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Abstract.
In the geosciences, complex computational models have become a common tool for making statements about past earth

system evolution. However, the relationship between model output and the actual earth system (or component thereof) is

generally poorly specified and even more poorly assessed. This is especially challenging for the paleo sciences for which data

constraints are sparse and have large uncertainties. Bayesian inference offers a self-consistent and rigorous framework for5

assessing this relationship as well as a coherent approach to combining data constraints with computational modelling. Though

“Bayesian” is becoming more common in paleoclimate and paleo ice sheet publications, our impression is that most scientists

in these fields have little understanding of what this actually means nor are they able to evaluate the quality of such inference.

This is especially unfortunate given the correspondence between Bayesian inference and the classical concept of the scientific

method.10

Herein, we examine the relationship between a complex model and a system of interest, or in equivalent words (from a

statistical perspective), how uncertainties describing this relationship can be assessed and accounted for in a principled and

coherent manner. By way of a simple example, we show how inference can be severely broken if uncertainties are erroneously

assessed. We explain and decompose Bayes Rule (more commonly known as Bayes Theorem), examine key components of

Bayesian inference, offer some more robust and easier to attain stepping stones, and provide suggestions on implementation15

and how the community can move forward. This overview is intended for all interested in making and/or evaluating inferences

about the past evolution of the Earth system (or any of its components), with a nominal focus on past ice sheet and climate

evolution during the Quaternary.
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1 Introduction

"No one trusts a model except the [wo]man who wrote it; everyone trusts an observation except the [wo]man who made it",20

Harlow Shapely.

For those studying the past evolution of the earth/climate system, a key activity is to make inferences about it evolution and

understand the processes underlying this evolution. However beyond inferences closed tied to well-constrained proxies and/or

to core physics of the ice/climate/earth system, asking “what do we really know” and especially “how certain are we” is a25

challenge to answer.

Given the relatively sparse (in both time and space) data from the past along with uncertainties in their interpretation and

dating, large-scale inferences nominally based solely on paleo data often arguably rely heavily on storytelling with varying

combinations of proxy models relating a datum to a physical characteristic of interest, age calibration models, and basic

physical reasoning for self-consistency. Evolving computational models of various components of the Earth and climate system30

permit data-rich stories that incorporate the embodied physical equations (or more accurately approximations thereof). But

when used on their own, they have limited retrodictive confidence. They therefore also arguably fall within the storytelling and

self-consistency rubric. It is also our own experience that modellers who know their models well are often the most skeptical

about their model results, contrary to Harlow Shapely’s quip quoted above.

The exponential growth of accessible computer power over the last few decades has permitted the ongoing development35

of a synthesis of the above two approaches: inference based on rigorously combining computational modelling with paleo

observations. This potentially offers detailed pictures of ice sheet and climate system evolution that can go confidently well

beyond storytelling but, as detailed below, only when all uncertainties are rigorously addressed and assessed. Such assess-

ment is to date not prevalent within the community (though relevant communities are making calls for such assessment, e.g.,

Whitehouse and Tarasov, 2014; Stokes et al., 2015) and is the central theme of this overview.40

Story-telling, or in more usual terminology, hypothesis creation/elaboration, is a central part of science. This is a character-

istic common to most (all?) disciplines that endeavour to explain the world around us, including history and theology. What

distinguishes the scientific enterprise? Though the philosophy of science offers nuanced alternatives, we posit most scientists

would assign a central role to the rigorous testing of falsifiable hypotheses (and continuous testing of theories) as one dis-

tinguishing feature. However, without rigorous measures to quantify the correspondence between model-based realizations45

of hypotheses and the "real world", such testing becomes vague and ill-defined. Such correspondence quantification, aka un-

certainty assessment, enables meaningful statements about the world around us instead of statements that only describe the

behaviour of our models..

Given the above, rigorous quantification of uncertainty is, we submit, another distinguishing feature of the natural sciences.

It is also a feature that deserves more attention in relevant "culture wars" and in dealing with anti-science memes. However,50

too often, uncertainties are either ignored, or only partially assessed. Furthermore, as we’ll elucidate below, the assumptions

underlying commonly utilized statistics are generally broken for the given context. Another tendency is to provide various
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provisos such as "subject to unaccounted uncertainties in the climate forcing" that somehow the average reader is supposed to

be better able to assess/interpret the impact thereof than the modeller who should be most intimately familiar with their model’s

foibles.55

As we will show below, incomplete uncertainty assessment will result in inferences that are incorrect with, for example,

"reality" well outside of the conventional two sigma, uncertainty bounds. Rigorous uncertainty assessment is a challenging

task for many modelling contexts, especially all dealing with complex environmental systems. It has attracted significant

attention from philosophers of science (e.g., Frigg et al., 2015b). It is also a task that can’t be ignored as any natural scientist

needs to be able to assess the extent and rigour of uncertainty assessment as they review and assimilate literature. However60

most in the natural sciences are not provided with the appropriate conceptual tools for such assessment during their training.

A related issue in the context of data model comparison is the tendency to focus attention on simulations that best fit

observational/paleo data with little or no attention to what may be gleaned from other simulations within (and outside of)

inferential bounds. By more clearly and credibly defining the uncertainty bounds of one’s inferences, one can better delineate

what is not known and where future efforts might offer the most scientific return. Accepting this premise would require much65

more attention on, for example, the max/min bounds of ice sheet evolution during the last deglaciation. Yet major international

endeavours such as the paleo model intercomparison project (PMIP) have, to date, only based their intercomparisons on using

“best-fitting” ice sheet chronologies as their boundary conditions, ignoring the uncertainties in these chronologies (some of

which have no assessed uncertainties).

This overview is intended for all who are concerned with either inferring past ice sheet and/or climate system evolution or70

using the results of such inferences (be they modellers, data gatherers, or mongrels). Our goal is that after a careful read, you

will at least be able to more critically evaluate uncertainty assessment for such contexts. This includes gaining some awareness

of common statistical errors underlying virtually all paleo modelling studies to date that purport to infer past system evolution.

