MCT coupler (Valcke, 2013) with an intermediate regular exchange grid. Mapping between the 

intermediate grid and the atmospheric/oceanic grid is handled with bilinear interpolation. The atmosphere component 

computes 12 air–sea fluxes based on four surface fields provided by the ocean module FESOM2. AWI-ESM2 has been 

validated under modern climate conditions (Sidorenko et al., 2019) and has been applied for marine radiocarbon concentrations 

(Lohmann et al., 2020), the latest Holocene (Vorrath et al., 2020), and the Last Interglacial (Otto-Bliesner et al., 2021). 215 

3.3.2 Experimental design 

One transient experiment was conducted using AWI-ESM2, which applied the boundary conditions, including orbital 

parameters and greenhouse gases. Orbital parameters are calculated according to Berger (1978), and the concentrations of 

greenhouse gases are taken from ice-core records as well as from recent measurements of firn air and atmospheric samples 

(Köhler et al., 2017). The model was initialized from a 1,000-year spin-up run under mid-Holocene boundary conditions as 220 

described (Otto-Bliesner et al., 2017). In our modeling strategy, we follow Lorenz and Lohmann (2004) and use the climate 

condition from the preindustrial state as spin-up and initial state for the subsequent transient simulation covering the period 

1950-2014 CE. Topography including prescribed ice sheet was kept constant in our transient simulation. All model data are 

provided in Table S2. 

3.4. Satellite SIC and SSTs  225 

Satellite data are derived from Nimbus-7 SMMR and DMSP SSM/I-SSMIS passive microwave data and downloaded from 

the National Snow and Ice Data Center (NSIDC; Cavalieri et al., 1996). The sea-ice data represent mean monthly SIC, which 

are expressed to range from 0 % to 100 % and are averaged over a period of the beginning of satellite observations in 1978 to 

the individual year of sample retrieval. The monthly mean SIC were then split into different seasons: winter (JJF), spring 

(SON) and summer (DJF) (Fig. 2a-c) and the data are considered to represent the recent mean state of sea-ice coverage. All 230 

satellite data are provided in Table S3. 

Modern annual mean SSTs are derived from the World Ocean Atlas 13 representing averaged values for the years 1955-2012 

(Fig. 5c; WOA13; Locarnini et al., 2013).   

4 Results and discussion 

4.1 Environmental settings of the Southern Ocean depicted by proxy data  235 

In the following, we describe the biomarker and model data assembled during this study from North (Antarctic Peninsula) to 

South (Amundsen and Weddell Seas) and draw conclusions about the environmental settings deduced from the data set. All 

biomarker data collected during this study are provided in Table S1 and are available via the PANGAEA data repository (in 

prep.). 
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4.1.1 TOC content, HBIs and sterols in Antarctic surface sediments  240 

TOC contents in marine sediments in a first approximation are often viewed as an indicator for primary productivity in surface 

waters (Meyers, 1997), however we are aware that additional factors, such as different water depths or depositional regimes, 

may exert control on sedimentary TOC as well. The TOC contents of the herein investigated surface samples are lowest in the 

Drake Passage with values around 0.12-0.54 %, increasing in a northwest-southeast gradient into the Bransfield Strait, ranging 

between 0.59-1.06 % (Fig. 3a; WAP).  245 

At the East Antarctic Peninsula, higher TOC contents (0.57-0.86 %) prevail around the Larsen Ice Shelf with a decreasing 

trend towards the Powell Basin (0.22-0.37 %) and an increase to 0.50 % around the area of the South Orkney Islands, pointing 

to elevated productivity in these areas (Fig. 3a; EAP). The elevated TOC contents in this area may, however, also be attributable 

to higher inputs of reworked terrigenous organic matter. 

At the West Antarctic Peninsula, concentrations of the sea-ice biomarker IPSO25 show a northwest-southeast gradient with 250 

IPSO25 being absent in samples from the permanently ice-free Drake Passage and increasing concentrations towards the 

continental slope and the seasonally ice-covered continental shelf (0.37-17.81 µg*g OC-1; Fig. 3b; Vorrath et al., 2019). 

Highest IPSO25 concentrations are observed in samples of the northern Bransfield Strait affected by TWW inflow through the 

Antarctic Sound and along the Antarctic Peninsula which frequently exports sea ice from the Weddell Sea into the Bransfield 

Strait (Vorrath et al., 2019). High IPSO25 concentrations are also observed at the East Antarctic Peninsula, influenced by a 255 

seasonal sea-ice cover, where relatively higher concentrations of the sea-ice biomarker prevail in those samples located in 

front of the Larsen Ice Shelf (12.59-17.74 µg*g OC-1; Fig. 3b). As these locations are also influenced by the northward drift 

of sea ice by the Weddell Gyre (Fig. 1), the elevated IPSO25 concentrations could also result from sea ice advected from the 

southern Weddell Sea. We suggest that the decreasing IPSO25 concentrations towards the Powell Basin and the South Orkney 

Islands (0.59-5.36 µg*g OC-1; Fig. 3b) can be connected to the warmer ocean temperatures towards the North and increased 260 

sea-ice melt during spring and summer.  

