

Palaeobiological evidence for Southern Hemisphere Younger Dryas and volcanogenic cold periods

3

4 Richard N Holdaway*^{1,2,3}

- ⁵ ¹Palaecol Research Ltd, P.O. Box 16569, Hornby, Christchurch 8042, New Zealand.
- 6 ²School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch 8041, New Zealand.
- 7 3School of Earth and Environment, University of Canterbury, Private Bag 4800, Christchurch 8041, New
- 8 Zealand.
- 9
- 10 *Correspondence to: Richard N. Holdaway (turnagra@gmail.com)

- 12 Abstract. Current consensus places a Southern Hemisphere post-glacial cooling episode earlier than the
- 13 Younger Dryas in the Northern Hemisphere. New Zealand sequences of glacial moraines and speleothem
- 14 isotopic data are generally interpreted as supporting the absence of a Southern Hemisphere Younger Dryas.
- 15 Radiocarbon age series of habitat specialist moa (Aves: Dinornithiformes) show, however, that a sudden return
- 16 to glacial climate in central New Zealand contemporary with the Younger Dryas. The cooling followed
- 17 significant warming, not cooling, during the period of the Antarctic Cold Reversal. In addition, the moa
- 18 sequence chronology also shows that the Oruanui (New Zealand) and Mt Takahe (Antarctica) volcanic eruptions
- 19 were contemporary with abrupt cooling events in New Zealand. The independent high spatial and temporal
- 20 resolution climate chronology reported here is contrary to an interhemispheric post-glacial climate see-saw
- 21 model.
- 22
- 23
- 24

25 1 Introduction

26	The present model for the interhemispheric relationships between climatic events during the last deglaciation
27	invokes a seesaw alternation of warming with returns to glacial conditions (Broecker, 1998; Barker et al., 2009).
28	The sequence of alternate warming and cooling in each hemisphere model is based predominantly on proxy
29	chronologies from ice and ocean cores and cave speleothems. From these chronologies, post-glacial warming
30	began c.18 ka BP, possibly triggered by a series of eruptions of Mt Takahe (Antarctica) (McConnell et al.,
31	2017), that was reversed temporarily first in the Southern Hemisphere by a cool episode (the Antarctic Cold
32	Reversal, ACR) which, as presently understood, preceded the abrupt return to glacial conditions of the European
33	Younger Dryas between 12.8 ka and 11.5 ka BP.
34	Whether there was a Southern Hemisphere cold period synchronous with the Younger Dryas has been
35	debated for many years, with discussions based partly on data from New Zealand's South Island. The island,
36	athwart the present dominant Southern Hemisphere temperate latitude westerly wind belt, is a key site for
37	Quaternary paleoclimate research. The position and strength of the westerlies has been interpreted from
38	speleothem stable isotopic records and glacial advances and retreats in the axial mountains. These data have
39	been used to both support (Denton & Hendy, 1994; Ivy-Ochs et al., 1999) and reject (Shulmeister et al., 2005;
40	Hajdas et al., 2006; Kaplan et al., 2010; Koffman et al., 2017; Putnam et al., 2010) a New Zealand Younger
41	Dryas episode. The moraines, speleothems, and pollen as climate proxies provide overviews of atmospheric and
42	conditions through time but they are either contentious, as with the origin of the Waihō Loop (Denton & Hendy,
43	1994; Mabin et al., 1996; Tovar et al., 2008), or, with speleothem isotopes and pollen, have been recovered from
44	relatively few sites, and are subject to different interpretations (Newnham, 1999; Singer et al., 1998). All,
45	especially the Kaipo Bog pollen record (Lowe & Hogg, 1986; Hajdas et al., 2006), depend on date-interpolated
46	stratigraphic chronologies. In addition, apart from rare instances such as the Kaipo Bog, the sites do not record
47	local environments in detail through space and time.
48	In contrast, the rich radiocarbon record for moa (Aves: Dinornithiformes), whose late Holocene
49	distributions indicate high levels of habitat specificity, provides a geographically extensive, independent,
50	intensive chronology of vegetation, west of the Main Divide (MD), in the western and northwestern South
51	Island, New Zealand over the past 25,000 years (Worthy, 1993a; Worthy, 1997; Worthy & Holdaway, 1993,
52	1994; Worthy & Roscoe, 2003). I used the published radiocarbon ages of four moa taxa characteristic of

53 alpine/glacial, lowland rain forest, and dry shrublands to develop a chronology of vegetation change through

54 time, comparable with interpretations of local speleothem δ^{18} O palaeotemperature records and the European

- 55 Younger Dryas chronology from ice accumulation, temperature (Meese et al., 1994)) and methane (Brook et al.,
- 56 1996) records over the past 30 ka from the GISP2 ice core (Greenland).

57

- 58 2 Materials and methods
- 59 2.1 Geographic settings
- 60 2.1.1 West Coast, South Island
- 61 The West Coast fossil sites are within caves and cave systems in the 6000 ha of karst that abuts the coast south
- 62 of Charleston (Fig. 1). The area is bounded to the east by the 1500 m Paparoa Range. The limestone is c. 100 m
- 63 thick so there is little vertical development in the caverns, but horizontal passages can be up to 8 km long
- 64 (Worthy & Holdaway, 1993). The sites vary in present altitude from 10s to 300 m above sea level. The present
- 65 climate is mild, humid, and equable, with mean summer maxima of c. 18°C and minima of c. 10 °C (Worthy &
- 66 Holdaway, 1993). The dominant westerly winds bring precipitation from the Tasman Sea and beyond. Rainfall
- varies from 2800 mm at the coast to 4000 mm at the base of the eastern ranges, with 8000 mm at the summit.
- 68 Annual sunshine hours range from 1700 in the south to nearly 2000 in the north. Fed by the ample moisture and
- 69 mild temperatures the Holocene vegetation has been lowland rain forest, with podocarp conifers emergent above
- 70 a canopy of broadleaf trees and an understory of shrubs and tree ferns.

71

72 2.1.2 Honeycomb Hill

- 73 The Honeycomb Hill Cave system of 13.7 km of passages, with 70 entrances, lies beneath 0.8 km² of temperate
- rain forest (Worthy, 1993a) in the broad, shallow Oparara River basin in the north-western South Island (Fig. 1).
- 75 The basin is sheltered, and normally experiences only light winds, mostly from the west. Annual rainfall is
- 76 3000-4000 mm (Worthy, 1993a). Frosts are uncommon and temperatures are similar to those in the West Coast
- 57 study area. The present altitude of 300 m a.s.l. was c. 430 m during the glacial maximum.

79

Figure 1: Distribution of fossil deposits and speleothems in the northern South Island, New Zealand. Fossil
deposits, black; speleothem sites, white. A, Location of study area in relation to present and Last Glacial
Maximum (solid line) coastlines. B, Western and northwestern study areas and Glencrieff site in relation to the
Main Divide. C, Detail of West Coast study area. C, Charleston;. WCS, West Coast fossil sites; H, Hollywood
Cave; B, Babylon Cave; W, Wasspretti Cave. D, Detail of Northwest Nelson study area. WN, Wet Neck Cave;
C, Creighton's Cave; TF, Twin Forks Cave; HH, Honeycomb Hill Cave system; SMS, Southern mountain sites;
TV, Takaka Valley; TH, Takaka Hill; A, Mt Arthur (Nettlebed Cave)

87

88 2.1.3 Takaka Hill

Takaka Hill (TH) is a roughly tear-drop-shaped (in plan) complex of ranges and marble plateaux which projects
40 km north from the high (1500-1800 m) mountainous core of northwest Nelson (Fig. 1). The southern end is a
narrow saddle reaching 1000 m, between the headwaters of the Waitui Stream to the west and the South Branch