Much of the discussion should also be relevant to those interested in inferring other aspects of the paleo environment for

contexts that can benefit from rigorous integration of modelling and paleo data. The presentation is largely conceptual given75

the breadth of the intended audience. However, clearly delineated sections offer more specific and technical guidance for those

interested in actual implementation and further development of relevant methodologies.

Below, we lay out a broad framework for uncertainty quantification (Sect. 2), consider a few stepping-stones (Sect. 3), pro-

vide guidance on implementation (Sect. 4), and suggest some key concrete steps we believe are necessary for the community to

move forward (Sect. 5). The framework necessarily follows a Bayesian approach. We know of no other approach to uncertainty80

quantification that can rigorously determine a meaningful assessment of probability of, for instance, mean sea level having a

specific value at last glacial maximum. Given the still prevalent lack of understanding of Bayesian inference among much of

the paleo science community, the presentation begins with a high-level introduction to Bayesian inference for the paleo context.
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2 the Bayesian framework

This section provides the conceptual framework for Bayesian inference by considering each term in Bayes theorem in turn85

along with an examination of how distinct sources of uncertainty can be meaningfully assessed. It also provides a simple

example of how inference can be broken when uncertainties are not appropriately addressed. The correspondence between

Bayesian inference and the scientific method is underlined and should aid the reader in the understanding of Bayes theorem.

None of these issues can be well addressed without consideration of what “probability” means, to which we first turn.

2.1 “What is Probability?”90

In addressing uncertainty, the issue of what is probability is unavoidable. Is it purely an individual’s judgment, subject to the

rules of probability theory, about how likely some inference or event is? This is crudely the personalistic interpretation of

probability. Or does it reflect something more objective? If so, what does “objective” mean? To what extent are probabilities

independent properties of the world? When you make a probabilistic statement concerning your own research, do you believe

your statement (and not just in the sense “this is what follows if I apply this statistical tool”)? What does your probabilistic95

statement mean to you? How does it actually apply to the world around us? Or perhaps to be more concrete, how much of one

week’s salary would you bet that your assertion is true with the odds that follow from your probabilistic statement?1

No matter what interpretation of probability one chooses, the assignment of probabilities require judgements. To be testable

and potentially falsifiable, these judgements must be made and treated in a rigorous and self-consistent way. A natural way to

achieve this is to require that probabilities follow the rules of probability theory (e.g., Kolmogorov, 1933). Specifically :100

1. The probability of an event is a non-negative real number.

2. An impossible event has 0 probability2.

3. A certain event has probability of 1.

4. Probability of events A or B is equal to the sum of their individual probabilities (P(A or B)=P(A)+P(B)) when A and B

are disjoint, i.e. one can happen only when the other can’t happen3.105

Adherence to the rules of probability ensures that once required judgements are transparently made, all ensuing probabilistic

calculations are acceptable to all competent practitioners given the premises (even if the subsequent interpretations may vary).

A key consequence of the rules of probability is Bayes rule.

1This is an informal version of a precise statement based on the use of coherent scoring rules. Note: to partly address the challenge of maintaining both

statistical rigour and accessibility for readers with limited statistical understanding, we rely on footnotes for those concerned about the former.
2This formally follows from the other three rules but is included for the sake of a non-statistical audience
3For the mathematically inclined, it should also be noted that countable additivity is usually added.
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2.2 Bayesian inference for the paleo community: the scientific method expressed in probability theory

Bayesian inference is concerned with deriving rigorous inferential probabilities given current knowledge and new data. This110

contrasts with traditional frequentist statistics which does not directly determine inferential probabilities and necessarily as-

sumes repeated experiments. Bayesian inference is encapsulated in Bayes rule itself:

Posterior probability =
Likelihood × Prior probability

normalization constant
(1)

The unpacking of what each of the terms mean and how they are determined will proceed below with dedicated subsections

for each term on the right-hand side. As a start, understanding of some basic notation is required. P(A = a |B = b) denotes the115

conditional probability of the variable A having some specific value "a" if the statement that the variable B has some value "b"

were true. This is usually abbreviated to P(A |B) when considering the probabilistic relationships independent of any specific

value a or b (from now on a lower case letter will refer to a specific value of the corresponding upper case variable). P(A,B)

is the joint probability of A and B, e.g., the probability that A = a AND B = b. To be consistent under various sets of natural

axioms, the conditional probability P(A |B) can be defined as the quotient of the joint probability of A and B, P(A,B), and the120

probability of B, P(B):

P(A |B) =
P(A,B)
P(B)

(2)

To concretize these equations, consider A having two values: rain (A =rain) or no rain (A =no rain) tomorrow afternoon. Let

B also have two values: cloudy (B =cloudy) or clear sky (B =clear sky) conditions tomorrow morning. Then the conditional

probability that tomorrow afternoon will have rain if tomorrow morning is cloudy, P(A =rain |B =cloudy), is equal to the joint125

probability of rain tomorrow afternoon and cloudy skies tomorrow morning, P(A =rain , B =cloudy), divided by the probability

of cloudy skies tomorrow morning (P(B =cloudy). The crucial difference between joint and conditional probability is that the

former has no input condition, while the later has the given condition (i.e. that the statement B =cloudy is true in our example).

Multiplying both sides of equation 2 by P(B) gives the multiplication rule for probabilities:

P(A,B) = P(A |B) P(B) (3)130

The above may also provide a more understandable implicit definition for conditional probability, i.e. P(A |B) being that

quantity which when multiplied by P(B) provides the joint probability P(A,B). An important self-consistency feature that we

will use below is that the multiplication rule holds even if an additional conditional variable is added to both sides of the above

equation, as follows by repeated use of the definition of conditional probability (equation 1), sic:

P(A,B|C) =
P(A,B,C)

P(C)
(4)135

=
P(A,B,C)
P(B,C)

P(B,C)
P(C)

(5)

