

Evaluation of lipid biomarkers as proxies for sea ice and ocean temperatures along the Antarctic continental margin

Formatvorlagendefinition: Nicht aufgelöste Erwähnung

Nele Lamping¹, Juliane Müller^{1,2,3}, Jens Hefter¹, Gesine Mollenhauer^{1,2,3}, Christian Haas¹, Xiaoxu Shi¹,

hat formatiert: Deutsch (Deutschland)

Maria-Elena Vorrath¹, Gerrit Lohmann^{1,3,4}, Claus-Dieter Hillenbrand⁵

hat formatiert: Deutsch (Deutschland)

¹Alfred Wegener Institute, Helmholtz Center for Polar and Marine Research, Am Alten Hafen 26, 27568

Bremerhaven, Germany

²Department of Geosciences, University of Bremen, Klagenfurter Straße, 28359 Bremen, Germany

³Marum - Center for Marine Environmental Sciences, Leobener Straße 8, 28359 Bremen, Germany

⁴Department of Environmental Physics, University of Bremen, 28359 Bremen, Germany

⁵British Antarctic Survey, High Cross, Madingley Road, Cambridge CB3 0ET, United Kingdom

Correspondence to: Nele Lamping (nele.lamping@awi.de)

hat formatiert: Englisch (Vereinigte Staaten)

Abstract

hat formatiert: Englisch (Vereinigte Staaten)

The importance of Antarctic sea ice and Southern Ocean warming has come into the focus of polar research induring the last couple of decades. Especially inaround West Antarctica, where warm water masses approach the continent and where sea ice has declined, the distribution and evolution of sea ice play a critical role for the stability of nearby ice shelves. Organic geochemical analyses of marine seafloor surface sediments from the Antarctic continental margin permitallow an evaluation of the applicability of biomarker-based sea ice and ocean temperature reconstructions in these vulnerableclimaticallysensitive areas. We analysed highly branched isoprenoids (HBIs), such as the sea-ice proxy IPSO₂₅ and phytoplankton-derived HBI-trienes, but also phytosterols and isoprenoidal glycerol dialkyl glycerol tetraethers (GDGTs), which are established tools for the assessment of primary productivity and ocean temperatures, respectively. The combination of IPSO₂₅ with a phytoplankton marker (*i.e.* the PIPSO₂₅ index) permits semi-quantitative sea-ice reconstructions and avoids

misleading over- or underestimations of sea-ice cover. Comparisons of the PIPSO₂₅-based sea-ice distribution patterns and TEX^L₈₆- and RI-OH'-derived ocean temperatures with (1) sea-ice concentrations obtained from satellite observations and (2) instrumentalinstrument measurements of sea surface and subsurface temperatures corroborate the general capability of these proxies to properly determine oceanic key variables properly. This is further supported by model data. We also highlight specific aspects and limitations that need to be considered when interpreting taken into account for the interpretation of such biomarker data and discuss the potential of IPSO₂₅ to reflect as an indicator for the former occurrence of platelet ice and/or the export of ice shelf water.

hat formatiert: Englisch (Vereinigte Staaten)

1 1. Introduction

2 One of the key components of the global climate system, influencing major atmospheric and oceanic
3 processes, is floating on the ocean's surface at high latitudes – sea ice (Thomas, 2017). Southern Ocean
4 sea ice is one of the most strongly changing features of the Earth's surface as it experiences considerable
5 seasonal variabilities with ~~decreasing~~ sea-ice extent decreasing from a maximum of $20 \times 10^6 \text{ km}^2$ in
6 September to a minimum of $4 \times 10^6 \text{ km}^2$ in March (Arrigo et al., 1997; Zwally, 1983). This seasonal
7 waxing and waning of sea ice substantially modifies deep-water formation as well as, influences the
8 ocean-atmosphere exchange of heat and gas and strongly affects surface albedo and radiation budgets
9 (Abernathy et al., 2016; Nicholls et al., 2009; Turner et al., 2017), and also. Moreover, sea ice
10 regulates ocean buoyancy flux, upwelling and primary production (Schofield et al., 2018).

hat formatiert: Englisch (Vereinigte Staaten)

11 Based on the 40-year satellite record, Southern Ocean sea-ice extent as a whole followed an increasing
12 trend (Comiso et al., 2017; Parkinson and Cavalieri, 2012), experiencing an abrupt reversal from
13 2014 ca. 2015 to 2018 (Parkinson, 2019; Turner et al., 2020; Wang et al., 2019), which has been
14 attributed to a ~~decade~~ decades-long oceanic warming and increased advection of atmospheric heat
15 (Eayrs et al., 2021). However, the sea-ice extent around major parts of West Antarctica has been
16 decreasing over the last 40 years (Parkinson and Cavalieri, 2012). The Antarctic Peninsula is
17 particularly affected by a significant reduction in sea-ice extent and rapid atmospheric and oceanic
18 warming (Etourneau et al., 2019; Li et al., 2014; Massom et al., 2018; Vaughan et al., 2003). The Larsen
19 ~~Ice Shelves~~ A and B, located ice shelves on the east coast of the Antarctic Peninsula, collapsed in 1995
20 and 2002, respectively, which was. These collapses were triggered by the loss of a sea-ice buffer,
21 enabling which enabled an increased flexure of the ice-shelf margins by ocean swell swell (Massom et
22 al., 2018). The Along the Pacific margin of West Antarctica, the Bellingshausen and Amundsen Seas
23 are seas have also been affected by a major sea-ice decline and regional surface ocean warming (Hobbs
24 et al., 2016; Parkinson, 2019). Marine-terminating glaciers draining into the Amundsen Sea and
25 Bellingshausen seas are thinning at an alarming rate, which has been linked to sub-ice shelf melting
26 caused by relatively warm Circumpolar Deep Water (CDW) incursions into sub-ice shelf cavities (e.g.,
27 Jacobs et al., 2011; Khazendar et al., 2016; Nakayama et al., 2018; Rignot et al., 2019; Smith et al.,
28 2017). The disintegration of ice shelves reduces the buttressing effect that they exert on ice grounded

29 further upstream, which ~~may~~ can lead to ~~a~~ partial ~~collapse~~ or total loss of the ice in the catchments of the
30 affected glaciers, ~~eventually~~ raising and, thus, ~~raise~~ global sea level considerably (3.4 to 4.4 m ~~resulting~~
31 ~~from a WAIS~~ in case of a total West Antarctic Ice Sheet collapse; Fretwell et al., 2013; Jenkins et al.,
32 2018; Pritchard et al., 2012; Vaughan, 2008).

hat formatiert: Nicht Hervorheben

33 State-of-the-art climate models are not yet fully able to depict sea-ice seasonality and sea-ice cover,
34 which the 5th Assessment Report of the Intergovernmental Panel on Climate Change (Stocker et al.,
35 2013) attributes to a lack of validation efforts using proxy-based sea-ice reconstructions. Knowledge
36 about (paleo-)sea-ice conditions and ocean temperatures in the climate sensitive areas around the West

Antarctic Ice Sheet is hence considered as crucial for understanding past and future climate evolution.

hat formatiert: Schriftart: 11 Pt., Englisch (Vereinigte Staaten)

37 Antarctic Ice Sheet is hence considered as crucial for understanding past and future climate evolution.
38 To date, the most common proxy-based sea-ice reconstructions in the Southern Ocean ~~are conducted~~
39 ~~by the use~~ utilize fossil assemblages of sympagic diatom assemblages, which are strongly dependent on
40 their preservation (i.e. living within ~~the~~ sea ice) diatoms preserved within the seafloor sediments (Allen
41 et al., 2011; Armand and Leventer, 2003; Crosta et al., 1998; Esper and Gersonde, 2014; Gersonde and
42 Zielinski, 2000; Leventer, 1998). Dissolution effects within the water column or after deposition,
43 however, determine the preservation state of the small, lightly silicified microfossils diatom taxa and
44 may therefore can alter the diatom assemblage record, leading to inaccurate sea-ice reconstructions
45 (Leventer, 1998; Zielinski et al., 1998). Recently, the molecular remains of certain diatoms, diatom taxa,
46 i.e. specific organic geochemical lipids, have emerged as a potential proxy for reconstructing past
47 Antarctic sea-ice cover (Barbara et al., 2013; Collins et al., 2013; Crosta et al., 2021; Denis et al., 2010;
48 Etourneau et al., 2013; Lamping et al., 2020; Massé et al., 2011; Vorrath et al., 2019; 2020).

hat formatiert: Englisch (Vereinigte Staaten)

49 Specifically, a di-unsaturated highly branched isoprenoid (HBI) alkene (HBI diene, C_{25:2}) has been
50 detected in both sea-ice diatoms and sediments infrom the Southern Ocean and Antarctic marine
51 sediments (Johns et al., 1999; Massé et al., 2011; Nichols et al., 1988), and recently). Recently, the
52 sympagic (i.e. living within sea ice) tube dwelling diatom *Berkeleya adeliensis* has been identified as
53 producer, which preferably proliferates in platelet ice, has been identified as the producer of these HBI
54 alkene (Belt et al., 2016; Riaux-Gobin and Poulin, 2004). However, *B. adeliensis* seems rather flexible
55 concerning its habitat, since it was also recorded in the bottom ice layer and seems to beis apparently
56 well adapted to changes in texture during ice melt (Riaux-Gobin et al., 2013). Belt et al. (2016)

57 introduced the term IPSO₂₅ (“Ice Proxy of the Southern Ocean with 25 carbon atoms”) by analogy to
58 the counterpart IP₂₅ in the Arctic. Commonly, for a more detailed assessment of sea-ice conditions, IP₂₅
59 in the Arctic Ocean and IPSO₂₅ in the Southern Ocean have been measured alongside complementary
60 phytoplankton-derived lipids, such as sterols and/or HBI-trienes, which are indicative of open-water
61 conditions (Belt and Müller, 2013; Lamping et al., 2020; Etourneau et al., 2013; Vorrath et al., 2019;
62 2020). The combination of the sea-ice biomarker and a phytoplankton biomarker, the so-called PIPSO₂₅
63 index (Vorrath et al., 2019), allows for a more quantitative differentiation of contrasting sea-ice settings
64 and helps to avoid misinterpretations of the absence of IPSO₂₅~~which~~. An absence of the sea-ice
65 biomarker can result from either a lack of sea-ice cover or a ~~permanently~~permanent thick sea-ice cover,
66 that prevents light penetration and hence ~~limiting~~limits ice algae growth. These two contrasting
67 scenarios can be distinguished by using the additional phytoplankton biomarker. Recently, Lamping et
68 al. (2020) used this approach the PIPSO₂₅ index to studyreconstruct changes in sea-ice conditions during
69 the last deglaciation of the Amundsen Sea shelf, which were likely linked to advance and retreat phases
70 of the Getz Ice Shelf.

hat formatiert: Englisch (Vereinigte Staaten)

71 Multiple mechanisms exist that can cause ice~~—~~shelf instability. As previously mentioned, relatively
72 warm CDW is considered one of the main drivers for ice~~—~~shelf thinning in the Amundsen Sea
73 Embayment and Bellingshausen Sea sectors of the West Antarctic Ice Sheet (Nakayama et al., 2018;
74 Jenkins and Jacobs, 2008; Rignot et al., 2019). Accordingly, changing ocean temperatures are another
75 crucial factor for the stability of the marine-based ice streams draining most of the West Antarctic Ice
76 Sheet (e.g., Colleoni et al., 2018). As for sea-ice reconstructions, organic geochemical ~~lipids~~lipid
77 proxies have been employed over the past decades for reconstructing ocean temperatures in high
78 latitudes have come into focus in the past decades, since the abundance and preservation of calcareous
79 microfossils, which are commonly used for such reconstructions, is very poor in polar marine sediments
80 (e.g., Zamelczyk et al., 2012). ArchaealIn contrast, archaeal isoprenoidal glycerol dialkyl glycerol
81 tetraethers (isoGDGTs), sensitive to temperature change and relatively resistant to degradation
82 processes, are well-preserved in all types of marine sediments (Huguet et al., 2008; Schouten et al.,
83 2013). Schouten et al. (2002) found that the number of rings in sedimentary GDGTs is correlated with

hat formatiert: Englisch (Vereinigtes Königreich)

84 surface water temperatures and developed the first archaeal lipid paleothermometer TEX_{86} , a ratio of
85 certain GDGTs, as a sea surface temperature (SST) proxy. For polar oceans, Kim et al. (2010) developed
86 a more specific calibration model for temperatures below 15 °C, TEX_{86}^L , which employs a different
87 GDGT combination. There is an emerging consensus that GDGTs ~~are rather reflecting predominantly~~
88 ~~reflect~~ subsurface ocean temperatures (SOT) along the Antarctic margin (Kim et al., 2012; Etourneau
89 et al., 2019; Liu et al., 2020). This is supported by observations of elevated archaeal abundances (and
90 GDGTs) in warmer subsurface waters (Liu et al., 2020; Spencer-Jones et al., 2021). Archaea adapt their
91 membrane in cold waters by adding hydroxyl groups and changing the number of rings, OH-GDGTs
92 (Fietz et al., 2020). ~~Huguet et al. The(2017) found in molecular dynamic simulations that the~~ additional
93 hydroxyl moieties lead to an increase of the membrane fluidity ~~that, which~~ aids trans-membrane
94 transport in cold environments, ~~which. This explains~~~~Huguet et al. (2017) found in molecular dynamic~~
95 ~~simulations, explaining~~ the higher relative abundance of OH Archaea lipids in cold environments.
96 Taking the OH-GDGTs into account, Lü et al. (2015) proposed an SST-proxy for the polar oceans, the
97 RI-OH'.

98 ~~Our~~~~The~~ aim ~~with this of our~~ study is to provide insight into the application of biomarkers ~~for sea ice as~~
99 ~~well as ocean temperature reconstructions~~ in Southern Ocean sediments ~~as sea ice and ocean~~
100 ~~temperature proxies~~. Estimates on recent sea-ice coverage and ocean temperatures along the eastern and
101 western Antarctic Peninsula (EAP and WAP) as well as in the Amundsen and Weddell ~~Seas, seas~~ are
102 based on the analyses of IPSO_{25} , HBI-trienes and phytosterols ~~as well as and~~ GDGTs in seafloor surface
103 sediment samples from these areas. ~~An intercomparison~~~~A comparison~~ of biomarker-based derived
104 ~~estimates of sea-ice as well as extent and~~ ocean temperature ~~estimates~~ with (1) sea-ice distributions
105 obtained from satellite observations and (2) ~~eeean temperatures deduced from instrumental data in-situ~~
106 ~~ocean temperature measurements~~ allows for an evaluation of the proxy ~~approaches~~~~approach~~. We further
107 consider AWI-ESM2 climate model data to assess the model's performance in depicting recent oceanic
108 key variables and to examine the potential impact of paleoclimate conditions on the biomarker
109 composition of the investigated surface sediments. ~~In regard of~~~~Taking into account~~ the various factors
110 affecting the use of marine biomarkers as paleoenvironmental proxies, we ~~further~~ comment on the
111 limitations of GDGT temperature estimates and the novel PIPISO_{25} approach, ~~and~~, ~~Furthermore~~, we

112 discuss the potential connection between IPSO_{25} and platelet ice formation under near-coastal fast ice,
113 which is related to the near-surface presence of sub-ice shelf melt water.

hat formatiert: Englisch (Vereinigte Staaten)

114

115 **2. Regional setting**

116 The areas of investigation investigated in this study include the southern Drake Passage, the continental
117 shelves of the WAP and EAP ($\sim 60^\circ \text{S}$) and the more southerly located Amundsen and Weddell Seas
118 ($\sim 75^\circ \text{S}$; Fig. 1). The different study areas are all connected by the Antarctic Circumpolar Current
119 (ACC), the Antarctic Coastal Current and the Weddell Gyre, respectively (Meredith et al., 2011; Rintoul
120 et al., 2001).