92	of the Riwaka River to the east, which pinches it off from the southern mountains. The 'Hill' itself, c. 20 km
93	across at its widest point, is therefore in effect an island, bounded by steep escarpments to the east and west and
94	to the north (during the Holocene) by the sea. The western escarpment is the boundary with Takaka Valley (TV)
95	where there are fossil deposits in limestone caves: to the east the abrupt slopes fall to the Waimea Plains (Fig.
96	1), which have great depths of alluvium and no known Quaternary fossil deposits. Most of the fossil sites on TH
97	are presently at 800-900 m above sea level, but would have been up to 1000 m during the glaciation.
98	Although at present near sea level, TV would have been near 250 m at Last Glacial Maximum. During
99	the Weichselian-Otiran glaciation TH and TV were near the center of the larger glacial period New Zealand land
100	mass, much farther than at present from coastal and marine influences. To the north, extensive lowlands of the
101	land bridge occupied the western reaches of present Cook Strait. The land bridge allowed contact, at times,
102	between the faunas and floras of the North and South islands. The status of the Cook Strait land bridge as
103	alternatively a barrier to movement or a conduit has been much debated, e.g., (Worthy, 1993b; Worthy &
104	Holdaway, 1994).
105	Its roles as barrier or conduit probably changed with extrinsic events. For example, the Oruanui
106	eruption of Taupo Volcano 25.6 ka BP (Vandergoes et al., 2013) would have deposited thick ash on the bridge
107	(Vandergoes et al., 2013), destroying the vegetation (Oppenheimer, 2011), and making it uninhabitable by moa
108	or anything else. Under the cold, dry glacial climate revegetation would have taken millennia.
109	Much of the forest on TH was removed in the early 20th century. Surviving patches indicate that the
110	Holocene mixed forest was dominated by Fuscospora and Lophozonia southern beeches (both formerly in
111	Nothofagus) with emergent podocarps including Podocarpus totara and P. laetus (formerly P. hallii or P.
112	cunninghamii) (Worthy & Holdaway, 1994). The Holocene TV rain forest was much floristically richer than
113	that on TH. Rainfall in TV and on TH is high and TH regularly receives (southern) winter snow.
114	

115 **2.1.4 Glencrieff**

The Glencrieff site (Fig. 1) (Worthy & Holdaway, 1996) is a small bog formed over a spring in a grazed field on a gravel river terrace c. 1.6 km west of the well-known Pyramid Valley lake bed deposit (Holdaway & Worthy, 1997; Holdaway et al., 2014; Allentoft et al., 2014). The moa remains lay within a 1.2 m peat layer beneath the turf. The peat in turn overlays fluid blue clay over a gravel base at c. 2.5 m. Pollen recovered from the peat

- 120 suggested that the local vegetation during moa deposition was tussock grasses (mostly *Chionochloa* spp.) with
- 121 the small conifer *Phyllocladus alpinus* and *Coprosma* spp. shrubland. As both *Chionochloa* and *Coprosma* are
- both anemophilous and produce large amounts of mobile pollen, they may be over-represented in the deposit.

123

124 2.1.5 Merino Cave, Annandale

- 125 Merino Cave is at the foot of the slope in a small doline at 560 m at the southern end of a limestone plateau in
- 126 North Canterbury which rises to Mt Cookson (897 m) (Fig. 1). To the west, the eastern axial mountain ranges
- 127 reach >1700 m. The moa remains were excavated, with those of other birds, from the sides and floor of a
- 128 channel cut through a sediment fill (Worthy & Holdaway, 1995).
- 129

130 2.2 Systematics – nomenclature of *Pachyornis* and *Euryapteryx*

131 It is necessary for clarity to briefly summarize recent changes in moa nomenclature because older major reviews

132 such as (Worthy & Holdaway, 2002) use older names and even species definitions. In Pachyornis, the validity

133 of *P. australis* was accepted on its morphology by (Worthy, 1989) and confirmed genetically later (Bunce et al.,

- 134 2009). Further analyses of the distributions and relationships of taxa within South Island Pachyornis led
- 135 (Rawlence et al., 2012) to question the validity of some identifications based on morphology. From this, and
- 136 stable isotope measurements, (Holdaway & Rowe, 2020) suggested that only P. australis was found west of the
- 137 Main Divide. For the present analysis, *Pachyornis* individuals west of the MD are treated as *P. australis*.
- 138 However, the distinctions detailed by (Rawlence et al., 2012) are followed below completeness.
- 139 In the genus *Euryapteryx*, re-examination of a type specimen necessitated name changes. *E. curtus* was
- 140 known until 2005 as E. geranoides. It was then renamed E. gravis (Worthy, 2005). Four years later it was
- 141 incorporated in an expanded concept of *E. curtus* (Bunce et al., 2009). However, the systematics of the genus
- 142 appear to be still not settled as two sympatric genetic clades of different body sizes from the Holocene of the
- 143 northern North Island's northern peninsula have been referred to as different species (Huynen et al., 2010) or
- 144 subspecies (Huynen et al., 2014). They are unlikely to have been subspecies as the forms were sympatric and
- 145 contemporary. The *Euryapteryx* specimens are listed provisionally here as *E. curtus*.

- 148 2.3 Habitat specificity of moa
- 149 2.3.1 General
- 150 The key observation that allows some moa to be used as vegetation proxies is that those taxa have been found
- 151 only in association with specific vegetation types in deposits of Holocene age. The Holocene vegetation pattern
- 152 is well known from existing examples and many pollen records.
- 153 South Island moa were formerly characterized in terms of "faunas", principally with respect to a
- 154 distinction between Holocene age "eastern" and "western" faunas (Worthy & Holdaway, 1993, 1994, 1996,
- 155 2002). The western "wet forest" fauna was based on the presence of Anomalopteryx and smaller individuals of
- 156 Dinornis robustus. Mid-sized individuals of D. robustus in western deposits were then identified as a separate
- 157 species (D. novaezealandiae) characteristic of wet forests. The eastern fauna was based on the presence of
- 158 Euryapteryx and Pachyornis. These genera have seen as characteristic of dry shrubland/forest mosaics (Worthy,
- 159 2000; Holdaway & Worthy, 1997; Worthy & Holdaway, 1994, 1996). Another emeid moa, Emeus crassus, was
- 160 also characteristic of the eastern fauna was but it has never been identified in deposits west of the MD (Worthy
- 161 & Holdaway, 2002), so provides no vegetation information for that area.
- 162 As noted above, these distinctions and the habitat preferences of the moa taxa were based on the
- 163 Holocene vegetation, which is well known both from surviving vegetation and pollen records. Habitat
- 164 requirements recognised here for the key taxa follow.
- 165 2.3.2 P. australis
- 166 This species indicates the presence of shrublands growing under a cool to cold climate. It occupied alpine
- 167 shrublands and fellfield in the Holocene (Worthy, 1989; Rawlence & Cooper, 2013; Worthy & Holdaway, 1994;
- 168 Rawlence et al., 2012), and is hypothesized to have occupied similar habitat during glaciations. The youngest
- 169 radiocarbon dated individuals are from higher altitudes than P. elephantopus (Rawlence & Cooper, 2013;
- 170 Rawlence et al., 2012).
- 171
- 172
- 173

174 2.3.3 Anomalopteryx didiformis

- 175 This small species indicates the presence of warm lowland to lower montane rain forest (Worthy & Holdaway,
- 176 1993, 1994, 2002). Carbon stable isotope ratios suggest that it fed around canopy gaps within the rain forest
- 177 (Worthy & Holdaway, 2002).
- 178 2.3.4 Euryapteryx curtus
- 179 This species is found in Holocene in areas of lowland to lower montane dry forest and shrublands (Worthy &
- 180 Holdaway, 2002). It is here taken to indicate the presence of such vegetation and also of seral vegetation with
- 181 similar structure and composition.
- 182