Concentrations of the phytoplankton biomarker HBI Z-triene around the Antarctic Peninsula are highest in the eastern Drake 

Passage and along the continental slope (where IPSO25 is absent) and with lower concentrations in the Bransfield Strait (0.33-

26.86 µg*g OC-1; Fig. 3c; Vorrath et al., 2019). Elevated HBI Z-triene concentrations have thus far been detected in surface 

waters along an ice edge (Smik et al., 2016) and hence suggested to be a proxy for MIZ conditions (Belt et al., 2015; Collins 265 

et al., 2013; Schmidt et al., 2018). Vorrath et al. (2019), however, relate the high concentrations of HBI Z-triene at the 

northernmost stations in the permanently ice-free eastern Drake Passage to their proximity to the Antarctic Polar Front. Here, 

productivity of the source diatoms of HBI-trienes may be enhanced by meander-induced upwelling leading to increased 

nutrient flux to surface waters (Moore and Abbott, 2002). Moderate concentrations along the continental slope of the West 

Antarctic Peninsula and in the Bransfield Strait have been associated with elevated inflow of warm BSW which lead to a 270 

retreating sea-ice margin during spring and summer (for more details, see Vorrath et al. (2019) and Vorrath et al. (2020). 

Samples from the East Antarctic Peninsula continental shelf and the Powell Basin are characterised by relatively low 

concentrations of HBI Z-triene (Fig. 3c; where IPSO25 concentrations are highest; 0.1-2.37 µg*g OC-1; Fig. 3b), showing a 

southwest-northeast gradient, while the northernmost sample closest to the South Orkney Islands is characterized by higher 

HBI Z-triene concentration of ~ 8.49 µg*g OC-1 (Fig. 3c; EAP). This relatively high concentration may be related to an “Island 275 

Mass Effect”, coined by Doty and Oguri (1956), which refers to an increased primary production around oceanic islands in 

comparison to surrounding waters. Nolting et al. (1991) found extraordinarily high dissolved iron levels (as high as 50-60 nM) 

on the shelf of the South Orkney Islands and Nielsdóttir et al. (2012) also observed enhanced iron and Chl a concentrations in 

the vicinity of the South Orkney Islands. They connect, among others, the increased iron levels with input from seasonally 

retreating sea ice, which is recorded by satellites (Fig. 2a-c) and leads to a substantial annual phytoplankton bloom, which may 280 

also cause the elevated TOC contents in that sample (Fig. 3a). We assume that these conditions are favourable for the growth 

of the source diatoms of HBI Z-triene, leading to elevated concentrations. In the Drake Passage and the East Antarctic 
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Peninsula, brassicasterol displays a similar pattern as the HBI Z-triene, with relatively higher concentrations (more than 2 

magnitudes) ranging between 1.86 and 5017.44 µg*g OC-1 (Fig. 3d). In the sample closest to the South Orkney Islands, 

however, brassicasterol concentrations are not elevated, unlike the HBI Z-triene (Fig. 3d; EAP), which could refer to different 285 

environmental preferences of the source organisms producing the individual biomarkers. 

In the Weddell Sea, TOC contents are generally lower (< 0.4 %), with slightly elevated values in the West (up to 0.50 %) and 

right in front of the Filchner Ice Shelf (up to 0.52 %) (Fig. 3a). The Amundsen Sea is characterized by slightly higher TOC 

contents, with concentrations of up to 0.91 % in the West and lower values in the East (0.33 %; Fig. 3a; AS).  

In the samples from the Amundsen and Weddell Seas, dominated by a strong winter sea-ice cover lasting until spring (Fig. 2a-290 

c), all three biomarkers are low concentrated. An exception can be observed in samples from right in front of the Filchner Ice 

Shelf with significantly higher concentrations of IPSO25 (7.09-73.87 µg*g OC-1; Fig. 3b; WS). Concentrations of IPSO25 on 

the Amundsen Sea shelf are relatively low (0.04-3.3 µg*g OC-1) with slightly higher values towards the north-east (Fig. 3b; 

AS). HBI Z-triene is also very low concentrated, showing slightly higher concentrations within the Filchner Trough (0.04-1 

µg*g OC-1) and towards the more distal locations in the northeast of the Amundsen Sea (0.01-1.88 µg*g OC-1; Fig. 3c). 295 

Brassicasterol generally shows similar patterns as the HBI Z-triene, with concentrations ranging between 1.86 and 220.54 

µg*g OC-1 (Fig. 3d; for HBI E-triene and dinosterol distribution, see Fig. S1). 

