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Abstract. Paleoclimate proxy records have non-negligible uncertainties that arise from both the proxy measurement and the

dating processes. Knowledge of the dating uncertainties is important for a rigorous propagation to further analyses; for ex-

ample for identification and dating of stadial-interstadial transitions in Greenland ice core records during glacial intervals, for

comparing the variability in different proxy archives, and for model-data comparisons in general. In this study we develop a

statistical framework to quantify and propagate dating uncertainties in layer-counted proxy archives using the example of the5

Greenland Ice Core Chronology 2005 (GICC05). We express the number of layers per depth interval as the sum of a structured

component that represents both underlying physical processes and biases in layer counting, described by a regression model,

and a noise component that represents the fluctuations of the underlying physical processes, as well as unbiased counting er-

rors. The age-depth relationship of the joint dating uncertainties can then be described by a multivariate Gaussian process from

which realizations of the chronology can be sampled. We show how the effect of an unknown counting bias can be incorporated10

in our framework and present refined estimates of the occurrence times of Dansgaard-Oeschger events evidenced in Greenland

ice cores together with a complete uncertainty quantification of these timings.

1 Introduction

The study of past climates is based on proxy measurements obtained from natural climate archives such as cave speleothems,

lake and ocean sediments, and ice cores. Paleoclimate reconstructions derived from proxies suffer from threefold uncertainty.15

First, the proxy measurement itself involves the typical measurement uncertainties. Second, the interpretation of proxy vari-

ables such as isotope ratios in terms of physical variables such as temperature is often ambiguous, and typically no one-to-one

mapping can be established between the measured proxies and the climatic quantities of interest. Third, the age has to be mea-

sured alongside the proxy variable. In most cases an age model can be inferred, that provides a quantitative relationship between

the depth in the archive under consideration and the corresponding age. Such age models are also subject to uncertainties.20

This study is exclusively concerned with the dating uncertainties of so-called layer counted archives, where the dating is

performed based on counting periodic signals in the proxy archives such as annual layers arising from the impact of the

seasonal cycle on the deposition process (e.g., Rasmussen et al., 2006). This type of archives comprises varved lake sediments,
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ice cores, banded corals, tree rings and some speleothems (Comboul et al., 2014). Using the example of the NGRIP ice core

(Andersen et al., 2004) and its associated chronology – the GICC05 (Vinther et al., 2006; Rasmussen et al., 2006; Andersen25

et al., 2006; Svensson et al., 2008) – , we present here a statistical approach to generate ensembles of age models that may in

turn be used to propagate the age uncertainties to any subsequent analysis of the time series derived from the NGRIP record.

Our method can be directly adapted to other layer-counted archives.

Layer counting assesses the age increments along the axis perpendicular to the layering, whose summation yields the total

age. In turn, also the errors made in the counting process accumulate such that in chronologies from counting annual layers,30

the absolute age uncertainty grows with increasing age (see Boers et al. (2017)).

Most importantly, dating uncertainties make it challenging to establish an unambiguous temporal relation between signals

recorded in different, and possibly remote, archives. Therefore, it is often not possible to decipher the exact temporal order

of events and distinguish causes from consequences across past climate changes. For example, abrupt Greenland warmings

(Dansgaard-Oeschger (DO) events) (Dansgaard et al., 1993; Johnsen et al., 1992) evidenced in ice core records from the last35

glacial are accompanied by changes in the east Asian monsoon system, which are apparent from Chinese speleothem records

(e.g., Zhou et al., 2014; Li et al., 2017). However, since the dating uncertainties exceed the relevant time scales of these

abrupt climate shifts, a clear order of events cannot be determined. This prevents to deduce if in the context of DO events, the

abrupt Greenland warming triggered a hemispheric transition in the atmosphere, or vice versa, or if these changes happened

simultaneously as part of a global abrupt climatic shift (Corrick et al., 2020).40

For the quantification of dating uncertainties in radiometrically dated archives, there exist well established generalized

frameworks. One example is the Bayesian Accumulation Model (Blaauw and Christeny, 2011) which presents a Bayesian

approach to uncertainty quantification of radiometric archives in which the sediment accumulation rate is modeled using a first

order autoregressive gamma distribution. Other methods or software include OxCal (Ramsey, 1995, 2008) and BChron (Haslett

and Parnell, 2008; Parnell et al., 2008). Contrarily, the uncertainties of layer counted archives are targeted systematically only45

by few studies. Comboul et al. (2014) present a probabilistic model of dating uncertainties in layer counted archives, where

the number of missed and double-counted layers are expressed as counting processes shaped by corresponding error rates.

However, this approach requires knowledge about these rates and further does not account for any uncertainty associated with

them. An alternative Bayesian approach for quantifying the dating uncertainty of layer counted archives is presented in (Boers

et al., 2017), where the uncertainty is shifted from the time axis to the proxy value. However, this approach does not allow for50

generation of ensembles of chronologies as required for uncertainty propagation.

Even though dating uncertainties are conveniently quantified for many archives, many studies ignore these and instead draw

inference from ’average’ or ’most likely’ age scales, as already highlighted by McKay et al. (2021). This involves the risk of

loosing valuable information, as shown in e.g. Riechers and Boers (2020) for example. In some cases, rigorous propagation of

uncertainty may yield results that qualitatively differ from results obtained by using the ’average’ or ’best fit’ age model. In55

this context, McKay et al. (2021) propose to apply the respective analysis to an ensemble of possible age scales to ensure the

uncertainty propagation, in line with the strategy proposed by Riechers and Boers (2020).
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We focus on the layer counted part of the GICC05 chronology, a synchronized age scale for several Greenland ice cores

Vinther et al. (2006); Rasmussen et al. (2006); Andersen et al. (2006); Svensson et al. (2008). It was obtained by counting the

layers of different Greenland ice cores and synchronizing the results using matchpoints. While the recent part of the chronology60

is compiled from multiple cores, the older part (older than 15 kyr b2k) is based exclusively on the layer counting in the NGRIP

core. We introduce a new method to generate realistic age ensembles for the NGRIP core, which conveniently represent the

uncertainty associated with the GICC05.

