

1	¹⁴ C plateau tuning – A misleading approach or trendsetting tool for
2	marine paleoclimate studies?
3	
4	Michael Sarnthein ¹⁾ and Pieter M. Grootes ²⁾
5	
6	1) Institute of Geosciences, University of Kiel, Olshausenstr. 40, 24098 Kiel, Germany,
7	michael.sarnthein@ifg.uni-kiel.de
8	2) Institute of Ecosystem Research, University of Kiel, Olshausenstr. 40, 24098 Kiel,
9	Germany, pgrootes@ecology.uni-kiel.de
10	
11	Corresponding author:
12	Michael Sarnthein, michael.sarnthein@ifg.uni-kiel.de,
13	
14	
15	ABSTRACT
16	On the basis of minor time scale adjustments including the synchronization on IntCal20 the
17	Suigetsu-based atmospheric ¹⁴ C plateau structures are shown to be authentic. Their global
18	significance is demonstrated by the coherence with the tree ring record 10 to 15 cal. ka and by
19	coherent features in the ¹⁴ C record of Hulu Cave back to 35 cal. ka. The suite of atmospheric
20	structures can be recognized in high-resolution ocean sediment records independent of various
21	processes leading to partial distortion of a sediment record. This provides a unique tool for
22	global stratigraphic correlation and paleoceanographic studies as shown by supplementary
23	figures and tables from 19 cores obtained from key locations in the world ocean.
24	

26	INTRODUCTION
27	Sarnthein et al. (2020) gave a synthesis of the growing evidence of the value of ¹⁴ C plateau
28	tuning (PT) for the chronostratigraphic correlation of last glacial-to-deglacial paleoclimate events
29	in marine proxy records to each other, to climate events recorded in ice cores, and to
30	speleothems, moreover, to well-dated terrestrial climate records. Bard and Heaton (2021) (B&H)
31	published a follow-up paper that fundamentally denunciates concept and techniques of PT. The
32	concerns of B&H were based on perceived problems with the atmospheric plateau structures we
33	observe for the (Suigetsu-based) radiocarbon record and came from various paleoclimatic,
34	paleoceanographic, sedimentological, and statistical perspectives. Their critique provided a rare
35	opportunity to discuss and clarify the (perceived) flaws and weaknesses and strengths of PT. In
36	CP Discussions (Grootes and Sarnthein, 2021; Sarnthein and Grootes, 2021) we rejected the
37	critique as it was largely based on:
38	1) A fundamental misunderstanding of plateau identification: This is not based on the
39	identification of any single plateau but rather on the best pattern match of a complete suite of
40	plateaus; much like correlating ice or sediment core-based δ^{18} O records.
41	2) B&H's focus on the physics of surface ocean ¹⁴ C fluctuations, using a 1998 box-model, instead
42	of on those of the 14 C difference between atmosphere and surface ocean (MRA).
43	The B&H response in CP Discussions and their paper, largely ignore this reasoning as well as our
44	detailed answers to their 17 points of critique, stick to an incorrect perception of the basic
45	assumptions used for PT and avoid a real discussion.
46	
47	We here present evidence for the authenticity of Suigetsu 14 C plateaus as atmospheric 14 C
48	structures that can be observed worldwide. Also, we show that analogous ¹⁴ C structures in
49	ocean planktic sediment records are not merely a result of various sedimentation processes such

- 50 as bioturbational mixing. Finally, to foster future use and discussion of PT, we add as
- 51 supplementary material a comprehensive set of tables and figures for all 19 ocean sediment
- 52 records published so far on the new IntCal20 time scale.
- 53

54 Atmospheric ¹⁴C plateaus and jumps are reproduced by diverse statistical approaches

55 We here present our Suigetsu-based plateau and jump structures, plotted in the Δ^{14} C domain,

together with the atmospheric Δ^{14} C wiggles 14–30 cal. ka as defined by a Bayesian spline over

57 the total of Suigetsu 14 C ages (shown with 1σ by B&H 2021, Fig. 3a), now all plotted vs. IntCal20

ages (Bronk Ramsey et al., 2020) (Fig. 1 and Table 1). Moreover, after a careful check of the