 

4.1.2 Combining individual biomarker records: the PIPSO25 index 

Targeting at a more quantitative assessment of sea-ice conditions, Vorrath et al. (2019) have followed the PIP25 index applied 300 

in the Arctic (Belt and Müller, 2013; Müller et al., 2011; Xiao et al., 2015) and introduced an equivalent sea-ice index for the 

Southern Ocean: PIPSO25. The PIPSO25 index combines the relative concentrations of the sea-ice biomarker IPSO25 with a 

selected phytoplankton biomarker (P), such as HBI-trienes and sterols, as indicator for an open-ocean environment (Vorrath 

et al., 2019). The combination of both end members (sea ice vs. open-ocean) prevents misleading interpretations regarding the 

absence of IPSO25 in the sediments, which can be the result of two entirely different scenarios. At heavy/perennial sea-ice 305 

conditions, the thickness of sea ice hinders light penetration, thereby limiting the productivity of bottom sea-ice algae (Hancke 

et al., 2018). This scenario may result in the absence of both phytoplankton and sea-ice biomarkers in the sediment. The other 

scenario is dominated by a permanently open ocean, where the sea-ice biomarker is absent as well, but here, the phytoplankton 

biomarkers are present in variable concentrations (Müller et al., 2011). The presence of both biomarkers in the sediment is 

indicative of seasonal sea-ice coverage and/or the occurrence of stable ice margin conditions, promoting biosynthesis of both 310 

biomarkers (Müller et al., 2011). We here distinguish between PZIPSO25 and PBIPSO25 using HBI Z-triene and brassicasterol 

as phytoplankton biomarker, respectively (Fig. 4; for PIPSO25 values based on HBI E-triene and dinosterol see Table S1 and 

Fig. S2). 

Both PIPSO25 indices are 0 in the predominantly ice-free Drake Passage and display a northwest-southeast gradient to 

intermediate values towards the continental slope and the South Shetland Islands, reflecting increased influence of marginal 315 

sea-ice cover towards the coast (0.02-0.70; Vorrath et al., 2019). At the seasonally sea-ice influenced East Antarctic Peninsula, 

PZIPSO25 values reach 0.84, while lower values of around 0.25 are observed close to the South Orkney Islands, which relates 

to the elevated HBI Z-triene concentrations at that station (Fig. 3c; EAP). The PBIPSO25 index, however, reveals even higher 

values at the East Antarctic Peninsula/northwestern Weddell Sea of up to 0.98 with no elevated values towards the South 

Orkney Islands. These elevated PIPSO25 indices align well with the significant northward ice-drift in that region by the Weddell 320 

Gyre, which leads to high proximal sea-ice coverage at the East Antarctic Peninsula.  

In samples from the southern Weddell Sea, both PIPSO25 indices show a similar pattern with high values up to 0.9, and slightly 

lower values in front of the Brunt Ice Shelf (0.6; Fig. 4). Very low concentrations (close to detection limit) of both biomarkers 

in samples located on the continental shelf off Dronning Maud Land (Fig. 1) result in low PIPSO25 values, strongly 
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underestimating the sea-ice cover in that area. Regarding the satellite-derived sea-ice data, this area of the continental shelf is 325 

influenced by a severe seasonal sea-ice cover. As previously mentioned, we followed the approach by Müller and Stein (2014) 

and Lamping et al. (2020) and assigned a maximum PIPSO25 value of 1 to these samples to circumvent misleading 

interpretations and aid visualisation. 

Interestingly, we obtained an intermediate PIPSO25 value (~ 0.51) derived for one sample in front of the Brunt Ice Shelf, which 

may be indicative of a less severe sea-ice cover in that area. A possible explanation for the relatively lower PIPSO25 value may 330 

be the presence of a coastal polynya that has been reported by Anderson (1993) and which is further supported by Paul et al. 

(2015), who note that the sea-ice areas around the Brunt Ice Shelf is the most active in the southern Weddell Sea, with an 

annual average polynya area of 3516 ± 1420 km². The reduced SIC here are also captured by our model, which is further 

described in Sect. 4.1.4. 

PIPSO25 values in the Amundsen Sea point to different scenarios. While the PZIPSO25 index ranges around 0.9 with a slight 335 

decrease to a value of 0.3 in the easterly, more distal location (Fig. 4a), the PBIPSO25 index is generally lower, ranging around 

0.6 in the coastal area and with a much steeper decline towards distal locations to 0.2 (Fig. 4b). This difference between 

PZIPSO25 and PBIPSO25 may be explained by the different source organisms biosynthesizing the individual phytoplankton 

biomarkers. While the main origin of HBI-trienes seems to be restricted to diatoms (Belt et al., 2017), brassicasterol is known 

to be produced by several algal groups adapted to a wider range of sea surface conditions, such as dinoflagellates, diatoms, 340 

haptophytes, among others (Volkman, 2006). 

4.1.3 TEXL
86 – and RI-OH’ – derived temperatures 

Isoprenoidal GDGTs are archaeal membrane lipid-derived proxies and valuable tools for reconstructing ocean temperatures 

(Schouten et al., 2002). These specific lipids, preserved in marine sediments, are sensitive to temperature change and relatively 

resistant to degradation processes (Huguet et al., 2008; Schouten et al., 2013). Schouten et al. (2002) found that the number of 345 

cyclopentane rings in sedimentary GDGTs is correlated with surface water temperatures and developed the first archaeal lipid 

paleothermometer TEX86, a ratio of certain GDGTs, as a sea surface temperature (SST) proxy. 