183 2.4 Moa radiocarbon ages

- 184 2.4.1 Sources
- 185 Radiocarbon ages for moa obtained from the literature are listed, with ancillary data, in Tables 1 & 2. Those
- 186 from the South Island West Coast are from (Worthy & Holdaway, 1993, 1994; Bunce et al., 2009); from
- 187 Honeycomb Hill from (Worthy, 1993a; Rawlence et al., 2012; Bunce et al., 2009); from Glencrieff from
- 188 references (Worthy & Holdaway, 1996; Rawlence et al., 2011); from Takaka Valley and Takaka Hill from
- 189 (Worthy & Holdaway, 1994; Worthy & Roscoe, 2003; Rawlence et al., 2012; Bunce et al., 2009). Those from
- 190 Annandale are in (Worthy & Holdaway, 1995).
- 191

192 2.4.2 Radiocarbon age calibration

- 193 All conventional radiocarbon ages were calibrated using OxCal4.4 (Ramsey, 2009) referenced to the SHCal20
- 194 curve (Hogg et al., 2020). The dates are presented as means or as means $\pm 1\sigma$. At the chronological scales
- 195 involved, symbol size in the figures generally encompasses the probability distribution for calibrated dates.
- 196
- 197
- 198
- 199

200 2.5 Bayesian sequence analyses

- 201 Sequences of moa radiocarbon ages and the timing of changes in representation were assessed using the
- 202 R_Sequence option in OxCal4.3 (Ramsey, 1995, 2009), again invoking the SHCal20 curve (Hogg et al., 2020).
- 203 Sequence starts and ends were plotted both as means and standard deviations and as probability distributions.

204 **2.6 Isotopes and other proxies**

- 205 Palaeoclimatic data were downloaded from the National Climatic Data Center of the National Oceanographic
- 206 and Atmospheric Administration (NOAA) <u>www.ncdc.noaa.gov</u>. The speleothem $\delta^{18}O$ data are from (Hellstrom
- 207 et al., 1998), (Williams et al., 2005) and (Williams et al., 2010). Data for GISP2 ice accumulation are from
- 208 (Meese et al., 1994) and for GISP2 methane from (Brook et al., 1996).
- 209 Isotope, methane, and ice accumulation data were smoothed using local regression (LOESS), via the
- 210 LOESS option in PAST® (Hammer et al., 2001). A range of smoothing factors (Fig. 2-4) was tested to establish
- 211 which showed the best compromise between loss of pattern and excessive noise: a common smoothing factor of
- 212 0.03 was adopted. At all SF values, the fall in temperature signaled by the 8-speleothem δ^{18} O record coincided
- 213 with the start of the Younger Dryas in Greenland (Fig. 4).
- 214

215 2.7 Eruption dates

- 216 The date of the Oruanui (Taupo) super eruption is from radiocarbon ages in (Vandergoes et al., 2013)
- 217 recalibrated using the SHCal20 curve. The Mt Takahe eruption series date, based on Antarctic ice core
- 218 chronologies, is from (McConnell et al., 2017). The Mt Takahe eruptions coincided with a peak of warming
- 219 shown in the New Zealand δ^{18} O record, immediately preceding a return to low temperatures, rather than being at
- the start of local warming (Fig. 2, 3).

- 222
- 223

- 224 Table 1: Conventional and calibrated (SHCal20 curve) radiocarbon ages (Before Present) for moa from West Coast,
- 225 Honeycomb Hill, Glencrieff, and Merino Cave deposits, South Island, New Zealand. *, Site 16 is also known as
- 226 Equinox Cave; NP, not published; ANDI, Anomalopteryx didiformis; PAEL, Pachyornis elephantopus; PAAU, P.
- 227 australis; PAAU, P. australis identified as P. elephantopus on morphology; EUCU, Euryapteryx curtus; EMCR,
- 228 *Emeus crassus*. Ages in italics, ANU laboratory series with different pretreatments (Rawlence et al., 2011).
- 229 Calibrated dates in square parentheses, failed χ^2 test for combination. Date laboratory numbers in **bold** used in
- 230 sequence analysis. N/A, not available. References: B, Bunce et al. (2009); R11, Rawlence et al. (2011); R12,
- 231 Rawlence et al. (2012); W93, Worthy (1993a); W&H 93, Worthy & Holdaway (1993); W&H 95, Worthy &
- 232 Holdaway (1995); W&H 96, Worthy & Holdaway (1996).

Taxon	Museum	Site	Lab no.	CRA	SD	Cal mean	SD	Median	Reference
WEST C	OAST								
ANDI	NMNZ S28055-61	Madonna Cave Sites 1-8	NZA2443	2197	86	2193	114	2141	W & H 93
PAEL	NMNZ S28064	Madonna Cave Site 8	NZA2505	14740	110	17985	164	18008	W & H 93
PAEL	NMNZ S28086	Madonna Cave Site 14	NZA2446	20680	160	24846	234	24861	W & H 93
PAAU	NMNZ S28192	Te Ana Titi Cave	NZA2320	25070	260	29360	308	29345	W & H 93
EUCU	NMNZ S28083	Madonna Cave Site 13	NZA2779	11090	100	12971	101	12977	W & H 93
EUCU	NMNZ S28121	Madonna Cave Site 16*	NZA2445	23780	210	27964	249	27924	W & H 93
PAAU	CMAv29445	Charleston	OxA12431	14045	65	17054	122	17043	В
HONEY	COMB HILL CAVE S	YSTEM							
PAAU	In situ	Gradungula Passage	OxA12435	18925	80	22786	126	22800	В
PAAU	In situ, NRS348	Gradungula Passage	OxA20284	19575	80	23526	144	23517	R 12
PAAU	In situ, NRS350	Gradungula Passage	OxA20285	20760	90	24979	141	24998	R 12
PAAU	NMNZ \$25863.2	Moa Cave Extension	OxA20366	17645	60	21254	131	21257	R 12
PAAU	NMNZ S25863.1	Moa Cave Extension	OxA20367	19335	70	23262	190	23210	R 12
PAAU	NMNZ S25655	Wren Wrecker	OxA20286	16860	75	20336	99	20344	R 12
PAAU	NMNZ S25868	Cemetery	ANU1611	14730	170	17922	238	17953	R 12
PAAU	NMNZ S25867	Cemetery	ANU1612	14950	150	18240	218	18220	R 12
PAAU	NMNZ S25864	Cemetery	NZ7646	15000	200	18292	257	18283	W 93
PAAU	N/A	Graveyard	NZ6586	14029	138	16995	212	17005	W 93
PAAU	N/A	Graveyard	NZ6453	15677	163	18953	180	18940	W 93
PAAU	N/A	Graveyard	NZ7323	18600	230	22531	243	22520	W 93
PAAU	N/A	Graveyard	NZ7292	20600	450	24773	528	24767	W 93
PAAU	N/A	Moa Cave	NZ7642	13850	140	16746	211	16752	W 93
PAAU	N/A	Moa Cave	NZ6480	14194	140	17234	203	17222	W 93
PAAU	N/A	Moa Cave	NZA574	18300	170	22185	186	22199	W 93
PAAU	N/A	Moa Cave	NZ7647	18650	250	22577	256	22572	W 93
PAAU	N/A	Moa Cave Extension	NZ6589	14062	138	17047	209	17055	W 93
PAAU	N/A	Cemetery	NZ7675	12950	450	15391	722	15403	W 93
GLENCE	RIEFF								
PAEL	NP	Glencrieff "Peg 1"	NZA4162	11898	82	13722	115	13709	W & H 96
PAEL	NMNZ 32670.9	Glencrieff Square A1	ANU1607	11230	210	13106	193	13106	R 11
	NMNZ 32670.9	Glencrieff Square A1	ANU4923	10750	80	12682	69	12698	R 11
	NMNZ 32670.9	Glencrieff Square A1	ANU7612	10510	80	12377	177	12384	R 11
	Combined					12645	64	12658	
PAEL	NMNZ S32670.8	Glencrieff Square A2	ANU4937	9070	80	10161	135	10192	R 11
	NMNZ S32670.8	Glencrieff Square A2	ANU7265	10680	70	12637	74	12654	RII
D . DI	Combined	CI 1 M G 11				[11561]	144	11563	P. (1
PAEL	NMNZ \$32670.3	Glencrieff Square Al	ANU1606	11490	80	13337	81	13337	RII
	NMNZ 832670.3	Glencrieff Square Al	ANU4925	11180	70	13063	/8	130/7	RII
	NMNZ 532670.3	Glencrieff Square A1	ANU/614	10980	70	12880	83	12869	K I I
DAEL	Combined	Cl	1117/10	11200	120	[13109]	45	13111	D 11
PAEL	NMNZ 552070.7	Glencrieff Square B2/B3	ANU/610	10580	130	13260	110	13230	R II
PAEL	NMNZ \$32670.2	Glencrieff Square B2	ANU1605	10580	90	12487	169	12529	R II
	NMINZ \$32070.2	Glenerieff Square B2	ANU4924	10/60	/0	12694	57	12/0/	R II
	NMNZ 552070.2	Giencriejj Square B2	ANU/015	10010	80	12534	61	12365	KII
EMCD	NIMPLE S22600	Clanaria (C. Savara A.)	N/7 A 4070	10470	120	12040	225	12034	W & H OG D 11
EMCR	NIMINZ 532090	Glenorieff Square A1	NZA4079	10470	130	12289	225	12290	W & H 96; K 11
	INIMINZ 332000	Glenchen – Square Al	NZA4018	10460	120	12307	215	12312	w & H 90; K 11
DAEI	NMN733402 2mt	Marino Cava - West	NZA3814	14150	140	17174	208	17176	W & H 05
PAEL	NMNZ22402-201	Merino Cave - West	NZA2014	10590	220	23502	200	23500	W & H 05
PAEL	NMNZ33402-3pt	Merino Cave - West	NZA3816	38200	230	42422	630	42378	W & H 05
PAEL	NMN733402-3pt	Merino Cave - East	NZA3884	22690	400	26901	403	26918	W & H 95
PAEL	NMN733402-3pt	Merino Cave - East	NZA4107	37820	810	42144	455	42157	W & H 05
PAEL	NMNZ33402-3pt	Merino Cave - East	NZA4447	14010	110	16974	181	16982	W & H 95