Originally, the dating uncertainty of the GICC05 is quantified in terms of the the maximum counting error (MCE). The MCE

increases by 0.5 years for every layer which is deemed uncertain by the investigators during the counting process:65

MCE(z) = 0.5Nu(z), (1)

where Nu is the number of uncertain layers up to depth z. While certain layers can clearly be recognized in the records,

uncertain layers are less pronounced and therefore it seems less certain that these signals truly correspond to physical layers.

The accumulation of uncertain layers results in high values for the MCE for the older parts of the core (MCE = 2.6 kyr at

60 kyr b2k estimated age). However, it seems highly unlikely that all uncertain layers are consistently either true layers or no70

layers, which is why we think that the MCE is an overly careful quantification of the age uncertainty, as already suggested by

Andersen et al. (2006). One might, alternatively, be tempted to treat the uncertain layers as a Bernoulli experiment with Nu

repetitions and a probability of one half for each uncertain layer to be a true layer. However, this would neglect any sort of bias

in the assessment of the uncertain layers and would lead to unrealistically small uncertainties, since over- and undercounting

practically cancel each other in this Bernoulli type interpretation (see Andersen et al. (2006); Rasmussen et al. (2006)).75

The method presented here abandons the notion of certain and uncertain layers. Instead, we separate the GICC05 chronology

into contributions that can be captured by deterministic model equations and corresponding residuals. We construct a new age-

depth model by complementing the deterministic part with a stochastic component designed in accordance with the statistics

of the residuals. This model can be used to generate age-depth ensembles in a computationally efficient manner. In turn, age

ensembles facilitate uncertainty propagation to subsequent analysis.80

The outline of this paper is as follows. Section 2 gives a description of the data used for this study. Section 3.1 introduces

our statistical model for the dating uncertainties, and details how we incorporate physical processes and how we deduce the

noise of the model from the statistics of the residuals. In section 3.2 we show how we can formulate our model in terms of a

hierarchical Bayesian modeling framework that allows for the physical and noise components to be estimated simultaneously.

This section also details how one can use the resulting posterior distributions of the model parameters to obtain a full description85

of the posterior distributions of the dating uncertainties using a sample-based approach. We finally demonstrate how a potential

counting bias could be incorporated by the model, and how that would affect the results. In section 4 we show how our

model can be used to obtain a full description of the dating uncertainties of major DO events, which takes into account the

dating uncertainties as well as the uncertainties of determining the depth at which they are recorded. Further discussion and

conclusions are provided in section 5.90
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2 NGRIP ice core data

We use the Greenland Ice core Chronology 2005 (GICC05) (Vinther et al., 2006; Rasmussen et al., 2006; Andersen et al.,

2006; Svensson et al., 2008) as defined for the NGRIP ice core (Andersen et al., 2004) together with the corresponding δ18O

proxy record jointly published as a supplement to Gkinis et al. (2014). The final age of the layer counted part of the GICC05

is 59,944 yr b2k, and we consider data up to 11,703 yr b2k. The following Holocene part of the record is excluded since it is95

governed by a substantially different climate than the last glacial interval (Rasmussen et al., 2014) For the considered period,

the NGRIP record is available at 5 cm resolution and thus equidistant in depth, but not in time. In total, the data comprises

n= 19,475 data points of the form (zk,yk,xk),k ∈ {0,1, ...,n−1}, where zk denotes the kth depth, yk the corresponding age

as indicated by the GICC05, and xk the δ18O value.

The GICC05 is based on counting annual layers which are evident in multi-proxy continuous flow measurements from the100

NGRIP, DYE3 and the GRIP ice cores. While the measurements from DYE3 and GRIP only facilitate layer counting up to

ages of 8.2 kyr b2k and 14.9 kyr b2k, respectively, the NGRIP core allowed the identification of annual layers up to an age of

60 kyr b2k. The uncertainty of the GICC05 has been quantified as follows: whenever the investigators were uncertain about

whether or not a signal in the data should be considered an annual layer, half a year was added to the cumulative number

of layers while simultaneously adding ±0.5 to the age uncertainty. The total age uncertainty determined by the number of105

all uncertain layers up to a given depth is termed the maximum counting error (MCE). The MCE amounts to a relative age

uncertainty of 0.84% at the onset of the Holocene and 4.34% at the end of the layer counted section of the core.

δ18O values from Greenland ice cores are interpreted as a qualitative measure of the site temperature at the time of pre-

cipitation (Jouzel et al., 1997; Gkinis et al., 2014). We include this data in our study since our modelling approach will make

use of the relation between atmospheric temperatures and the amount of precipitation, which in turn affects the thickness of110

the annual layers. In addition we use the division of the record into Greenland stadial and interstadial phases as presented

in Tab. 2 of Rasmussen et al. (2014). We label the depths at which stadial-interstadial transitions occur by z∗1 , ...,z
∗
p and the

corresponding ages by y∗1 , ...,y
∗
p . Figure 1 shows the measured δ18O values as a function of the GICC05 time scale, together

with the Greenland stadial and interstadial onsets.

3 Methods115

3.1 Age-depth model

We assume that depths z = (z1, ...,zn)⊤ and proxy values x= (x1, ...,xn)⊤ are measured accurately and hence treat them

as deterministic variables. In contrast, we consider the ages y = (y1, ...yn)⊤ as dependent stochastic variables and will in the

following establish a model to map the independent depths and stable isotope concentrations onto ages, in a way that reflects

the uncertainties inherent to the dating. The model will be supplemented with information on the prevailing climate period.120

In order to motivate our modelling approach we give some general considerations about the deposition process as well as

the counting process. The decisive quantity for us will be the incremental number of annual layers counted in a 5cm depth
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Figure 1. The measured δ18O isotope values plotted against the corresponding GICC05 time scale, starting from 11,793 yr b2k. The gray

vertical lines denote the transitions between Greenland stadial and interstadial periods as reported by Rasmussen et al. (2014).

increment of the ice core

∆yk = yk − yk−1. (2)