Fig. 1: Map of the study area (location indicated by red box in insert map) including all 41 sample locations (see different colored dots for individual *RV Polarstern* expeditions in the top left corner; for detailed sample information, see Table S1) and main oceanographic features. Maximum summer and winter sea-ice boundaries are marked by dashed red and blue line, respectively (Fetterer et al., 2016). Orange lines indicate samples where a IPSO_{25} value of 1 has been assigned due to low biomarker concentrations; close to detection limit, to which we assigned a IPSO_{25} value of 1. ACC: Antarctic Circumpolar Current, APF: Antarctic Polar Front, sACC: southern Antarctic Circumpolar Current Front, SSI: South Shetland Islands, BS: Bransfield Strait, BSW: Bellingshausen Sea Water, CDW: Circumpolar Deep Water, WDW: Weddell Deep Water, WSBW: Weddell Sea Bottom Water (Mathiot et al., 2011; Orsi et al., 1995). Insert map shows grounded ice only (i.e., no ice shelves) in black. WAIS: West Antarctic Ice Sheet, EAIS: East Antarctic Ice Sheet, RS: Ross Sea, AS: Amundsen Sea, BS: Bellingshausen Sea, WS: Weddell Sea. Background bathymetry derived from IBCSO data (Arndt et al., 2013).

hat formatiert: Schriftart: Nicht Kursiv

hat formatiert: Schriftart: Kursiv

121 The ACC, which is mainly composed of CDW and characterised by strong eastward flow, is the largest
122 current system in the world characterised by a strong eastward flow, which finds and has its narrowest
123 constriction in the Drake Passage. AlongIn the Bellingshausen Sea, the Amundsen Sea and along the
124 WAP, where the ACC flows close to the continental shelf edge, CDW is upwelling onto the shelf and
125 flows to the coast via bathymetric troughs, contributing to basal melt and retreat of marine-terminating
126 glaciers and ice shelves (Cook et al., 2016; Jacobs et al., 2011; Jenkins and Jacobs, 2008; Klinck et al.,
127 2004). In the Weddell Sea, the Weddell Gyre, a subpolar cyclonic circulation ~~is present~~ south of the
128 ACC, the Weddell Gyre, which deflects part of the ACC's CDW towards the south ~~turning and turns~~ it
129 into Warm Deep Water (WDW; Fig. 1; Hellmer et al., 2016; Vernet et al., 2019). In close vicinity to
130 the Filchner-Ronne and Larsen Ice Shelves, glacially derived freshwater glacial meltwater as well as
131 dense brinebrines released during sea-ice formation contribute to the formation of Weddell Sea Bottom
132 Water (WSBW) - a major precursor of Antarctic Bottom Water (Hellmer et al., 2016). WindAlong the
133 EAP coast wind and currents force a northward sea ice drift ~~in the western Weddell Sea along the~~
134 ~~eastern coast of the Antarctic Peninsula sea ice~~ (Harms et al., 2001) ~~until leaving it to melt in~~, which
135 melts when reaching warmer waters ~~to in~~ the North and ~~up to the in~~ Powell Basin (Vernet et al., 2019).
136 At the northern tip of the Antarctic Peninsula, colder and saltier Weddell Sea water masses branch off
137 westwards into the Bransfield Strait, where they encounter the well-stratified, warm, and fresh
138 Bellingshausen Sea Water (BSW; Fig. 1), which is entering the Bransfield Strait from the West (Sangrà
139 et al., 2011).

hat formatiert: Englisch (Vereinigte Staaten)

140 Since 1978, satellite observations show strong seasonal as well as and decadal changes in sea-ice cover
 141 at the around the Antarctic Peninsula, which are less pronounced in the more southerly Amundsen and
 142 Weddell Seas (Fig. 2a-c). Mean monthly
 143 sea-ice concentrations (SIC) for austral winter (JJA), spring (SON) and summer (DJF) reveal a
 144 permanently ice-free Drake Passage, while the WAP and EAP shelf areas are influenced by a changing
 145 sea-ice cover in throughout the course of a year (Fig. 2a-c). For the Amundsen and Weddell Seas,
 146 satellite data reveal a closed seasonal sea ice cover with up to ~90 % sea-ice concentration during winter
 147 and spring (Fig. 2a+b), and a late break up of sea ice cover to a minimum concentration of ~30 %
 148 during summer (Fig. 2c).

Fig. 2: Distribution of mean monthly satellite-derived sea-ice concentrations for (a) winter (JJA), (b) spring (SON) and (c) summer (DJF) in % (downloaded from the National Snow and Ice Data Center, NSIDC; Cavalieri et al., 1996). AS: Amundsen Sea, WAP: West Antarctic Peninsula, EAP: East Antarctic Peninsula, WS: Weddell Sea.

hat formatiert: Schriftart: Nicht Kursiv

149 3. Material and methods

150 3.1 Sediment samples

151 In total, we We analysed a set of 41 surface sediment samples (0-1 cm subbottom depth) from different
 152 areas of the Southern Ocean (Fig. 1) retrieved by multicorers and giant box corers during RV *Polarstern*
 153 expeditions over the past 15 years. Sixteen surface sediment samples from the Amundsen Sea
 154 continental shelf were collected during *RV Polarstern* expeditions PS69 in 2006 (Gohl, 2007) and

hat formatiert: Schriftart: Nicht Kursiv

155 PS104 in 2017 (Gohl, 2017). Twenty-five surface sediment samples from the southeastern and
156 southwestern Weddell Sea continental shelf were collected during *RV Polarstern* expeditions PS111 in
157 2018 (Schröder, 2018) and PS118 in 2019 (Dorschel, 2019). This new data set of samples was
158 complemented by data from 26 surface sediment samples from the collected in Bransfield Strait/WAP
159 for, which the analytical results had been previously published by Vorrath et al. (2019).

hat formatiert: Englisch (Vereinigte Staaten)

160

161 3.2 Bulk sediment and organic geochemical analyses

162 The sediment material was freeze-dried and homogenized with an agate mortar and stored in glass vials
163 at -20 °C before and after these initial preparation steps to avoid degradation of targeted molecular
164 components. Total organic carbon (TOC) contents were measured on 0.1 g of sediment after removing
165 inorganic carbon (total inorganic carbon, carbonates) with 500 µl 12 N hydrochloric acid.
166 Measurements TOC contents were conducted by means of determined with a carbon-sulphur
167 determinator analyzer (CS 2000; Eltra) with standards being measured for calibration being routinely
168 measured before sample analyses analysis and after every tenth sample to ensure accuracy (error ±
169 0.02 %).

hat formatiert: Englisch (Vereinigte Staaten)

170 Lipid biomarkers were extracted from the sediments (4 g for PS69 and PS104; 6 g for PS111 and PS118)
171 by ultrasonication (3 x 15 min) using dichloromethane:methanol (3 x 6 ml for PS69 and PS104; 3 x 8
172 ml for PS111 and PS118; 2:1 v/v) as solvent. Prior to this step, the internal standards 7-hexynonadecane
173 (7-HND; 0.038 µg/sample for PS69 and PS104 and 0.057 µg/sample for PS111 and PS118), 5α-
174 androstan-3-ol (1.04 µg/sample) and C₄₆ (0.98 µg/sample) were added to the sample for quantification
175 of HBIs, sterols and GDGTs, respectively. Via open-column chromatography, with SiO₂ as stationary
176 phase, fractionation of the extract was achieved by eluting the apolar fraction (HBIs) and the polar
177 fraction (sterols and GDGTs) with 5 ml n-hexane and 5 ml DCM/MeOH 1:1, respectively. The polar
178 fraction was subsequently split into two fractions (sterols and GDGTs) for further processing. The sterol
179 fraction was silylated with 300 µl bis-trimethylsilyl-trifluoroacetamide (BSTFA; 2h at 60 °C).
180 Compound analyses of HBIs and sterols were carried out on an Agilent Technologies 7890B gas
181 chromatograph (GC; fitted with a 30 m DB 1MS column; 0.25 mm diameter and 0.25 µm film thickness)
182 coupled to an Agilent Technologies 5977B mass selective detector (MSD; with 70 eV constant

183 ionization potential, ion source temperature of 230 °C). The GC oven was set to: 60 °C (3 min), 150 °C
184 (rate: 15 °C/min), 320 °C (rate: 10 °C/min), 320 °C (15 min isothermal) for the analysis of hydrocarbons
185 and to: 60 °C (2 min), 150 °C (rate: 15 °C/min), 320 °C (rate: 3 °C/min), 320 °C (20 min isothermal)
186 for the analysis of sterols. Helium was used as carrier gas. The ~~identification of~~-HBI and sterol
187 compounds ~~is based upon~~were identified by their GC retention times and mass spectra (Belt, 2018; Belt
188 et al., 2000; Boon et al., 1979). ~~Lipid quantification was obtained~~Lipids were quantified by setting the
189 individual, manually integrated, GC-MS peak area in relation to the peak area of the respective internal
190 standard and normalization to the amount of extracted sediment. ~~Quantification of~~-IPSO₂₅ and HBI
191 trienes ~~was achieved using~~were quantified by relating their molecular ions (IPSO₂₅: m/z 348 and HBI
192 trienes: m/z 346) ~~in relation~~ to the fragment ion m/z 266 of the internal standard 7-HND (Belt, 2018).
193 ~~Quantification of sterols was achieved by comparison of~~Sterols were quantified by comparing the
194 molecular ion of the individual sterol with the molecular ion m/z 348 of the internal standard 5α-
195 androstan-3-ol. Instrumental response factors for the target lipids were considered as recommended by
196 Belt et al. (2014) and Fahl and Stein (2012). All biomarker concentrations were subsequently
197 normalized to the TOC content of each sample to account for different depositional settings within the
198 different study areas.

hat formatiert: Englisch (Vereinigte Staaten)

199 For calculating the phytoplankton-IPSO₂₅ (PIPSO₂₅) index, we used the equation introduced by Vorrath
200 et al. (2019):
201
$$\text{PIPSO}_{25} = \text{IPSO}_{25} / (\text{IPSO}_{25} + (\text{phytoplankton marker} \times c)) \quad (1)$$

hat formatiert: Englisch (Vereinigtes Königreich)

202 where c (c = mean IPO₂₅/mean phytoplankton marker) is applied as a concentration balance factor to
203 account for high concentration offsets between IPO₂₅ and the phytoplankton biomarker (see Table S1
204 for c-factors of individual PIPSO₂₅ calculations).

hat formatiert: Schriftart: +Überschriften CS (Times New Roman)

205 Following the approach by Müller and Stein (2014) and Lamping et al. (2020), a PIPSO₂₅ value of 1
206 was assigned to samples with exceptionally low (at detection limit) concentrations of both biomarkers
207 have been assigned a PIPSO₂₅ value of 1 (see chapter 4.1.2). This comprises the five Weddell ~~Seam~~Sea
208 samples PS111/13-2, /15-1, /16-3, /29-3 and /40-2 (marked as orange x in Fig. 1).

hat formatiert: Englisch (Vereinigte Staaten)

hat formatiert: Englisch (Vereinigte Staaten)

209 The GDGT fraction was dried under N₂, redissolved with 120 µl hexane:isopropanol (v/v 99:1) and
210 then filtered using a polytetrafluoroethylene (PTFE) filter with a 0.45 µm pore sized membrane. **GDGT**
211 **measurements****GDGTs** were **carried out****measured** using high performance liquid chromatography
212 (HPLC; Agilent 1200 series HPLC system) coupled to an Agilent 6120 mass spectrometer (MS),
213 operating with atmospheric pressure chemical ionization (APCI). The injection volume was 20 µl. For
214 separating the GDGTs, a Prevail Cyano 3 µm column (Grace, 150 mm * 2.1 mm) was kept at 30 °C.
215 Each sample was eluted isocratically for 5 min with solvent A = hexane/2-propanol/chloroform; 98:1:1
216 at a flow rate of 0.2 ml/min, then the volume of solvent B = hexane/2-propanol/chloroform; 89:10:1
217 was increased linearly to 10 % within 20 min and then to 100 % within 10 min. The column was back-
218 flushed (5 min, flow 0.6 ml/min) after 7 min after each sample and re-equilibrated with solvent A (10
219 min, flow 0.2 ml/min). The APCI was set to the following: N₂ drying gas flow at 5 l/min and temperature
220 to 350 °C, nebulizer pressure to 50 psi, vaporizer gas temperature to 350 °C, capillary voltage to 4 kV
221 and corona current to +5 µA. Detection of GDGTs was achieved by means of selective ion monitoring
222 (SIM) of [M+H]⁺ ions (dwell time 76 ms). **Determination and quantification of the molecular ions of**
223 **GDGT-0** (*m/z* 1302), **GDGT-1** (*m/z* 1300), **GDGT-2** (*m/z* 1298), **GDGT-3** (*m/z* 1296) and crenarchaeol
224 (*m/z* 1292) as well as ~~of~~**brGDGT-III** (*m/z* 1050), **brGDGT-II** (*m/z* 1036) and **brGDGT-I** (*m/z* 1022) **was**
225 **done in relation****were quantified by relating their molecular ions** to the molecular ion *m/z* 744 of the
226 internal standard C₄₆-GDGT. The late eluting hydroxylated GDGTs (OH-GDGT-0, OH-GDGT-1 and
227 OH-GDGT-2 with *m/z* 1318, 1316 and 1314, respectively) were quantified in the scans (*m/z* 1300, 1298,
228 1296) of their related GDGTs, as described by Fietz et al. (2013).
229 **TEX**^L₈₆ values and their conversion into SOTs were determined following Kim et al. (2012);
230
$$\text{TEX}_{86}^L = \text{LOG} \frac{[\text{GDGT-2}]}{[\text{GDGT-1}]+[\text{GDGT-2}]+[\text{GDGT-3}]} \text{LOG} \frac{[\text{GDGT-2}]}{[\text{GDGT-1}]+[\text{GDGT-2}]+[\text{GDGT-3}]}, \quad (2)$$

hat formatiert: Englisch (Vereinigte Staaten)

hat formatiert: Englisch (Vereinigtes Königreich)

$$\text{SOT}^{\text{TEX}} [\text{ }^{\circ}\text{C}] = 50.8 \times \text{TEX}_{86}^L + 36.1. \quad (3)$$

233 Temperature calculations based on OH-GDGTs were carried out according to Lü et al. (2015);
234
$$\text{RI} - \text{OH}' = \frac{[\text{OH-GDGT-1}]+2 \times [\text{OH-GDGT-2}]}{[\text{OH-GDGT-0}]+[\text{OH-GDGT-1}]+[\text{OH-GDGT-2}]}, \quad (4)$$

hat formatiert: Englisch (Vereinigtes Königreich)

$$\text{SST}^{\text{OH}} [\text{ }^{\circ}\text{C}] = \text{RI} - \text{OH}' - 0.1/0.0382. \quad (5)$$

236 To determine the relative influence of terrestrial organic matter input, the Branched Isoprenoid
237 Tetraether (BIT)-index was calculated following Hopmans et al. (2004);

hat formatiert: Englisch (Vereinigtes Königreich)

238
$$\text{BIT} = \frac{[\text{brGDGT-I}]+[\text{brGDGT-II}]+[\text{brGDGT-III}]}{[\text{Chrenarchaeol}]+[\text{brGDGT-I}]+[\text{brGDGT-II}]+[\text{brGDGT-III}]}.$$
 (6)

239

240 3.3 Numerical model

241 3.3.1 Model description

242 AWI-ESM2 is a state-of-the-art coupled climate model developed by Sidorenko et al. (2019) which
243 comprises an atmospheric component ECHAM6 (Stevens et al., 2013) as well as an ocean-sea ice
244 component FESOM2 (Danilov et al., 2017). The atmospheric module ECHAM6 is the most recent
245 version of the ECHAM model developed at the Max Planck Institute for Meteorology (MPI) in
246 Hamburg. The model is branched from an early release of the European Center (EC) for Medium Range
247 Weather Forecasts (ECMWF) model (Roeckner et al., 1989). ECHAM6 dynamics is based on
248 hydrostatic primitive equations with traditional approximation. We used a T63 Gaussian grid ~~which~~
249 has with a spatial resolution of about 1.9 x 1.9 degree (1.9 ° or 210 km). There are 47 vertical layers in
250 the atmosphere.

251 Momentum transport arising from boundary effects is configured using the subgrid orography scheme
252 as described by Lott (1999). Radiative transfer in ECHAM6 is represented by the method described in
253 Iacono et al. (2008). ECHAM6 also contains a Land-Surface Model (JSBACH) which includes 12
254 functional plant types of dynamic vegetation and 2 bare-surface types (Loveland et al., 2000; Raddatz
255 et al., 2007). The ice-ocean module in AWI-ESM2 is based on the finite volume discretization
256 formulated on unstructured meshes. The multi-resolution for the ocean is up to 15 km over polar and
257 coastal regions, and 135 km for far-field oceans, with 46 uneven vertical depths. The impact of local
258 dynamics on the global ocean is related to a number of FESOM-based studies (Danilov et al., 2017).
259 The multi-resolution approach advocated by FESOM allows ~~one~~ to explore the impact of local
260 processes on the global ocean with moderate computational effort (Danilov et al., 2017). AWI-ESM2
261 employs the OASIS3-MCT coupler (Valcke, 2013) with an intermediate regular exchange grid.
262 Mapping between the intermediate grid and the atmospheric/oceanic grid is handled with bilinear

263 interpolation. The atmosphere component computes 12 air-sea fluxes based on four surface fields
264 provided by the ocean module FESOM2. AWI-ESM2 has been validated under modern climate
265 conditions (Sidorenko et al., 2019) and has been applied for marine radiocarbon concentrations
266 (Lohmann et al., 2020), the latest Holocene (Vorrath et al., 2020), and the Last Interglacial (Otto-
267 Bliesner et al., 2021).