59 position of plateau boundaries, we slightly revised three of them, (i) a slight upward shift of the

60 base of plateau 7, (ii) omission of the boundary between plateaus 6b and 6a, and (iii) a minimal

61 backward shift of the 5a-b plateau boundary by a single age date. To our surprise and

62 satisfaction, the unification of time scales used plus these minimal changes resulted in a basic

63 upgrade and substantial overlap of the atmospheric ¹⁴C structures revealed by the two

independent methods, the Bayesian spline and the visual inspection of ¹⁴C plateaus and jumps

back to 27 cal. ka. This agreement on authentic structures of atmospheric ¹⁴C may be regarded

66 as a corner stone crucial to justify PT as legitimate tool for stratigraphic correlation.

67

Prior to 27 cal ka, however, the raw Suigetsu ¹⁴C ages for plateaus 10b and 11, generated by
different laboratories, are diverging by up to 1000 yr at analytical 1σ uncertainties of ~150 to
<400 years (Bronk Ramsey et al., 2012), a discrepancy that our plateau definitions tried to bridge
by weighted average values, the Bayesian spline, however, has valued differently.

72

73	The plateau structures of the Suigetsu atmospheric ¹⁴ C record are clearly paired with IntCal20
74	tree ring- and floating tree ring-based 14 C structures for the interval 10 - ~15 cal. ka (Fig. 2; suppl.
75	by Adolphi et al., 2017). Thus Fig. 2 can positively answer the question, raised by B&H (2021),
76	whether the ¹⁴ C plateau structures defined by Sarnthein et al. (2020) in the Lake Suigetsu record
77	present a suite of authentic features of atmospheric ¹⁴ C, that indeed can be globally reproduced.
78	For comparison, the smoothed character of the IntCal20 curve beyond 14 ka is due to a change
79	in the available calibration data rather than to a fundamental change in the atmosphere (Reimer
80	et al., 2020; B&H, 2021). This is supported by a comparison of Bayesian spline compilations of
81	the Suigetsu (green) and the Hulu speleothem (magenta) datasets over the period 20-30 cal. ka,
82	with Hulu deconvoluted using a MatLab algorithm (Fig. 3 from Bronk Ramsey et al., 2020).
83	
84	Consequentially, we regard it legitimate to extrapolate our interpretation of fine structures in
85	the Suigetsu ¹⁴ C record further back, at least up to 27 cal. ka (Fig. 4). That is, we may assume that
86	prior to 15 cal. ka the continuing ¹⁴ C fine structures of the admittedly somewhat noisy Suigetsu
87	record of atmospheric ¹⁴ C jumps and plateaus come close to reality per analogy with the match
88	with the tree ring record 10 to ~15 cal. ka. Our reasoning is supported independently by various
89	Suigetsu plateaus between 15 and 30 cal. ka and structures further back (e.g., parts of plateaus
90	number 2b, 4, 6, 8, 9; Fig. 4) that are largely reproduced also by a Bayesian spline of analogous
91	¹⁴ C plateau structures in the deconvoluted U/Th-dated ¹⁴ C record based on Hulu Cave data (Fig.
92	3; from Bronk Ramsey et al., 2020). Altogether, the Suigetsu record of atmospheric ¹⁴ C wiggles
93	provides over its full length a suitable target for global correlation. This is more authentic than
94	the better defined 14 C trend of the Hulu speleothem and the IntCal20 records that, admittedly,
95	have been smoothed.