= P(A |B,C) P(B |C) (6)
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To place Bayes rule in a more useful formulaic representation, consider a set of variables (CM , which we’ll refer to as the

parameter vector) that collectively defines the current configuration of a model. For a computational model, CM includes model

parameters (such as basal drag coefficients for sliding ice in an ice sheet model, coefficients controlling cloud formation in140

climate models,...). CM can also define the selection of external forcings or inputs (e.g., to define parametrized aspects of the

climate history that drives a glaciological model not coupled to a dynamical climate model). We are interested in finding a

probability distribution for which value of CM is most appropriate4. Prior to testing the model against new data, one’s initial (or

previously derived) judgement for the probability distribution of CM is denoted by P(CM). The revised (posterior) probability

distribution for CM given comparison of new data (D) against model results is given by Bayes rule (or conceptually in above145

eq. 1):

P(CM |D) =
P(D |CM) P(CM)

P(D)
(7)

Bayes rule follows from the given definition for conditional probability (eq. 2) or equivalently from the axiomatic multipli-

cation rule):

P(CM |D) =
P(CM , D)

P(D)
150

=
P(D |CM) P(CM)

P(D)
(8)

From Bayes rule, the posterior probability for a single parameter vector CM given data D is proportional to the product of

the likelihood (P(D |CM)) and prior probability (P(CM)). It should be noted that there is also implicit dependence on all the

assumptions and judgements underlying one’s use of Bayes rule5.

To make the above concrete, consider our previous rain and cloud example. Let CM represent our “model” for whether there155

will be rain in the afternoon and that it can have only two values (Rain or noRain). Let D be the datum of whether the sky

is clear or cloudy when we look out the window after waking up. Suppose based on climatology, and the fact that we had no

rain yesterday, our prior, i.e. before looking out the window, is P(CM = Rain) = 0.3 (and therefore P(CM = NoRain) = 0.7).

Further suppose our likelihood has the following values:

P(D = clear |CM = Rain) = 0.1, (9)160

P(D = clear |CM = NoRain) = 0.8, (10)

4For the purposes of this and the next few subsections, we make the simplifying assumption that there is a value of the parameter choices (which we don’t

know) that is sufficient: once the model is run with that choice, no more information about the system would be gained by running the model with a different

choice of parameters. We will take a more nuanced view in Sect. 3.1
5In the above and throughout, if variables are continuous, probabilities would be replaced by corresponding probability density functions.
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with the remaining two values given by the difference from one (e.g., P(D = cloudy |CM = Rain) = 1− 0.1 = 0.9). After we

look out the window and see that the sky is clear, our posterior for rain this afternoon is :

P(CM = Rain |D = clear) =
P(D = clear |CM = Rain)×P(CM = Rain)

P(D)
(11)

=
0.1×0.3

0.1×0.3+0.8×0.7
= 0.05 (12)165

The value used for P(D) follows6 from requiring that P(CM = Rain |D = clear)+P(CM = NoRain |D = clear) = 1.

To facilitate a broader interpretation of Bayes rule, consider the idealized form of the scientific method as taught in primary

school science or described in Wikipedia. In detail, start with a hypothesis based on current understanding, carry out an

experiment, and thereby test the hypothesis and revise our understanding. Bayes rule translates to this description of the

scientific method as follows. Start with a prior understanding and considered judgement of the probability distribution for170

a given model configuration (P(CM)). Get new data D (from a data archive, laboratory experiment, or fieldwork). Compare

this data to model predictions via the likelihood function (P(D |CM)), which is the conditional probability of the data given

the parameter vector (and therefore given the model as the parameter vector has no meaning without an associated model).

Hence revise one’s understanding (update the probability distribution for model parameters and/or competing models) of the

phenomena under consideration as expressed in the posterior, P(CM |D), i.e. the conditional probability of the parameter vector175

(and model) given the new data. The likelihood comparison embodies the experimental test of the model.

“Model” is any approximate representation of some aspect of the world around us (past/present/future), and thereby en-

compasses not only computer-based models, but also conceptual models including scientific hypotheses and theories. For non-

modellers, the evolving sedimentation rate of a marine or lake core and associated chronology is perhaps a conceptually closer

example of a model. Where relevant, we will adopt the convention of specifically denoting an implemented computational180

model by "simulator" (to differentiate from the set of physical equations that the simulator is approximating).

Given this correspondence to the scientific method, Bayes rule provides a core probabilistic underpinning for the natural

sciences. It should therefore arguably be both understood and used by all scientists whose work involves comparison between

data and models (in the previously presented most general sense of “model”). To pursue this further, each term in Bayes

rule is detailed below. Those interested in a much more thorough introduction are referred to one or both of the following185

texts: Sivia and Skilling (2006); Gelman et al. (2013). Rougier (2007) provides a complementary presentation to much of this

section for a general climate modelling context. Kennedy and O’Hagan (2001) is a good starting point for a standard Bayesian

approach to uncertainty in computer models.

2.3 Defining the prior

The prior (P(CM)) embodies one’s initial understanding of the system in question. Initially, before the first comparison between190

simulator prediction and data, the prior will be formulated on the basis of explicit user/expert judgement, likely in combination

with results from other studies. The initial prior for a single model parameter, for instance, may be judged to be a trapezoidal

6It directly follows from the law of total probability.
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Figure 1. Example prior and posterior probability distributions for a parameter vector consisting of a single parameter (CM) with maximum

physically plausible range of 0 to 2. The likelihood (red) is also the posterior for prior example 1. Prior example 2 (purple) subject to the red

likelihood results in the blue posterior.

distribution over a parameter range encompassing physically plausible values, an example of which is shown by the example 1

prior in green in Fig. 1. For the example of a marine core, the prior sedimentation rate would require expert judgement taking

into account inferred rates from proximal cores, possible range of sedimentation variations given plausible ranges on biological195

productivity,...

This judgement aspect has often been a target by critics of Bayesian approaches, with a usual focus on the specification of the

prior. This focus has no clear justification as judgements are required for all aspects of the inferential process and not just the

initial specification of the prior. But this holds true for any statistical inference including those by frequentist approaches. For

instance, many scientists will rely on standard frequentist statistics such as χ2, confidence intervals from standard deviations,200

p-value tests, ... These often presume an underlying Gaussian structure to the uncertainties which all too frequently is not

explicitly stated let alone tested. Judgements in the choice of constraint data, simulator, and which simulator parameters will

be calibrated are required under any inferential approach. More fundamentally, traditional frequentist approaches do not offer

a route to a rigorous probabilistic inference about past ice or climate (in part because the frequency of occurrence of a single
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possible non-repeated event has no meaning within the frequentist framework). Furthermore, the frequentist approach does not205

allow a direct inference about a model given the data. It instead makes inferences about the data, assuming that a model is true.