For a critical appraisal of the applicability and reliability of GDGT indices as temperature proxies in our investigated regions, 

we here make use of two temperature proxy approaches developed for the high latitude polar oceans: The TEXL
86 proxy by 

Kim et al. (2010) and the RI-OH’ proxy by Lü et al. (2015), calculated and calibrated using Eq. 3 and 5, respectively.  350 

The reconstructions represent annual mean ocean temperatures. In all samples, the BIT-index (Eq. 6) is < 0.3, indicating no 

significant contribution of terrestrial input influencing the distribution and hence applicability of GDGTs to estimate ocean 

temperatures. TEXL
86 and RI-OH’ both show a similar pattern, but different temperatures, ranging between -4.23 to +10.57 

°C and -2.62 to +4.67 °C, respectively (Fig. 5a+b). At the West Antarctic Peninsula, temperatures follow a northwest-southeast 

gradient with relatively higher temperatures in the permanently ice-free Drake Passage and the continental slope, influenced 355 

by the ACC and relatively warm CDW (Orsi et al., 1995; Rintoul et al., 2001). Temperatures decrease towards the Bransfield 

Strait and the East Antarctic Peninsula, which are influenced by a seasonal sea-ice cover and the relatively colder and highly 

saline TWW, branching off the Weddell Gyre (Collares et al., 2018; Thompson et al., 2009). At the East Antarctic Peninsula, 

a southwest-northeast gradient can be observed with relatively lower temperatures around the Larsen Ice Shelf and higher 

temperatures towards the Powell Basin and the South Orkney Islands, towards the North. These general temperature patterns 360 

align well with the decreasing sea-ice cover in that area towards the North.  

Absolute temperature estimates derived from the two paleothermometers show significantly different ranges. While the TEXL
86 

signal is reflecting temperatures in the Amundsen and Weddell Seas quite well, it seems to be significantly warm-biased further 

to the North, in the Drake Passage, with up to ~ 11 °C. This warm-biased TEXL
86 signal is a known caveat in that area and is, 

among others, assumed to be connected to GDGTs produced by deep-dwelling Euryarchaeota (Park et al., 2019), which have 365 

been reported in CDW (Alonso-Sáez et al., 2011) and in deep waters of the Antarctic Polar Front (López-García et al., 2001). 
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Interestingly, our reconstructions suggest that the TEXL
86-derived temperatures (Fig. 5a) are only warm-biased in the relatively 

warmer Drake Passage but depict temperatures in the colder regions (Amundsen and Weddell Seas) reasonably well or only 

slightly warm-biased, if compared to the WOA13 temperatures (Fig. 5c).  

Further to the South, in the Amundsen and Weddell Seas, temperatures are generally lower than at the Antarctic Peninsula. 370 

Samples from the Weddell Sea record a temperature decrease from east to west, which may reflect an eddy-driven route in the 

north-eastern corner of the Weddell Gyre carrying relatively warm, salty CDW, which then advects westward along the 

southern edge of the Weddell Gyre (Vernet et al., 2019). While the origin of GDGTs is not yet fully understood and still 

debated (Ho et al., 2014), the biosynthesis of intact polar lipid GDGTs in CDW, as just recently suggested by Spencer-Jones 

et al. (2020), might, however, support the hypothesis of advected CDW in that area. In the Amundsen Sea, relatively higher 375 

temperatures (~ 0.5 °C) at the sample locations in the north-eastern part of the embayment are reflected in the RI-OH’-derived 

temperatures but are not reflected in the TEXL
86-based reconstruction.  

4.1.4 Modelled SIC and SSTs  

The global climate model setup AWI-ESM2 was used to simulate SSTs and SIC in the study area for modern conditions (1951-

2014; Fig. 5d and 6, respectively). Modelled SIC indicate an absence of sea ice in the permanently ice-free Drake Passage 380 

(Fig. 6a-c) and a northwest-southeast gradient from the continental slope to the Bransfield Strait during winter and spring (Fig. 

6a+b) with the latter as being ice-free during summer (Fig. 6c). During all three seasons (from winter through spring and 

summer), a southwest-northeast gradient at the East Antarctic Peninsula can be observed, highlighting the decreasing sea-ice 

influence towards the Powell Basin in the North. Absolute modelled SIC are decreasing from winter to summer, but still 

underestimate SIC observed by satellites (Fig. 2). In the Amundsen and Weddell Seas, the model shows a heavy sea-ice cover 385 

(~ 90 %) during winter and spring. Interestingly, modelled SIC in the area in front of the Brunt Ice Shelf are as low as ~ 45 % 

(Fig. 6a+b), corresponding well with the reduced PIPSO25 value of ~ 0.51 % and may reflect the polynya conditions in that 

region documented by Anderson (1993) and Paul et al. (2015). During summer, the model suggests a reduction in SIC in the 

Amundsen and Weddell Seas to about 15-25 % (Fig. 6c), slightly underestimating the satellite observations. 