96

97	Objections against the use of this Suigetsu ¹⁴ C record instead of IntCal20 ¹⁴ C ages as basis for the
98	definition of atmospheric ¹⁴ C plateaus and jumps, as formulated by B&H 2021, ignore a crucial
99	difference between PT and ¹⁴ C calibration. <i>Calibration</i> aims to provide the best possible estimate
100	for the 'calendar' age corresponding to a 14 C age. This estimate is provided by IntCal20, the
101	collection of pointwise averages of 2500 Bayesian spline realizations of the ¹⁴ C calibration curve,
102	based on all sorts of available ¹⁴ C ages prior to 14 cal. ka. Statistically integrating Suigetsu and
103	floating tree ring ages, as purely atmospheric record, with a number of carbonate-based coral-,
104	marine sediment-, and speleothem-based records, results in a statistically secure but smoothed
105	IntCal20 record (B&H Fig. 4b).
106	
107	PT is a research tool that employs a suite of medium well age-calibrated structures in the
108	Suigetsu atmospheric ¹⁴ C record as global reference to explore the ¹⁴ C fine structure of noisy,
109	local ocean plankton records (Suppl. Materials Fig. S1-S19). This is a new but trendsetting
110	approximation to obtain a new order of age tie points for centennial-to-millennial-scale global
111	stratigraphic correlation and a major addition to the role of radiocarbon as key tracer (Heaton et
112	al., 2021).
113	
114	Both on the basis of visual inspection and the 1st derivative of a ¹⁴ C record (see Figs. S1–S19) the
115	robustness and uncertainty of the age tie points are best calibrated at the marked ¹⁴ C-age jumps
116	that separate two subsequent ¹⁴ C plateaus each, the range of which is marked by enveloping
117	'boxes' in Fig. 4. Accordingly, the uncertainty in the cal. age of the beginning and end of a ¹⁴ C

jump/plateau hardly exceeds ±50 to ±100 years, when employing the age estimates listed by
Bronk Ramsey et al. (2020).

120

- 121 Uncertainty levels of the exploratory PT chronology are, inevitably, somewhat higher than those acceptable for a ¹⁴C calibration. This concerns the identification of plateaus as well as the 122 123 definition of plateau boundaries in some less densely sampled planktic ¹⁴C records (c.f. Figs. S1-124 S19). In view of the identification Sarnthein et al. (2020) again emphasized that the validity of 125 certain atmospheric ¹⁴C plateaus assigned to structures in a single sediment ¹⁴C record must be 126 verified by detailed comparison with coarser-spaced 'conventional' stratigraphic tie points in an 127 ocean sediment record such as those provided by planktic δ^{18} O records (e.g., DO event 1), 128 turning points in sea surface temperature, tephra layers (e.g., Fig. S16). 129 Correlation of atmospheric and planktic ¹⁴C records 130 With the reproducibility of Suigetsu atmospheric ¹⁴C concentration patterns and their value as a 131 132 tool for PT global correlation studies established, the question remains whether high-resolution 133 planktic sediment ¹⁴C records indeed reflect primarily the atmospheric ¹⁴C structures defined in 134 the Suigetsu record. B&H (2021) explored this question in their modeling of hypothetical 135 'Suigetsu' and 'Cariaco' records derived by adding appropriate noise to a section of the IntCal20 136 tree ring record. Their calculations indicated that no statistically robust signal could be extracted
- 137 which, as explained above, does not preclude the use of PT as an exploratory tool for age

138 correlation. B&H failed to consider the full period 10-~15 cal ka where tree ring-based ¹⁴C

- 139 structures overlap with Suigetsu data and restricted their tree-ring comparison to the less
- 140 informative section 12.0-13.9 ka. Yet, even for this section their modeled 'Cariaco' curves
- 141 indicate the underlying IntCal20 tree-ring ¹⁴C fluctuations that could be used by PT to explore
- 142 the age correlation of such a record.
- 143

- 144 Two important questions raised by B&H (2021) were (i) Can ¹⁴C structures observed in planktic
- ¹⁴C records result 'accidentally' from various processes characteristic of sediment deposition and
- 146 bioturbation? and (ii) Can a reliable correlation between atmospheric and planktic ¹⁴C plateaus
- 147 be made?
- 148
- 149 B&H's repeated objection to plateau identification in marine sediment cores was based on
- 150 disturbance by bioturbational mixing. This objection is invalid for three reasons:
- 151 -- At high latitudes and water depths >3000 m (with reduced flux of Corg) the bioturbational
- 152 homogenic mixing depth amounts to 2-3 cm (Trauth et al., 1997). This won't affect ¹⁴C signals at
- 153 average sedimentation rates of 10 50 cm/ky. At these high rates mixing depths even reaching
- 154 7-10 cm in low latitudes are little relevant, also shown by paired trends of quasi-continuous, e.g.,
- 155 XRF-based proxy records.
- 156 -- Wide sediment sections in five out of 19 cores in Sarnthein et al. (2020; cores MD3180,
- 157 MD2503, ODP1002D, ODP893A, PS97-137; Suppl. Figs. S3, S4, S11, S10, S15; Table S20) are
- 158 laminated, thus largely free of bioturbational mixing.