Bayesian approaches tend to force the user to make all such assumptions explicit. Furthermore, for a sufficiently wide prior,

the impact of the prior on the posterior diminishes as the specificity of the likelihood increases (i.e. as the constraint value of

the data increases). For the example in Fig. 1, this would translate into reduced posterior dependence on the choice between

the two indicated priors with increased specificity (narrowness in the plot) of the likelihood.210

Prior specification should therefore err on a clearly ample range over which the quantity of interest has non-negligible

probability. A prior that is set narrow without good reason may exclude a high probability region of the posterior resulting

from a prior that was more carefully specified. The trade-off is that excessively wide priors increase the computational cost of

the inference procedure. Thus the effort put into prior specification should be proportional to the computational expense of the

simulator, and inversely proportional to the amount and quality of constraint data.215

A key self-consistent feature of Bayes rule is that it can be applied sequentially, with the posterior from an initial application

of the rule becoming the prior for a subsequent application with new data (and therefore a new likelihood, as shown in eq.

6). Thus, after initial formulation of the prior, its subsequent value for the same simulator for use with new data is rigorously

set by the Bayesian inferential process. For our sedimentation example, an existing posterior inference for sedimentation rates

could become the prior for a revised posterior from likelihood application of new C14 dates.220

The judgement aspect of prior (and likelihood) specification does not imply all choices of prior specification are equivalent.

Prior specification must obey the rules of probability. It must also be transparent, respect physical bounds, and be defensible to

the relevant community of experts (all normative criteria for “good” science). “Defensible” does not mean that everyone will

make the same assignment of the prior. But it does mean that after reasoned argument, a contextually knowledgeable reviewer,

for instance, will not reject the assignment7. Like any other aspect of the scientific specification, sensitivity to judgements225

should be assessed by consideration of sensitivity and robustness to scientifically reasonable variations of the specification.

2.4 The likelihood function and error model

The likelihood, P(D |CM) embodies the comparison of model predictions to new data, i.e. data that was not used in the speci-

fication of the prior P(CM). If there were no uncertainty in the system and an adequate amount of data to uniquely distinguish

each model configuration, then P(D |CM) would simply take the value 1 for the correct (CM) model, and 0 for all other model230

configurations. It is the presence of uncertainty8 which necessitates non-trivial probability assessment.

This uncertainty is usually first broken down into at least two broad categories. The most familiar category is observational

uncertainties accounting for discrepancies between observational data and the physical system. This includes measurement

uncertainties, such as in measuring the elevation of a fossil mollusc shell, and uncertainties in the relationship between the

measured value and quantity of interest. The latter are often referred to as proxy or indicative meaning uncertainties, an235

7Defensibility and transparency distinguishes the Scientific Bayesian interpretation, achieved by considering the spectrum of defensible expert judgement

within the field (Goldstein, 2006).
8The impossibility of exact inversion for non-trivial simulators also leads to this necessity.
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example of which is the difference between the present-day elevation of a fossil mollusc shell sample and past relative sea

level.

The category that is often ignored is simulator uncertainties due to limitations of the simulator in representing "reality". This

includes limitations in simulator structure, initialization, and inputs.

It is useful to further break down simulator uncertainties into those that are reducible (via an improved choice of simulator240

inputs and/or parameters), and those that are irreducible (for at least the near future, e.g., due to climate models not resolving

individual clouds). The irreducible errors are often referred to as the structural uncertainty or structural discrepancy.

The relationship between observational and simulator errors, simulator prediction, and observations can be conceptually

summarized as follows:

observation = Reality + observational error245

and on the simulator side:

Reality = simulator prediction + simulator error

Substituting for Reality into the first word equation :

observation = simulator prediction + simulator error + observation error

rearranging =>250

observation − simulator prediction = simulator error + observational error

However, we do not know the actual errors, which would require apriori accurate identification of the state of reality. We

therefore replace errors in the above relationships with a statistical error model for the distribution of these errors. For instance,

the most common error model for the measurement error component of observational error is a Gaussian distribution with 0255

mean (assuming the measurement device has been properly calibrated) and specified standard deviation.

The error model not only includes the chosen statistical distribution, but also the chosen dependencies. For measurement

error, a common assumption is that the measurement error at one time and/or location is independent of the measurement

error at another time and/or location. In actuality, most measurements, at least in a paleo context are likely to have some error

correlation in both space and time. Example sources of this correlation include the local reference error for field measurements260

of sample elevation as well as sample preparation and mass-spectrometer calibration contributions to errors in radiocarbon

age extraction. However, for most paleo contexts, inferential errors introduced from the assumption of measurement error

independence are likely of relatively minor impact. More substantial correlations over space and time in the error structure are

often introduced, for instance, in the age calibration of the sample from uncertainties in the C14 reservoir age for a marine

region.265

Depending on the measurement device, the measurement error may or may not be independent of the measured value. For the

dependent case, this often occurs when the measurement uncertainty is specified to be a constant percentage of the measured

value. In this case, a logarithmic transformation can still provide independence, which aids computational tractability.
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Converting our above conceptual equation between an observation and model prediction to a probabilistic statement, we

then get:270

P(observation − simulator prediction |simulator, configuration)

= P(observational error + simulator error |simulator, configuration).