This quantity is determined by the amount of precipitation (minus the snow that is blown away by winds) during the corre-125

sponding period, the thinning that the layers experience over time deeper down in the core and potential errors made during the

counting process. While the thinning process can be expected to happen mostly deterministically, the net annual accumulation

of snow certainly exhibits stronger fluctuations. Finally, the counting error adds additional randomness. Thus, it is reasonable to

regard the observed age increments ∆y as a realization of a random vector ∆Y which can be decomposed into a deterministic

and a stochastic component130

∆Yk = a(zk) + εk. (3)

Note that the number of layer within a 5 cm depth increment is not necessarily an integer number. Given that the amount of

precipitation co-varies with atmospheric site temperatures we can specify

a(zk) = a(zk,x(zk))→ a(zk,xk). (4)

Based on physical arguments and the analysis of the observed age increments ∆yk, we will propose the structural form of the135

deterministic part of the model and then tune the model parameters to the data. In turn, this allows us to design the model’s

noise component ε in accordance with the corresponding residuals δk = ∆yk − a(zk,xk).
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3.1.1 Linear Regression

As explained above, the thickness of the counted layers, and thereby the number of layers per depth increment ∆zk = zk−zk−1,

is governed by two physical factors: the amount of precipitation at the time the layer was formed and the thinning of the core due140

to ice flow. These processes are here assumed to follow a regression model. We take into account the thinning by implementing a

second order polynomial dependency of ∆Y with respect to the depth. Choosing this nonlinear function conveniently accounts

for the saturation of the layer thinning evident in the NGRIP ice core. The amount of precipitation is known to co-vary with

atmospheric temperatures, since by the Clausius-Clapeyron relation, the moisture holding capacity of the atmosphere increases

with temperatures. This is described using a linear response to the δ18O measurements. Finally, we observe clear trends in145

the incremental layers that persist over individual stadials and interstadials. We therefore propose a deterministic model of the

form

a(zk,xk) = bz2
k + bxxk(zk) +

p∑

i=1

ψi(zk;ai, ci), (5)

with

ψi(zk;ai, ci) =




ai + cizk, z∗i < zk < z∗i+1

0, otherwise
, (6)150

in order to capture the systematic features of the chronology. Here, ci denote the period specific slopes and ai their corre-

sponding offsets. For p transitions between stadials and interstadials we have to tune 2p+ 2 regression parameters, which is

achieved by fitting the above model for a(zk,xk) to the observed layer increments ∆yk given by the GICC05 time scale in a

least square approach. As explained above, the GICC05 ages contain the contribution of uncertain layers, which were counted

as half a year each. In fact, the uncertain layers are not the only source of uncertainty in the GICC05 dating. Here, we abandon155

the distinction of certain and uncertain layers and regard the GICC05 ages as the best possible estimate of the true ages and

accordingly use them directly for the optimization. The fitted model is shown in red in the top panel of Fig. 2.

3.1.2 Noise structure

After tuning the deterministic part of Eq. 3, the residuals are given by

δk = a(zk,xk)−∆yk. (7)160

We find the residuals to be symmetric and unimodally distributed, and apart from some degree of over-dispersion they appear

to be well described by a normal distribution, as shown in Fig. 3. Moreover, by examining the empirical autocorrelation

illustrated in Figure 3c, we observe that the residuals appear to be well described by a normal distribution and exhibit a fast

decay of memory which is indicative of stationarity. This suggests that the noise can be expressed using a short-memory

Gaussian stochastic process.165
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Figure 2. (a) Number of layers counted in the GICC05 time scale per 5cm depth increments in the NGRIP ice core (black). The red line

shows the fitted values from the regression model a(zk,xk) = bz2
k + bxx(k)+

∑p
i=1ψi(zk;ai, ci). The gray vertical lines represent the

transitions between Greenland stadials and interstadials. (b) The residuals εk obtained from fitting the regression model a(zk,xk) to the

layer increments ∆yk.

We explore three different models for the correlation structure of the noise ε. The first model assumes that they follow

independent and identically distributed (iid) Gaussian processes

εk
iid∼ N (0,σ2

ε). (8)

The second model assumes that the noise can be described by a first-order autoregressive (AR) process

εk = ϕεk−1 + ξk, (9)170

where ϕ is the first-lag autocorrelation coefficient and ξk is a white noise process with variance σ2
ξ = σ2

ε/(1−ϕ2). The third

model assumes the noise follows a second-order autoregressive process

εk = ϕ1εk−1 +ϕ2εk−2 + ξk, (10)
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Figure 3. (a) Histogram of the residuals obtained from least squares fit of the regression model a(zk,xk). (b) The corresponding quantile-

quantile plot. We observe key properties of symmetry and unimodality indicating Gaussianity. The quantile-quantile plot indicates a small

over-dispersion, but overall the data seem to be consistent with a normal distribution. (c) The autocorrelation function of the residuals from

the least squares fit of the linear regression model, up to a maximum of 20 lags. A fast memory decay can be inferred.

where ϕ1 and ϕ2 are the first- and second-lag autocorrelation coefficients and ξk is a white noise process with variance

σ2
ξ = σ2

ε

1−ϕ2

(1 +ϕ2)
(
(1−ϕ2)2−ϕ2

1

) . (11)175

Note that a potential global or at least climate-regime-specific bias in the counting process, such as overseeing systematically

1 out of 10 layers, would be captured by the regression model and thus cannot be identified as a systematic error. We will

investigate the influence of potential systematic errors below. Similarly, fluctuations of the physical processes can be captured

by the noise model which aims to represent the counting errors.