Modelled annual mean SSTs (Fig. 5d) are highest with up to 5 °C in the permanently ice-free Drake Passage, influenced by 390 

the relatively warm ACC. Decreasing temperatures are simulated towards the continental slope and the Bransfield Strait (~ 

0.5-1 °C), coinciding with the intensifying influence of sea-ice cover in that area. At the East Antarctic Peninsula/northwestern 

Weddell Sea, the modelled SSTs show a southwest-northeast gradient towards the Powell Basin with temperatures increasing 

from -0.5 °C in the South to 0.5 °C in the North, aligning well with the other modelled records. In the Amundsen and Weddell 

Seas, annual mean SSTs are negative, with temperatures from -0.5 to -1 °C.5  395 

5 Comparing biomarker data with satellite and numerical model data  

Here, we discuss the advantages and caveats of the sea-ice biomarker IPSO25 and the semi-quantitative sea-ice index PIPSO25 

by comparing the proxy data to satellite and numerical model data. The main ice algae bloom in the Southern Ocean occurs 

during spring, when temperatures increase, sea ice starts melting, which results in the release of nutrients and stratification of 

the water column and the increasing solar insulation stimulates the productivity of photosynthesizing organisms (Arrigo, 2017; 400 

Belt, 2018). The sea-ice biomarker IPSO25 is hence commonly interpreted as a spring sea-ice indicator, which is why, in the 

following, we compare the biomarker-based sea-ice reconstructions to satellite-derived spring SIC and modelled spring SIC.  

5.1 Comparison of proxy-based, modelled and observed sea-ice conditions 

Our satellite-derived SIC represent monthly mean (spring) SIC averaged from 1978 to the individual year of sample retrieval. 

The herein modelled spring SIC cover a period from 1951 to 2014. When comparing sea-ice conditions estimated from 405 
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sedimentary biomarker data (easily spanning decades to centuries, depending on sedimentation rates) with sea-ice conditions 

recorded by satellite observations (spanning ~ 40 years), and with modelled sea-ice conditions (spanning 63 years) the different 

time periods covered by the different methods need to be considered and kept in mind when interpreting the results. Vorrath 

et al. (2019) conducted radiocarbon dating on selected surface sediment samples from the Bransfield Strait, concluding that 

their biomarker data reflect the past two centuries. We hence note that biomarker data from the Antarctic Peninsula, which is 410 

affected by a very recent ice loss, may hence overestimate the sea-ice cover and underestimate ocean temperatures. Nonetheless 

we here correlate the biomarker data with satellite and model data to further investigate the quantitative significance of the sea 

ice proxy (Fig. 7). Following Esper and Gersonde (2014), who, assuming a non-linear response of sea-ice diatom productivity 

to sea-ice dynamics, propose the usage of a polynomial regression instead of a linear correlation, we here use a polynomial 

regression (third degree). 415 

IPSO25 concentrations in the surface sediments around the Antarctic Peninsula exhibit similar trends as the satellite-derived 

and modelled SIC, while they differ significantly in the Amundsen and Weddell Seas, where high SIC are revealed by satellites 

and the model but IPSO25 is very low concentrated. The relatively low IPSO25 concentrations in these areas highlight the 

uncertainty when considering IPSO25 as a sea-ice proxy alone, since such low concentrations are not only observed under open 

water conditions, but also under a severe sea-ice cover. In this case, the low concentrations of IPSO25 are the result of the 420 

latter, where limited light availability hinders ice algae growth, leading to an underestimation of sea-ice cover. As a result, 

IPSO25 and satellite/model data show low correlations (R² = 0.19/R2 = 0.16; Fig. 7a+c), requiring caution when interpreting 

IPSO25 as a sea-ice proxy alone. As stated in earlier sections, the combination of IPSO25 and a phytoplankton marker may 

prevent this ambiguity. The perennial sea-ice cover in the Amundsen and Weddell Seas is better represented by the PZIPSO25 

values than by the sea-ice proxy alone. However, we note that at the southern sampling sites, the PIPSO25 index may not be 425 

able to further resolve/detail sea-ice concentrations higher than 50 % reasonably well (see Fig. S3). This may be an indicator 

for a threshold (here ~ 50 % SIC) where the growth of the HBI triene and IPSO25 producing algae is limited. 

In general, however, the PZIPSO25 values correlate much better with satellite/modelled SIC (R² = 0.78/R2 = 0.76; Fig. 7b+d) 

than IPSO25 concentrations. For correlations of satellite/model data with PIPSO25 calculated using the HBI E-triene, 

brassicasterol and dinosterol, respectively, we refer the reader to Fig. S4. There are, however, also limitations in the semi-430 

quantitative sea-ice index PIPSO25, that need to be considered when interpreting this approach. A drawback may appear when 

the concentrations of the sea-ice proxy IPSO25 and the phytoplankton marker are both low (due to unfavourable conditions for 

both ice algae as well as phytoplankton) or high (due to a significant seasonal shift in sea-ice cover and/or stable ice edge 

conditions), which may lead to similar PIPSO25 values, although the sea-ice conditions are completely different from each 

other. This scenario was detected in five samples from the Weddell Sea (PS111/13-2, /15-1, /16-3, /29-3; /40-2; Fig. 3b+c), 435 

where IPSO25 and the HBI Z-triene concentrations are close to the detection limit, while PZIPSO25 values are very low, 

suggesting a reduced sea-ice cover. Satellite and model data, however, show that these sample locations are influenced by 

heavy, perennial sea-ice conditions. We conclude that biomarker concentrations of both biomarkers at or close to the detection 

limit, indicative of a severe ice cover, need to be treated with caution. As mentioned above, we assigned a maximum PZIPSO25 

value of 1 to these samples and we note that such practice always needs to be made clear when applying the PIPSO25 approach.  440 