Symbolically, with "R" referring to the inaccessible reality (e.g., ice sheet topography during last glacial maximum), and “M”

referring to model simulator and associated simulator output, the above relation becomes algebraically self-evident:

P(D−M(cM) |M,CM = cM) = P( (D−R)+(R−M(CM)) |M,CM = cM), (13)275

with “|M,CM = cM)” indicating conditioning on the choice of model (M, though usually this is only implicitly assumed) and

the choice of model configuration (cM). The right-hand side of the above equation provides the tractable form for specifying the

likelihood as a function of error models for both observations (i.e. D−R residuals) and the simulator (R−M(CM)). As we are

seeking a posterior distribution for the model configuration (cM) to have only irreducible structural errors, the likelihood also

needs to be conditioned on the model configuration having no reducible error9. Therefore only the the irreducible structural280

error model is used for the simulator error in eq. 13.

Given that the above relationship (eq. 13) is conditioned on CM (i.e. predicated on CM having some specified value cM), the

left-hand side of the above equation then equates to the likelihood function (P(D = d |M,CM = cM))10 since:

P(D−M(cM) |M,CM = cM) = P(D−M(cM) = d−M(cM) | M,CM = cM)

= P(D = d |M,CM = cM) (14)285

The first line just expands what P(D−M(cM) |M,CM = cM) means while the second line uses the conditioning on M(cM),

i.e. the probability distribution for D will be determined by the distribution for D−M(cM) as M(cM) is a constant given the

conditioning.

Consideration of the given definitions may aid intuitive understanding. The likelihood function computes the likelihood

that the simulator output is consistent with the data. This consistency is specified by the error model, i.e. the uncertainty290

distribution for combined discrepancies between data and reality and simulator and reality (together this gives the distribution

of discrepancies between data and simulator).

The simulator error model specifies the structural error distribution (i.e. the errors that are irreducible over the range of model

configurations (CM)), so that Bayes rule then provides the posterior distribution for the simulator configuration with irreducible

structural error. Other configurations will tend to have lower posterior probabilities, usually (but not always) associated with295

larger overall values of data model residuals (d−M(cM)).

To make this more this concrete, consider a simple example of the likelihood for a single observational datum (D = d)

assuming that both observational and structural error models are Gaussian distributions with 0 means and respective vari-

ances σ2
obs and σ2

mod . Also assume that they are both independent of each other and of the model configuration. Denoting the

9This conditioning requirement is consistent with the meaning of conditional probability, i.e. P(A |B) is the probability of A being true given that B is true.
10The likelihood function should not be viewed as a conditional probability function because D is held fixed while the input cM is varied.
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corresponding model output as m(cM), then the likelihood is300

P(D = d |m(cM)) = P(d−m(cM) |m(cM)) (15)

= P(d−m(cM)) (16)

= Gau(d−m(cM);0,σ2
obs +σ2

mod) (17)

where Gau(·) is the Gaussian density function with specified mean (0 in the above) and variance. The second line above

used the assumed independence of the error distributions on cM . The third line used the standard result that the sum of two305

independent Gaussian distributions is still Gaussian with variance given by the sum of the individual variances and mean given

by the sum of individual means.

In summary, the likelihood is fully specified by the chosen error model. A major challenge is specifying the structural

discrepancy component of the error model. Within most (if not all) scientific disciplines, the tendency to date has been to

effectively ignore this source of uncertainty. This can result in large inferential errors as we now show by example.310

2.5 A simple inference example illustrating the importance of accounting for structural discrepancy

As perhaps the simplest illustration of the importance of addressing structural discrepancy, consider the following toy model.

Let reality be the simple linear relationship R(x) = 20 + 5x (red line in Fig. 2), and given that our models are always simpler

than reality, let our model be M(x) = Cx, i.e. our model approximation of reality is forced to a 0 y-intercept. If we ignore

the structural error of a forced 0 y-intercept, and blindly carry out standard linear regression against the data (with additive315

Gaussian noise) indicated in Fig. 2, then M(x) and its 2σ confidence interval are the blue lines. The computed confidence

intervals capture the relevant fraction of "observational" values, as expected for linear regression. However, the inferential

value of this linear regression beyond the data range quickly becomes negligible. Not only does M(x) diverge from R(x) for

larger x, but even the standard 2σ confidence interval fails to capture the true R(x) beyond the data range. Furthermore, an

increase in the density of data-points limited to the indicated range of data will not improve the inference.320

Given that models in the Earth Systems context are of interest for their predictions beyond the observational data range

(across both space and time), this example shows the problematic consequences of ignoring structural discrepancy. Predictions

from simulations that “best fit the data” can quickly diverge from reality and, more critically, estimated uncertainty bounds can

significantly under-represent actual model-data differences.

Brynjarsdottir and OHagan (2014) offers a complete example of Bayesian calibration of a slightly more complicated toy325

model that quantitatively elucidates how the lack of accounting for structural discrepancy will bias inferences. In both their

toy model and ours, it is also clear that when structural discrepancy is ignored although the addition of more data within the

existing data range will tend to reduce posterior variance, it will not reduce the inferential error: “with more and more data ...

we become more and more sure about the wrong value for” the model parameter (Brynjarsdottir and OHagan, 2014).

For less idealized examples that examine inferential errors when structural discrepancy is ignored or over-simplified we must330

turn to the literature in other fields. For the context of a conceptual rainfall-runoff model, Schoups and Vrugt (2010) consider a

mis-specified error model that lumps together observational uncertainty and structural discrepancy into a Gaussian distribution
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Figure 2. Linear regression example of inferential error that can occur when structural discrepancy is ignored. The red line is the underlying

"reality" to which Gaussian noise is added to generate the 1000 sample data-points. The dark blue lines are the linear regression results (mean

and 2σ confidence interval) for the structural incomplete approximation with 0 y-intercept.

with 0 mean and constant standard deviation (a not uncommon practice). They show this results in a posterior distribution

for model parameter vectors that has no overlap with those obtained when the error model is more appropriately specified.

Tavassoli et al. (2004) also provides an applied example in the context of geological petroleum reservoir estimation with no335

structural uncertainty assessment of how the models that "best fit the data" can have "bad" inferential value.

Given the structural limitation imposed on our toy model, the useful inference would give the model M(x) = 5x. Though

this model has a poorer fit to the observational data, its confidence interval captures R(x) beyond the data range. As such, the

model has clear predictive value.