233

235 236 **Table 2:** Radiocarbon ages for moa from the Takaka area, north-western South Island, New Zealand. References: B, Bunce et al. (2009); R, Rawlence *et al.* (2012); W & H 94, Worthy & Holdaway (1994); W & R 03, Worthy & Roscoe (2003).

237

2	2	Q
4	5	0

Taxon	Museum	Site	Lab no.	CRA	SD	Cal mean	SD	Median	Reference
ANDI	NMNZ S38943	Takaka Fossil Cave	OxA12728	11575	45	13406	52	13407	В
ANDI		Takaka Fossil Cave	NZA11614	11354	60	13223	55	13221	W & R 03
ANDI		Kairuru Extension	NZA3288	8274	72	9217	114	9213	W & H 94
ANDI		Hawkes Cave	NZA3258	6656	141	7500	127	7503	W & H 94
ANDI		Kairuru Extension	NZA3289	4072	59	4544	117	4524	W & H 94
ANDI		Takaka Fossil Cave	NZA13547	1576	60	1429	65	1425	W & R 03
ANDI		Irvine's Tomo	NZA3048	670	59	604	39	604	W & H 94
EUCU		Takaka Valley	NZA3050	14080	100	17096	154	17093	W & H 94
EUCU		Takaka Valley	NZA3051	13889	95	16805	153	16813	W & H 94
EUCU		Takaka Hill	NZA1567	13400	130	16083	196	16082	W & H 94
EUCU	S39016	Takaka	OxA12670	12525	50	14698	188	14677	В
EUCU		Takaka Fossil Cave	NZA13267	12450	65	14563	206	14547	W & R 03
EUCU		Takaka Fossil Cave	NZA13266	12361	65	14407	223	14349	W & R 03)
PAELN	S32425	Predator Cave	OxA20336	32230	380	36616	441	36579	R
PAAU	S28422	Hawkes Cave	NZA3237	29011	312	33392	484	33444	W & H 94
PAELN	DM417E	Takaka Hill	OxA20292	20330	90	24390	143	24386	R
PAEL	S27797	Kairuru	NZA1568	18950	230	22836	271	22815	W & H 94
PAAU	NM unreg	Takaka Hill	OxA20290	18235	80	22160	92	22160	R
PAELN	DM417E	Takaka Hill	OxA20293	14145	60	17184	93	17183	R
PAEL	S28424	Hawkes Cave	NZA3240	13470	94	16178	150	16179	W & H 94
PAAU	S33754	Moa Trap Cave	OxA12669	10450	45	12303	136	12299	В
PAAU	WO90.47	Takaka Hill	OxA20291	10210	45	11814	89	11822	R
PAAU	Av21331	Bone Cave	OxA12430	10165	50	11716	134	11745	В
PAAU	S27881	Irvine's Tomo	NZA3049	28520	290	32687	470	32669	W & H 94
PAAU	S35298.1	Commentary Cave	OxA20294	28050	300	32151	465	32062	R
PAEL	NMNZ	Tarakohe	NZA3047	19520	130	23466	189	23472	W & H 94

242
243Figure 2: Effects of different smoothing factors on full sequence of speleothem δ^{18} O records in western and244northwestern South Island, New Zealand. A, speleothem MD1, Mt Arthur. B, Integrated speleothem records from245eight caves near Paturau and on the West Coast, South Island, New Zealand; grey symbols, raw data; black, local246regression (LOESS) 0.03 smoothing factor (SF) (adopted for analyses); blue = 0.025 SF. C, As in B but black = 0.1247SF, blue = 0.05 SF; D, As in B, black = 0.3 SF, blue = 0.2 SF. Line at 25.6 ka BP, Oruanui (Taupo volcano, New248Zealand, eruption); at 17.7 ka BP, Mt Takahe, Antarctica, eruption series. Grey shading, European Younger Dryas.

251 Figure 3: Effects of different smoothing factors (SF) on LOESS (local regression) of the 8-speleothem integrated

252 d180 record for the north-western South Island in the period encompassing the Mt Takahe (Antarctica) eruptiopns.

256 Figure 4: As in Fig. 3, but for the period encompassing the North Hemisphere Younger Dryas, in relation also to

257 GISP2 ice core methane and ice accumulation records (with 0.1 SF).

- 258
- 259
- 260

Results

262	Analysis of radiocarbon ages on bone gelatin of moa from cave sites at different altitudes in the north-western South
263	Island, New Zealand, and a swamp site (Glencrieff) and cave site (Merino Cave, Annandale) east of the Main
264	Divide showed changes in species representation in relation to each other, to the Oruanui super eruption (Taupo,
265	New Zealand) and Mt Takahe eruptions (Antarctica), and to the period of the Younger Dryas (Fig. 5-8; Tables 1-3).
266	East of the MD, a population of Pachyornis elephantopus around Glencrieff was replaced by Emeus
267	crassus at the onset of the Younger Dryas (Fig. 5, 6; Table 3), but both taxa were present in the area later in the
268	Holocene (Holdaway et al. 2014). Only individuals of Pachyornis have been dated so far from Merino Cave. They
269	were present around the time of the Oruanui eruption and after the Mt Takahe eruptions. West of the MD, apart
270	from an individual > 30 ka old, deposition of Pachyornis australis in the Honeycomb Hill cave system began
271	immediately after the Oruanui eruption (Fig. 5, 7; Table 4). Further south, in the West Coast area, two of the three
272	available ¹⁴ C ages on <i>P. australis</i> fell immediately after the Oruanui and immediately before the Mt Takahe
273	eruptions (Fig. 5A). The third, from a site at lower altitude, pre-dated the Oruanui eruption. One of the two available
274	¹⁴ C ages on <i>Euryapteryx curtus</i> from the West Coast pre-dated the Oruanui eruption; the other coincided with the
275	start of the Younger Dryas (Fig. 5A). Despite significant numbers of Anomalopteryx didiformis in West Coast sites,
276	only one, with a late Holocene age, has been ¹⁴ C-dated so far. Its presence was then assumed to indicate its presence
277	in the Holocene only (Worthy & Holdaway, 1993).
278	Further north, ¹⁴ C ages for <i>P. australis, E. curtus</i> , and <i>A. didiformis</i> from Takaka Hill and the mountains to
279	the south were clustered (Fig. 5B, C). Taking all the Pachyornis individuals as representing P. australis (Holdaway
280	& Rowe, 2020), the species exhibited four pulses of presence on Takaka Hill (Fig. 5B). The first, at 38-34 ka BP,
281	included the date for the single pre-Oruanui individual from Honeycomb Hill. As at Honeycomb Hill, there was a
282	pulse of deposition after the Oruanui eruption, then none after 22 ka BP until after the Mt Takahe eruptions (Fig.
283	5B). P. australis was then replaced briefly by A. didiformis during the Antarctic Cold Reversal interval, only to
284	return in the Younger Dryas period (Fig. 5, 8; Table 5). It vanished from Takaka Hill between 11.59 ka and 11.23 ka
285	BP, synchronous with the end of the Younger Dryas (Fig. 5, 8; Table 5), after which it remained at higher altitudes
286	in the mountains to the south, until its extinction (Fig. 5B). The Pachyornis individuals arrayed as presently
287	identified (P. australis, P. elephantopus northern clade, P. elephantopus (sensu lato) appear sequentially in the
288	Takaka area after both eruptions (Fig. 5C).