268

269 3.3.2 Experimental design

270 One transient experiment was conducted using AWI-ESM2, which applied the boundary conditions,
271 including orbital parameters and greenhouse gases. Orbital parameters are calculated according to
272 Berger (1978), and the concentrations of greenhouse gases are taken from ice-core records ~~as well as~~
273 ~~from recent and~~ measurements of ~~recent~~ firn air and atmospheric samples (Köhler et al., 2017). The
274 model was initialized from a 1,000-year spin-up run under mid-Holocene (6,000 before present, BP)
275 boundary conditions as described by Otto-Bliesner et al. (2017). In our modeling strategy, we follow
276 Lorenz and Lohmann (2004) and use the climate condition from the mid-Holocene spin-up run as the
277 initial state for the subsequent transient simulation covering the period from 6,000 BP to 2014 ~~Common~~
278 ~~Era (CE).~~ In the present study we derived seasonal SIC, SSTs and SOTs in the study ~~area~~areas from a
279 segment of the transient experiment (1950-2014 CE). Topography including prescribed ice sheet
280 configuration was kept constant in our transient simulation. All model data are provided in Table S2.

281

282 3.4. Satellite SIC and SSTs

283 Satellite sea-ice data ~~are~~were derived from Nimbus-7 SMMR and DMSP SSM/I-SSMIS passive
284 microwave data and downloaded from the National Snow and Ice Data Center (NSIDC; Cavalieri et al.,
285 1996). The sea-ice data represent mean monthly SIC, which are expressed to range from 0 % to 100 %
286 and are averaged over a period of the beginning of satellite observations in 1978 CE to the individual
287 year of sample ~~retrieval~~collection. The monthly mean SIC were then split into different seasons: winter
288 (JJF), spring (SON) and summer (DJF) (Fig. 2a-c).), and the ~~these~~ data are considered to represent the
289 recent mean state of sea-ice coverage. All satellite data are provided in Table S3.

290 Modern annual mean SSTs and SOTs ~~are~~were derived from the World Ocean Atlas ~~13~~ representing 2013
291 and represent averaged values for the years 1955-2012 CE (WOA13; Locarnini et al., 2013).

292

293 **4. Results and discussion**

294 In the following, we first present and discuss the biomarker data ~~assembled during generated for~~ this
295 study from North (Antarctic Peninsula) to South (Amundsen and Weddell ~~Seas~~seas) and draw
296 conclusions about the environmental settings deduced from the data set. ~~As~~ In regard to the
297 phytoplankton-derived biomarkers, we ~~here~~ focus on the significance of HBI Z-triene and
298 brassicasterol, ~~while because the~~ HBI E-triene and dinosterol ~~showing data, which are presented in the~~
299 ~~supplementary material (Fig. S1), show~~ very similar patterns ~~are moved to the supplement (Fig. S1)~~
300 ~~to avoid repetition.~~ All biomarker data ~~collected during this study~~ are provided in Table S1 and are
301 available ~~via~~from the PANGAEA data repository (DOI in prep.). For the discussion of the target
302 environmental variables, *i.e.* PIPSO₂₅-based sea-ice and GDGT-derived ocean temperature estimates,
303 satellite ~~and~~ instrumental ~~as well as modelled and model~~ data are considered. In ~~Section~~ section 5, we
304 further address potential caveats in biomarker-based environmental reconstructions that need to be
305 ~~considered~~taken into account when applying these proxies.

306

307 **4.1 TOC content, HBIs and sterols in Antarctic surface sediments**

308 TOC contents in marine sediments ~~in a first approximation~~ are often viewed as an indicator for primary
309 productivity in surface waters (Meyers, 1997). However, we are aware that additional factors, such as
310 different water depths ~~or~~and depositional regimes, may exert control on sedimentary TOC as well. The
311 TOC contents of the ~~herein~~ investigated surface samples are lowest in Drake Passage with values around
312 0.12-0.54 %, ~~increasing in a % and increase from~~ northwest-~~to~~ southeast ~~gradient~~ into Bransfield Strait,
313 ~~ranging between~~ where they range from 0.59 ~~and~~to 1.06 % (Fig. 3a; WAP). ~~At~~Along the EAP, higher
314 TOC contents (0.57-0.86 %) prevail around the ~~former~~ Larsen A Ice Shelf ~~with a decreasing trend and~~
315 ~~north of James Ross Island but they decrease~~ towards ~~the~~ Powell Basin (0.22-0.37 %) and ~~then~~
316 increase to 0.50 % around ~~the area of~~ the South Orkney Islands, which may point to elevated

hat formatiert: Englisch (Vereinigte Staaten)

317 productivity or enhanced supply of reworked terrigenous organic matter in ~~these areas~~this area (Fig. 3a;
318 EAP).

hat formatiert: Englisch (Vereinigte Staaten)

Fig. 3: Distribution of (a) TOC [%], (b) IPSO₂₅, (c) Z-triene and (d) brassicasterol in surface sediment samples. Sample locations are marked as black dots. Concentrations of biomarkers [$\mu\text{g} \cdot \text{g}^{-1} \text{OC}^{-1}$] were normalized to the TOC content of each sample. AS: Amundsen Sea, WAP: West Antarctic Peninsula, EAP: East Antarctic Peninsula, WS: Weddell Sea.

319 At the WAP, concentrations of the sea-ice biomarker IPSO₂₅ ~~show a increase from~~ to northwest-~~to~~
320 southeast gradient with ~~IPSO~~being absent in samples from the permanently ice-free Drake Passage
321 and ~~increasing concentrations~~increases towards the continental slope and the seasonally ice-covered
322 continental shelf (0.37-17.81 $\mu\text{g} \cdot \text{g}^{-1} \text{OC}^{-1}$; Fig. 3b; Vorrath et al., 2019). Highest IPSO₂₅ concentrations
323 are observed in samples of the northern Bransfield Strait, ~~which is affected by~~ Here, the inflow of
324 ~~water masses~~waters from the Weddell Sea ~~through the Antarctic Sound and along the Antarctic~~
325 ~~Peninsula and frequent transport of transports~~ sea ice into the Bransfield Strait (Vorrath et al., 2019).
326 Elevated IPSO₂₅ concentrations are also observed at the ~~EAP, influenced by a seasonal~~seasonally sea-
327 ice ~~covered EAP~~, where relatively ~~higher~~high concentrations of the sea-ice biomarker prevail in
328 ~~these~~ samples located in ~~front~~the area of the ~~former~~ Larsen A Ice Shelf and north of James Ross Island
329 (12.59-17.74 $\mu\text{g} \cdot \text{g}^{-1} \text{OC}^{-1}$; Fig. 3b). ~~As~~Because these locations are ~~also~~ influenced by the northward drift
330 of sea ice within the Weddell Gyre (Fig. 1), the elevated IPSO₂₅ concentrations could also result from
331 sea ice advected from the southern Weddell Sea. We suggest that the ~~decreasing~~decrease of IPSO₂₅

332 concentrations towards the Powell Basin and the South Orkney Islands ($0.59\text{-}5.36 \mu\text{g}^*\text{g OC}^{-1}$; Fig. 3b)
333 ~~can be~~ connected to warmer ocean temperatures ~~towards~~in the North and ~~less~~reduced sea-ice
334 ~~coverage~~cover during spring.
335 Concentrations of the phytoplankton biomarker HBI Z-triene around the Antarctic Peninsula are highest
336 in ~~the~~ eastern Drake Passage and along the WAP continental slope (where IPSO₂₅ is absent) and
337 decrease in ~~the~~ Bransfield Strait ($0.33\text{-}26.86 \mu\text{g}^*\text{g OC}^{-1}$; Fig. 3c; Vorrath et al., 2019). Elevated HBI Z-
338 triene concentrations have ~~thus, so far,~~ been detected in surface waters along ~~an~~the sea-ice edge (Smik
339 et al., 2016) and hence were suggested to be a proxy for marginal ice zone conditions (Belt et al., 2015;
340 Collins et al., 2013; Schmidt et al., 2018). Vorrath et al. (2019), however, relate the high concentrations
341 of HBI Z-triene at the northernmost stations in the permanently ice-free eastern Drake Passage to their
342 proximity to the Antarctic Polar Front. Here, productivity of the source diatoms of HBI-trienes (e.g.,
343 *Rhizosolenia* spp.; Belt et al., 2017) may be enhanced by meander-induced upwelling leading to
344 increased nutrient flux to surface waters (Moore and Abbott, 2002). Since Cardenas et al. (2019)
345 document only minor abundances of *Rhizosolenia* spp. in seafloor surface sediments from this area, we
346 assume that HBI-trienes might also be biosynthesized by other ~~diatoms~~diatom taxa. Moderate
347 concentrations along the continental slope of the WAP and in ~~the~~ Bransfield Strait ~~have been~~were
348 associated with elevated inflow of warm BSW which leads to a retreating sea-ice margin during spring
349 and summer (for more details, see Vorrath et al., 2019; 2020). Samples from the EAP ~~continental~~-shelf
350 and ~~the~~ Powell Basin are characterised by relatively low HBI Z-triene concentrations ~~of HBI Z-triene~~
351 (Fig. 3c; $0.1\text{-}2.37 \mu\text{g}^*\text{g OC}^{-1}$), ~~showing a~~ that decrease from southwest- ~~to~~ northeast ~~gradient, while,~~
352 ~~whereas~~ the northernmost sample closest to the South Orkney Islands is characterized by an elevated
353 HBI Z-triene concentration of $\sim 8.49 \mu\text{g}^*\text{g OC}^{-1}$ (Fig. 3c; EAP). This relatively high concentration may
354 be related to an “Island Mass Effect”, coined by Doty and Oguri (1956), which refers to ~~an~~-increased
355 primary production around oceanic islands in comparison to surrounding waters. Nolting et al. (1991)
356 found extraordinarily high dissolved iron levels (as high as 50-60 nM) on the shelf of the South Orkney
357 Islands, and shelf, while Nielsdóttir et al. (2012) observed enhanced iron and Chl *a* concentrations in the
358 vicinity of the South Orkney Islands. These authors explain the increased dissolved iron levels with
359 input from seasonally retreating sea ice, which is recorded by satellites (Fig. 2a-c) and probably leads

hat formatiert: Schriftart: 11 Pt., Englisch (Vereinigtes Königreich)

hat formatiert: Schriftart: 11 Pt., Englisch (Vereinigte Staaten)

360 to substantial annual phytoplankton blooms, which may also cause the elevated TOC content in the
361 corresponding seafloor sediment sample (Fig. 3a). Alternatively, remobilization of shelf sediments or
362 vertical mixing of iron-rich deep waters, leading to high iron contents in surface waters, may stimulate
363 primary productivity (Blain et al., 2007; de Jong et al., 2012).- However, it remains unclear why the
364 brassicasterol concentration is distinctly low in this sample, and we assume that different environmental
365 preferences of the source organisms may account for this. In Drake Passage and along the EAP,
366 brassicasterol displays a similar pattern as the HBI Z-triene, with relatively high concentrations (more
367 than 2 orders of magnitudes), ranging betweenfrom 1.86 and 5017.44 $\mu\text{g}^*\text{g OC}^{-1}$ (Fig. 3d).
368

hat formatiert: Englisch (Vereinigte Staaten)

369 In the Weddell Sea, TOC contents are generally lowerlow (< 0.4 %), with slightly elevated values in
370 the West (up to 0.50 %) and right in front of the Filchner Ice Shelf (up to 0.52 %; Fig. 3a). The
371 Amundsen Sea is characterized by slightly higher TOC contents, with concentrations of up to 0.91 %
372 in the West and lower values in the East (0.33 %; Fig. 3a; AS).
373

hat formatiert: Englisch (Vereinigte Staaten)

374 In the samples from the Amundsen and Weddell Seas,seas, that both are dominated by a strong winter
375 sea-ice cover lasting until spring (Fig. 2a-c), all three biomarkers are present in low concentrations only.
376 An exception are the samples located in front of the Filchner Ice Shelf with significantly higher
377 concentrations of IPSO₂₅ (7.09-73.87 $\mu\text{g}^*\text{g OC}^{-1}$; Fig. 3b; WS). Concentrations of IPSO₂₅ on the
378 Amundsen Sea shelf are relatively low (0.04-3.3 $\mu\text{g}^*\text{g OC}^{-1}$), with slightly higher values observed
379 towardsin the north-east (Fig. 3b; AS). HBI Z-triene isconcentrations are also very low-concentrated,
380 showing, but slightly higher concentrations in Filchner Trough (0.04-1 $\mu\text{g}^*\text{g OC}^{-1}$) and towardstheat
381 more distal locations ison the northeastern Amundsen Sea shelf (0.01-1.88 $\mu\text{g}^*\text{g OC}^{-1}$; Fig. 3c).
382 Brassicasterol generally shows a similar patternpattern as the HBI Z-triene, with concentrations
383 rangingvarying between 1.86 and 220.54 $\mu\text{g}^*\text{g OC}^{-1}$ (Fig. 3d; for HBI E-triene and dinosterol
distribution, see Fig. S1).
384

hat formatiert: Englisch (Vereinigte Staaten)

384 4.2 Combining individual biomarker records: the PIPSO₂₅ index

385 The PIPSO₂₅ index combines the relative concentrations of IPSO₂₅ and a selected phytoplankton
386 biomarker, such as HBI-trienes and sterols, as indicator for an open-ocean environment (Vorrath et al.,
387 2019). The combination of both end members (sea ice vs. open-ocean) prevents misleading

388 interpretations regarding the absence of IPSO₂₅ in the sediments, which can be the result of two entirely
 389 different scenarios. AtUnder heavy/perennial sea-ice conditionscoverage, the thickness of sea ice
 390 hinders light penetration, thereby limiting the productivity of algae living in basal sea ice (Hancke et
 391 al., 2018). This scenario maycan cause the absence of both phytoplankton and sea-ice biomarkers in the
 392 sediment. The other scenario depicts a permanently open ocean, where the sea-ice biomarker is absent
 393 as well, but here, the phytoplankton biomarkers are present in variable concentrations (Müller et al.,
 394 2011). The presence of both biomarkers in the sediment is indicative of seasonal sea-ice coverage and/or
 395 the occurrence of stable sea-ice margin conditions, promoting biosynthesis of both biomarkers (Müller
 396 et al., 2011). We here distinguish between P_ZIPSO₂₅ and P_BIPSO₂₅ using HBI Z-triene and brassicasterol
 397 as phytoplankton biomarker, respectively (Fig. 4a+b; for PIPSO₂₅ values based on HBI E-triene and
 398 dinosterol see Table S1 and Fig. S2).

Fig. 4: Distribution of the sea-ice index PIPSO₂₅ in surface sediment samples, with (a) P_ZIPSO₂₅ based on Z-triene and (b) P_BIPSO₂₅ based on brassicasterol, (c) satellite-derived spring SIC [%] and (d) modelled spring SIC [%]. AS: Amundsen Sea, WAP: West Antarctic Peninsula, EAP: East Antarctic Peninsula, WS: Weddell Sea.