It would therefore be more accurate to interpret a(zk,xk) as a structured component representing the part of both the physical180

processes and a systematic counting error which can be accounted for by linear regression, and εk as the fluctuations of both

the physical processes and counting errors.
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3.2 Simultaneous Bayesian modeling

Fitting both the linear regression model and the different noise models can be performed in two stages. First, the linear regres-

sion model is fitted to the layer increments using the method of least squares. Thereafter, the fitted values are subtracted and185

the selected noise model is fitted to the residuals. However, this approach has the disadvantage that some variation that may in

reality be caused by the noise process εk may have been attributed to the structured component a(zk,xk) and removed before

fitting the noise model. We therefore introduce here a Bayesian approach that enables us to estimate all model parameters

simultaneously. The Bayesian approach has three key advantages over the least square fitting of the structured component:

First, it treats the noise and the structured component equally, and second, it returns the joint posterior probability of all model190

parameters which indicates the plausibility of a certain parameter configuration in view of the data. The posterior probability

distribution can be regarded as an uncertainty quantification of the model’s parameter configuration. Third, in the Bayesian

parameter estimation, prior knowledge and constraints on the parameter can be incorporated via a convenient choice of the

so-called prior distributions.

In general terms, let D denote some observational data and θ denote parameters that shape a model which is assumed to195

reasonably describe the process that generated the data. Then Bayes’ Theorem can be used to deduce the posterior probability

density of the parameters θ given the data D:

π(θ | D) =
π(D | θ)π(θ)

π(D)
. (12)

In our case the GICC05 age y = (y1, ...,yn), or more precisely their increments ∆y, represent the observational data D
assumed to be generated from the model defined by Eq. 3. There are 2p+ 2 parameters β = (b2, bx,a1, c1, ...,ap, cp) for the200

structured component alone and the noise adds another 1 to 3 parameters, depending on the choice of the noise structure. Thus

we the set of model parameters reads

θ = (β,ψ) , (13)

where ψ = σε if the residuals are assumed to follow an iid Gaussian distribution, ψ = (σε,ϕ) if they are assumed to follow an

AR(1) process andψ = (σε,ϕ1,ϕ2) if they are assumed to follow an AR(2) distribution. For any given parameter configuration,205

the likelihood is for all three choices of the noise structure defined by a multivariate Gaussian distribution

π(∆y | θ) = (2π)−n/2|Σ|−1 exp
{
−1

2
(∆y−a)⊤Σ−1(∆y−a)

}
, (14)

where a= (a(z1,x1), ...,a(zn,xn))⊤ and the entries of the autocovariance matrix Σ are given by the autocovariance function

Σij = γ(|i− j|) of the assumed noise model. For the iid model, the autocovariance function is simply σ2
ε if i= j and zero

otherwise, resulting in a diagonal covariance matrix. For the AR(1) model the autocovariance function is210

γ(k) =
σ2

ε

1−ϕ2
ϕ|k|. (15)
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The autocovariance function of the AR(2) model is specified by the difference equation

γ(k) = ϕ1γ(k− 1) +ϕ2γ(k− 2), (16)

with initial conditions

γ(0) =
(

1−ϕ2

1 +ϕ2

)
σ2

ε

(1−ϕ2)2−ϕ2
1

(17)215

γ(1) =
ϕ1

1−ϕ2
γ(0). (18)

A benefit of having the likelihood follow a Gaussian distribution is that it can be evaluated easily and samples can be obtained

efficiently, despite the large number of parameters.

Finally, we define convenient priors for the model parameters. For the parameters of the structured model component β

we choose vague Gaussian priors, with variances that safely cover all reasonable parameter configurations. For the noise220

parameters ψ we restrict the scaling parameter σε to be positive, and the autoregressive coefficients such that they define a

stationary model. These constraints are embedded into the model by adopting suitable parametrizations. The scaling parameter

σε is assigned a gamma distribution through the parametrization κ= log(1/σ2
ε). For the lag-one correlation parameter in the

AR(1) model we assume a Gaussian prior on the logit transformation ρ= log((1 +ϕ)/(1−ϕ)). For the AR(2) model we

instead assign priors on the logit transformation of the partial autocorrelations ψ1 = ϕ1/(1−ϕ2) and ψ2 = ϕ2, using penalised225

complexity priors (Simpson et al., 2017).

In principle, the joint posterior density can then be sampled from by using a Markov chain Monte Carlo (MCMC) algorithm

(e.g., Goodman and Weare, 2010). However, to solve Eq. 12 more efficiently, we formulate the problem in terms of a latent

Gaussian model and then use integrated nested Laplace approximations (INLAs) (Rue et al., 2009, 2017) to compute the joint

and marginal posterior distributions (for details see Appendix).230

The posterior distribution of θ enables us to generate ensembles of different realizations of the random variable ∆Y , i.e., of

the age increments that correspond to the fixed depth increments ∆z. In a two-stage Monte Carlo simulation, first a value for

θ is randomly sampled from the posterior π(θ |∆y). Second, the noise ε is sampled according to the noise model using noise

parameters sampled in the first step. An ensemble generated in this fashion simultaneously reflects the uncertainty enshrined

in the stochastic process and the model thereof as well as the uncertainty about the model parameters. Each realization of age235

increments yields a corresponding possible chronology according to

yk = y0 +
k∑

i=1

(a(zi,xi) + εi) , (19)

where y0 is the number of reported layers up to the depth z0. Fig. 4 shows the 95% credibility intervals obtained from age

ensembles for the three different noise models with respect to the GICC05 age. Each ensemble comprises 10000 realizations

of Y . In this plot we notice a significant increase of uncertainty going from the iid to the AR(1) model. This is intuitive as240

when more memory is added to the model, the variation increases. However, going from AR(1) to AR(2) adds only moderate

additional uncertainty. We therefore argue that an AR(1) process is sufficient in terms of modeling the correlation structure of

the residuals. All following computations are carried out with the AR(1) noise model.
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Figure 4. 95% credible intervals of the dating uncertainty distribution when the GICC05 time scale has been subtracted using iid (black),

AR(1) (blue) and AR(2) (red) noise models. Only the posterior marginal mean computed using AR(1) distributed noise is included (gray)

since it is very similar to the mean obtained using other noise assumptions.

