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1. Terminology of the Eocene-Oligocene Transition.  

In our paper we have applied terminology suggested in the recent review by Hutchinson et al.(Hutchinson et al., 2021) . 

According to the revised definition, the EOT is understood as a phase of accelerated climatic and biotic change that began 20 

before and ended after the Eocene-Oligocene boundary (EOB). Stratigraphically the EOT is defined at its base by the extinction 

of the nannofossil D. saipanensis and at its top by the highest values of the benthic δ18O maximum referred to as EOIS, which 

postdates the base of magnetochron Chron C13n. On the most commonly used current timescale, ‘Geological Timescale 2012’ 

(GTS2012; Gradstein et al., 2012), the critical levels are calibrated as follows: extinction of D. saipanensis = 34.44 Ma; the 

EOB = 33.88 Ma (the extinction of Hantenina spp.); the base of Chron C13n at 33.705, and the top of the EOIS = 33.65 Ma. 25 

Thus following the revised definition, the EOT has an estimated duration of 790 kyr. Furthermore, under this definition the 

'Late Eocene Event' is in the base EOT. 

2. Lithostratigraphy of Site 647  

The studied succession belongs to the Lithologic Unit III (Cores 105-647A-15R to 105-647A-55R; 135.4–530.3 mbsf) which 

is of the middle Eocene to early Oligocene age (Srivastava and Arthur, 1987) (Fig. S1). The Unit III is grayish-green, 30 

moderately to strongly bioturbated nannofossil claystone and nannofossil chalk (Srivastava and Arthur, 1987). The Subunit 

IIIA (Cores 105-647A-15R to 105-647A-22r; 135.4−212.3 mbsf) is rich in nannofossil and diatoms. The Subunit IIIB (Cores 

105-647A-23R to 105-647A-25R; 212.3−241.1 mbsf) consists of biogenic claystone containing 25%-50% diatoms and sponge 

spicules. Calcareous nannofossil are present, but not significant. The Subunit IIIC (Cores 105-647A-26R to 105-647A-55R; 
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241.1−530.3 mbsf) is rich in calcareous nannofossils, on some levels in foraminifers, and yields relatively little biogenic silica. 35 

The EOT at Site 647A spans the Subunit IIIC.  

 

 

 

 40 

Figure S1: Photographs of Cores 28 to 31 which span the Eocene-Oligocene Transition (EOT) in the ODP Site 647A. 

Positioning of samples for organic paleo-thermometery from these three cores are marked with white dots. 
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Figure S2: ODP Site 647: chronostratigraphy (Firth et al., 2013) and temperature data (this study) including calibration 45 

errors (UK’
37 and TEX86

H) and 90% uncertainty bar for the Bayspar TEX86 calibration.  

Raw data can be found in the Supplementary Information file.  
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Figure S3: Global SST evolution across the EOT. (a) Reconstructed 𝑃CO2atm based on planktonic foraminiferal 11B 49 

(pentagons) (Pearson et al., 2009) and phytoplankton alkenone 13C (triangles) (Pagani et al., 2011; Zhang et al., 2013). 50 

The effect of 𝑃CO2atm on radiative forcing scales logarithmically. (b) Newly generated and published (Liu et al., 2009, 51 

2018; Wade et al., 2012; Inglis et al., 2015; Śliwińska et al., 2019; Houben et al., 2019) reconstructed SSTs based on 52 

𝑈37
𝑘′  (diamonds) and TEX86

H  (circles) including Pacific Ocean Site 277 (cf. Fig. 3 in the main document). (c) ~1.2 Myr 53 

obliquity based astrochronozones. (d) ~2.4 Myr and 405 kyr eccentricity based astrochronozones. (e) Magneto- and 54 

chronostratigraphy based on the GTS2012 (Vandenberghe et al., 2012). 55 

 56 

 57 
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Figure S4: Zonal mean SST averages for (a) summer, (b) winter and (c) annual mean. 59 

 60 
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