159 -- Planktic species counts in two high-resolution, non-laminated cores (GIK23074, SHAK06-5K)

- 160 refute any age offsets of the ¹⁴C plateau signal due to differential bioturbation.
- 161
- 162 Results of the earlier use of PT on planktic sediment ¹⁴C records, now converted to the Bronk-
- 163 Ramsey et al, (2020) time scale, are presented for comparison as supplemental material (Suppl.
- 164 Materials Fig. and Tables S1-S19). Though sediment deposition and bioturbational processes
- 165 occasionally locally affect the sediment ¹⁴C records, the full pattern of sequential ¹⁴C fluctuations
- 166 generally allows a reliable correlation.
- 167

168	The age tie points provided by ¹⁴ C PT bring more age control to the sediment records and, in
169	doing so, reveal fluctuations in sediment deposition that were hitherto undefined as well as
170	coeval variations in marine reservoir ages (MRA). Such short-term and local small-scale changes
171	in sedimentation rate and MRA critically depend on the potential plateau numbers assigned to a
172	plateau suite by alternative models of PT. The choice of tuning model, finally, is carefully based
173	on and constrained by conventional sediment properties and stratigraphic tie points (e.g., Fig.
174	S16a). In case of persisting alternative age models, we prefer the model where sedimentation
175	rates and MRA's show the lowest fluctuations over a suite of subsequent plateaus (e.g., Fig. S5)
176	(Sarnthein et al., 2007).
177	
178	Most of the gaps and lows in sediment deposition defined by PT are already indicated by major
179	age jumps that mark the record of raw ¹⁴ C ages, independent of any PT (Suppl. Materials, Figs.
180	S2, S6, S10, S13 to S19). Short-term major changes of sedimentation rate have been established
181	independently by 230Th-based high-resolution age control for North Atlantic sediment cores
182	(Missiaen et al. 2019), which supports the reality of the sediment fluctuations revealed by PT.
183	Most sedimentation spikes, moreover, make sense in terms of paleoceanography and
184	paleoclimate. Pertinent changes in sedimentation rate may thus be derived by PT, but may also
185	serve as corrective to obtain a best possible tuning of atmospheric and marine sediment-based
186	plateau suites.
187	
188	CONCLUSION
189	On the basis of coherence with tree ring records 10 to 15 cal. ka we can conclude that the
190	pattern of ¹⁴ C fluctuations in the atmospheric Suigetsu record represents an atmospheric ¹⁴ C

191 signal that can be used for global correlation with a precision better than ± 50 to ± 100 years. The

192	PT technique explores the detailed dating of planktic ¹⁴ C records by correlation to the Suigetsu
193	signal, requiring it to be consistent with the available conventional evidence of stratigraphic
194	correlation. The results of PT provide new insights into local marine reservoir ages (MRA), thus
195	to local oceanography by revealing short-term changes in sedimentation rate and regional ocean
196	mixing. These are important tracers for studies of paleoceanography and paleoclimatic events
197	on a global atmospheric time scale. Such changes are often missed by the widely employed
198	wide-spaced set of conventional age tie points and related average sedimentation of ocean
199	sediment records.
200	
201	ACKNOWLEDGMENTS
202	We are grateful to S. Beil, Kiel, for generous computer assistance.
203	
204	Data availability
205	
206	All primary radiocarbon data and cal. ages assigned are stored at PANGAEA.de $^{\circ}$ under , , , ,
207	
208	REFERENCES
209 210 211 212	Adolphi, F., Raimund Muscheler, Michael Friedrich, Dominik Güttler, Lukas Wacker, Sahra Talamo, Bernd Kromer: Radiocarbon calibration uncertainties during the last deglaciation: Insights from new floating tree-ring chronologies, Quaternary Science Reviews, 170, 98-108, 2017.
213 214 215 216 217 218 219	 Bard, E. and Heaton, T.J.: On the tuning of plateaus in atmospheric and oceanic ¹⁴C records to derive calendar chronologies of deep-sea cores and records of ¹⁴C marine reservoir age changes. Climate of the Past, 17, 1701–1725. https://doi.org/10.5194/cp-17-1701-2021 Bronk Ramsey, C., Staff, R. A., Bryant, C. L., Brock, F., Kitagawa, H., van der Plicht, J., Schlolaut, G., Marshall, M. H., Brauer, A., Lamb, H. F., Payne, R. L., Tarasov, P. E., Haraguchi, T., Gotanda, K., Yonenobu, H., Yokoyama, Y., Tada, R., and Nakagawa, T.: A complete terrestrial radiocarbon record for 11.2 to 52.8 kyr B.P., Science, 338, 370–374, 2012.