3.3 Incorporating an unknown counting bias

When originally quantifying the uncertainty of the GICC05, a concern was that the layer counting was potentially biased,245

in the sense that layers were consistently over-counted or missed As highlighted by Andersen et al. (2006), there is no way

to quantify a potential bias based on the data. Here, we investigate the influence that such a bias would have on our model,

assuming a given maximum bias strength. To capture the effect of a systematic bias in the the layer counting we introduce a

scaling parameter η such that

∆Yk = η (a(zk,xk) + εk) . (20)250

Given that we have no knowledge about the size of the bias, η must be regarded as a random variable, whose distribution can

only be estimated by experts a priori. Originally, biases on the order of 1% in the counting performed by different investigators

have been observed (Rasmussen et al., 2006; Andersen et al., 2006). Here we assume

η ∼ U(1±∆η), (21)
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Figure 5. The 95% credible intervals of the difference between estimated dating and GICC05 time scale compared to the maximum counting

error (solid black). Dating uncertainties in this case include a bias expressed by a stochastic scaling parameter drawn from a uniform

U(1±∆η) distribution. The solid blue line represents the unbiased ∆η = 0 dating uncertainty, while the dashed and dotted blue lines

represent the biased cases of ∆η = 2% and ∆η = 4%, respectively. The differences in dating uncertainty between iid, AR(1) and AR(2)

models are dwarfed by the uncertainty introduced by the unknown bias. Hence, only the AR(1) distributed residuals are shown here.

meaning the layer-counters are just as likely to systematically over-count as to under-count, on a maximum rate of ∆η. While255

the expectation for the age increments E(∆y) remains unchanged as long as E(η) = 1, their variance will grow due to the

additional uncertainty. Fig. 5 shows the 95% credibility intervals for potentially biased chronology ensembles generated under

the assumption that ∆η equals 0, 2% or 4%. It is evident that the bias uncertainty contributes substantially to the age uncertainty.

This is expected since a relatively small counting bias yields a large absolute error at a possible age of 60 kyr b2k, which in

turn exceeds the uncertainty contribution of the noise by far. We also observe that one would need a maximum error rate of260

∆η ≈ 4% in order for the uncertainty to approach the maximum counting error at the part of the core until which layer counting

was performed.

4 Examples of applications

4.1 Dating uncertainty of DO-events

The NGRIP δ18O record is characterized by prominent abrupt shifts from low to high values, the so-called Dansgaard-Oeschger265

(DO) events Johnsen et al. (1992); Dansgaard et al. (1993). These jumps are interpreted as sudden warming events in Greenland,
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which took place repeatedly during the last glacial period. In order to be able to explain the physical relationship of these

Greenland DO events in Greenland with apparently similar abrupt climate shifts evidenced in other archives from different

parts of the planet, it is crucial to disentangle the precise temporal sequence around the time of their occurrence. This requires

a rigorous treatment of the uncertainties associated with the dating of DO events in Greenland ice core records.270

Rasmussen et al. (2014) have presented a comprehensive list of Dansgaard-Oeschger events and their precursor events,

indicating depths from the NGRIP ice core at which they occur, and the corresponding GICC05 age. They report the visually

identified event onsets, and provide uncertainty estimate in terms of data points along the depth axis and the respective MCE

associated with the estimated event onset depth. Here, we present a rigorous combination of the depth and age uncertainties,

which complicate the exact dating of DO events. First, we adopt the Bayesian transition onset detection as designed by Erhardt275

et al. (2019) to estimate the onset of DO events in the δ18O record with respect to the depth in the core. By Z∗ we denote a

continuous stochastic variable that represents the uncertain onset depth and by x∗ we denote a selected data window of the

δ18O record enclosing the transition. For each DO event this yields a posterior distribution π(Z∗ | x∗) over potential transition

onset depths, assuming a linear transition from low to high δ18O values perturbed by AR(1) noise. For inference we adopt the

methodology of INLA as it is particularly suited for such models, granting us a significant reduction in computational cost over280

traditional MCMC algorithms. The application of the transition onset detection to the onset of GI-11 is presented in Fig. 6a,

with the resulting posterior marginal distribution for Z∗ illustrated in Fig. 6b. Note that the dating method for the DO events

is sensitive to the choice of the data window. In App. B we detail how the fitting window for the linear ramps are optimally

chosen. The selected data windows are listed in Tab. B1. Furthermore, the Bayesian transition detection fails in some cases

where the transition amplitudes are small. We successfully derive posterior marginal distribution for in total 29 DO events,285

whose summary statistics are listed in Tab. 1.

Each potential transition onset depth z∗ yields a distribution over potential transition onset ages Y ∗. This uncertainty, denoted

by π(Y ∗ |∆y,z∗), is determined by linearly interpolating the age ensemble members generated according to Sec. 3.1 based

on the observed layer increments ∆y. The posterior distribution for the transition onset date for a given DO event thus reads

π(Y ∗ |∆y,x∗) =
∫
π(Y ∗ |∆y,Z∗)π(Z∗ | x∗)dZ∗. (22)290

Technically, we create an ensemble of potential onset ages in the following way. First, we produce 10,000 samples of onset

depths

z∗r ∼ π(Z∗ | x∗)

to represent the onset depth uncertainty. Second, for each onset depth sample z∗r we produce a simulation of a chronology from

the corresponding age uncertainty295

y∗r | z∗r ∼ π(Y ∗ |∆y,z∗r ).

Thus, for each event we obtain 10,000 possible values for the transition onset age whose distribution corresponds to the

posterior distribution expressed in (22). The posterior marginal mean and 95% credible intervals for each event are reported in
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Tab. 1. This table hence gives the timing of the DO events together with the full uncertainties, stemming from the transition

onset detection and the dating of the record.300

Although the GICC05 ages y∗ fall within our estimated 95% credibility intervals for all DO-events, there are some transitions

where there is a notable difference between the estimated posterior marginal mean E(Y ∗) and the reported y∗. Partially, this

can be explained by the fact that Rasmussen et al. (2014) uses a lower 20 year temporal resolution. With E(Y ∗)− y∗ ∼ 120

the difference is most prominent in the GI-11 transition, whose simulated ages are represented in the histogram in Fig. 6c This

discrepancy is caused by the difference between our estimated onset depth Z∗ and z∗ from our linear ramp model fit shown305

in Fig. 6a. Our estimated onset depth is placed approximately 1.6 m away from z∗ which propagates into the estimation of