399 Both PIPSO₂₅ indices are 0 in the predominantly ice-free Drake Passage and display a northwest
 400 increase towards southeast gradient to intermediate values towards the continentalWAP slope and
 401 around the South Shetland Islands, reflecting increased influence of marginal sea-ice cover towards the
 402 coast (0.02-0.70; Vorrath et al., 2019). At the seasonally sea-ice covered EAP, P_ZIPSO₂₅ values reach

403 0.84, while lower values of around 0.25 are observed close to the South Orkney Islands, which ~~relates~~
404 to is caused by the elevated HBI Z-triene concentrations at the stations there (Fig. 3c; EAP). The
405 P_BIPSO₂₅ index exhibits even higher values of up to 0.98 at the EAP/northwestern Weddell Sea. These
406 elevated PIPSO₂₅ indices align well with the significant northward sea-ice- drift within the Weddell
407 Gyre in that region, which leads to prolonged sea-ice cover along the EAP.

hat formatiert: Englisch (Vereinigte Staaten)

408 In samples from the southern Weddell Sea, both PIPSO₂₅ indices show a similar pattern with high values
409 up to 0.9, and slightly lower values in front of the Brunt Ice Shelf (0.6; Fig. 4a+b). Very low
410 concentrations (close to detection limit) of both biomarkers in samples located on from the continental
411 shelf off Dronning Maud Land (Fig. 1) result in low PIPSO₂₅ values, strongly underestimating the sea-
412 ice cover in that this area. ~~Regarding the, where~~ satellite-derived sea-ice data, ~~this area of the continental~~
413 ~~shelf is influenced by a document~~ severe seasonal sea-ice cover (Fig. 2). As previously mentioned, we
414 followed the approach by Müller and Stein (2014) and Lamping et al. (2020) ~~and assigned by assigning~~
415 a maximum PIPSO₂₅ value of 1 to these samples to circumvent misleading interpretations and aid
416 visualisation.

hat formatiert: Englisch (Vereinigte Staaten)

417 The intermediate PIPSO₂₅ value (~0.51) derived for one sample collected in front of the Brunt Ice Shelf
418 points to a less severe sea-ice cover in that area. A possible explanation for the relatively ~~lower low~~
419 PIPSO₂₅ value may be is the presence of a coastal polynya that has been reported by Anderson (1993)
420 and which is further supported by Paul et al. (2015), who. These authors note that the sea-ice area
421 around the Brunt Ice Shelf is the most active in the southern Weddell Sea, with an annual average
422 polynya area of $3516 \pm 1420 \text{ km}^2$. Interestingly, the reduced SIC here is also captured by our model
423 (see Seet section 4.3).

424 PIPSO₂₅ values in the Amundsen Sea point to different scenarios. The P_ZIPSO₂₅ index ~~ranges varies~~
425 around 0.9, with only the easterly, more distal locations showing samples having lower values between
426 0.3 and 0.6 (Fig. 4a). The P_BIPSO₂₅ index generally ~~presents has~~ lower values, ranging from 0.6 in the
427 coastal area to 0.2 in the more distal samples (Fig. 4b). This difference between P_ZIPSO₂₅ and P_BIPSO₂₅
428 may be explained by the different source organisms biosynthesizing the individual phytoplankton
429 biomarkers. While the main origin of HBI-trienes seems to be restricted to diatoms (Belt et al.,

hat formatiert: Englisch (Vereinigte Staaten)

430 2017), brassicasterol is known to be produced by several algal groups that are adapted to a wider range
431 of sea surface conditions (Volkman, 2006; see Section 5.2).
432 ▲

hat formatiert: Englisch (Vereinigte Staaten)

hat formatiert: Schriftfarbe: Text 1

hat formatiert: Schriftfarbe: Text 1

433 4.3 Biomarker-based sea ice estimates vs. satellite and model data

434 The main ice algae bloom in the Southern Ocean occurs during spring, when solar insolation and air
435 temperatures/SSTs increase and sea ice starts melting to melt, which results in the release of nutrients
436 and stratification of the water column stimulating the productivity of photosynthesizing organisms
437 (Arrigo, 2017; Belt, 2018). The sea-ice biomarker IPSO₂₅ is hence commonly interpreted as a spring
438 sea-ice indicator, which is why, in the following, we compare the biomarker-based sea-ice
439 reconstructions to satellite-derived and modelled spring SIC. IPSO₂₅ concentrations in the surface
440 sediments around the Antarctic Peninsula exhibit similar trends as the satellite-derived and modelled
441 SIC (Figs. 3+4), while they differ significantly in the Amundsen and Weddell Seas seas, where high SIC
442 are depicted recorded by satellites and the model but IPSO₂₅ is very present in low
443 concentrated concentrations. The low IPSO₂₅ concentrations in these areas highlight the uncertainty
444 when considering IPSO₂₅ as a sea-ice proxy alone, since such low concentrations are not only observed
445 under open water conditions, but also under ~~a~~ severe sea-ice cover. In this case the Amundsen and
446 Weddell seas, the low IPSO₂₅ concentrations ~~of IPSO₂₅~~ are the result of the latter, where limited light
447 availability hinders ice algae growth, leading to an underestimation of sea-ice cover. Accordingly, we
448 note a weak correlation between IPSO₂₅ data and satellite SIC ($R^2 = 0.19$; Fig. 5a). As stated above, the
449 combination of IPSO₂₅ and a phytoplankton marker may prevent this ambiguity. The higher sea-ice
450 concentrations in the Amundsen and Weddell Seas seas are better reflected by maximum P₂IPSO₂₅
451 values than by IPSO₂₅ alone. However, we note that the P₂IPSO₂₅ index seems to apparently does not
452 further resolve SICs higher than 50 % (see Fig. S3), which may indicate a threshold (here ~50 % SIC)
453 where the growth of the HBI-triene and IPSO₂₅ producing algae is limited.

Fig. 5: Correlations of (a) IPSO_{25} concentrations vs. satellite-derived spring SIC, (b) $P_z\text{IPSO}_{25}$ values vs. satellite-derived spring SIC, (c) satellite-derived spring SIC vs. modelled spring SIC and (d) $P_z\text{IPSO}_{25}$ values vs. modelled spring SIC. Coefficients of determination (R^2) are given for the respective regression lines.

454 In general, however, the $P_z\text{IPSO}_{25}$ values correlate much better with satellite and modelled SIC ($R^2 =$
 455 0.78 and $R^2 = 0.76$, respectively; Fig. 5b+d) than IPSO_{25} concentrations. Correlations of satellite and
 456 model data with PIPISO_{25} calculated using the HBI E-triene, brassicasterol and dinosterol, respectively,
 457 are also positive but less significant (Fig. S4), and we hence focus the discussion on $P_z\text{IPSO}_{25}$. The
 458 AWI-ESM2-derived spring SICs correctly display the permanently ice-free Drake Passage and the
 459 northwest-southeast gradient increase in sea-ice cover from the WAP continental slope towards the
 460 Bransfield Strait (Fig. 4d). The model, however, significantly underestimates the elevated sea-ice
 461 concentrations (up to 70 %) in front of the former Larsen Ice Shelf A and east of James Ross Island at

462 the EAP depicted by observed in satellite data. In the Amundsen and Weddell Seas, the model shows
463 predicts heavy sea-ice cover (~90 %), only slightly underestimating the sea-ice cover at the near-
464 coastal sites in front of Pine Island Glacier and the Ronne Ice Shelf. Interestingly, modelled SIC in the
465 area in front of the Brunt Ice Shelf is as low as ~45 % (Fig. 4d+e), corresponding well with the reduced
466 $P_{Z\text{IPSO}_{25}}$ value of ~0.51, and. This may reflect the polynya conditions in that region documented by
467 Anderson (1993) and Paul et al. (2015). Overall, we note that modelled modern SICs correlate well with
468 satellite data ($R^2 = 0.73$; Fig. 5c) and $P_{Z\text{IPSO}_{25}}$ values ($R^2 = 0.76$; Fig. 5d), while we observe weaker
469 correlations between modelled paleo-SICs and $P_{Z\text{IPSO}_{25}}$ values (Fig. S5; see Sect. section 5.1).
470

471 4.4 $\text{TEX}^{\text{L}_{86}}$ and RI-OH'-derived ocean temperatures

472 For a critical appraisal of the applicability and reliability of GDGT indices as temperature proxies in
473 polar latitudes, we here focus on the $\text{TEX}^{\text{L}_{86}}$ proxy by Kim et al. (2012), which potentially
474 reflects SOTs, and the RI-OH' proxy, by Lü et al. (2015), which is assumed to reflect SSTs,
475 by Lü et al. (2015). The reconstructions are considered to represent annual mean ocean
476 temperatures (for correlations of $\text{TEX}^{\text{L}_{86}}$ -derived SOTs with WOA spring and winter SOTs, see Fig.
477 S6). In all samples, the BIT-index (Eq. 6) is <0.3, indicating no significant contribution of
478 terrestrial input to the distribution of GDGTs and hence applicability of
479 GDGTs to estimate ocean temperatures. Their reliability as temperature proxy. RI-OH'-derived
480 temperatures and $\text{TEX}^{\text{L}_{86}}$ -derived SOTs both show a similar pattern, but different temperatures
481 range between -2.62 to +4.67 °C and -2.38 to +8.75 °C, respectively (Fig. 6a+b). At the WAP,
482 RI-OH' as well as $\text{TEX}^{\text{L}_{86}}$ -derived temperatures follow a northwest-southeast gradient with higher
483 temperatures increasing northwestwards across the Antarctic continental slope and into the permanently
484 ice-free Drake Passage and on the Antarctic continental slope, which are influenced by the ACC and
485 relatively warm CDW (Orsi et al., 1995; Rintoul et al., 2001). Temperatures decrease towards the
486 Bransfield Strait and the EAP, which are influenced by seasonal sea-ice cover and relatively older
487 and highly saline cold water from the Weddell Sea, branching that branches off the Weddell Gyre
488 (Collares et al., 2018; Thompson et al., 2009). At the EAP, a southwest-northeast gradient can

489 ~~be southwestward decrease is~~ observed, with relatively ~~lower~~ low temperatures ~~alongat~~ along the former
 490 Larsen ~~A~~ Ice Shelf and higher temperatures ~~towards the recorded in~~ towards the recorded in Powell Basin and ~~around~~ around the South
 491 Orkney Islands (Fig. 6a+b).

Fig. 6: Annual mean temperature distributions with (a) RI-OH'-derived temperature, (b) TEX^L_{86} -derived SOT, (c) WOA13 SST (Locarnini et al., 2013), (d) WOA13 SOT (410 m; Locarnini et al., 2013), (e) modelled SST and (f) modelled SOT (410 m) in $^{\circ}\text{C}$. AS: Amundsen Sea, WAP: West Antarctic Peninsula, EAP: East Antarctic Peninsula, WS: Weddell Sea.

492 ~~Further to the South, in In~~ the Amundsen and Weddell ~~Seas, seas~~ further south, reconstructed
 493 temperatures are generally lower than ~~at around~~ around the Antarctic Peninsula. Samples from the Weddell Sea
 494 display a temperature decrease from east to west, which may reflect the ~~eddy driven route of eddies~~
 495 in the ~~north eastern corner of the northeastern~~ Weddell Gyre ~~carrying~~. These eddies carry relatively
 496 warm, salty CDW, ~~which then advects~~ which then advects westward along the southern ~~edge~~ ~~limb~~ of the Weddell Gyre ~~as~~,
 497 where it becomes WDW (Vernet et al., 2019). Coldest TEX^L_{86} ~~as well as and~~ and RI-OH' temperatures

hat formatiert: Englisch (Vereinigte Staaten)

498 ($<0^{\circ}\text{C}$) at sites along the Filchner-Ronne Ice Shelf front may be further linked to the presence of cold
499 precursor water masses for WSBW.

500 With regard to ongoing discussions, whether GDGT-based temperature reconstructions represent SSTs
501 or SOTs (Kalanetra et al., 2009; Kim et al., 2012; Park et al., 2019), we here compare our RI-OH' and
502 $\text{TEX}^{\text{L}_{86}}$ -derived temperatures with ~~instrumental and modelled~~ surface ~~as well as~~^{and} subsurface
503 temperature data obtained by in-situ measurements and modelling (Fig. 6c-f). Based on
504 correlationsComparison of GDGT-derived temperatures with WOA13 temperatures reflecting from
505 different water depths, we observe reveals the highest significance at^{most} significant correlation for a
506 water depth of 410 m (for respective correlations, see Fig. S7). When discussing instrumental and
507 modelled SOTs, we hence refer to 410 m water depth.

Fig. 7: Correlations of (a) WOA annual mean SOT (410 m) vs. TEX^L_{86} -derived SOT, (b) WOA annual mean SST vs. RI-OH'-derived temperature, (c) WOA annual mean SOT (410 m) vs. RI-OH'-derived temperature, (d) WOA annual mean SOT (410 m) vs. modelled annual mean SOT (410 m), (e) TEX^L_{86} -derived SOT vs. modelled annual mean SOT (410 m), (f) RI-OH'-derived temperature vs. modelled annual mean SOT (410 m) in °C. Coefficients of determination (R^2) are given for the respective regression lines.

508 While the correlation between $\text{TEX}^{\text{L}}_{86}$ -derived SOTs and instrumental SOTs is reasonably ~~well~~good
509 (Fig. 7a; $R^2 = 0.66$), also supporting ~~the assumption of~~ a subsurface origin for the $\text{TEX}^{\text{L}}_{86}$ proxy, we
510 note a significant overestimation of SOTs by up to 6 °C in ~~the~~ Drake Passage (Fig. S8). This warm-
511 biased $\text{TEX}^{\text{L}}_{86}$ signal is a known caveat and is, among others, assumed to be connected to GDGTs
512 produced by deep-dwelling Euryarchaeota (Park et al., 2019), which have been reported in CDW
513 (Alonso-Sáez et al., 2011) and in deep waters at the Antarctic Polar Front (López-García et al., 2001).
514 Maximum $\text{TEX}^{\text{L}}_{86}$ -based SOTs of 5 °C - 8 °C in ~~the~~ central Drake Passage (Fig. 6b), however, distinctly
515 exceed the common temperature range of CDW (0-2 °C). Interestingly, $\text{TEX}^{\text{L}}_{86}$ -derived SOTs in the
516 colder regions of the Amundsen and Weddell ~~Seas~~seas relate reasonably well to instrumental
517 temperatures and are only slightly warm-biased (Fig. S8). Correlations between RI-OH'-derived
518 temperatures ~~with~~and instrumental SSTs are ~~comparatively~~ weak ($R^2 = 0.43$; Fig. 7b). Recently, Liu et
519 al. (2020) concluded in their study on surface sediments from Prydz Bay (East Antarctica), that also the
520 RI-OH' index holds promise as a tool to reconstruct SOTs rather than SSTs. When correlating our RI-
521 OH'-derived temperatures with instrumental SOTs, we similarly find a high correlation ($R^2 = 0.73$; Fig.
522 7c), ~~too, hence~~ supporting this hypothesis. We further note that the RI-OH' temperature range ~~of RI-~~
523 ~~OH'~~ is much more realistic than ~~the~~ $\text{TEX}^{\text{L}}_{86}$, ~~supporting the study by Park et al. (2019) and~~
524 ~~demonstrating range. This suggests~~ that the addition of OH-isoGDGTs in the temperature index is a
525 promising step towards reliable high latitude temperature reconstructions and may improve our
526 understanding of the temperature responses of archaeal membranes in Southern Ocean waters (Fietz et
527 al., 2020; Park et al., 2019). Clearly, more data – ideally obtained from sediment traps, seafloor surface
528 sediment samples ~~as well as~~and longer sediment cores – and calibration studies will help to further
529 elucidate the applicability of ~~this approach~~the RI-OH' and $\text{TEX}^{\text{L}}_{86}$ temperature reconstructions.
530 Similar to the model-derived sea-ice data, we ~~here~~ also evaluate the model's performance in depicting
531 ocean temperatures (Fig. 6e+f). Modelled annual mean SSTs and SOTs are highest (with up to 5 °C and
532 3 °C, respectively) in the permanently ice-free Drake Passage, ~~which is~~ influenced by the relatively
533 warm ACC. ~~Decreasing~~Lower SSTs are ~~simulated towards~~predicted for the Antarctic Peninsula
534 continental slope and ~~the~~ Bransfield Strait (~0.5 to 1 °C), coinciding with the increase in the duration

535 of seasonal sea-ice cover in that area. At the EAP/northwestern Weddell Sea, modelled SSTs as well as
536 SOTs ~~show an increase from southwest- to northeast~~ ~~directed increase~~ towards Powell Basin. In the
537 Amundsen and Weddell ~~Seas~~ seas, annual mean SSTs are negative, with temperatures ranging from -1
538 to -0.5 °C, while SOTs are positive in the Amundsen Sea and negative in the Weddell Sea. Overall, we
539 note that modelled SOTs reflect instrumental SOTs reasonably well ($R^2 = 0.76$; Fig. 7d). Interestingly,
540 while RI-OH'-derived SOTs relate better to instrumental SOTs (than $TEX^{L_{86}}$ -based SOTs), ~~we note a~~
541 better correlation between $TEX^{L_{86}}$ -derived SOTs and modelled SOTs ($R^2 = 0.64$; Fig. 7e) and a weaker
542 correlation with RI-OH'-derived temperatures ($R^2 = 0.55$; Fig. 7f) ~~is found~~.