The coupling of IPSO25 with a phytoplankton marker, nonetheless, provides the more robust and reliable sea-ice 

reconstructions. Regarding the above-mentioned ambiguities, we recommend to not only calculate the PIPSO25 index, but also 

consider individual biomarker concentrations and, if possible, take other sea-ice measures, such as satellite data and/or well-

preserved diatom assemblage data (Lamping et al., 2020; Vorrath et al., 2019; 2020) into account.  

5.2 Temperature reconstructions 445 

Concerning the different time frames covered by the proxy data and instrumental observations, caution must be taken when 

comparing GDGT-derived ocean temperature reconstructions (spanning decades to centuries) with modelled SSTs (spanning 
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~ 63 years) and modern SSTs based on the WOA13 (covering the time period from 1955-2012; ~ 57 years). Since it is still not 

fully understood whether GDGT-based temperature reconstructions represent SSTs, near-surface or sub-surface ocean 

temperatures (Kalanetra et al., 2009; Kim et al., 2012; Park et al., 2019) we here refer to ocean temperatures. 450 

GDGT-derived temperatures, annual mean SSTs (depicted by the WOA13) and modelled annual mean SSTs (Fig. 5a-d) show 

similar patterns at the Antarctic Peninsula and the Amundsen and Weddell Seas. TEXL
86 values correlate reasonably well with 

modelled annual mean SSTs (R2 = 0.71; Fig. 8a). Following Park et al. (2019), stating that TEXL
86 values in the Southern 

Ocean have a polynomial correlation with modern annual SSTs, we here also used a polynomial correlation. As mentioned in 

Sect. 4.1.3, the temperatures are, however, significantly warm-biased (up to ~ 7 °C higher), which may speculatively be 455 

attributable to GDGT contributions of Euryarchaeota in CDW of the Antarctic Polar Front (Park et al., 2019). These findings 

are supported by a study by Spencer-Jones et al. (2020) in review, who found that GDGTs may be actively synthesized at 

CDW depths in the Amundsen Sea. They may hence be a significant source of isoprenoidal GDGTs within the sediments in 

that area.  

The correlation with RI-OH’-derived temperatures is slightly lower (R2 = 0.46; Fig. 8b), the temperature ranges of RI-OH’ 460 

are, however, much more realistic (from -3 to 5 °C), supporting the study by Park et al. (2019). The addition of OH-isoGDGTs 

in the temperature index is a promising step towards high latitude temperature reconstructions and may improve our 

understanding of the temperature responses of archaeal membranes in Southern Ocean waters (Fietz et al., 2020; Park et al., 

2019). Clearly, more data – ideally obtained from sediment traps, surface samples as well as longer sediment cores – and 

calibration studies will help to further elucidate the applicability of this approach.  465 

6 The role of platelet ice for IPSO25 production  

Platelet ice formation plays an important role in sea-ice generation along some coastal regions of Antarctica (Hoppmann et al., 

2015; 2020; Lange et al., 1989; Langhorne et al., 2015). In these regions, High Saline Shelf Water (HSSW) flows into sub-ice 

shelf cavities of Antarctica´s continental shelves, initiating basal melt of the adjacent ice shelves (Fig. 9). The surrounding 

water is cooled and freshened and is then transported towards the surface, where the pressure relief can cause this water, called 470 

Ice Shelf Water (ISW), to be supercooled (Foldvik and Kvinge, 1974). The temperature of the supercooled ISW is potentially 

below the in-situ freezing point, which may eventually cause the formation of ice platelets that accumulate under landfast ice 

attached to adjacent ice shelves (Fig. 9; Holland et al., 2007; Hoppmann et al., 2015; 2020). 

The sympagic, tube-dwelling, diatom B. adeliensis is a common constituent of Antarctic sea ice, preferably flourishing in the 

relatively open channels of sub-ice platelet layers in near-shore locations covered by fast ice (Medlin, 1990; Riaux-Gobin and 475 

Poulin, 2004). Based on investigations of sea-ice samples from the Southern Ocean, Belt et al. (2016) detected this diatom 

species to be a source of the HBI diene IPSO25, which, according to its habitat, led to the assumption of the sea-ice proxy being 

a potential indicator for the presence of platelet ice. As stated above, B. adeliensis is not confined to platelet ice, but is also 

observed in bottom ice and described as well adapted to changes in the texture of sea ice during ice melt (Riaux-Gobin et al., 

2013).  480 

In an attempt to elucidate the relationship of IPSO25 and platelet ice more clearly, we here regard our data in connection to 

observed platelet ice occurrences.  

Elevated IPSO25 concentrations in front of the Larsen Ice Shelves at the East Antarctic Peninsula could be linked to several 

processes. So far, it is hard to differentiate between in-situ IPSO25 production or allochthonous input of IPSO25 from drift ice. 