Consideration of even this simple illustration raises the difficult challenge of how to account for the structural uncertainty.340

Conceptually, having access to "reality", we can easily see the appropriate choice for the optimal model (M(x) = 5x), and

therefore determine the structural error as a constant bias: R(x)−M(x) = 20. However, for realistic contexts, we generally

lack the omniscient perspective. Dropping omniscience for our toy example, as long we have confidence in our observational

uncertainty (especially that observational uncertainties do not grow at the ends of the data range), one could test a range

of values for the slope C, and then note the simplification in the structure of the residuals as the test value approached the345
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Figure 3. Data - model residuals for the toy model in Fig. 2.

actual value of the underlying reality11 (Fig. 3). But in considering models of earth system components in four (space-time)

dimensions, such inference becomes much more difficult as the underlying residuals between model and reality will have a non-

trivial multivariate structure (i.e. model-observations residuals from proximate observations being more strongly correlated)

that will generally not correspond to any standard statistical distribution.

Further consideration of the toy example can illustrate the incorrect inference that can result from incorrect specification of350

the structural error. For instance, one not uncommon approach is taking the structural error to be some scaling (with scale factor

greater than 1) of the minimum residual between simulator output and the observational dataset across an ensemble (e.g., , as

in Annan and Hargreaves, 2002). This choice of structural discrepancy would still lead to the same erroneous selection of the

model that minimizes the root mean square of the data-model residuals, i.e. that already obtained by linear regression (M(x) in

Fig. 2).355

Given that our toy example is the simplest linear model, the much higher complexity and associated non-linearity of current

models of geophysical systems such as ice sheets and climate makes inferences with such models potentially much more

sensitive to inaccurate specification of structural discrepancy. Thus, unless structural discrepancy is accurately accounted for,

11It should be noted that the blind linear regression in this example would be rejected by standard statistical diagnostics or by simple inspection of the

residuals shown in the figure.
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or at least not under-estimated in the model calibration, even studies that claim to use Bayesian inference may have much less

retrodictive value and statistical confidence than indicated.360

2.6 Addressing structural discrepancy

In order to address structural discrepancy, it is useful to first break it down into two components. Internal discrepancy is the

component that is assessed by experiments with the simulator and external discrepancy is the remainder. Depending on context,

we also separately differentiate potential internal discrepancy as the component of external discrepancy that could be assessed

by tractable simulator experiments but to date have not been.365

2.6.1 Internal discrepancy

Examples of internal discrepancy for paleo ice sheet models include the uncertainty in subglacial topography and deep geother-

mal heat flux for Antarctica and Greenland, uncertainty in initial conditions (such as the temperature field of the initial ice sheet,

temperature field of the solid earth, initial isostatic disequilibrium, surface sediment distribution), and noise (randomness) in

the climate forcing. For paleoclimate models, examples include: all initial conditions, ice sheet and topographic boundary con-370

ditions, atmospheric concentrations of aerosols and dust, and some of the contributions from unresolved turbulence (as much

of the impact of turbulence won’t be assessable by tractable simulator experiments). Explicitly stochastic components of a

model representing such processes would also be contributors to internal discrepancy.

As a concrete example of an internal discrepancy determination for a single discrepancy source, consider the uncertainty

of the subglacial topography under Antarctica and resultant impact on modelled glacial cycle evolution of Antarctica. After a375

pilot exploration to find some runs that don’t obviously give bad fits to the data, one could extract a small, high-variance, and

low collinearity (i.e. parameter vector directions well-separated) subset of approximately 10 parameter vectors. The associated

simulations should also have high variance and low collinearity for values of metrics not directly constrained by paleo data

(such as ice volume or mean annual precipitation over North America for some glacial time slice). The internal discrepancy

determination would involve repeatedly re-running the simulator for each of the parameter vectors in this subset with different380

bed topographies. These topographies could be created by adding appropriately correlated noise to the available bed topography

used in the original simulations. The correlated noise should be fitted to observed topographic variations in geologically-

corresponding regions that are free of ice cover after accounting for the sampling length scale of the observations used to

create the original subglacial bed topography.

For each parameter vector, one could then extract appropriate statistics, such as the variance and covariance, of simulator385

output from the associated noise sub-ensemble of simulations with different topographic realizations12. These statistics would

provide estimates for the statistical parameters in the probability density function for the internal discrepancy. For example, for

each simulator parameter vector, one could extract the variance of present-day ice volume relative to the noise sub-ensemble

12For those statistically literate, in the case of a multivariate Gaussian error model, one would extract the variance/covariance matrix for each sub-ensemble.

Matrix dimensions would include relevant simulator output for comparison against either observations (such as ice volume and basal temperature at ice core

sites) or paleo proxies (such as ice extent at given time and location).
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mean. The maximum variance of each relevant simulator output across the set of noise sub-ensembles (i.e. one for each

subset parameter vector) would provide an initial approximate estimate of the internal discrepancy variance of the simulator390

arising from topographic uncertainty. The stability of the assessed internal discrepancy could be assessed by examining how

much present-day ice volume variance varied between the sub-ensembles. Hebeler et al. (2008) and Gasson et al. (2015) offer

concrete examples of assessment of simulator sensitivity to topographic uncertainty for an ice sheet modelling context (though

the assessment was limited to a few basic ice sheet characteristics and without consideration of covariance between different

simulator outputs).395

The set of variances and covariances from the set of noise sub-ensembles would be used to define a common variance/covariance

representation for the given noise source (e.g., topographic uncertainty, basal drag uncertainty,...). This representation could

then provide a multivariate Gaussian representation of the internal discrepancy. For spatio-temporal fields (such as tempera-

ture), the variance and covariance will need to include spatial and temporal dependencies. It may well be that the structure of

the internal discrepancy is non-Gaussian with significant dependence on ensemble parameters. For both these cases, a more400

generalized statistical model is required to represent it (c.f. subsection 4.6 on emulation below).