the temporal onset. This demonstrates the importance of incorporating proper estimation and uncertainty quantification of the

onset depth. Although the absolute uncertainty added from determining the onset depth can be considered negligible compared

to the much larger age-depth uncertainty, there can still be a noticeable shift in the estimated onset age propagated from the

estimation of the onset depth.310
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Figure 6. (a) The recorded δ18O of the NGRIP data x∗ (gray) as a function of depth for the GI-11 transition. The black line represent the

posterior marginal mean of the lienar ramp model fitted using INLA. The enclosing red lines represent the 95% credible intervals. The blue

curves at the bottom illustrate the (unscaled) posterior distributions of the onset (solid) and end point (dotted) of the transition. The vertical

dotted line describe the onset depth z∗ as reported in Rasmussen et al. (2014). (b) The posterior marginal distribution of the onset depth Z∗

following a linear ramp model fit. The solid vertical lines represent the posterior marginal mean (black) and 95% credible intervals (gray).

The dotted vertical line represent z∗. (c) Histogram describing the complete dating uncertainty of the transition to GI-11, taking into account

the uncertainty of the NGRIP depth of the onset as well as the dating uncertainty at this depth. The black vertical line represent the mean of

these samples, E(Y ∗), and the red vertical line represent the GICC05 onset age y∗ as reported in Rasmussen et al. (2014).
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Event z∗ (m) Z∗ mean (m) Z∗ 95% CI (m) y∗ (yb2k) Y ∗ mean (yb2k) Y ∗ 95% CI (yb2k)

GI-1d 1574.8 1574.87 (1574.74, 1575) 14075 14077.1 (14017.51, 14136.46)

GI-1e 1604.64 1604.47 (1574.74, 1605) 14692 14689.24 (14617.95, 14758.89)

GI-2.2 1793.19 1793.85 (1574.74, 1794) 23340 23382.97 (23268.45, 23498.88)

GI-3 1869.12 1869.13 (1574.74, 1869) 27780 27783.29 (27655.53, 27909.85)

GI-4 1891.57 1891.62 (1574.74, 1892) 28900 28906.65 (28775.49, 29037.45)

GI-5.2 1951.65 1952 (1574.74, 1952) 32500 32524.46 (32383.73, 32665)

GI-6 1974.55 1974.34 (1574.74, 1974) 33740 33733.7 (33590.31, 33879.61)

GI-7b 1997.04 1997.2 (1574.74, 1997) 35020 35027.07 (34880, 35174.46)

GI-7c 2009.44 2009.68 (1574.74, 2010) 35480 35497.22 (35348.06, 35647.47)

GI-8c 2070.02 2069.92 (1574.74, 2070) 38220 38217.56 (38061.24, 38375.23)

GI-9 2099.61 2099.6 (1574.74, 2100) 40160 40160.99 (40002.47, 40324.53)

GI-10 2124.03 2124.35 (1574.74, 2125) 41460 41484.22 (41320.92, 41650.87)

GI-11 2157.49 2159.05 (1574.74, 2159) 43340 43459.53 (43287.98, 43634.48)

GI-12c 2222.3 2222.7 (1574.74, 2223) 46860 46890.7 (46712.85, 47071.12)

GI-13b 2253.84 2254.08 (1574.74, 2254) 49120 49133.57 (48951.84, 49316.37)

GI-13c 2256.89 2257.31 (1574.74, 2257) 49280 49310.4 (49128.55, 49493.01)

GI-14b 2295.9 2295.98 (1574.74, 2296) 51660 51665.25 (51479.07, 51851.76)

GI-14c 2340.38 2340.32 (1574.74, 2340) 53960 53958.43 (53765.82, 54148.83)

GI-14d 2341.38 2341.5 (1574.74, 2342) 54020 54026.76 (53834.18, 54217.52)

GI-14e 2345.52 2345.61 (1574.74, 2346) 54220 54231.14 (54037.08, 54424.18)

GI-15.1 2355.34 2355.3 (1574.74, 2355) 55000 55000.09 (54806.86, 55192.7)

GI-15.2 2366.32 2366.5 (1574.74, 2367) 55800 55819.78 (55624.66, 56013.83)

GI-16.1b 2397.35 2397.55 (1574.74, 2398) 57960 57972.43 (57775.24, 58168.42)

GI-16.1c 2398.78 2398.81 (1574.74, 2399) 58040 58044.55 (57847.18, 58241.06)

GI-16.2 2402.55 2402.25 (1574.74, 2402) 58280 58265.7 (58068.28, 58461.82)

GI-17.1a 2409.78 2409.35 (1574.74, 2410) 58780 58756.79 (58556.87, 58954.17)

GI-17.1b 2410.65 2411.99 (1574.74, 2413) 58840 58915.85 (58711.68, 59120.55)

GI-17.1c 2415.01 2414.9 (1574.74, 2415) 59080 59074.45 (58874.87, 59272.57)

GI-17.2 2420.44 2420.65 (1574.74, 2421) 59440 59462.14 (59262.03, 59661.1)
Table 1. Linear ramp model fits for the NGRIP depth of 29 DO-events, as well as the full dating uncertainty. Includes the proposed depth z∗

and dating y∗ from Rasmussen et al. (2014), as well as the posterior marginal mean and 95% credible intervals for the estimated onset depth

Z∗ and age Y ∗.
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5 Conclusions

We have developed a general statistical framework for quantifying the age-depth uncertainty of layer-counted proxy archives.