220 Bronk Ramsey, C., Heaton, T.J., Schlolaut, G., Staff, R.A., Bryant, C.L., Lamb, H.F., Marshall, 221 M.H., Nakagawa, T.: Reanalysis of the atmospheric radiocarbon calibration record from Lake 222 Suigetsu, Japan. Radiocarbon, https://doi.org/10.1017/RDC.2020.18, 2020 223 Grootes, P.M. and Sarnthein, M.: Community comment on "On the tuning of plateaus in 224 atmospheric and oceanic C records to derive calendar chronologies of deep-sea cores and records of C marine reservoir age changes" by Edouard Bard and Timothy J. Heaton, Clim. Past 225 226 Discuss., https://doi.org/10.5194/cp-2020-164-CC2, 2021. 227 Heaton, T.J., Bard, E., Bronk Ramsey, C., Butzin, M., Köhler, P., Muscheler, R., Reimer, P.J., 228 Sun. Wacker, L.: Radiocarbon: A key tracer for studying Earth's dynamo, climate system, carbon 229 cycle, and Sun. Science, 374, 707-718, 2021. 230 Missiaen, L., Waelbroeck, C., Pichat, S., Jaccard, S.L., Eynaud, F., Greenop, R., Burke, A.: 231 Improving North Atlantic Marine Core Chronologies using 230Th normalization. 232 Paleoceanography and Paleoclimate, 34, 1057-1073, 2019. 233 Reimer P.J., Austin W.E.N., Bard E., Bayliss A., Blackwell P.G., Bronk Ramsey C., Butzin M., 234 Cheng H., Edwards R.L., Friedrich M., Grootes P.M., Guilderson T.P., Hajdas I., Heaton T.J., Hogg 235 A.G., Hughen K.A., Kromer B., Manning S.W., Muscheler R., Palmer J.G., Pearson C., van der 236 Plicht H., Reimer R.W., Richards D., Scott E.M., Southon J.R., Turney C.S.M., Wacker L., Adophi 237 F., Büntgen U., Capano M., Fahrni S., Fogtmann-Schulz A., Friedrich R., Kudsk S., Miyake F., 238 Olsen J., Reinig F., Minoru Sakamoto M., Sookdeo A., Talamo S. The IntCal20 Northern 239 Hemisphere radiocarbon calibration curve (0-55 kcal BP). Radiocarbon 62, 725-757, doi: 240 10.1017/RDC.2020.41, 2020. 241 Sarnthein, M., Grootes, P.M., Kennett, J.P., and Nadeau, M.: ¹⁴C Reservoir ages show 242 deglacial changes in ocean currents and carbon cycle, Geophys. Monograph – Am. Geophys. 243 Union, 173, 175–196, 2007. 244 Sarnthein, M., Küssner, K., Grootes, P.M., Ausin, B., Eglinton, T., Muglia, J., Muscheler, R., 245 Schlolaut, G. Plateaus and jumps in the atmospheric radiocarbon record – Potential origin and 246 value as global age markers for glacial-to-deglacial paleoceanography, a synthesis. Climate of the 247 Past, 16, 2547–2571, doi: 10.5194/cp-16-2547-2020, 2020. 248 Sarnthein, M. and Grootes, P. M.: Community comment on "On the tuning of plateaus in 249 atmospheric and oceanic C records to derive calendar chronologies of deep-sea cores and 250 records of C marine reservoir age changes" by Edouard Bard and Timothy J. Heaton, Clim. Past 251 Discuss., https://doi.org/10.5194/cp-2020-164-CC1, 2021. 252 Trauth, M.H., Sarnthein, M. and M. Arnold, M.: Bioturbational mixing depth and carbon flux 253 at the seafloor. - Paleoceanography, 12, 517-526., 1997. 254