According to Langhorne et al. (2015), sea-ice cores retrieved from that area did not incorporate platelet ice. The high IPSO25 485 

concentrations could hence be explicable by either drift ice by the Weddell Gyre or by bottom ice production. We do, however, 

note that our samples reflect much longer time frames than the sea-ice samples investigated by Langhorne et al. (2015). The 
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lack of platelet ice observed in their investigated sea-ice cores does not rule out the former presence of platelet ice, which may 

be captured in our investigated sediment samples, covering a much longer time interval.  

There are several previous studies on IPSO25 which report a close connection of the proxy to proximal, coastal locations and 490 

polynyas in the seasonal ice zone (i.e., Collins et al., 2013; Smik et al., 2016). They do not, however, discuss the relation to 

adjacent ice shelves as possible “platelet ice factories”. We note that the core locations investigated by Smik et al. (2016) are 

in the vicinity of the Moscow University Ice Shelf, where Langhorne et al. (2015) did not observe platelet ice within sea-ice 

cores. Hoppmann et al. (2020), however, report on a sea-ice core from that area, incorporating platelet ice. The different 

observations by Langhorne et al. (2015) and Hoppmann et al. (2020) show how variable the occurrence of platelet ice can be. 495 

The absence of IPSO25 in the Amundsen Sea (Fig. 3b; AS) might in turn be explicable by the absence of platelet ice in that 

region. The Amundsen Sea shelf is classified as a warm shelf (Thompson et al., 2018) and characterized by the upwelling of 

warm CDW (Schmidtko et al., 2014), hindering the formation of ISW and making the presence of platelet ice in recent 

conditions highly unlikely (Hoppmann et al., 2020). This theory is also supported by Langhorne et al. (2015), stating that 

platelet ice formation is not observed, where thinning from basal melting of ice shelves is believed to be greatest, which applies 500 

to the warm shelf of the Amundsen Sea (Thompson et al., 2018). Accordingly, if the formation and accumulation of platelet 

ice – up to a certain degree – is indicative of basal ice shelf melting on fresh shelves (Hoppmann et al., 2015; Thompson et al., 

2018), high IPSO25 concentrations determined in marine sediments may hence serve as indicator of past basal melting 

processes and associated ice shelf dynamics. This may, however, only be true up to a certain threshold where platelet ice 

formation is diminished/hampered due to warm oceanic conditions leading to a too intense basal melting (Langhorne et al., 505 

2015). 

While using IPSO25 as a sea-ice proxy in Antarctica, it is hence important to also consider regional platelet ice formation 

processes as these may affect the IPSO25 budget. Determining thresholds associated with platelet ice formation is challenging, 

therefore, further investigations, such as in-situ measurements of IPSO25 concentrations in platelet ice or culture experiments 

in home laboratories are needed to better depict the connection between IPSO25 and platelet ice formation (and ice shelf basal 510 

melting). 

7 Conclusion 

Biomarker analyses focusing on IPSO25, HBI-trienes, phytosterols and GDGTs, in surface sediment samples from the 

continental shelves off West Antarctica were investigated to depict recent sea surface and temperature conditions in this climate 

sensitive region. Proxy-based reconstructions of the sea surface conditions were compared to (1) satellite observations and (2) 515 

estimated sea-ice patterns and SSTs deduced from model data. The semi-quantitative sea-ice index PIPSO25, combining the 

sea-ice proxy IPSO25 with an open-water phytoplankton marker, yielded reasonably good correlations with satellite 

observations and numerical model results, while correlations with the sea-ice proxy IPSO25 alone are rather low. Minimum 

concentrations of both biomarkers, used for the PIPSO25 calculations, however, may lead to ambiguous interpretations and 

significant underestimations of sea-ice conditions. The combination of different sea-ice measures when interpreting biomarker 520 

data should hence be strived for. 

The presumed relationship between IPSO25 and platelet ice formation in connection to basal melting of ice shelves is supported 

by our data, showing high IPSO25 concentrations in areas where platelet ice formation has previously been reported and low 

IPSO25 concentrations where no platelet ice formation is occurring. Oceanic conditions and the intensity of basal melting, 

however, need to be considered when using IPSO25 as an indirect indicator for basal melting processes and associated ice shelf 525 

dynamics.  

Temperature reconstructions based on TEXL
86 and RI-OH’ paleothermometers show similar patterns, but different absolute 

temperatures. While TEXL
86-derived temperatures are significantly warm-biased, the RI-OH’-derived temperatures are proven 
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more realistic, when compared to temperature data based on the WOA13 and modelled annual mean SSTs. Further 

investigations of HBI synthesis, transport, sedimentation and preservation within the sediments as well as the composition of 530 

its sources habitat (bottom ice, platelet ice, brine channels) and its connection to platelet ice formation via in situ or laboratory 