Discrepancy from process uncertainties can also be partly assessed by similarly adding appropriate time-varying noise to, for

instance, diffusion coefficients (to better represent turbulent mixing/transport) in climate models or to basal drag components in

ice sheet models (to e.g., account for the impact of changing subglacial water pressure). If the strength or structure of this noise

addition is subject to parametric control, then the parameter can be added to the simulator ensemble vector and this source405

of process uncertainty can be partly subsumed into the simulator ensemble parameter calibration. However, model sensitivity

to the sampling of this noise (for a given parameter vector) will still need to be accounted for in the internal discrepancy

assessment. This would entail repeated simulations with different initial seeds of the noise generator for the given process.

Internal discrepancy assessment is an important part of the simulator development process. Large sources of internal dis-

crepancy point to processes that need to be explicitly incorporated into the simulator under ensemble parametric control. For410

our topographic glaciological example above, this might take the form of parametrizing the structure of the topographic noise,

perhaps via mean amplitude and wavelength and/or variance parameters, and then adding these parameters to the ensemble

parameter vector for the simulator. Prior ranges for these parameters would need to be consistent with available observational

constraints.

For inferential contexts, one need only assess combined internal discrepancy for all considered sources at the same time.415

This will entail imposing all internal discrepancy noise sources simultaneously for each internal discrepancy sub-ensemble

(i.e. using the same parameter vector). A concrete example of internal discrepancy assessment is provided in Goldstein et al.

(2013).

To date, common practice implicitly assumes structural discrepancies are either minimal or, in the case of bias correction,

relatively constant across different simulator states. These assumptions underly the common reasoning that a model that ade-420

quately fits past observations will have predictive value for the future. Internal discrepancy assessment can quantify the validity

of such reasoning.
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2.6.2 External discrepancy

The external structural discrepancy is the component of structural uncertainty not directly quantified by computer experiments.

Some common sources of external discrepancy are limited grid resolution of the simulator, parametrized (or ignored) subgrid425

processes, and uncertainties in inputs for paleo contexts. Determining an appropriate external structural discrepancy is one of

the most challenging aspects of applying Bayes rule to the inference of past earth system evolution.

The previous toy example makes clear that the models that best fit the data within observational uncertainty can not be

directly used to extract the structural discrepancy by setting the latter to the model-data residual less observational uncertainty.

Bayes rule is predicated on the independence of the choice of the error model used to create the likelihood function from the430

model-data residuals input into the likelihood function. Concretely this means that initial internal and external discrepancy

assessment must be done without consideration of model fits to observational data embodied in the likelihood. However,

as discussed in the implementation section below, diagnostic testing can invalidate an error model and partially guide its

subsequent re-specification.

The importance of structural discrepancy assessment can also be understood from the perspective of avoiding simulator435

over-fitting. The latter occurs when the predictive power of a model is sacrificed to increase model fits to data. Concretely,

any set of N data points can be exactly fit by an (N−1)-th order polynomial. However, if the data contains any observational

noise, then the regression is fitting reality plus noise, resulting in a loss of predictive power. This is especially clear when

extrapolating beyond the data range given how fast high order polynomials can grow in magnitude as the independent input

variable increases in magnitude. Bayesian model calibration would ensure model fitting to data is only within the context of a440

well-specified complete error model and thereby avoid over-fitting13.

There are a variety of complementary approaches towards addressing external structural discrepancy. They all start with

assessing scientific understanding about sources of external discrepancy and making judgements about the resulting error for

both prediction/retrodiction and likelihood comparison to constraint data. The judgements may be as simple as “given ice sheet

model intercomparisons, dynamical sensitivities, a typical 20 km model grid resolution, and my own extensive experience as445

an ice sheet modeller, the fit to the observed grounding line positions for a model of the Antarctic ice sheet is likely to have a

root mean squared error of at least 30 km. Errors in grounding line position will in turn propagate into correlated errors in both

past and present-day ice shelf areas.” Each of these example considerations can then be backed up by appropriate referencing.

The explicit specification of structural uncertainty enables reasoned evaluation in the review process and more broadly in the

general community.450

A second approach posits a multi-model ensemble (MME) of different state-of-the-art models as a closer representation of

reality. A partial estimate for simulator external discrepancy can then be extracted from the distribution of residuals between

each MME member and the closest member of a perturbed parameter ensemble (PPE), of the simulator under consideration.

This requires a chosen metric to compute the distance between model runs. This approach would be of value if the structural

discrepancy of the simulator of interest is significantly larger than the structural discrepancy of the MME. Sexton et al. (2011)455

13For those with a machine learning understanding, one effect of the error model and prior is to collectively regularize the fitting of the simulator to the data.
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used this approach with a PPE for the HadSM3 climate model to generate probabilistic projections for the 21st century. They

show (e.g., their figure 9) a significant impact on projected annual global mean temperature change if their choice of structural

discrepancy is ignored.

A challenge in the use of such MMEs for discrepancy assessment is that available MMEs are generally ensembles of

opportunity. As such, they incorporate models that are not independent (given the commonality of parameterizations, dynamical460

cores, grid resolution, and so forth) and to date are almost always only hand-tuned with no principled uncertainty assessment.

All these factors limit the utility of current MMEs for structural discrepancy assessment.

One could also use a computationally expensive high-quality simulator to diagnose the structural uncertainty of a lower-

quality, but computationally cheaper, simulator. Such an approach could be used to quantify a significant component of the

external structural discrepancy contribution from an ice sheet model (ISM). It would require an ensemble of transient simu-465

lations of a high-quality ISM, such as a high resolution adaptive-mesh model with a higher order representation of ice flow

(e.g., Cornford et al., 2013). Application of the same climate forcings to both the expensive high-quality ISM and the faster

lower-quality ISM would permit extraction of a lower bound estimate for the lower-quality ISM external structural discrepancy.

The completeness of this estimate would depend on the quality of components for processes at the physical boundary of the

ice sheet in the high-quality model.470

It should be noted that if the high-quality simulator runs have yet to be done, there are much more efficient approaches for

jointly using the information provided by a hierarchy of fast low-quality to expensive high-quality simulators (e.g., Cumming and Goldstein,

2009, as well as subsections below concerning emulation).