255 TABLES and FIGURES

- 256 Table 1 a and b. Summary of recently revised U/Th model-based age estimates (Bronk Ramsey et
- 257 al., 2020) for ~30 plateau (pl.) boundaries in the atmospheric ¹⁴C record identified in Lake
- 258 Suigetsu Core SG06 by means of visual inspection over the interval 10.5–27 cal. ka (Sarnthein et
- al., 2015, suppl. and modified). At the right-hand side, three columns give the average (\emptyset) and
- 260 uncertainty range of ¹⁴C ages for each ¹⁴C plateau.
- 261

SUIGETSU Plateau Top	IntCal20	Depth Plateau Base	IntCal20	Depth	Ø 14C Age	±Uncertaint	y14C age BP
SG06_2012	U/Th-based	(cm c.d.)	U/Th-based	(cm c.d.)	of 14C Platea	(14C yr)	min/max.
Plateau no.	age (yr BP)		age (yr BP)		(14C yr)		(1.6 o range)
'Preboreal'	10560	1325	11108	1383	9525	-170/+110	9356/
							9635
'Top YD'	11281	1402	11755	1453	10060	-100/+35	9963/
							10095
'YD'	11895	1467	12475	1525	10380	-170/	10211/
						124	10504
'no name'	12780	1555	13080	1582	11000	-85/	10915/
						114	11114
1a	13656	1626	14065	1657	12006	100	11857/
							12050
1	14187	1666	15044	1740	12471	185	12315/
							12683
2a	15415	1754	16531	1802	13406	245	13174/
							13665
2b	16531	1802	16940	1820	13850	40	13808/
							13885
				1000			
3	17579	1847	18189	1888	14671	105	14582/
							14792
	40700	1010	40700	1071	45054	100	45004/
4	18790	1913	19793	1971	15851	190	15661/
							16044

5a	19922	1978	20240	2003	16670	90	16570/ 16750
5b	20240	2003	20919	2032	17007	190	16830/ 17247
6	21173	2105	22300	2132	17766	404	17433/ 18240
7	22604	2140	22940	2171	18844	117	18741/ 18975
8	23237	2175	24300	2257	19715	-290 325	19425/ 20041
9	24300	2257	25250	2312	20465	-227 263	20238/ 20728
10a	25656	2358	26960	2400	22328	-380 270	21946/ 22600
10b	26960	2400	27612	2426	22708	-475 440	22233/ 23147
11	27900	2443	28898	2525	24088	-360 505	23727/ 24595

- Figure 1. Raw ¹⁴C data of Lake Suigetsu (blue dots), converted into $\infty \Delta^{14}$ C units, plotted vs. cal. 265 ages of Bronk Ramsey et al. (2020). A Bayesian spline named "Suigetsu only curve" (pink band, 266 267 B&H 2021, Fig. 3a modified) shows periods of gradually decreasing atmospheric Δ^{14} C values, reflecting 15 atmospheric ¹⁴C age plateaus and their uncertainty range as defined by Sarnthein 268 et al. (2020; numbers listed in Table 1). In between, rapidly increasing atmospheric Δ¹⁴C values 269 270 reflect short gaps or ¹⁴C age 'jumps' between plateaus. Superimposed are straight lines that 271 display the atmospheric Δ^{14} C structures as originally defined by visual inspection of raw 14 C ages 272 and 1st derivative technique (Sarnthein et al., 2020; and Suppl. Figs. 1-19), with green lines using the initial chronology of Bronk Ramsey et al. (2012; B&H 2021) and dark pink lines using the 273 recently revised ages of Bronk Ramsey et al. (2020). 274
- 275