543

544 5. Caveats and recommendations for future research

545 Marine core top studies ~~to elucidate evaluating~~ the applicability and reliability of climate proxies are
546 often ~~concerned with~~ affected by limitations and uncertainties regarding the age control of the
547 investigated seafloor surface sediments as well as the production, preservation and degradation of target
548 compounds. In the following, we shortly address some of these factors and provide brief
549 recommendations for future investigations.

550

551 5.1 Age control

552 Information on the actual age of the surface ~~sediments are~~ sediment samples is a major requirement
553 determining their suitability to reflect modern sea surface conditions. When comparing sea-ice
554 conditions or ocean temperatures estimated from sedimentary biomarker data obtained from 0.5-1 cm
555 thick surface sediment samples (easily spanning decades to millennia, depending on sedimentation
556 rates) with satellite-derived sea-ice data or instrumental records (covering only the past ~40 and 65
557 years, respectively), the different time periods reflected in the data sets need to be considered when
558 interpreting the results. To address the issue of lacking age constraints for most of the herein studied
559 surface sediments investigated here, we also performed paleoclimate simulations providing sea-ice
560 concentration data for three time slices (2 ka, 4 ka and 6 ka BP; see Fig. S5) to evaluate if the surface
561 sediments may have recorded significantly older environmental conditions. Correlations of $PIP\text{SO}_{25}$

562 values ~~against~~with these paleo ~~time slice~~ sea-ice concentrations ~~depicted~~are notably weaker ~~relations~~
563 (Fig. S5) ~~compared to~~than the ~~correlations with~~ recent (1951-2014 CE) ~~SIC~~ model output, which points
564 to a ~~relatively~~ young to modern age of the majority of the ~~herein~~ studied sediments. This is further
565 supported by AMS ^{14}C -dating of calcareous microfossils and ^{210}Pb -dating of seafloor surface sediments
566 from the Amundsen Sea shelf documenting recent ages for most sites (Hillenbrand et al., 2010, 2013,
567 2017; Smith et al., 2011, 2014, 2017; Witus et al., 2014) as well as modern ^{210}Pb -dates obtained for
568 three multicores collected in ~~the~~ Bransfield Strait (PS97/56, PS97/68, PS97/72; Vorrath et al., 2020),
569 ~~which are considered in this study, too.~~ AMS ^{14}C dates obtained for nearby ~~seafloor~~ surface
570 ~~samples~~sediments in the vicinity of the South Shetland Islands and the Antarctic Sound revealed ages
571 of 100 years and 142 years BP, respectively (Vorrath et al., 2019). As both uncorrected ages lie within
572 the range of the modern marine reservoir effect (e.g. Gordon and Harkness, 1992), we ~~may~~ consider
573 these two dates still ~~modern~~as recent. However, in an area that is significantly affected by rapid climate
574 warming over the past decades and a regionally variable sea-ice coverage, ~~the age~~ uncertainties
575 ~~associated with ^{14}C dating of calcareous material for at least ^{14}C dated samples~~ may easily lead to an
576 over- or underestimation of biomarker-based sea-ice cover and ocean ~~temperature~~
577 ~~estimate~~temperatures, respectively, which needs to be ~~considered~~taken into account for comparisons
578 with instrumental data. ~~While the~~The utilization of (paleo) model data may alleviate the lack of age
579 control for each seafloor sediment sample to some extent. ~~Nevertheless~~, we ~~accordingly~~ recommend that
580 for a robust calibration of *e.g.* PIPSO_{25} values against satellite-derived sea-ice concentrations ~~(and this~~
581 ~~is not the aim of this study)~~ only surface sediment samples with a modern age confirmed by ^{210}Pb -dating
582 are incorporated.

583

584 5.2 Production and preservation of biomarkers

585 Biomarkers ~~are considered~~have the potential to reveal the former occurrence of their ~~precursor~~
586 ~~organisms~~producers, which requires ~~a certain knowledge of the~~ source ~~specificity~~organisms. While
587 there is general consensus on *e.g.* Thaumarchaeota being the major source for iso-GDGs (Fietz et al.,
588 2020 and references therein) ~~or~~and diatoms synthesizing HBIs (Volkman 2006), ~~this is not the case~~
589 ~~for~~main source of brassicasterol, which is not only found in diatoms but also in *e.g.* dinoflagellates and

590 haptophytes (Volkman 2006~~+~~), remains unclear. Accordingly, the use of brassicasterol to determine the
591 PIPSO₂₅ index may introduce uncertainties regarding the environmental information pertinent
592 ~~to recorded by~~ this phytoplankton biomarker. A further aspect concerns the different chemical structures
593 of HBIs and sterols, which raises the risk of a selective degradation (see Belt, 2018 and Rontani et al.,
594 2018; 2019 for detailed discussion) with potentially considerable effects on the PIPSO₂₅ index.
595 Regarding the different sectors of the areas investigated in our study-area, also spatially different
596 microbial communities ~~as well as~~ and varying depositional regimes, such as sedimentation rate, redox
597 conditions and water depth, may lead to different degradation patterns, ~~which~~. This means that
598 variations in the biomarker concentrations between different sectors/areas may not strictly reflect
599 changes in the production of these compounds (driven by sea surface conditions) but may also relate to
600 different degradation states. In particular, lower sedimentation rates and thus extended oxygen exposure
601 times promote chemical alteration and degradation processes (Hedges et al., 1990; Schouten et al.,
602 2013). ~~Regarding the transport of organic matter from the sea surface through the water~~
603 ~~column~~ However, it has been previously ~~noted~~reported that the formation of mineral aggregates and
604 fecal pellets, ~~however~~, often accelerates the vertical export towards ~~transport of organic matter from the~~
605 ~~sea surface through the water column to~~ the seafloor during the melting season, leading to a more rapid
606 burial and hence better preservation of the organic compounds (Bauerfeind et al., 2005; Etourneau et
607 al., 2019; Müller et al., 2011).
608 Another rather technical drawback concerning the use of the PIPSO₂₅ index ~~may appear~~occurs when
609 the concentrations of the sea-ice proxy IPSO₂₅ and the phytoplankton marker are similarly low (due to
610 unfavourable conditions for both ice algae ~~as well as~~ and phytoplankton) or similarly high (due to a
611 significant seasonal shift in sea-ice cover and/or stable ice edge conditions). This may lead to similar
612 PIPSO₂₅ values, although the sea-ice conditions are fundamentally different from each other. This
613 scenario occurred at ~~is evident for~~ five sampling sites in the Weddell Sea (PS111/13-2, /15-1, /16-3, /29-
614 3, and /40-2; Fig. 3b+c), where IPSO₂₅ and the HBI Z-triene concentrations are close to the detection
615 limit and P_ZIPSO₂₅ values are very low, suggesting a reduced sea-ice cover. Satellite and model data,
616 however, show that these sample locations are influenced by heavy, nearly year-round sea-ice cover.
617 We conclude that biomarker concentrations of both biomarkers at or close to the detection limit,

618 indicative of a severe ice cover, need to be treated with caution. As mentioned above Here, we assigned
619 a maximum P_z IPSO₂₅ value of 1 to these samples, and we note that such a practice always needs
620 to be made clear clarified when applying the PIPSO₂₅ approach. The Nonetheless, the coupling of IPSO₂₅
621 with a phytoplankton marker, nonetheless, provides more reliable sea-ice reconstructions. Regarding
622 the above mentioned all these ambiguities, we recommend not only to calculate the PIPSO₂₅ index, but
623 also to carefully consider individual biomarker concentrations and, if possible, to utilize other sea-ice
624 measures ice proxies, such as data from well-preserved diatom assemblage data assemblages (Lamping
625 et al., 2020; Vorrath et al., 2019; 2020). While the PIPSO₂₅ index is not yet a fully quantitative proxy
626 to provide for paleo sea-ice concentrations, the GDGT paleothermometers have gone through several
627 calibration iterations have been applied to the GDGT-paleothermometers (Fietz et al., 2020). As noted
628 above, the observation of distinctly warm-biased TEX^{L₈₆}-derived SOTs calls for further efforts in terms
629 of regional calibration studies and/or investigations of archaeal adaptation strategies regarding at
630 different water depths, and under different nutrient and temperature conditions.

631
632 5.3 The role of platelet ice for the production of IPSO₂₅

633 The sympagic, tube-dwelling, diatom *B. adeliensis* is a common constituent of Antarctic sea ice, and
634 preferably flourishes flourishes in the relatively open channels of sub-ice platelet layers in near-shore
635 locations covered by fast ice (Medlin, 1990; Riaux-Gobin and Poulin, 2004). Based on investigations
636 of sea-ice samples from the Southern Ocean, Belt et al. (2016) detected this diatom species to be a
637 source of IPSO₂₅, which, according to its habitat, led to the assumption of the sea-ice proxy being a
638 potential indicator for the presence of platelet ice. As stated above, *B. adeliensis* is not confined to
639 platelet ice, but is also observed in basal sea ice and described as well adapted to changes in the texture
640 of sea ice during ice melt (Riaux-Gobin et al., 2013). Platelet ice formation, however, plays an important
641 role in sea-ice generation along some coastal regions of Antarctica (Hoppmann et al., 2015; 2020; Lange
642 et al., 1989; Langhorne et al., 2015). In these regions, CDW and High Saline Shelf Water (HSSW)
643 flowing flow into sub-ice shelf cavities of ice shelves and cause basal melting and the discharge of cold
644 and less saline water (Fig. 8; Hoppmann et al., 2020, Scambos et al., 2017). The surrounding water is

645 cooled and freshened and is then transported towards the surface. Under the large Filchner-Ronne and
 646 Ross ice shelves the pressure relief can cause this water, called Ice Shelf Water (ISW), to be supercooled
 647 (Foldvik and Kvinge, 1974). The temperature of the supercooled ISW is potentiallytypically below the
 648 in-situ freezing point, which may eventually causecauses the formation of ice platelets that accumulate
 649 under landfast ice attached to adjacent ice shelves (Fig. 8; Holland et al., 2007; Hoppmann et al., 2015;
 650 2020).

Fig. 8: Schematic illustration of the formation of platelet ice and the main production areas of sea ice algae producing IPSO₂₅ (yellow ovals) and phytoplankton (green ovals), also displayed by yellow and green curves at the top. CDW: Circumpolar Deep Water, HSSW: High Saline Shelf Water, ISW: Ice Shelf Water. Schematic illustration modified afterfrom Scambos et al. (2017).

651 In an attempt to elucidate the relationship ofbetween IPSO₂₅ and platelet ice more clearly, we here
 652 regardinvestigated our data in connectionrespect to locationsof observed platelet iceoccurrences.
 653 iceformation. While the maximum IPSO₂₅ concentrations in front of the Filchner Ice Shelf could be
 654 directly related to the above-mentioned platelet ice formation in this area, the elevated IPSO₂₅
 655 concentrations infrontof the Larsen C Ice Shelf at the EAP could be linked to several
 656 processes. According to Langhorne et al. (2015), sea-ice cores retrieved from that area did not
 657 incorporate platelet ice. The high IPSO₂₅ concentrations could hence be explicableexplained by either
 658 input from drift ice transported with the Weddell Gyre or by basal freeze-on. We do, however, However,
 659 we note that our samples may reflect much longer time framesperiods than the sea-ice samples
 660 investigated by Langhorne et al. (2015) and the lack of platelet ice in their investigated sea-ice cores

661 does not rule out the former presence of platelet ice, which may be captured in our investigated sediment
662 samples.

663 There are several previous studies on IPSO₂₅ ~~which reported that reported~~ a close connection of the proxy
664 ~~to with~~ proximal, coastal locations and polynyas in the seasonal ice zone (*i.e.*, Collins et al., 2013; Smik
665 et al., 2016). They do not, however, discuss the relation to adjacent ice shelves as possible “platelet ice
666 factories”. We note that the core locations investigated by Smik et al. (2016) are in the vicinity of the
667 Moscow University Ice Shelf, where Langhorne et al. (2015) ~~did not observe platelet ice within sea-ice~~
668 cores. Hoppmann et al. (2020), however, report a sea-ice core from that area, which incorporates platelet
669 ice. The different observations by Langhorne et al. (2015) and Hoppmann et al. (2020) highlight the
670 temporal variability in the occurrence of platelet ice in the cold water regime around the East Antarctic
671 margin.

672 ~~Regarding~~ For the observed IPSO₂₅ minimum ~~abundance of IPSO₂₅~~ in the Amundsen Sea (Fig. 3b; AS),
673 which we tentatively relate to the extended and thick sea-ice coverage, the absence of platelet ice ~~in~~
674 ~~that region may be there is~~ an alternative explanation. The Amundsen/Bellingshausen Sea and WAP
675 shelves are classified as “warm shelves” (Thompson et al., 2018) ~~characterized by~~, where the
676 upwelling of warm CDW (Schmidtko et al., 2014) ~~hindering~~ ~~hinders~~ the formation of ISW ~~and~~
677 ~~making~~, ~~which makes~~ the presence of platelet ice ~~in~~ ~~under~~ recent conditions highly unlikely (Hoppmann
678 et al., 2020). This ~~theory~~ is also supported by Langhorne et al. (2015), ~~stating who stated~~ that platelet
679 ice formation is not observed, ~~in areas~~ where ~~thinning from~~ basal ~~ice-shelf~~ melting ~~of ice shelves is~~
680 ~~believed to be greatest, which applies to~~ ~~is considerable, such as on the~~ ~~warm~~ West Antarctic continental
681 shelf in the eastern Pacific sector of the Southern Ocean (Thompson et al., 2018). Accordingly, if the
682 formation and accumulation of platelet ice – up to a certain degree – ~~is indicative of basal~~ ~~indicates sub-~~
683 ~~ice shelf melting on~~ ~~fresh~~ “~~cold~~ shelves” (Hoppmann et al., 2015; Thompson et al., 2018), high IPSO₂₅
684 concentrations ~~determined~~ ~~found~~ in marine sediments may hence serve as indicator of ~~past~~ ISW
685 formation and associated ice shelf dynamics. ~~This may~~ ~~This is~~, however, ~~probably~~ only ~~be~~ true up to a
686 certain threshold, where platelet ice formation ~~decreases or~~ is ~~diminished~~ hampered due to warm
687 oceanic conditions causing too intense sub-ice shelf melting (Langhorne et al., 2015).

hat formatiert: Englisch (Vereinigte Staaten)
hat formatiert: Schriftart: 11 Pt., Kursiv, Englisch (Vereinigte Staaten)
hat formatiert: Schriftart: 11 Pt., Englisch (Vereinigte Staaten)

hat formatiert: Englisch (Vereinigte Staaten)
hat formatiert: Schriftart: 11 Pt., Englisch (Vereinigte Staaten)

hat formatiert: Englisch (Vereinigte Staaten)

688 While using IPSO₂₅ as a sea-ice proxy in Antarctica, it is hence important to also consider regional
689 platelet ice formation processes as, too, because these may affect the IPSO₂₅ budget. Determining
690 thresholds associated with platelet ice formation is challenging. Therefore, further investigations, such
691 as in-situ measurements of IPSO₂₅ concentrations in platelet ice or culture experiments in home
692 laboratories, are needed to better depict understand the connection between IPSO₂₅ and platelet ice
693 formation (and basal ice shelf basal melting).

694

695 **7. Conclusions**

696 Biomarker analyses focusing on IPSO₂₅, HBI-trienes, phytosterols and GDGTs in surface sediment
697 samples from the Antarctic continental margin were investigated to depict recent sea-ice conditions
698 and ocean temperatures in this climate sensitive region. Proxy-based reconstructions of these key
699 variables were compared to (1) satellite sea-ice data, (2) instrumental ocean temperature data as well
700 as, and (3) modelled sea-ice patterns and ocean temperatures. The semi-quantitative sea-ice index
701 PIPSO₂₅, combining the sea-ice proxy IPSO₂₅ with an open-water phytoplankton marker, yielded
702 reasonably good correlations with satellite observations and numerical model results, while correlations
703 with the sea-ice proxy IPSO₂₅ alone are rather low. Minimum concentrations of both biomarkers, used
704 for the PIPSO₂₅ calculations, however, may lead to ambiguous interpretations and significant
705 underestimations of sea-ice conditions. Different Therefore, different sea-ice measures should be
706 considered when interpreting biomarker data should hence be considered.