In these records the age can be determined by counting annual layers that result from seasonal variations, which in turn impact

the deposition process. By counting these layers one can assign time stamps to the individual δ18O measurements. However,

there is a non-negligible uncertainty associated with this counting process. Proper quantification of this uncertainty is important315

since it carries valuable information and the error propagates to further analyses, e.g. dating of climatic events, determining

cause and effect between such events, and model-data comparisons. Originally, the uncertainty of the GICC05 is quantified

in terms of the maximum counting error (MCE), defined as half the number of uncertain layers. However, since this method

assumes that uncertain layers are either true or false, we believe this to be an overly conservative estimate, giving too high

uncertainty for deeper layers.320

In our approach we express the number of layers per depth increment as the sum of a structured component and a stochastic

component. The structured component represents physical layer thinning, a positive temperature-precipitation feedback, and

persisting trends over individual stadials and interstadials. The stochastic component takes into account the natural variability

of the layer thickness and the errors made in the counting process. After fitting the structured component in a least square

manner, we find the residuals to be approximately stationary, Gaussian distributed, and to exhibit short-range autocorrelation.325

These summary statistics motivate to employ Gaussian white noise, or an autoregressive process of first or second order, as the

stochastic part of the age-depth model.

After defining the structure of the model, we estimate all model parameters simultaneously in a hierarchical Bayesian

framework. The resulting joint posterior distribution on the one hand serves as a quantification of the parameter uncertainty

in the model and on the other hand allows to generate chronology ensembles that reflect the uncertainty in the age-depth330

relationship. The dating uncertainties obtained from this approach are significantly smaller than the MCE. We also find that

our estimates do not deviate much from the GICC05 in terms of best estimates for the dating, although they do give very

different estimates on the uncertaintes.

Additional information that may help to further constrain the uncertainties, such as tie points obtained via cosmogenic

radionuclides (Adolphi et al., 2018), will be fed into the model in future research.335

One of the largest concerns regarding the layer counting is that of a potential counting bias. Such a systematic error cannot

be corrected after the counting and therefore, we investigate how a potential unknown counting bias increases the uncertainty

of the presented age-depth model. If such a counting bias is restricted to ±4% we obtain total age uncertainties comparable to

the estimates based on the MCE.

Finally, we apply our method to the dating of DO events. Using a Bayesian transition onset detection we are able to combine340

the uncertainty of the onset depth with the corresponding age uncertainty, and to give a posterior distribution that entails the

complete dating uncertainty of each transition onset. We find that previous estimates of the DO onsets reported in (Rasmussen

et al., 2014) are well within our estimated uncertainty ranges both in terms of depth and age. However, the dating uncertainty
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of the onset of the DO-events are all considerably smaller than the MCE, even when accounting for the additional uncertainty

associated with the onset depth.345

In theory, it should be possible to apply this approach to other layered proxy records as well. However, there are some

requirements that need to be fulfilled for this approach to be applicable. The first condition is that a potential layer thinning can

be adequately expressed by a regression model. In our results we find the residuals to follow a Gaussian process, but it should

be possible for the model to be adapted such that it supports other distributions for the residuals as well. However, depending

on the model, if the residuals exhibit too long memory then this could lead to the simulation procedure having an infeasibly350

high computational cost. Moreover, if there are many effects in the regression model there needs to be sufficient data to achieve

proper inference.

Code and data availability. The NGRIP ice core data and GICC05 timescale (Andersen et al., 2006; Svensson et al., 2008; Rasmussen et al.,

2014) is available at http://www.iceandclimate.nbi.ku.dk/data/. The code used for generating the results of this paper will be uploaded as

supplementary material.355

Appendix A: Latent Gaussian model formulation

In this study we consider different Gaussian models for the noise component, including independent identically distributed

(iid) and first and second order autoregressive (AR) models. These models all exhibit the Markov property, meaning there

is a substantial amount of conditional independence. So-called Gaussian Markov random fields are known to work really

well with the methodology of integrated nested Laplace approximations (INLAs), which will grant a substantial reduction in360

computational cost in obtaining full Bayesian inference. However, this requires formulating our model into a latent Gaussian

model where the data, here D = (∆y1, ...,∆yn)⊤, depend on a set of latent Gaussian variables X = (X1, ...,XN )⊤ which in

turn depend on hyperparameters θ = (θ1, ...,θm)⊤. This class of models constitutes a subset of hierarchical Bayesian models

and is defined in three stages.

The first stage defines the likelihood of the data and how it depends on the latent variables. For the data and models used365

in this study we assume a direct correspondance between an observation yi and the corresponding latent variable Xi, which is

achieved using a Gaussian likelihood with some negligible fixed variance and mean given by the linear predictor

ηk = E(∆yk) = bk2 + bxxk +
p∑

i=1

ψi(zk;ai, ci) + εk(θ).

Here, β = (b0, b,bx,{ai},{ci}) are known as fixed effects, even though they are indeed stochastic variables in the Bayesian

framework. The noise variables εk(θ) are referred to as random effects since they depend on hyperparameters θ. The hyper-370

parameters are θ = σε if we assume the residuals follow an iid Gaussian process, θ = (σε,ϕ) if they follow an AR(1) process

and θ = (σε,ϕ1,ϕ2) if they follow an AR(2) process. All random terms in the predictor, and the predictor itself, are included

in the latent field X = (η,β,ε). The latent field is assigned a prior distribution in what is the second stage of defining a latent
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Gaussian model. For latent Gaussian fields this prior is multivariate Gaussian

X | θ ∼N (µ(θ),Σ(θ)) ,375

Specifically, we assume vague Gaussian priors for β, while the prior for ε(θ) is either an iid, AR(1) or AR(2) process. The

predictor η is then a Gaussian with mean vector corresponding to the linear regression a(β) and covariance matrix given by

the covariance structure of the assumed noise model.

The third and final stage of the latent Gaussian model definition is to specify a prior distribution on the hyperparameters. We

use the default prior choices included in the R-INLA package, which means that for all models of ε considered in this paper the380

scaling parameter σ2
ε is assigned a log-gamma distribution, through the transformation κ= 1/σ2

ε . When the residuals follow

an AR(1) distribution we assume a Gaussian prior on the additional lag-one correlation parameter using a logit transformation

ρ= log((1 +ϕ)/(1−ϕ)). For the AR(2) residuals we instead assign penalisd complexity priors (Simpson et al., 2017) on the

partial autocorrelations ψ1 = ϕ1/(1−ϕ2) and ψ2 = ϕ2, also using a logit transformation.