Figure 2. High-resolution record of atmospheric ¹⁴C jumps and plateaus (= suite of labeled
horizontal boxes that envelop scatter bands of largely constant ¹⁴C ages extending over
>300 cal. yr) in a sediment section of Lake Suigetsu (Fig. 2 of Sarnthein et al., 2020) vs.
tree ring-based ¹⁴C jumps and plateaus 10–14.5 cal. ka (Reimer et al., 2013; 14.0-14.4
cal. ka: suppl. by data of Adolphi et al., 2017). Blue line averages paired double and

- triple ¹⁴C ages of Suigetsu plant macrofossils. Age control points (cal. ka) follow varve
- counts (Schlolaut et al., 2018) and U/Th model-based ages of Bronk Ramsey et al. (2012
- and 2020). YD = Younger Dryas, B/A = Bølling-Allerød.

Figure 3. (Courtesy of Bronk Ramsey et al., 2020). A comparison of Bayesian spline compilations of datasets of Suigetsu (green) and Hulu speleothem (magenta) over the period 20-35 cal. ka, transformed using a MatLab deconvolution algorithm (linear ramp with mean of 420 years). Gradually decreasing atmospheric Δ^{14} C values reflect atmospheric ¹⁴C age plateaus and their uncertainty range (black numbers in brackets). Rising Δ^{14} C values reflect atmospheric ¹⁴C age jumps.

304	¹⁴ C PLATEAU TUNING – A MISLEADING APPROACH OR TRENDSETTING TOOL FOR MARINE
305	PALEOCLIMATE STUDIES?
306	
307	Michael Sarnthein ¹⁾ and Pieter M. Grootes ²⁾
308	
309	SUPPLEMENTARY MATERIALS (i.e., just an overview for a fast-reading reviewer)
310	
311	SUPPLEMENTARY FIGURES AND TABLES
312	Figures S1 - S19.
313	Planktic ¹⁴ C records of sediment cores plotted vs. core depth. Core location and references to
314	data source are given in Table S20. Planktic ¹⁴ C plateaus (horizontal boxes) are compared to
315	atmospheric (atm) ¹⁴ C plateau suite of Lake Suigetsu (Bronk Ramsey et al., 2020), where
316	calendar ages of plateau boundaries (and average atmospheric ¹⁴ C ages; Fig. S12) are given
317	below. Local planktic reservoir ages (in blue) result from the difference between the average raw
318	¹⁴ C age of planktic ¹⁴ C plateaus measured in the core and the ¹⁴ C age of equivalent atmospheric
319	14 C plateaus numbered 1 – 10 (numbers in brackets). Top panel shows units of the 1 st derivative
320	(¹⁴ C yr per m core depth) and 1- σ uncertainty range, with high values indicating ¹⁴ C jumps and
321	¹⁴ C plateaus (numbered in red) constrained at 'half-height' by asterisks (as defined in Sarnthein
322	et al. 2015). B/A = Bølling-Allerød; HS-1, HS-2 = Heinrich Stadial 1 and Heinrich Stadial 2; LGM =
323	Last Glacial Maximum. Sedimentation rates are based on ages of ¹⁴ C plateau boundaries. Red
324	double slash indicates sedimentation gap.
325	
326	Suppl. Tables S1 - S19.
327	Planktic and benthic ¹⁴ C ages measured in 19 ocean sediment cores. All cal. ages (yr BP) were

328 deduced by means of ¹⁴C plateau tuning and adjusted to the IntCal20 U/Th-based model time

- 329 scale of Bronk Ramsey et al. (2020). Core locations and data sources are listed in Table S20.
- 330 Tables S1 S19 are being deposited at Pangaea.de.

- 332 Suppl. Table S 20. Core locations and data sources (and references) for 19 core sites from key
- 333 positions in the world ocean, used for generating a PT-based time scale for planktic and benthic
- 334 ¹⁴C ages displayed in Tables S1 S19.
- 335 -----