707 Ocean temperature reconstructions based on the TEX^L₈₆- and RI-OH'-paleothermometers show similar
708 patterns, but different absolute temperatures. While TEX^L₈₆-derived temperatures are significantly
709 biased towards warm temperatures in Drake Passage, the RI-OH'-derived temperature range seems
710 more realistic, when compared to temperature data based on the WOA13 and modelled annual mean
711 SOTs.

712 Further investigations of HBI- as well as GDGT-synthesis, transport, sedimentation deposition and
713 preservation within the sediments would help to guide the proxies' application. Further work on the
714 taxonomy work of the IPSO₂₅ producers, the composition of the IPSO₂₅ producer's their habitat (basal
715 sea ice, platelet ice, brine channels) and its connection to platelet ice formation via in-situ or laboratory

716 measurements are required to better constrain the IPSO₂₅ potential as a robust sea-ice biomarker. The
717 presumed relationship between IPSO₂₅ and platelet ice formation in connection to basal sub-ice shelf
718 melting of ice shelves is supported by our data, showing high IPSO₂₅ concentrations in areas where with
719 known platelet ice formation has previously been reported and low IPSO₂₅ concentrations where no in
720 areas without observed platelet ice formation is observed. Accordingly, oceanic conditions and the
721 intensity of sub-ice shelf melting need to be considered when using IPSO₂₅ (1) as an indirect indicator
722 for sub-ice shelf melting processes and associated ice shelf dynamics and (2) for the application of the
723 PIPSO₂₅ index to estimate sea-ice coverage.

724

725 **Data availability**

726 Datasets related to this article can be found online on *PANGAEA Data Publisher for Earth &*
727 *Environmental Science* (doi: in prep).

728

729 **Author contribution**

730 N.L. and J.M. designed the concept of the study. N.L. carried out biomarker experiments. X.S and G.L.
731 developed the model code and X.S. performed the simulations. C.H. provided the satellite data. M.-
732 E.V. provided hitherto unpublished GDGT data for PS97 samples. G.M. and J.H. carried out GDGT
733 analyses. C.-D.H. collected surface sediment samples and advised on their ages. N.L. prepared the
734 manuscript and visualizations with contributions from all co-authors.

735

736 **Competing interests**

737 The authors declare that they have no conflict of interest.

738

739 **Acknowledgements**

740 Denise Diekstall, Mandy Kuck and Jonas Haase are kindly acknowledged for laboratory support. We
741 thank the captains, crews and science parties of RV Polarstern cruises PS69, PS97, PS104, PS111 and
742 PS118. Especially, Frank Niessen, Sabine Hanisch and Michael Schreck are thanked for their support
743 during PS118. Simon Belt is acknowledged for providing the 7-HND internal standard for HBI

hat formatiert: Englisch (Vereinigte Staaten)

hat formatiert: Schriftart: Nicht Kursiv

744 quantification. AWI, MARUM - University of Bremen, the British Antarctic Survey and NERC UK-
745 IODP are acknowledged for funding expedition PS104. N.L., M.-E.V. and J.M. were funded through
746 the Helmholtz Research Grant VH-NG-1101. Two anonymous reviewers are thanked for their
747 constructive and helpful comments, which lead to a distinctsignificant improvement of this manuscript.
748

749 **References**

750 Abernathey, R. P., Cerovecki, I., Holland, P. R., Newsom, E., Mazloff, M., and Talley, L. D.: Water-
751 mass transformation by sea ice in the upper branch of the Southern Ocean overturning, *Nature*
752 *Geoscience*, 9, 596-601, 2016.

753 Allen, C. S., Pike, J., and Pudsey, C. J.: Last glacial–interglacial sea-ice cover in the SW Atlantic
754 and its potential role in global deglaciation, *Quaternary Science Reviews*, 30, 2446-2458, 2011.

755 Alonso-Sáez, L., Andersson, A., Heinrich, F., and Bertilsson, S.: High archaeal diversity in Antarctic
756 circumpolar deep waters, *Environmental microbiology reports*, 3, 689-697, 2011.

757 Anderson, P. S.: Evidence for an Antarctic winter coastal polynya, *Antarctic science*, 5, 221-226,
758 1993.

759 Armand, L. K., and Leventer, A.: Palaeo sea ice distribution–reconstruction and palaeoclimatic
760 significance, *Sea ice—an introduction to its physics, biology, chemistry, and geology*, 333-372,
761 2003.

762 Arrigo, K. R., Worthen, D. L., Lizotte, M. P., Dixon, P., and Dieckmann, G.: Primary production in
763 Antarctic sea ice, *Science*, 276, 394-397, 1997.

764 Arrigo, K. R.: Sea ice as a habitat for primary producers, *Sea ice*, 352-369, 2017.

765 Barbara, L., Crosta, X., Massé, G., and Ther, O.: Deglacial environments in eastern Prydz Bay, East
766 Antarctica, *Quaternary Science Reviews*, 29, 2731-2740, 2010.

767 Barbara, L., Crosta, X., Schmidt, S., and Massé, G.: Diatoms and biomarkers evidence for major
768 changes in sea ice conditions prior the instrumental period in Antarctic Peninsula, *Quaternary*
769 *Science Reviews*, 79, 99-110, 2013.

Kommentiert [NL1]: I will double-check the reference-list
before submission.

770 Bauerfeind, E., Leipe, T. and Ramseier, R.O.: Sedimentation at the permanently ice-covered
771 Greenland continental shelf (74°57.7'N/12°58.7'W): significance of biogenic and lithogenic
772 particles in particulate matter flux. *Journal of Marine Systems* 56, 151-166, 2005.

773 Belt, S. T., Allard, W. G., Massé, G., Robert, J.-M., and Rowland, S. J.: Highly branched isoprenoids
774 (HBIs): identification of the most common and abundant sedimentary isomers, *Geochimica et*
775 *Cosmochimica Acta*, 64, 3839-3851, 2000.

776 Belt, S. T., and Müller, J.: The Arctic sea ice biomarker IP₂₅: a review of current understanding,
777 recommendations for future research and applications in palaeo sea ice reconstructions,
778 *Quaternary Science Reviews*, 79, 9-25, 2013.

779 Belt, S. T., Brown, T. A., Ampel, L., Cabedo-Sanz, P., Fahl, K., Kocis, J. J., Masse, G., Navarro-
780 Rodriguez, A., Ruan, J., and Xu, Y.: An inter-laboratory investigation of the Arctic sea ice
781 biomarker proxy IP₂₅ in marine sediments: key outcomes and recommendations, *Climate of the*
782 *Past.*, 10, 155-166, 2014.

783 Belt, S. T., Cabedo-Sanz, P., Smik, L., Navarro-Rodriguez, A., Berben, S. M. P., Knies, J., and
784 Husum, K.: Identification of paleo Arctic winter sea ice limits and the marginal ice zone:
785 Optimised biomarker-based reconstructions of late Quaternary Arctic sea ice, *Earth and Planetary*
786 *Science Letters*, 431, 127-139, 2015.

787 Belt, S. T., Smik, L., Brown, T. A., Kim, J. H., Rowland, S. J., Allen, C. S., Gal, J. K., Shin, K. H.,
788 Lee, J. I., and Taylor, K. W. R.: Source identification and distribution reveals the potential of the
789 geochemical Antarctic sea ice proxy IPSO₂₅, *Nature Communications*, 7, 12655,
790 <https://doi.org/10.1038/ncomms12655>, 2016.

791 Belt, S. T., Brown, T. A., Smik, L., Tatarek, A., Wiktor, J., Stowasser, G., Assmy, P., Allen, C. S.,
792 and Husum, K.: Identification of C₂₅ highly branched isoprenoid (HBI) alkenes in diatoms of the
793 genus *Rhizosolenia* in polar and sub-polar marine phytoplankton, *Organic Geochemistry*, 110,
794 65-72, 2017.

795 Belt, S. T.: Source-specific biomarkers as proxies for Arctic and Antarctic sea ice, *Organic*
796 *Geochemistry*, 125, 277-298, 2018.

797 Berger, A.: Long-term variations of daily insolation and Quaternary climatic changes, *Journal of the*
798 *atmospheric sciences*, 35, 2362-2367, 1978.

799 Blain, S., Quéguiner, B., Armand, L., Belviso, S., Bomblé, B., Bopp, L., Bowie, A., Brunet, C.,
800 Brussaard, C., Carlotti, F., Christaki, U., Corbière, A., Durand, I., Ebersbach, F., Fuda, J.-L.,
801 Garcia, N., Gerringa, L., Griffiths, B., Guigue, C., Guillerm, C., Jacquet, S., Jeandel, C., Laan,
802 P., Lefèvre, D., Lo Monaco, C., Malits, A., Mosseri, J., Obernosterer, I., Park, Y.-H., Picheral,
803 M., Pondaven, P., Remenyi, T., Sandroni, V., Sarthou, G., Savoye, N., Scouarnec, L., Souhaut,
804 M., Thuiller, D., Timmermans, K., Trull, T., Uitz, J., van Beek, P., Veldhuis, M., Vincent, D.,
805 Viollier, E., Vong, L. and Wagener, T.: Effect of natural iron fertilization on carbon sequestration
806 in the Southern Ocean. *Nature* 446, 1070-1074, 2007.

807 Boon, J. J., Rijpstra, W. I. C., de Lange, F., De Leeuw, J., Yoshioka, M., and Shimizu, Y.: Black
808 Sea sterol—a molecular fossil for dinoflagellate blooms, *Nature*, 277, 125-127, 1979.

809 Cavalieri, D., Parkinson, C., Gloersen, P., and Zwally, H.: Sea ice concentrations from Nimbus-7
810 SMMR and DMSP SSM/I passive microwave data, National Snow and Ice Data Center, Boulder,
811 Colorado, USA, 1996.

812 Collares, L. L., Mata, M. M., Kerr, R., Arigony-Neto, J., and Barbat, M. M.: Iceberg drift and ocean
813 circulation in the northwestern Weddell Sea, Antarctica, *Deep Sea Research Part II: Topical*
814 *Studies in Oceanography*, 149, 10-24, 2018.

815 Colleoni, F., De Santis, L., Siddoway, C. S., Bergamasco, A., Golledge, N. R., Lohmann, G.,
816 Passchier, S., and Siegert, M. J.: Spatio-temporal variability of processes across Antarctic ice-
817 bed-ocean interfaces, *Nature Communications*, 9, 2289, <https://doi.org/10.1038/s41467-018-04583-0>, 2018.

819 Collins, L. G., Allen, C. S., Pike, J., Hodgson, D. A., Weckström, K., and Massé, G.: Evaluating
820 highly branched isoprenoid (HBI) biomarkers as a novel Antarctic sea-ice proxy in deep ocean
821 glacial age sediments, *Quaternary Science Reviews*, 79, 87-98, 2013.

822 Comiso, J. C., Gersten, R. A., Stock, L. V., Turner, J., Perez, G. J., and Cho, K.: Positive Trend in
823 the Antarctic Sea Ice Cover and Associated Changes in Surface Temperature, *Journal of Climate*,
824 30, 2251-2267, 2017.

825 Cook, A.J., Holland, P., Meredith, M., Murray, T., Luckman, A., Vaughan, D.G.: Ocean forcing of
826 glacier retreat in the WAP. *Science*, 353, 283-286, 2016.

827 Crosta, X., Pichon, J. J., and Burckle, L.: Application of modern analog technique to marine
828 Antarctic diatoms: Reconstruction of maximum sea-ice extent at the Last Glacial Maximum,
829 *Paleoceanography and Paleoclimatology*, 13, 284-297, 1998.

830 Crosta, X., Etourneau, J., Orme, L.C., Dalaïden, Q., Campagne, P., Swingedouw, D., Goosse, H.,
831 Massé, G., Miettinen, A., McKay, R.M., Dunbar, R.B., Escutia, C. and Ikehara, M.: Multi-
832 decadal trends in Antarctic sea-ice extent driven by ENSO–SAM over the last 2,000 years. *Nature*
833 *Geoscience* 14, 156-160, 2021.

834 Danilov, S., Sidorenko, D., Wang, Q., and Jung, T.: The Finite-volumE Sea ice–Ocean Model
835 (FESOM2), *Geosci. Model Dev.*, 10, 765-789, 2017.

836 de Jong, J., Schoemann, V., Lannuzel, D., Croot, P., de Baar, H. and Tison, J.-L.: Natural iron fertilization of the Atlantic sector of the
837 Southern Ocean by continental shelf sources of the Antarctic Peninsula. *Journal of Geophysical*
838 *Research: Biogeosciences* 117, 2012.

839 Denis, D., Crosta, X., Barbara, L., Massé, G., Renssen, H., Ther, O., and Giraudeau, J.: Sea ice and
840 wind variability during the Holocene in East Antarctica: insight on middle–high latitude coupling,
841 *Quaternary Science Reviews*, 29, 3709-3719, 2010.

842 Dorschel, B.: The Expedition PS118 of the Research Vessel POLARSTERN to the Weddell Sea in
843 2019, *Berichte zur Polar- und Meeresforschung = Reports on polar and marine research*, 735,
844 2019.

845 Doty, M. S., and Oguri, M.: The island mass effect, *ICES Journal of Marine Science*, 22, 33-37,
846 1956.

847 Eayrs, C., Li, X., Raphael, M.N. and Holland, D.M.: Rapid decline in Antarctic sea ice in recent
848 years hints at future change. *Nature Geoscience* 14, 460-464, 2021.

849 Esper, O., and Gersonde, R.: New tools for the reconstruction of Pleistocene Antarctic sea ice,
850 *Palaeogeography, Palaeoclimatology, Palaeoecology*, 399, 260-283, 2014.

851 Etourneau, J., Collins, L. G., Willmott, V., Kim, J.-H., Barbara, L., Leventer, A., Schouten, S.,
852 Damsté, J. S., Bianchini, A., and Klein, V.: Holocene climate variations in the WAP: evidence

853 for sea ice extent predominantly controlled by changes in insolation and ENSO variability,
854 Climate of the Past, 9, 1431-1446, 2013.

855 Etourneau, J., Sgubin, G., Crosta, X., Swingedouw, D., Willmott, V., Barbara, L., Houssais, M.-N.,
856 Schouten, S., Damsté, J.S.S., Goosse, H.: Ocean temperature impact on ice shelf extent in the
857 eastern Antarctic Peninsula. Nature Communications 10, 1-8, 2019.

858 Fahl, K., and Stein, R.: Modern seasonal variability and deglacial/Holocene change of central Arctic
859 Ocean sea-ice cover: new insights from biomarker proxy records, Earth and Planetary Science
860 Letters, 351, 123-133, 2012.

861 Fetterer, F., Knowles, K., Meier, W., Savoie, M., Windnagel, A.K., 2016. Updated Daily. Sea Ice
862 Index, Version 2. [Median Sea Ice Extent 1981-2010]. NSIDC: National Snow and Ice Data
863 Center, Boulder, Colorado USA. <https://doi.org/10.7265/N5736NV7> [24 July 2017].

864 Fietz, S., Huguet, C., Rueda, G., Hambach, B., and Rosell-Melé, A.: Hydroxylated isoprenoidal
865 GDGTs in the Nordic Seas, Marine Chemistry, 152, 1-10, 2013.

866 Fietz, S., Ho, S., and Huguet, C.: Archaeal Membrane Lipid-Based Paleoceanography for
867 Applications in Polar Oceans, Oceanography, 33, 104-114, 2020.

868 Foldvik, A., and Kviring, T.: Conditional instability of sea water at the freezing point, Deep Sea
869 Research and Oceanographic Abstracts, 21, 169-174, 1974.

870 Fretwell, P., Pritchard, H.D., Vaughan, D.G., 57 others. Bedmap2: improved ice bed, surface and
871 thickness datasets for Antarctica. Cryosphere 7, 375-393. <http://dx.doi.org/10.5194/tc-7-375-2013>, 2013.

873 Gersonde, R., and Zielinski, U.: The reconstruction of late Quaternary Antarctic sea-ice
874 distribution—the use of diatoms as a proxy for sea-ice, Palaeogeography, Palaeoclimatology,
875 Palaeoecology, 162, 263-286, 2000.

876 Gohl, K.: The expedition ANTARKTIS-XXIII/4 of the research vessel Polarstern in 2006, Berichte
877 zur Polar-und Meeresforschung (Reports on Polar and Marine Research), 557, 2007.

878 Gohl, K.: The Expedition PS104 of the Research Vessel POLARSTERN to the Amundsen Sea in
879 2017, Berichte zur Polar-und Meeresforschung = Reports on polar and marine research, 712,
880 2017.

881 Gordon, J.E., Harkness, D.D.: Magnitude and geographic variation of the radiocarbon content in
882 Antarctic marine life: implications for reservoir corrections in radiocarbon dating, *Quaternary
883 Science Reviews* 11, 697-708, 1992.