measurements are required to better constrain the proxy´s potential as a robust sea-ice biomarker. 
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Fig.  1: Map of the study area (location indicated by red box in insert map) including all 41 sample locations (see different 
colored dots for individual FS Polarstern expeditions in the top left corner; for detailed sample information see Table S1) and 
main oceanographic features. Max. summer and winter sea-ice boundaries are marked by dashed red and blue line, 
respectively (Fetterer et al., 2016). Orange crosses indicate samples where a PIPSO25 value of 1 has been assigned due to low 
biomarker concentrations, close to detection limit. ACC: Antarctic Circumpolar Current, APF: Antarctic Polar Front, sACCf: 
southern Antarctic Circumpolar Current Front, SSI: South Shetland Islands, BS: Bransfield Strait, BSW: Bellingshausen Sea 
Water, TWW: Transitional Weddell Sea Water (Mathiot et al., 2011; Orsi et al., 1995). Insert map shows grounded ice only 
(i.e., no ice shelves), WAIS: West Antarctic Ice Sheet, EAIS: East Antarctic Ice Sheet, RS: Ross Sea, AS: Amundsen Sea, BS: 
Bellingshausen Sea, WS: Weddell Sea. Background bathymetry derived from IBCSO data (Arndt et al., 2013). 

Fig.  2: Distribution of mean monthly satellite-derived sea-ice concentrations for (a) winter (JJA), (b) spring (SON) and (c) 
summer (DJF) in % (downloaded from the National Snow and Ice Data Center, NSIDC; Cavalieri et al., 1996). AS: Amundsen 
Sea, WAP: West Antarctic Peninsula, EAP: East Antarctic Peninsula, WS: Weddell Sea. 

https://doi.org/10.5194/cp-2021-19
Preprint. Discussion started: 1 March 2021
c© Author(s) 2021. CC BY 4.0 License.



 23 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.  3: Distribution of (a) TOC [%], (b) IPSO25, (c) Z-triene and (d) brassicasterol in surface sediment samples. Sample locations 
are marked as black dots. Concentrations of biomarkers [µg*g OC-1] were normalized to the TOC content of each sample. AS: 
Amundsen Sea, WAP: West Antarctic Peninsula, EAP: East Antarctic Peninsula, WS: Weddell Sea. 

Fig.  4: Distribution of the sea-ice index PIPSO25 in surface sediment samples, with (a) PZIPSO25 based on Z-triene and (b) 
PBIPSO25 based on brassicasterol. AS: Amundsen Sea, WAP: West Antarctic Peninsula, EAP: East Antarctic Peninsula, WS: 
Weddell Sea. 
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Fig.  6: Modelled SIC for (a) winter (JJA), (b) spring (SON) and (c) summer (DJF) in %. AS: Amundsen Sea, WAP: West 
Antarctic Peninsula, EAP: East Antarctic Peninsula, WS: Weddell Sea 

Fig.  5: Annual mean temperature distributions derived from (a) TEXL
86, (b) RI-OH´, (c) WOA13 (Locarnini et al., 2013) 

and (d) model data in °C. AS: Amundsen Sea, WAP: West Antarctic Peninsula, EAP: East Antarctic Peninsula, WS: Weddell 
Sea. 

https://doi.org/10.5194/cp-2021-19
Preprint. Discussion started: 1 March 2021
c© Author(s) 2021. CC BY 4.0 License.



 25 

 

 

 

 

 

 

 

 

 

 

 

 

 

0 10 20 30 40 50 60 70 80 90 100
Spring satellite SIC [%]

0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
0,9

1

P
Z

IP
SO

25

R² = 0.78

0 10 20 30 40 50 60 70 80 90 100

Spring satellite SIC [%]

0

5

10

15

20

25

IP
SO

25
 [µ

g*
g 

O
C

-1
]

R² = 0.19

0 10 20 30 40 50 60 70 80 90 100
Modelled spring SIC [%]

AWIESM2

0

5

10

15

20

25

IP
SO

25
 [

µg
*g

 O
C

-1
]

R² = 0.16

0 10 20 30 40 50 60 70 80 90 100
Modelled spring SIC [%]

AWIESM2

0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
0,9

1
P

Z
IP

SO
25

R² = 0.76

(a) (b)

(c) (d)

Fig.  7: Correlations of (a) IPSO25 concentrations vs. spring satellite SIC, (b) PZIPSO25 values vs. spring satellite SIC, (c) IPSO25 
concentrations vs. modelled spring SIC and (d) PZIPSO25 values vs. modelled spring SIC. Coefficients of determination (R2) 
are given for the respective regression lines. 
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Fig.  8: Correlations of (a) TEXL
86-derived temperatures vs. modelled annual mean SSTs and (b) RI-OH’-derived 

temperatures vs. modelled annual mean SSTs. Coefficients of determination (R2) are given for the respective regression lines. 
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Fig.  9: Schematic illustration of the formation of platelet ice and the main production areas of sea ice algae producing IPSO25 
(yellow ovals) and phytoplankton (green ovals), also displayed by yellow and green curves at the top. HSSW: High Saline Shelf 
Water, ISW: Ice Shelf Water. Schematic modified after Scambos et al. (2017). 

https://doi.org/10.5194/cp-2021-19
Preprint. Discussion started: 1 March 2021
c© Author(s) 2021. CC BY 4.0 License.