Inference is obtained by computing the posterior marginal distributions385

π(Xk | D) =
∫
π(Xk | θ,D)π(θ | D)dθ

and

π(θk | D) =
∫
π(θ | D)dθ−k.

The notation θk refers to the kth hyperparameter, and θ−k refers to all except the kth hyperparameter. These integrals can be

approximated efficiently using R-INLA, and the resulting posterior marginal distributions are included in Figure A1. The esti-390

mated hyperparameter posterior marginal means and credible intervals (given in parantheses) are σiid
ε ≈ 0.427(0.423,0.431) for

iid residuals, σAR(1)
ε ≈ 0.428(0.423,0.434) and ϕAR(1) ≈ 0.194(0.178,0.217) for AR(1) residuals, and σAR(2)

ε ≈ 0.429(0.423,0.438),

ϕAR(2)
1 ≈ 0.180(0.158,0.210) and ϕAR(2)

2 ≈ 0.108(0.089,0.134) for AR(2) residuals.

Appendix B: Determination of the fitting windows

The estimation for the onset depth is sensitive to the choice of the data window which represents the transition. It is important395

to select these carefully such that the data best represents a single linear ramp function while being of a sufficient size. As some

DO events are located more closely to other transitions than others it is necessary to determine these data windows individually

for each transition. As such there are indeed some transitions where it is difficult to determine a clear transition point, and a

linear ramp model is not appropriate. These transitions will be omitted from our analysis. The reduction in computational cost

granted by adopting the model for INLA allows us to perform repeated fits to determine the optimal data interval based on a400

given criteria. Specifically, we adjust both sides of the interval until we find the data window for which the fitted model yields

the lowest amplitude of the AR(1) noise, measured by the posterior marginal mean of the standard deviation parameter.

We impose some restrictions on the domain of the optimal start and end point of our data interval. To achieve the best

possible fit we want our interval to include both the onset and end point of the transition, which we suspect are located close
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Figure A1. The posterior marginal distributions obtained by fitting the model with inla. Panel a shows the density of σε using iid distributed

residuals. Panels b–c show the densities of σε and ϕ using AR(1) distributed residuals. Panels d–f show the densities of σε,ϕ1 and ϕ2 using

AR(2) distributed residuals. The vertical lines represent the mean (black) and 95% credible intervals (gray).
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to the NGRIP onset depth z∗ given by table 2 of Rasmussen et al. (2014). Unless the DO-events are located too close to405

adjacent transitions we assume the optimal interval always contains the points representing 1m above to 2.5 meter deeper than

z∗. These are the minimum distances from the proposed onset. Similarly, we also introduce a maximum distance from z∗ to

be considered for the start and end points of the data interval. This is set to be 10m above and 15m deeper than z∗, or at

the adjacent transitions if they are located closer than this. From these intervals we create a two-dimensional grid for which

we perform the INLA fit for each grid point. The start and end points of the interval representing the grid point for which410

INLA found the lowest noise amplitude are selected. Those events that failed to provide a decent fit after the conclusion of

this procedure were discarded. This left us with 29 DO-events for which the results are displayed in table B1. Although the

GICC05 onset depths z∗ falls outside the 95% credible intervals for several transitions they are still remarkably close to our

best estimates, considering Rasmussen et al. (2014) used a lower 20 year resolution data set.
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Event k∗ Index interval z∗ (m) Depth Interval (m)

GI-1d 1648 (1622, 1711) 1574.8 (1573.5, 1577.95)

GI-1e 2245 (2175, 2285) 1604.65 (1601.15, 1606.65)

GI-2.2 6016 (5986, 6079) 1793.2 (1791.7, 1796.35)

GI-3 7534 (7482, 7574) 1869.1 (1866.5, 1871.1)

GI-4 7983 (7929, 8023) 1891.55 (1888.85, 1893.55)

GI-5.2 9185 (9106, 9223) 1951.65 (1947.7, 1953.55)

GI-6 9643 (9572, 9683) 1974.55 (1971, 1976.55)

GI-7b 10093 (10068, 10142) 1997.05 (1995.8, 1999.5)

GI-7c 10341 (10169, 10404) 2009.45 (2000.85, 2012.6)

GI-8c 11552 (11352, 11592) 2070 (2060, 2072)

GI-9 12144 (12098, 12174) 2099.6 (2097.3, 2101.1)

GI-10 12633 (12563, 12690) 2124.05 (2120.55, 2126.9)

GI-11 13302 (13102, 13386) 2157.5 (2147.5, 2161.7)

GI-12c 14598 (14417, 14718) 2222.3 (2213.25, 2228.3)

GI-13b 15229 (15212, 15274) 2253.85 (2253, 2256.1)

GI-13c 15290 (15245, 15339) 2256.9 (2254.65, 2259.35)

GI-14b 16070 (16054, 16110) 2295.9 (2295.1, 2297.9)

GI-14c 16960 (16881, 16983) 2340.4 (2336.45, 2341.55)

GI-14d 16980 (16968, 16992) 2341.4 (2340.8, 2342)

GI-14e 17062 (16986, 17185) 2345.5 (2341.7, 2351.65)

GI-15.1 17259 (17247, 17272) 2355.35 (2354.75, 2356)

GI-15.2 17478 (17365, 17610) 2366.3 (2360.65, 2372.9)

GI-16.1b 18099 (18087, 18111) 2397.35 (2396.75, 2397.95)

GI-16.1c 18128 (18108, 18146) 2398.8 (2397.8, 2399.7)

GI-16.2 18203 (18190, 18215) 2402.55 (2401.9, 2403.15)

GI-17.1a 18348 (18315, 18371) 2409.8 (2408.15, 2410.95)

GI-17.1b 18365 (18353, 18431) 2410.65 (2410.05, 2413.95)

GI-17.1c 18452 (18387, 18464) 2415 (2411.75, 2415.6)

GI-17.2 18561 (18531, 18608) 2420.45 (2418.95, 2422.8)
Table B1. The optimal interval for the data window for fitting a linear ramp model to 29 DO-events, expressed in terms of depth and the

corresponding index in our data. Also includes the onset depth z∗ used as a starting midpoint in the optimization procedure.
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