884 Hancke, K., Lund-Hansen, L. C., Lamare, M. L., Højlund Pedersen, S., King, M. D., Andersen, P.,
885 and Sorrell, B. K.: Extreme low light requirement for algae growth underneath sea ice: A case
886 study from Station Nord, NE Greenland, *Journal of Geophysical Research: Oceans*, 123, 985-
887 1000, 2018.

888 Harms, S., Fahrbach, E., and Strass, V. H.: Sea ice transports in the Weddell Sea, *Journal of
889 Geophysical Research: Oceans*, 106, 9057-9073, 2001.

890 Hedges, J.I., Hu, F.S., Devol, A.H., Hartnett, H.E., Tsamakis, E. and Keil, R.G.: Sedimentary organic
891 matter preservation; a test for selective degradation under oxic conditions. *Am J Sci* 299, 529-
892 555, 1999.

893 Hellmer, H.H., Rhein, M., Heinemann, G., Abalichin, J., Abouchami, W., Baars, O., Cubasch, U.,
894 Dethloff, K., Ebner, L., Fahrbach, E., Frank, M., Gollan, G., Greatbatch, R.J., Grieger, J.,
895 Grysanik, V.M., Gryscha, M., Hauck, J., Hoppema, M., Huhn, O., Kanzow, T., Koch, B.P.,
896 König-Langlo, G., Langematz, U., Leckebusch, G.C., Lüpkes, C., Paul, S., Rinke, A., Rost, B.,
897 van der Loeff, M.R., Schröder, M., Seckmeyer, G., Stichel, T., Strass, V., Timmermann, R.,
898 Trimborn, S., Ulbrich, U., Venchiarutti, C., Wacker, U., Willmes, S. and Wolf-Gladrow, D.:
899 Meteorology and oceanography of the Atlantic sector of the Southern Ocean - a review of German
900 achievements from the last decade. *Ocean Dynamics* 66, 1379-1413, 2016.

901 Hillenbrand, C.-D., Smith, J.A., Kuhn, G., Esper, O., Gersonde, R., Larter, R.D., Maher, B.,
902 Moreton, S.G., Shimmield, T.M., Korte, M.: Age assignment of a diatomaceous ooze deposited
903 in the western Amundsen Sea Embayment after the Last Glacial Maximum. *Journal of
904 Quaternary Science* 25, 280-295, 2010.

905 Hillenbrand, C.-D., Kuhn, G., Smith, J.A., Gohl, K., Graham, A.G.C., Larter, R.D., Klages, J.P.,
906 Downey, R., Moreton, S.G., Forwick, M., Vaughan, D.G.: Grounding-line retreat of the West
907 Antarctic Ice Sheet from inner Pine Island Bay. *Geology* 41, 35-38, 2013.

908 Hillenbrand, C.-D., Smith, J.A., Hodell, D.A., Greaves, M., Poole, C.R., Kender, S., Williams, M.,
909 Andersen, T.J., Jernas, P.E., Elderfield, H., Klages, J.P., Roberts, S.J., Gohl, K., Larter, R.D.,
910 Kuhn, G.: West Antarctic Ice Sheet retreat driven by Holocene warm water intrusions. *Nature*
911 547, 43–48, 2017.

912 Ho, S. L., Mollenhauer, G., Fietz, S., Martínez-Garcia, A., Lamy, F., Rueda, G., Schipper, K.,
913 Méheust, M., Rosell-Melé, A., Stein, R., and Tiedemann, R.: Appraisal of TEX₈₆ and
914 thermometries in subpolar and polar regions, *Geochimica et Cosmochimica Acta*, 131, 213-226,
915 2014.

916 Hobbs, W. R., Massom, R., Stammerjohn, S., Reid, P., Williams, G., and Meier, W.: A review of
917 recent changes in Southern Ocean sea ice, their drivers and forcings, *Global and Planetary*
918 *Change*, 143, 228-250, 2016.

919 Holland, P. R., Feltham, D. L., and Jenkins, A.: Ice shelf water plume flow beneath Filchner-Ronne
920 Ice Shelf, *Antarctica, Journal of Geophysical Research: Oceans*, 112,
921 <https://doi.org/10.1029/2006JC003915>, 2007.

922 Hopmans, E. C., Weijers, J. W., Schefuß, E., Herfort, L., Damsté, J. S. S., and Schouten, S.: A novel
923 proxy for terrestrial organic matter in sediments based on branched and isoprenoid tetraether
924 lipids, *Earth and Planetary Science Letters*, 224, 107-116, 2004.

925 Hoppmann, M., Nicolaus, M., Paul, S., Hunkeler, P. A., Heinemann, G., Willmes, S., Timmermann,
926 R., Boebel, O., Schmidt, T., and Kühnel, M.: Ice platelets below Weddell Sea landfast sea ice,
927 *Annals of Glaciology*, 56, 175-190, 2015.

928 Hoppmann, M., Richter, M. E., Smith, I. J., Jendersie, S., Langhorne, P. J., Thomas, D. N., and
929 Dieckmann, G. S.: Platelet ice, the Southern Ocean's hidden ice: a review, *Annals of Glaciology*,
930 1-28, 2020.

931 Huguet, C., de Lange, G. J., Gustafsson, Ö., Middelburg, J. J., Damsté, J. S. S., and Schouten, S.:
932 Selective preservation of soil organic matter in oxidized marine sediments (Madeira Abyssal
933 Plain), *Geochimica et Cosmochimica Acta*, 72, 6061-6068, 2008.

934 Iacono, M. J., Delamere, J. S., Mlawer, E. J., Shephard, M. W., Clough, S. A., and Collins, W. D.:
935 Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer

936 models, Journal of Geophysical Research: Atmospheres, 113,
937 <https://doi.org/10.1029/2008JD009944>, 2008.

938 Jacobs, S. S., Jenkins, A., Giulivi, C. F., and Dutrieux, P.: Stronger ocean circulation and increased
939 melting under Pine Island Glacier ice shelf, *Nature Geoscience*, 4, 519-523, 2011.

940 Jenkins, A., and Jacobs, S.: Circulation and melting beneath George VI ice shelf, Antarctica, *Journal*
941 *of Geophysical Research: Oceans*, 113, <https://doi.org/10.1029/2007JC004449>, 2008.

942 Johns, L., Wraige, E., Belt, S., Lewis, C., Massé, G., Robert, J.-M., and Rowland, S.: Identification
943 of a C₂₅ highly branched isoprenoid (HBI) diene in Antarctic sediments, Antarctic sea-ice diatoms
944 and cultured diatoms, *Organic Geochemistry*, 30, 1471-1475, 1999.

945 Kalanetra, K. M., Bano, N., and Hollibaugh, J. T.: Ammonia-oxidizing Archaea in the Arctic Ocean
946 and Antarctic coastal waters, *Environmental Microbiology*, 11, 2434-2445, 2009.

947 Khazendar, A., Rignot, E., Schroeder, D.M., Seroussi, H., Schodlok, M.P., Scheuchl, B., Mouginot,
948 J., Sutterley, T.C., Velicogna, I.: Rapid submarine ice melting in the grounding zones of ice
949 shelves in West Antarctica. *Nature communications* 7, 1-8, 2016.

950 Kim, J.-H., Van der Meer, J., Schouten, S., Helmke, P., Willmott, V., Sangiorgi, F., Koç, N.,
951 Hopmans, E. C., and Damsté, J. S. S.: New indices and calibrations derived from the distribution
952 of crenarchaeal isoprenoid tetraether lipids: Implications for past sea surface temperature
953 reconstructions, *Geochimica et Cosmochimica Acta*, 74, 4639-4654, 2010.

954 Kim, J.-H., Crosta, X., Willmott, V., Renssen, H., Bonnin, J., Helmke, P., Schouten, S., and
955 Sinninghe Damsté, J. S.: Holocene subsurface temperature variability in the eastern Antarctic
956 continental margin, *Geophysical Research Letters*, 39, <https://doi.org/10.1029/2012GL051157>,
957 2012.

958 Klinck, J. M., Hofmann, E. E., Beardsley, R. C., Salihoglu, B., and Howard, S.: Water-mass
959 properties and circulation on the WAP Continental Shelf in Austral Fall and Winter 2001, *Deep*
960 *Sea Research Part II: Topical Studies in Oceanography*, 51, 1925-1946, 2004.

961 Köhler, P., Nehrbass-Ahles, C., Schmitt, J., Stocker, T. F., and Fischer, H.: A 156 kyr smoothed
962 history of the atmospheric greenhouse gases CO₂, CH₄, and N₂O and their radiative forcing, *Earth*
963 *Syst. Sci. Data*, 9, 363-387, 2017.

964 Lamping, N., Müller, J., Esper, O., Hillenbrand, C.-D., Smith, J. A., and Kuhn, G.: Highly branched
965 isoprenoids reveal onset of deglaciation followed by dynamic sea-ice conditions in the western
966 Amundsen Sea, Antarctica, Quaternary Science Reviews, 228,
967 <https://doi.org/10.1016/j.quascirev.2019.106103>, 2020.

968 Lange, M., Ackley, S., Wadhams, P., Dieckmann, G., and Eicken, H.: Development of sea ice in the
969 Weddell Sea, *Annals of Glaciology*, 12, 92-96, 1989.

970 Langhorne, P., Hughes, K., Gough, A., Smith, I., Williams, M., Robinson, N., Stevens, C., Rack,
971 W., Price, D., and Leonard, G.: Observed platelet ice distributions in Antarctic sea ice: An index
972 for ocean-ice shelf heat flux, *Geophysical Research Letters*, 42, 5442-5451, 2015.

973 Leventer, A.: The fate of Antarctic “sea ice diatoms” and their use as paleoenvironmental indicators,
974 Antarctic sea ice. *Biological processes, interactions and variability*, 121-137, 1998.

975 Li, X., Holland, D.M., Gerber, E.P. and Yoo, C.: Impacts of the north and tropical Atlantic Ocean on
976 the Antarctic Peninsula and sea ice. *Nature* 505, 538-542, 2014.

977 Liu, J., Curry, J. A., and Martinson, D. G.: Interpretation of recent Antarctic sea ice variability,
978 *Geophysical Research Letters*, 31, <https://doi.org/10.1029/2003GL018732>, 2004.

979 Liu, R., Han, Z., Zhao, J., Zhang, H., Li, D., Ren, J., Pan, J., Zhang, H.: Distribution and source of
980 glycerol dialkyl glycerol tetraethers (GDGTs) and the applicability of GDGT-based temperature
981 proxies in surface sediments of Prydz Bay, East Antarctica. *Polar Research*, 2020.

982 Locarnini, R. A., Mishonov, A. V., Antonov, J. I., Boyer, T. P., Garcia, H. E., Baranova, O. K.,
983 Zweng, M. M., Paver, C. R., Reagan, J. R., and Johnson, D. R.: *World ocean atlas 2013. Volume*
984 1, Temperature, NOAA Atlas NESDIS 73, 40 pp., doi: 10.7289/V55X26VD, 2013.

985 Lohmann, G., Butzin, M., Eissner, N., Shi, X., and Stepanek, C.: Abrupt climate and weather
986 changes across time scales, *Paleoceanography and Paleoclimatology*, 35,
987 <https://doi.org/10.1029/2019PA003782>, 2020.

988 López-García, P., Rodriguez-Valera, F., Pedrós-Alió, C., and Moreira, D.: Unexpected diversity of
989 small eukaryotes in deep-sea Antarctic plankton, *Nature*, 409, 603-607, 2001.

990 Lorenz, S. J., and Lohmann, G.: Acceleration technique for Milankovitch type forcing in a coupled
991 atmosphere-ocean circulation model: method and application for the Holocene, *Climate*
992 *Dynamics*, 23, 727-743, 2004.

993 Lott, F.: Alleviation of stationary biases in a GCM through a mountain drag parameterization scheme
994 and a simple representation of mountain lift forces, *Monthly weather review*, 127, 788-801, 1999.

995 Loveland, T. R., Reed, B. C., Brown, J. F., Ohlen, D. O., Zhu, Z., Yang, L., and Merchant, J. W.:
996 Development of a global land cover characteristics database and IGBP DISCover from 1 km
997 AVHRR data, *Int. J. Remote Sens.*, 21, 1303-1330, 2000.

998 Lü, X., Liu, X.-L., Elling, F. J., Yang, H., Xie, S., Song, J., Li, X., Yuan, H., Li, N., and Hinrichs,
999 K.-U.: Hydroxylated isoprenoid GDGTs in Chinese coastal seas and their potential as a
1000 paleotemperature proxy for mid-to-low latitude marginal seas, *Organic Geochemistry*, 89-90, 31-
1001 43, 2015.

1002 Massé, G., Belt, S. T., Crosta, X., Schmidt, S., Snape, I., Thomas, D. N., and Rowland, S. J.: Highly
1003 branched isoprenoids as proxies for variable sea ice conditions in the Southern Ocean, *Antarctic*
1004 *Science*, 23, 487-498, 2011.

1005 Massom, R. A., Scambos, T. A., Bennetts, L. G., Reid, P., Squire, V. A., and Stammerjohn, S. E.:
1006 Antarctic ice shelf disintegration triggered by sea ice loss and ocean swell, *Nature*, 558, 383-389,
1007 2018.

1008 Medlin, L.: *Berkeleya* spp. from Antarctic waters, including *Berkeleya adeliensis*, sp. nov., a new
1009 tube dwelling diatom from the undersurface of sea-ice, *Beihefte zur Nova Hedwigia*, 100, 77-89,
1010 1990.

1011 Meredith, M. P., Woodworth, P. L., Chereskin, T. K., Marshall, D. P., Allison, L. C., Bigg, G. R.,
1012 Donohue, K., Heywood, K. J., Hughes, C. W., and Hibbert, A.: Sustained monitoring of the
1013 Southern Ocean at Drake Passage: Past achievements and future priorities, *Reviews of*
1014 *Geophysics*, 49, <https://doi.org/10.1029/2010RG000348>, 2011.

1015 Meyers, P. A.: Organic geochemical proxies of paleoceanographic, paleolimnologic, and
1016 paleoclimatic processes, *Organic geochemistry*, 27, 213-250, 1997.

1017 Moore, J. K., and Abbott, M. R.: Surface chlorophyll concentrations in relation to the Antarctic Polar
1018 Front: seasonal and spatial patterns from satellite observations, *Journal of Marine Systems*, 37,
1019 69-86, 2002.

1020 Müller, J., Wagner, A., Fahl, K., Stein, R., Prange, M., and Lohmann, G.: Towards quantitative sea
1021 ice reconstructions in the northern North Atlantic: A combined biomarker and numerical
1022 modelling approach, *Earth and Planetary Science Letters*, 306, 137-148, 2011.

1023 Müller, J., and Stein, R.: High-resolution record of late glacial and deglacial sea ice changes in Fram
1024 Strait corroborates ice-ocean interactions during abrupt climate shifts, *Earth and Planetary
1025 Science Letters*, 403, 446-455, 2014.

1026 Nakayama, Y., Schröder, M., Hellmer, H.H.: From circumpolar deep water to the glacial meltwater
1027 plume on the eastern Amundsen Shelf. *Deep Sea Research Part I: Oceanographic Research
1028 Papers* 77, 50-62, 2013.

1029 Nakayama, Y., Menemenlis, D., Zhang, H., Schodlok, M. and Rignot, E.: Origin of Circumpolar
1030 Deep Water intruding onto the Amundsen and Bellingshausen Sea continental shelves. *Nature
1031 Communications* 9, 3403, 2018.

1032 Nicholls, K. W., Østerhus, S., Makinson, K., Gammelsrød, T., and Fahrbach, E.: Ice-ocean processes
1033 over the continental shelf of the southern Weddell Sea, Antarctica: A review, *Reviews of
1034 Geophysics*, 47, <https://doi.org/10.1029/2007RG000250>, 2009.

1035 Nichols, P. D., Palmisano, A. C., Volkman, J. K., Smith, G. A., and White, D. C.: Occurrence of an
1036 isoprenoid C₂₅ diunasaturated alkene and high neutral lipid content in Antarctic sea-ice diatom
1037 communities 1, *Journal of Phycology*, 24, 90-96, 1988.

1038 Nielsdóttir, M. C., Bibby, T. S., Moore, C. M., Hinz, D. J., Sanders, R., Whitehouse, M., Korb, R.,
1039 and Achterberg, E. P.: Seasonal and spatial dynamics of iron availability in the Scotia Sea, *Marine
1040 Chemistry*, 130, 62-72, 2012.