291

292 293 Figure 5: Species sequences of moa in the northern South Island, New Zealand over the past 40,000 years in 294 relation to the Oruanui and Mt Takahe eruptions and the Younger Dryas and to ambient altitude above sea level 295 (asl). Mean calibrated dates for moa in: A, the Honeycomb Hill cave system, the West Coast, and Glencrieff, with 296 Bayesian probabilities (shaded) of start and end of deposition of Pachyornis australis at Honeycomb Hill; B, the 297 Takaka area, all Pachyornis regarded as P. australis; and C, the Takaka area with Pachyornis as presently 298 identified. Abbreviations: KOT, Oruanui eruption; ANDI, Anomalopteryx didiformis; EUCU, Euryapteryx curtus; PAEL, Pachyornis elephantopus sensu lato; PAELN, P. elephantopus, northern clade; PAAU, P. australis as 299 300 presently identified; PAAU inclusive, all Pachyornis west of the Main Divide regarded here as P. australis.

302 303

304

Modelled date (BP)

Figure 6: Bayesian modelled dates for transition between presence of *Pachyornis elephantopus* and *Emeus crassus* in the Glencrieff deposit, eastern South Island, New Zealand.

307

```
308Currently, there are no 14C-dated E. curtus from the Takaka area from earlier than the Mt Takahe eruptions309(Fig. 5B). The short date series begins with individuals in the Takaka Valley, adjacent to the main part of the Cook310Strait land bridge (Fig. 8B), and only later on Takaka Hill, where its final date just precedes the brief presence of A.311didiformis itself just preceding the period of the European Younger Dryas.312Features in the moa date series and sequences aligned with the 8-speleothem \delta^{18}O paleotemperature313records and with both ice314
```


Fable 3: Bayesian results for dates of moa species (*Pachyornis* by *Emeus*) replacement at Glencrieff, South Island, New Zealand.

316

317 accumulation and methane in the GISP2 ice core (Fig. 9). Approaching the Younger Dryas (as defined by the

318 GISP2 methane curve), the 8-speleothem δ^{18} O record follows the same pattern as that of the GISP2 ice

accumulation, falling from a peak near 17 ka BP to a sudden drop at the onset of the Younger Dryas (Fig.

- 320 9A). Two other features of the 8-speleothem curve of note are a sudden drop at the time of the Oruanui
- 321 eruption (Fig. 9A), and a steep rise starting c. 18 ka BP, peaking at the Mt Takahe eruptions before falling
- and not reaching the same value again until c. 15 ka BP (Fig. 9B, 10). Neither feature appears in the GISP2
- 323 ice accumulation curve.
- 324 Bayesian sequence analysis indicated that deposition of P. australis ceased at Honeycomb Hill two centuries after the post-glacial rise in δ^{18} O, at c. 3.85‰ (Fig. 9, 10). The species reappeared at c. 17.4 ka BP, 325 as δ^{18} O fell below c. 3.85% (Fig. 10) and persisted until c. 16.5 ka BP. The gap in presence of *P. australis* in 326 the Honeycomb Hill record bracketed the Mt Takahe eruptions, ceasing as the climate warmed and returning 327 328 as it cooled immediately after the eruptions. The smoothed local δ^{18} O and GISP2 curves showed similar patterns before and after the Younger 329 330 Dryas (Fig. 9, 11). Anomalopteryx didiformis appeared briefly on Takaka Hill before the Younger Dryas, 331 indicating that rain forest had reached at least 800 m a.s.l. during the post-glacial warming. It was then 332 replaced on Takaka Hill during the European Younger Dryas period (Fig. 9, 11). A. didiformis reappeared in 333 the early Holocene (Fig. 9, 11).
- 334

Name	Unmodel	lled (BP)								Modelled	(BP)							Ι	ndices	
Post KOT sequence																			Amodel=12	4.8
Show all																		ł	Aoverall=1.	22.3
Show structure	from t	0	%	from	to	%	Ħ.	ь	ш	from	to	%	from	to 0	%	о т	I	n /	Acomb	-
Curve SHCal20																			>	
Boundary Start 1	Arrival	of P met	tralis							25592	24870	683	26492	24684	95.4	25400	512	25271	45	
t time funning												2000	1	-						
Sequence 1																				
R_Date OxA20285	25156	24886	68.3	25220	24679	95.4	24979	141	24998	25139	24842	68.3	25202	24656	95.4	24952	146	24973	-4.5	96.1
R_Date NZ7292	25275	24185	68.3	25775	23815	95.4	24773	528	24767	24881	24186	68.3	25031	23831	95.4	24461	328	24482	-4.5	108.4
R_Date OxA20284	23760	23366	68.3	23793	23250	95.4	23522	150	23515	23763	23376	68.3	23795	23281	95.4	23538	146	23530	-4.5	101.5
R_Date OxA20367	23317	23053	68.3	23710	23003	95.4	23262	190	23210	23279	23065	68.3	23664	22993	95.4	23206	133	23186	-4.5	108
R_Date OxA12435	22956	22690	68.3	22991	22551	95.4	22786	126	22800	22974	22767	68.3	23000	22605	95.4	22833	109	22857	-4.5	107.4
R_Date NZ7647	22867	22359	68.3	23022	22066	95.4	22577	256	22572	22796	22466	68.3	22914	22347	95.4	22625	153	22625	-4.5	116.3
R_Date NZ7323	22810	22305	68.3	22973	22079	95.4	22531	243	22520	22560	22265	68.3	22750	22120	95.4	22423	153	22418	-4.5	112.3
R_Date NZA574	22372	22051	68.3	22528	21776	95.4	22185	186	22199	22330	22028	68.3	22453	21788	95.4	22141	171	22159	-4.5	101.7
R_Date OxA20366	21395	21141	68.3	21463	20984	95.4	21254	131	21257	21395	21142	68.3	21463	20984	95.4	21254	131	21258	-4.5	100
R_Date OxA20286	20451	20257	68.3	20516	20134	95.4	20336	66	20344	20451	20256	68.3	20516	20134	95.4	20336	66	20344	-4.5	6.66
R_Date NZ6453	19096	18784	68.3	19384	18655	95.4	18953	180	18940	19094	18787	68.3	19350	18667	95.4	18962	169	18944	-4.5	101.4
R_Date NZA7646	18639	18063	68.3	18756	17806	95.4	18292	257	18283	18654	18210	68.3	18754	18110	95.4	18442	175	18475	-4.5	108.9
R_Date ANU-1612	18599	18020	68.3	18647	17868	95.4	18240	218	18220	18296	18031	68.3	18591	17880	95.4	18191	160	18192	-4.5	112
R_Date ANU-1611	18222	17782	68.3	18268	17422	95.4	17922	238	17953	18166	17742	68.3	18213	17458	95.4	17870	207	17900	-4.5	100.9
R_Date NZ6480	17382	17047	68.3	17766	16861	95.4	17234	203	17222	17417	17133	68.3	17721	17032	95.4	17318	166	17302	-4.5	102.2
R_Date NZ6589	17315	16900	68.3	17400	16616	95.4	17047	209	17055	17253	16986	68.3	17365	16849	95.4	17107	132	17101	-4.5	117.7
R_Date NZ6586	17281	16818	68.3	17377	16585	95.4	16995	212	17005	17086	16808	68.3	17218	16635	95.4	16934	143	16947	-4.5	112.6
R_Date NZ7642	16988	16564	68.3	17114	16293	95.4	16746	211	16752	16901	16543	68.3	17015	16354	95.4	16695	173	16701	-4.5	106
R_Date NZ7675	16161	14551	68.3	16840	14029	95.4	15391	722	15403	16672	15764	68.3	16910	15100	95.4	16081	486	16158	-4.5	82.4
Boundary End 1	P. austre	ulis extirp	oation							16467	15200	68.3	16804	14158	95.4	15634	712	15755	-4.5	