1041 Nolting, R., De Baar, H., Van Bennekom, A., and Masson, A.: Cadmium, copper and iron in the
1042 Scotia Sea, Weddell Sea and Weddell/Scotia confluence (Antarctica), *Marine Chemistry*, 35,
1043 219-243, 1991.

1044 Orsi, A. H., Whitworth III, T., and Nowlin Jr, W. D.: On the meridional extent and fronts of the
1045 Antarctic Circumpolar Current, Deep Sea Research Part I: Oceanographic Research Papers, 42,
1046 641-673, 1995.

1047 Otto-Bliesner, B., Brady, E., Zhao, A., Brierley, C., Axford, Y., Capron, E., Govin, A., Hoffman, J.,
1048 Isaacs, E., and Kageyama, M.: Large-scale features of Last Interglacial climate: Results from
1049 evaluating the lig127k simulations for CMIP6-PMIP4, Climate of the Past, 17, 63-94, 2021.

1050 Otto-Bliesner, B. L., Braconnot, P., Harrison, S. P., Lunt, D. J., Abe-Ouchi, A., Albani, S., Bartlein,
1051 P. J., Capron, E., Carlson, A. E., and Dutton, A.: The PMIP4 contribution to CMIP6—Part 2: Two
1052 interglacials, scientific objective and experimental design for Holocene and Last Interglacial
1053 simulations, Geoscientific Model Development, 10, 3979-4003, 2017.

1054 Park, E., Hefter, J., Fischer, G., Iversen, M. H., Ramondenc, S., Nöthig, E.-M., and Mollenhauer,
1055 G.: Seasonality of archaeal lipid flux and GDGT-based thermometry in sinking particles of high-
1056 latitude oceans: Fram Strait (79° N) and Antarctic Polar Front (50° S), Biogeosciences, 16, 2247-
1057 2268, 2019.

1058 Parkinson, C. L., and Cavalieri, D. J.: Antarctic sea ice variability and trends, 1979-2010, The
1059 Cryosphere, 6, 871-880, 2012.

1060 Parkinson, C. L.: A 40-y record reveals gradual Antarctic sea ice increases followed by decreases at
1061 rates far exceeding the rates seen in the Arctic, Proceedings of the National Academy of Sciences,
1062 116, 14414-14423, 2019.

1063 Paul, S., Willmes, S., and Heinemann, G.: Long-term coastal-polynya dynamics in the southern
1064 Weddell Sea from MODIS thermal-infrared imagery, The Cryosphere, 9, 2027-2041, 2015.

1065 Pritchard, H., Ligtenberg, S., Fricker, H., Vaughan, D., Van den Broeke, M., and Padman, L.:
1066 Antarctic ice-sheet loss driven by basal melting of ice shelves, Nature, 484, 502-505, 2012.

1067 Raddatz, T., Reick, C., Knorr, W., Kattge, J., Roeckner, E., Schnur, R., Schnitzler, K.-G., Wetzel,
1068 P., and Jungclaus, J.: Will the tropical land biosphere dominate the climate–carbon cycle
1069 feedback during the twenty-first century?, Climate dynamics, 29, 565-574, 2007.

1070 Riaux-Gobin, C., and Poulin, M.: Possible symbiosis of *Berkeleya adeliensis* Medlin, *Synedropsis*
1071 *fragilis* (Manguin) Hasle et al. and *Nitzschia lecointei* Van Heurck (Bacillariophyta) associated
1072 with land-fast ice in Adélie Land, Antarctica, *Diatom Research*, 19, 265-274, 2004.

1073 Riaux-Gobin, C., Dieckmann, G. S., Poulin, M., Neveux, J., Labrune, C., and Vention, G.:
1074 Environmental conditions, particle flux and sympagic microalgal succession in spring before the
1075 sea-ice break-up in Adélie Land, East Antarctica, *Polar Research*, 32,
1076 <https://doi.org/10.3402/polar.v32i0.19675>, 2013.

1077 Rignot, E., Mouginot, J., Scheuchl, B., Van Den Broeke, M., Van Wessem, M.J., Morlighem, M.:
1078 Four decades of Antarctic Ice Sheet mass balance from 1979–2017. *Proceedings of the National*
1079 *Academy of Sciences* 116, 1095-1103, 2019.

1080 Rintoul, S., Hughes, C., and Olbers, D.: The Antarctic circumpolar current system, *International*
1081 *Geophysics*, 77, 271-302, 2001.

1082 Roeckner, E., Dümenil, L., Kirk, E., Lunkeit, F., Ponater, M., Rockel, B., Sausen, R., and Schlese,
1083 U.: The Hamburg version of the ECMWF model (ECHAM), *Research activities in atmospheric*
1084 *and oceanic modelling. CAS/JSC Working Group on Numerical Experimentation*, 13, 7.1-7.4,
1085 1989.

1086 Rontani, J.-F., Smik, L. and Belt, S.T.: Autoxidation of the sea ice biomarker proxy IPSO_{25} in the
1087 near-surface oxic layers of Arctic and Antarctic sediments, *Organic Geochemistry* 129, 63-76,
1088 2019.

1089 Rontani, J.-F., Belt, S.T. and Amiraux, R.: Biotic and abiotic degradation of the sea ice diatom
1090 biomarker IP_{25} and selected algal sterols in near-surface Arctic sediments, *Organic Geochemistry*
1091 118, 73-88, 2018.

1092 Sangrà, P., Gordo, C., Hernández-Arencibia, M., Marrero-Díaz, A., Rodríguez-Santana, A., Stegner,
1093 A., Martínez-Marrero, A., Pelegrí, J. L., and Pichon, T.: The Bransfield current system, *Deep Sea*
1094 *Research Part I: Oceanographic Research Papers*, 58, 390-402, 2011.

1095 Scambos, T. A., Bell, R. E., Alley, R. B., Anandakrishnan, S., Bromwich, D., Brunt, K.,
1096 Christianson, K., Creyts, T., Das, S., and DeConto, R.: How much, how fast?: A science review

1097 and outlook for research on the instability of Antarctica's Thwaites Glacier in the 21st century,
1098 *Global and Planetary Change*, 153, 16-34, 2017.

1099 Schmidt, K., Brown, T. A., Belt, S. T., Ireland, L. C., Taylor, K. W., Thorpe, S. E., Ward, P., and
1100 Atkinson, A.: Do pelagic grazers benefit from sea ice? Insights from the Antarctic sea ice proxy
1101 $IPSO_{25}$, 15, 1987-2006, 2018.

1102 Schmidtko, S., Heywood, K. J., Thompson, A. F., and Aoki, S.: Multidecadal warming of Antarctic
1103 waters, *Science*, 346, 1227-1231, 2014.

1104 Schofield, O., Brown, M., Kohut, J., Nardelli, S., Saba, G., Waite, N., and Ducklow, H.: Changes in
1105 the upper ocean mixed layer and phytoplankton productivity along the West Antarctic Peninsula,
1106 *Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering*
1107 *Sciences*, 376, <https://doi.org/10.1098/rsta.2017.0173>, 2018.

1108 Schouten, S., Hopmans, E. C., Schefuß, E., and Sinninghe Damsté, J. S.: Distributional variations in
1109 marine crenarchaeotal membrane lipids: a new tool for reconstructing ancient sea water
1110 temperatures?, *Earth and Planetary Science Letters*, 204, 265-274, 2002.

1111 Schouten, S., Hopmans, E. C., and Sinninghe Damsté, J. S.: The organic geochemistry of glycerol
1112 dialkyl glycerol tetraether lipids: A review, *Organic Geochemistry*, 54, 19-61, 2013.

1113 Schröder, M.: The Expedition PS111 of the Research POLARSTERN to the southern Weddell Sea
1114 in 2018, *Berichte zur Polar-und Meeresforschung = Reports on polar and marine research*, 718,
1115 2018.

1116 Sidorenko, D., Goessling, H., Koldunov, N., Scholz, P., Danilov, S., Barbi, D., Cabos, W., Gurses,
1117 O., Harig, S., and Hinrichs, C.: Evaluation of FESOM2. 0 coupled to ECHAM6. 3: Preindustrial
1118 and HighResMIP simulations, *Journal of Advances in Modeling Earth Systems*, 11, 3794-3815,
1119 2019.

1120 Smik, L., Belt, S. T., Lieser, J. L., Armand, L. K., and Leventer, A.: Distributions of highly branched
1121 isoprenoid alkenes and other algal lipids in surface waters from East Antarctica: further insights
1122 for biomarker-based paleo sea-ice reconstruction, *Organic Geochemistry*, 95, 71-80, 2016.

1123 Smith, J.A., Hillenbrand, C.-D., Kuhn, G., Klages, J.P., Graham, A.G.C., Larter, R.D., Ehrmann,
1124 W., Moreton, S.G., Wiers, S., Frederichs, T.: New constraints on the timing of West Antarctic

1125 Ice Sheet retreat in the eastern Amundsen Sea since the Last Glacial Maximum. *Glob. Planet.*
1126 *Change* 112, 224-237, 2014.

1127 Smith, J.A., Hillenbrand, C.-D., Kuhn, G., Larter, R.D., Graham, A.G.C., Ehrmann, W., Moreton,
1128 S.G., Forwick, M.: Deglacial history of the West Antarctic Ice Sheet in the western Amundsen
1129 Sea Embayment, *Quaternary Science Reviews* 30, 488-505, 2011.

1130 Smith, J.A., Andersen, T., Shortt, M., Gaffney, A., Truffer, M., Stanton, T.P., Bindschadler, R.,
1131 Dutrieux, P., Jenkins, A., Hillenbrand, C.-D.: Sub-ice-shelf sediments record history of twentieth-
1132 century retreat of Pine Island Glacier, *Nature* 541, 77-80, 2017.

1133 Spencer-Jones, C. L., McClymont, E. L., Bale, N. J., Hopmans, E. C., Schouten, S., Müller, J.,
1134 Abrahamsen, E. P., Allen, C., Bickert, T., Hillenbrand, C. D., Mawbey, E., Peck, V., Svalova,
1135 A., and Smith, J. A.: Archaeal Intact Polar Lipids in Polar Waters: A Comparison Between the
1136 Amundsen and Scotia Seas, *Biogeosciences Discuss. [preprint]*, https://doi.org/10.5194/bg-2020-333_in_review, 2020
1137 *Biogeosciences* 18, 3485-3504, <https://doi.org/10.5194/bg-18-3485-2021>,
1138 2021.

1139 Stevens, B., Giorgetta, M., Esch, M., Mauritzen, T., Crueger, T., Rast, S., Salzmann, M., Schmidt,
1140 H., Bader, J., and Block, K.: Atmospheric component of the MPI-M Earth system model:
1141 ECHAM6, *Journal of Advances in Modeling Earth Systems*, 5, 146-172, 2013.

1142 Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y.,
1143 Bex, V., and Midgley, P. M.: The physical science basis. Contribution of working group I to the
1144 fifth assessment report of the intergovernmental panel on climate change, *Computational
1145 Geometry*, 18, 95-123, 2013.

1146 Tesi, T., Belt, S., Gariboldi, K., Muschitiello, F., Smik, L., Finocchiaro, F., Giglio, F., Colizza, E.,
1147 Gazzurra, G., and Giordano, P.: Resolving sea ice dynamics in the north-western Ross Sea during
1148 the last 2.6 ka: From seasonal to millennial timescales, *Quaternary Science Reviews*, 237,
1149 <http://dx.doi.org/10.1016/j.quascirev.2020.106299>, 2020.

1150 Thomas, D. N.: *Sea ice*, John Wiley & Sons, 2017.

1151 Thompson, A. F., Heywood, K. J., Thorpe, S. E., Renner, A. H., and Trasviña, A.: Surface circulation
1152 at the tip of the Antarctic Peninsula from drifters, *Journal of Physical Oceanography*, 39, 3-26,
1153 2009.

1154 Thompson, A. F., Stewart, A. L., Spence, P., and Heywood, K. J.: The Antarctic Slope Current in a
1155 changing climate, *Reviews of Geophysics*, 56, 741-770, 2018.

1156 Turner, J., Orr, A., Gudmundsson, G. H., Jenkins, A., Bingham, R. G., Hillenbrand, C.-D., and
1157 Bracegirdle, T. J.: Atmosphere-ocean-ice interactions in the Amundsen Sea Embayment, West
1158 Antarctica, *Reviews of Geophysics*, 55, 235-276, 2017.

1159 Turner, J., Guarino, M.V., Arnatt, J., Jena, B., Marshall, G.J., Phillips, T., Bajish, C.C., Clem, K.,
1160 Wang, Z., Andersson, T., Murphy, E.J., Cavanagh, R.: Recent Decrease of Summer Sea Ice in
1161 the Weddell Sea, Antarctica, *Geophysical Research Letters* 47, e2020GL087127, 2020.

1162 Valcke, S.: The OASIS3 coupler: A European climate modelling community software, *Geoscientific
1163 Model Development*, 6, 373-388, 2013.

1164 Vaughan, D. G., Marshall, G. J., Connolley, W. M., Parkinson, C., Mulvaney, R., Hodgson, D. A.,
1165 King, J. C., Pudsey, C. J., and Turner, J.: Recent rapid regional climate warming on the Antarctic
1166 Peninsula, *Climatic change*, 60, 243-274, 2003.

1167 Vaughan, D. G.: West Antarctic Ice Sheet collapse—the fall and rise of a paradigm, *Climatic Change*,
1168 91, 65-79, 2008.

1169 Vernet, M., Geibert, W., Hopema, M., Brown, P. J., Haas, C., Hellmer, H., Jokat, W., Jullion, L.,
1170 Mazloff, M., and Bakker, D.: The Weddell Gyre, Southern Ocean: present knowledge and future
1171 challenges, *Reviews of Geophysics*, 57, 623-708, 2019.

1172 Volkman, J. K.: Lipid markers for marine organic matter, in: *Marine organic matter: Biomarkers,
1173 isotopes and DNA*, Springer, 27-70, 2006.

1174 Vorrath, M.-E., Müller, J., Esper, O., Mollenhauer, G., Haas, C., Schefuß, E., and Fahl, K.: Highly
1175 branched isoprenoids for Southern Ocean sea ice reconstructions: a pilot study from the WAP,
1176 *Biogeosciences*, 16, 2961-2981, 2019.

1177 Vorrath, M.-E., Müller, J., Rebolledo, L., Cárdenas, P., Shi, X., Esper, O., Opel, T., Geibert, W.,
1178 Muñoz, P., and Haas, C.: Sea ice dynamics in the Bransfield Strait, Antarctic Peninsula, during

1179 the past 240 years: a multi-proxy intercomparison study, *Climate of the Past*, 16, 2459-2483,
1180 2020.

1181 Wang, Z., Turner, J., Wu, Y., Liu, C.: Rapid Decline of Total Antarctic Sea Ice Extent during 2014–
1182 16 Controlled by Wind-Driven Sea Ice Drift. *Journal of Climate* 32, 5381-5395, 2019.

1183 Witus, A.E., Branecky, C.M., Anderson, J.B., Szczuciński, W., Schroeder, D.M., Blankenship, D.D.,
1184 Jakobsson, M.: Meltwater intensive glacial retreat in polar environments and investigation of
1185 associated sediments: example from Pine Island Bay, West Antarctica, *Quaternary Science*
1186 *Reviews*, 85, 99–118, 2014.

1187 Xiao, X., Fahl, K., Müller, J., and Stein, R.: Sea-ice distribution in the modern Arctic Ocean:
1188 Biomarker records from trans-Arctic Ocean surface sediments, *Geochimica et Cosmochimica
1189 Acta*, 155, 16-29, 2015.

1190 Zamelczyk, K., Rasmussen, T. L., Husum, K., Haflidason, H., de Vernal, A., Ravna, E. K., Hald,
1191 M., and Hillaire-Marcel, C.: Paleoceanographic changes and calcium carbonate dissolution in the
1192 central Fram Strait during the last 20 ka, *Quaternary Research*, 78, 405-416, 2012.

1193 Zielinski, U., Gersonde, R., Sieger, R., and Fütterer, D.: Quaternary surface water temperature
1194 estimations: Calibration of a diatom transfer function for the Southern Ocean, *Paleoceanography*
1195 and *Paleoclimatology*, 13, 365-383, 1998.

1196 Zwally, H. J.: Antarctic sea ice, 1973-1976: Satellite passive-microwave observations, *Scientific and
1197 Technical Information Branch, National Aeronautics and Space*, 1983.

1198

1199