327
 328 Table 4: Bayesian results for dates of moa species succession at Honeycomb Hill, Oparara, South Island, New Zealand.

21

Modelled date (BP)

Figure 7: Bayesian modelled dates for the first and last *Pachyornis australis* after 30 ka BP in deposits in

339 the Honeycomb Hill Cave system, South Island, New Zealand.

23

343

Figure 8: Bayesian modelled dates for transitions between moa taxa in the Takaka area, South Island, New Zealand
and their geographic context. A, Bayesian modelled transition dates. B, Extent of the Cook Strait land bridge and
when it was severed by rising post-glacial sea level. Bathymetric data from New Zealand Hydrographic Charts:
NZ46, Cook Strait Narrows, 1:200000, published Jan 1989, Hydrographer RNZN. New Edition 2000, Land
Information New Zealand; NZ48, Cook Strait Western Approaches, 1:400000, published Apr 1998, Hydrographer
RNZN. New Edition Apr 2000, Land Information New Zealand.

351 352

353

354 355 Figure 9: Moa taxa responded to the Younger Dryas climate shifts and volcanic events by tracking the resulting 356 geographic and altitudinal changes in their habitats. A, comparison of GISP2 (Greenland) ice accumulation (black) and methane (green) (upper curves) with (lower curve) integrated speleothem δ^{18} O records for the northwestern 357 South Island and mean calibrated dates for moa at Honeycomb Hill and near Takaka. Vertical lines, L-R: Oruanui 358 359 eruption; Mt Takahe eruptions; Younger Dryas. B, detail of moa dates in comparison with northwestern South Island speleothem δ^{18} O. C, detail of dates for *Pachyornis australis* at Honeycomb Hill in relation to δ^{18} O record and 360 period of Mt Takahe (Antarctica) eruptions (shaded bar). Bayesian modelled dates for end of P. australis presence 361 362 before Mt Takahe, resumption of presence post-Mt Takahe, and extirpation of P. australis at Honeycomb Hill 363 indicated by means $\pm 1\sigma$ and posterior probability distributions. D, alternation of wet forest Anomalopteryx *didiformis* and alpine/glacial vegetation P. *australis* on Takaka Hill 15-9 ka BP, in relation to local δ^{18} O record, and 364 365 GISP2 ice accumulation and methane. Black circles, A. didiformis; blue squares, Pachyornis spp.; green squares, P. 366 australis; blue triangles, Euryapteryx curtus.

368 369

373

Figure 10: Detail of integrated speleothem oxygen isotope record around the Mt Takahe (Antarctica) eruptions
(Figure 3, panel C) at various LOESS smoothing factors, with dates of *Pachyornis australis* individuals collected
from the Honeycomb Hill cave system deposits.

375

Figure 11: Detail of integrated speleothem oxygen isotope record around the Antarctic Cold Reversal and Younger
 Dryas periods (Figure 3, panel D) at various LOESS smoothing factors, with dates of *Anomalopteryx didiformis* and
 Pachyornis australis individuals collected from Takaka Hill cave deposits.

379

380 Figure 12: Comparison of present and proposed climatic contexts of changes in vegetation and moa populations

382 movement from higher elevations to the south. YD, Younger Dryas; ACR, Antarctic Cold Reversal; other

383 abbreviations as in Fig. 5.

384 4 Discussion

385	Unlike indirect proxies such as oxygen isotope ratios and pollen samples from a few sites, moa were on-ground
386	real-time witnesses to the vegetation (and hence climate) at the time and place they lived and died. The congruence
387	of the high spatial and temporal resolution record of vegetation based on ¹⁴ C ages of individual moa, each
388	characteristic of a particular vegetation (Fig. 12) with the local speleothem δ^{18} O record suggest that both proxies
389	accurately reflect the timing of changes in the New Zealand glacial and post-glacial climate. However, the post-
390	glacial return to cold climate in both records is later than the ACR. Instead, the moa sequence accords with the $\delta^{18}O$
391	record in showing that interval to be one of warming climate at these southern latitudes.
392	The cold interval recorded in the δ^{18} O and moa sequence on Takaka Hill, was coeval with the YD, when,
393	on the current model, the New Zealand climate should have been warming after the ACR. It is unlikely that there
394	are any significant issues with the moa radiocarbon ages which would affect their chronology because the ages from
395	different sites and measured by gas count and AMS provide coherent series.
396	In addition to the earlier evidence for a New Zealand YD presented by (Denton & Hendy, 1994) and (Ivy-
397	Ochs et al., 1999), more recently (Pauly et al., 2020) reported a return to cold climate in northern New Zealand
398	after the ACR, albeit of shorter duration. Stable isotope ratios in long-lived kauri (Agathis australis) trees reveal an
399	event that was brief relative to that in the north-western South Island. The difference may result from the trees'
400	being c. 5.5° (600 km) farther north, in an area surrounded by warm seas whose mild climate experiences, at least
401	today, few extremes of temperature (Chappell, 2013).
402	While the moa and speleothem $\delta^{18}O$ chronologies both support a cold period synchronous with the
403	European YD, neither provides any information that would help to resolve the difference between their chronologies
404	and those derived from cosmogenic glacial moraine dating or Antarctic ice cores. However, as a similar disparity
405	between chronologies exists with cosmogenically dated advances (or stability at greater extent) of the North
406	Patagonia Ice Field at 47°S contemporary with the YD (Glasser et al., 2012). Although (Glasser et al., 2012) posit
407	higher precipitation as an alternative to cooler temperatures as the driver of the Patagonian ice advances, this
408	explanation would not account for the vegetation changes signaled by the sequence of moa observed on TH.
409	Increased rainfall there would not have driven a return to glacial shrublands, which would have required a period of
410	intense cold. Until the differences between present chronologies are resolved, the interhemispheric postglacial
411	climatic seesaw model provides only one interpretation of global post-glacial climate processes.
412	The Oruanui eruption stands at the onset of the Last Glacial Maximum in the moa species sequence and in

413 the local δ^{18} O record. In addition to providing evidence for a Southern Hemisphere mid-latitude YD cold event, the

414	moa species sequence suggests that both the Oruanui super eruption of Taupo volcano (New Zealand) (Vandergoes
415	et al., 2013) affected the Southern Hemisphere climate. The climatic effects were sufficiently large to change the
416	vegetation pattern in the north-western South Island of New Zealand so that moa species changed their distributions.
417	The sudden appearance of <i>P. australis</i> at Honeycomb Hill immediately after the eruption means first that the species
418	was present in the area and second that there was a sudden increase in fossil deposition in the caves. That increase
419	may have resulted from an increase in local precipitation or from the removal of a pre-eruption vegetation cover and
420	its replacement by vegetation that was more susceptible to erosion.
421	(McConnell et al., 2017) suggested that the Mt Takahe eruption series in Antarctica may have initiated
422	post-glacial warming. In the moa species sequence, the eruption series marks a break in deposition of P. australis at
423	Honeycomb Hill. The break also coincides with a peak in the $\delta^{18}O$ record that began before the eruptions and which
424	declined rapidly after the eruptions. Instead, therefore, of the eruptions initiating the warming, they appear to have
425	stifled and reversed a warming trend, at least in central New Zealand. In initiating a cooling, these eruptions seem to
426	have had the same climatic effect of the much larger (VEI 8) – but much briefer – Oruanui eruption.
427	The patterns of moa species presence and absence west of New Zealand's South Island Main Divide appear
428	to provide a novel, valuable record of vegetation change over the past 30,000 years in a Southern Hemisphere
429	location athwart the mid-latitude westerlies. However, the patterns reported here were derived from published
430	radiocarbon ages measured for other purposes and not, therefore, aimed at providing complete chronologies for each
431	species in each site and each area. That coherent patterns are present that accord with the completely independent
432	climate proxy of speleothem δ^{18} O values suggests strongly the potential value of a concerted radiocarbon dating
433	programme of moa in developing a high resolution mid-latitude climate record for this most important, and
434	presently contentious, period.
435	
436	5 Conclusions
437	• The patterns of presence and absence of habitat-specialist moa species in the north-western South Island of
438	New Zealand correspond to patterns in both an integrated multi-speleothem $\delta^{18}O$ record from the same area
439	and, significantly, in the Greenland GISP2 ice core proxies for the date of the European Younger Dryas.

440 • Neither the moa-based climate chronology nor that of the speleothem δ¹⁸O values accords with that of the
 441 Antarctic Cold Reversal.

442	• The present dichotomy in chronologies for post-glacial warming and cooling in the Southern Hemisphere
443	must be resolved before the interhemispheric postglacial climatic seesaw model can be accepted.
444	• More intensive, targeted radiocarbon dating of key moa species in the north-western South Island, New
445	Zealand will not only allow testing of the basis for the climate change chronology presented here, but could
446	provide a high precision chronology of climate in the region.
447	
448	
449	6 Code availability
450	No code was used.
451	
452	7 Data availability
453	All data are included in the paper and the cited references.
454	
455	8 Author contributions
456	RNH conceived the project, performed the analyses, drafted the figures, and prepared the manuscript.
457	
458	9 Competing interests
459	The author declares that he has no conflict of interest.
460	
461	
462	
463	
464	10 Acknowledgements
465	Dr Richard Rowe (Research Associate, Australian National University) and Prof Don McFarlane (Claremont
466	Colleges, Los Angeles) provided helpful comments on the MS. There was no external funding for the study.
467	
468	
469	
470	
471	

472	11 References
473	Allentoft, M. E., Heller, R., Oskam, C. L., Lorenzen, E. D., Hale, M. L., Gilbert, M. T., Jacomb, C., Holdaway, R.
474	N., and Bunce, M.: Extinct New Zealand megafauna were not in decline before human colonization,
475	Proceedings of the National Academy of Sciences, USA, 111, 4922-4927, 2014.
476	Barker, S., Diz, P., Vautravers, M. J., Pike, J., Knorr, G., Hall, I. R., and Broecker, W. S.: Interhemispheric Atlantic
477	seesaw response during the last deglaciation, Nature, 457, 1097-1102, 2009.
478	Broecker, W. S.: Paleocean circulation during the last deglaciation: a bipolar seesaw?, Paleoceanography, 13, 119-
479	121, 1998.
480	Brook, E. J., Sowers, T., and Orchardo, J.: Rapid variations in atmospheric methane concentration during the past
481	110,000 years, Science, 273, 1087-1091, 1996.
482	Bunce, M., Worthy, T. H., Phillips, M. J., Holdaway, R. N., Willerslev, E., Haile, J., Shapiro, B., Scofield, R. P.,
483	Drummond, A., Kamp, P. J., and Cooper, A.: The evolutionary history of the extinct ratite moa and New
484	Zealand Neogene paleogeography, Proceedings of the National Academy of Sciences U.S.A., 106, 20646-
485	20651, 2009.
486	Chappell, P. R. 2013 The climate and weathher of Northland. 3 ed. Wellington: National Institute of Water and
487	Atmospheric Research.
488	Denton, G. H., and Hendy, C. t.: Younger Dryas age advance of Franz Josef glacier in the southern Alps of New
489	Zealand, Science, 264, 1434-1437, 1994.
490	Glasser, N. F., Harrison, S., Schnabel, C., Fabel, D., and Jansson, K. N.: Younger Dryas and early Holocene age
491	glacier advances in Patagonia, Quaternary Science Reviews, 58, 7-17, 2012.
492	Hajdas, I., Lowe, D. J., Newnham, R. M., and Bonani, G.: Timing of the late-glacial climate reversal in the Southern
493	Hemisphere using high-resolution radiocarbon chronology for Kaipo bog, New Zealand, Quaternary
494	Research, 65, 340-345, 2006.
495	Hammer, Ø., Harper, D. A. T., and Ryan, P. D.: PAST: Paleontological statistics software package for education
496	and data analysis, Palaeontologia electronica, 4, 9, 2001.
497	Hellstrom, J., McCulloch, M., and Stone, J.: A detailed 31,000-year record of climate and vegetation change, from
498	the isotope geochemistry of two New Zealand speleothems, Quaternary research, 50, 167-178, 1998.
499	Hogg, A., Heaton, T., Hua, Q., Bayliss, A., Blackwell, P., Boswijk, G., Ramsey, C., Palmer, J., Petchey, F., and
500	Reimer, P.: SHCal20 Southern Hemisphere calibration, 0-55,000 years cal BP, Radiocarbon, 62, 759-778,
501	2020.

502	Holdaway, R. N., Allentoft, M. E., Jacomb, C., Oskam, C. L., Beavan, N. R., and Bunce, M.: An extremely low-
503	density human population exterminated New Zealand moa, Nature communications, 5, 5436, 2014.
504	Holdaway, R. N., and Rowe, R. J.: Palaeoecological reconstructions depend on accurate species identification:
505	examples from South Island, New Zealand, Pachyornis (Aves: Dinornithiformes), Notornis, 67, 494-502,
506	2020.
507	Holdaway, R. N., and Worthy, T. H.: A reappraisal of the late Quaternary fossil vertebrates of Pyramid Valley
508	Swamp, North Canterbury, New Zealand, New Zealand Journal of Zoology, 24, 69-121, 1997.
509	Huynen, L., Gill, B. J., Doyle, A., Millar, C. D., and Lambert, D. M.: Identification, classification, and growth of
510	moa chicks (Aves: Dinornithiformes) from the genus Euryapteryx, PLoS One, 9, e99929, 2014.
511	Huynen, L., Gill, B. J., Millar, C. D., and Lambert, D. M.: Ancient DNA reveals extreme egg morphology and
512	nesting behavior in New Zealand's extinct moa, Proceedings of the National Academy of Sciences, 107,
513	16201-16206, 2010.
514	Ivy-Ochs, S., Schlüchter, C., Kubik, P. W., and Denton, G. H.: Moraine exposure dates imply synchronous Younger
515	Dryas glacier advances in the European Alps and in the Southern Alps of New Zealand, Geografiska
516	Annaler: Series A, Physical Geography, 81, 313-323, 1999.
517	Kaplan, M. R., Schaefer, J. M., Denton, G. H., Barrell, D. J., Chinn, T. J., Putnam, A. E., Andersen, B. G., Finkel,
518	R. C., Schwartz, R., and Doughty, A. M.: Glacier retreat in New Zealand during the Younger Dryas stadial,
519	Nature, 467, 194, 2010.
520	Koffman, T. N., Schaefer, J. M., Putnam, A. E., Denton, G. H., Barrell, D. J., Rowan, A. V., Finkel, R. C., Rood, D.
521	H., Schwartz, R., and Plummer, M. A.: A beryllium-10 chronology of late-glacial moraines in the upper
522	Rakaia valley, Southern Alps, New Zealand supports Southern-Hemisphere warming during the Younger
523	Dryas, Quaternary Science Reviews, 170, 14-25, 2017.
524	Lowe, D. J., and Hogg, A. G.: Tephrostratigraphy and chronology of the Kaipo Lagoon, an 11,500 year-old
525	montane peat bog in Urewera National Park, New Zealand, Journal of the Royal Society of New Zealand,
526	16, 25-41, 1986.
527	Mabin, M., Denton, G., and Hendy, C.: The age of the Waiho Loop glacial event, Science, 271, 668-670, 1996.
528	McConnell, J. R., Burke, A., Dunbar, N. W., Köhler, P., Thomas, J. L., Arienzo, M. M., Chellman, N. J., Maselli,
529	O. J., Sigl, M., and Adkins, J. F.: Synchronous volcanic eruptions and abrupt climate change~ 17.7 ka
530	plausibly linked by stratospheric ozone depletion, Proceedings of the National Academy of Sciences, 114,
531	10035-10040, 2017.

532	Meese, D. A., Gow, A., Grootes, P., Stuiver, M., Mayewski, P. A., Zielinski, G., Ram, M., Taylor, K., and
533	Waddington, E.: The accumulation record from the GISP2 core as an indicator of climate change
534	throughout the Holocene, Science, 266, 1680-1682, 1994.
535	Newnham, R.: Temperature Changes During the Younger Dryas in New Zealand, Science, 283, 759-759, 1999.
536	Oppenheimer, C.: Eruptions that shook the world, Cambridge University Press, Cambridge, 2011.
537	Pauly, M., Turney, C., Palmer, J., Büntgen, U., Brauer, A., and Helle, G.: Kauri tree-ring stable isotopes reveal a
538	centennial climate downturn following the Antarctic Cold Reversal in New Zealand, Geophysical Research
539	Letters, e2020GL090299, 2020.
540	Putnam, A. E., Denton, G. H., Schaefer, J. M., Barrell, D. J., Andersen, B. G., Finkel, R. C., Schwartz, R., Doughty,
541	A. M., Kaplan, M. R., and Schlüchter, C.: Glacier advance in southern middle-latitudes during the
542	Antarctic Cold Reversal, Nature Geoscience, 3, 700, 2010.
543	Ramsey, C. B.: Radiocarbon calibration and analysis of stratigraphy: the OxCal program, Radiocarbon, 37, 425-
544	430, 1995.
545	Ramsey, C. B.: Bayesian analysis of radiocarbon dates, Radiocarbon, 51, 337-360, 2009.
546	Rawlence, N. J., and Cooper, A.: Youngest reported radiocarbon age of a moa (Aves: Dinornithiformes) dated from
547	a natural site in New Zealand, Journal of the Royal Society of New Zealand, 43, 100-107, 2013.
548	Rawlence, N. J., Metcalf, J. L., Wood, J. R., Worthy, T. H., Austin, J. J., and Cooper, A.: The effect of climate and
549	environmental change on the megafaunal moa of New Zealand in the absence of humans, Quaternary
550	science reviews, 50, 141-153, 2012.
551	Rawlence, N. J., Scofield, R. P., Wood, J. R., Wilmshurst, J. M., Moar, N. T., and Worthy, T. H.: New
552	palaeontological data from the excavation of the Late Glacial Glencrieff miring bone deposit, North
553	Canterbury, South Island, New Zealand, Journal of the Royal Society of New Zealand, 41, 217-236, 2011.
554	Shulmeister, J., Fink, D., and Augustinus, P. C.: A cosmogenic nuclide chronology of the last glacial transition in
555	North-West Nelson, New Zealand-new insights in Southern Hemisphere climate forcing during the last
556	deglaciation, Earth and Planetary Science Letters, 233, 455-466, 2005.
557	Singer, C., Shulmeister, J., and McLea, B.: Evidence against a significant Younger Dryas cooling event in New
558	Zealand, Science, 281, 812-814, 1998.
559	Tovar, D. S., Shulmeister, J., and Davies, T.: Evidence for a landslide origin of New Zealand's Waiho Loop
560	moraine, Nature Geoscience, 1, 524-526, 2008.

561	Vandergoes, M. J., Hogg, A. G., Lowe, D. J., Newnham, R. M., Denton, G. H., Southon, J., Barrell, D. J., Wilson,
562	C. J., McGlone, M. S., and Allan, A. S.: A revised age for the Kawakawa/Oruanui tephra, a key marker for
563	the Last Glacial Maximum in New Zealand, Quaternary Science Reviews, 74, 195-201, 2013.
564	Williams, P. W., King, D., Zhao, JX., and Collerson, K.: Late Pleistocene to Holocene composite speleothem 180
565	and 13C chronologies from South Island, New Zealand-did a global Younger Dryas really exist?, Earth
566	and Planetary Science Letters, 230, 301-317, 2005.
567	Williams, P. W., Neil, H. L., and Zhao, JX.: Age frequency distribution and revised stable isotope curves for New
568	Zealand speleothems: palaeoclimatic implications, International Journal of Speleology, 39, 5, 2010.
569	Worthy, T. H.: Validation of Pachyornis australis Oliver (Aves; Dinornithiformes), a medium sized moa from the
570	South Island, New Zealand, New Zealand journal of geology and geophysics, 32, 255-266, 1989.
571	Worthy, T. H.: Fossils of Honeycomb Hill, Museum of New Zealand Te Papa Tongarewa, Wellington, New
572	Zealand, 1993a.
573	Worthy, T. H.: Submarine fossil moa bones from the northern South Island, Journal of the Royal Society of New
574	Zealand, 23, 255-256, 1993b.
575	Worthy, T. H.: Fossil deposits in the Hodges Creek Cave System, on the northern foothills of Mt Arthur, Nelson.
576	South Island, New Zealand, Notornis, 44, 111-108, 1997.
577	Worthy, T. H.: Two late-Glacial avifaunas from eastern North Island, New Zealand-Te Aute Swamp and Wheturau
578	Quarry, Journal of the Royal Society of New Zealand, 30, 1-25, 2000.
579	Worthy, T. H.: Rediscovery of the types of Dinornis curtus Owen and Palapteryx geranoides Owen, with a new
580	synonymy (Aves: Dinornithiformes), Tuhinga, 16, 57-67, 2005.
581	Worthy, T. H., and Holdaway, R. N.: Quaternary fossil faunas from caves in the Punakaiki area, West Coast, South
582	Island, New Zealand, Journal of the Royal Society of New Zealand, 23, 147-254, 1993.
583	Worthy, T. H., and Holdaway, R. N.: Quaternary fossil faunas from caves in Takaka valley and on Takaka Hill,
584	northwest Nelson, South Island, New Zealand, Journal of the Royal Society of New Zealand, 24, 297-391,
585	1994.
586	Worthy, T. H., and Holdaway, R. N.: Quaternary fossil faunas from caves on Mt Cookson, North Canterbury, South
587	Island, New Zealand, Journal of the Royal Society of New Zealand, 25, 333-370, 1995.
588	Worthy, T. H., and Holdaway, R. N.: Quaternary fossil faunas, overlapping taphonomies, and palaeofaunal
589	reconstruction in North Canterbury, South Island, New Zealand, Journal of the Royal Society of New
590	Zealand, 26, 275-361, 1996.

591	Worthy, T. H., and Holdaway, R. N.: Lost world of the moa: prehistoric life in New Zealand, Indiana University
592	Press and Canterbury University Press, Bloomington and Christchurch, 2002.
593	Worthy, T. H., and Roscoe, D.: Takaka Fossil Cave: a stratified Late Glacial to Late Holocene deposit from Takaka
594	Hill, New Zealand, Tuhinga, 41-60, 2003.
595	