The fourth approach is to posit a parametrized form of the structural discrepancy and infer parametric coefficients. The

posited form should be explicitly motivated by comparison with the results of other (hopefully structurally dis-similar) models475

(thus overlapping with approach three above) and/or physical reasoning and/or expert judgement. Even better if at least some of

these other models in the comparison were of higher quality (i.e. one that has higher resolution or invokes fewer approximations

at the cost of increased computational expense). The form of the structural uncertainty can further be constrained by underlying

symmetries in the system under consideration (cf Arthern, 2015, and references therein).

The dividing line between internal and external discrepancy is in good part a choice by the modeller within the constraints of480

available time and computational resources. Discrepancies due to uncertainties in climate forcing for a paleo ice sheet model

can in part be assessed by the addition of appropriate noise to the climate forcing. Such assessment would then convert a

non-trivial fraction of the external discrepancy due to climate forcing uncertainties to an assessed internal discrepancy.

After careful consideration of structural discrepancy, the modeller may then judge it to be excessive for the given context.

This would necessitate improvements to the simulator guided by consideration of the contributors to structural discrepancy.485

This involves some combination of : increasing simulator resolution, invoking fewer approximations in the simulator imple-

mentation of the relevant physics, and/or adding more parameterizations and associated calibration parameters.

To date, most may posit (as is often implicitly or, less frequently, explicitly done) the option of ignoring structural discrep-

ancy and, for instance, just focus on finding the ice sheet chronology that most closely fits the observations within observational

uncertainty only. One might then argue that the resultant chronology is that most consistent with data and physical relationships490
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embodied in the employed simulator. If one’s explicit purpose is to find such a chronology, in effect carry out simulator-based

curve-fitting, this argument is unassailable. But what utility does this provide, especially for space-time locations where there

are no high quality proximal observational constraints? If one is endeavouring to make an inference about the actual past and

not about one’s model, than the above toy model example should make clear how incorrect such an inference could be when

structural discrepancy is ignored. For the surface and groundwater hydrology contexts, clear real-world examples have been495

published over a decade ago (e.g., Yang et al., 2007) showing the inferential errors that can ensue when structural discrepancy

is ignored or under-specified.

2.7 The normalization term of Bayes rule, Markov Chain Monte Carlo (MCMC) sampling, and emulation

The normalization term, P(D), in Bayes rule need only be explicitly determined if absolute as opposed to relative probabilities

are sought. To be a self-consistent probability, ∑CM P(CM |D) must = 1. From Bayes rule, this in turn500

= ∑
CM

P(D |CM)P(CM)
P(D)

. (18)

Inverting this equation leads to (aka the law of total probability):

P(D) = ∑
CM

P(D |CM)P(CM) (19)

If one were only concerned with determining which paleo history (as defined by CM) was more likely for a given ensemble

of histories, one could ignore P(D) and simply compare the product of the likelihood and prior for each history. However,505

inferring past Earth/climate system evolution entails determination of absolute probabilities and complete sampling of the non-

negligible posterior probability space of possible histories. This is where the computational challenge of Bayesian inference

becomes apparent. P(D) alone entails a sum of model evaluations over all parameter vectors (CM) and considered models (M)

that have non-negligible prior probability and likelihood. For any model that can’t be evaluated analytically, this sum must

be approximated. For a single model system restricted to just 5 calibration parameters, even if we only considered a single510

parameter value from each decile of the prior, a simple factorial (grid) sampling would entail 105 model runs. Especially when

given an order of magnitude higher number of calibration parameters, this is clearly computationally unfeasible. Markov Chain

Monte Carlo (MCMC) approaches (e.g., Andrieu et al., 2003; Richey, 2010, for accessible introductions) can significantly

reduce this computational requirement via random walk searches through the parameter space, with the choice of walk steps

weighted to the relative posterior probability of each trial parameter vector (P(D) is not used).515

The mechanics of MCMC sampling can be illustrated by a topographic example. Consider the problem of finding the lowest

elevation point by in situ travel in a region of complex topography with sight-lines thereby restricted (i.e. given surrounding

topographic highs). Suppose the only tool is a set of small transponders that can relay local elevation and an individual with

a super-human throwing arm. This individual will randomly (with weighting according to perhaps a prior distribution for

direction and distance) throw one transponder beyond his/her sight-lines (and usually beyond a proximal topographic high)520

and receive the local elevation of the point where the transponder lands. If the elevation is below the present elevation, the

individual would then proceed to this new location and repeat the sequence.
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The crux of this illustration is the response to a resultant transponder elevation that is higher than the present position of the

individual ( and therefore of lower analogous probability). If the individual were to consistently not go to regions of higher

elevation, soon they would find themselves trapped in a local minimum (i.e. a valley deeper than adjacent valleys but not the525

deepest in the region).

To make this topographic search probabilistically self-consistent, or from a more limited optimization point of view, to

search for the global minimum, higher elevation regions also need to be sampled. One approach (approximately corresponding

to the Metropolis-Hastings algorithm) is to make the decision on whether to go to a higher elevation transponder location via

a flip of a weighted coin. This weighting should be set to the relative probability of the transponder site being closer to the530

global minimum compared to the current location. Specification of this probability would properly need to take into account

information such as the length scale of spatial correlation in elevation and surface slopes and the height of the transponder

relative to the current position. For a transponder site with 50% relative probability, this corresponds to flipping an unbiased

coin, and only moving to that site if a heads results.

After convergence and thinning of samples to remove sequential correlations, the MCMC chains (sequence of sampled535

values such as measured elevations from the transponders in our analogy) will reflect the underlying posterior probability

distribution. This means that values from high posterior probability regions will occur proportionally more frequently than

values from low probability regions of the parameter vector space. This is a key difference from optimization algorithms that,

for instance, will avoid repeated sampling of the same simulator parameter vector value. With MCMC, sampling from the full

posterior may become more tractable. The actual number of sample points required will depend on the complexity of the model540

response to parameter variations or correspondingly the topographic complexity.

Continuing our topographic analogy, if one by chance starts in a high elevation plateau, it may take many transponder throws

before one one ends up sampling the lowest elevation regions. This corresponds to the initial pre-convergence “burn-in” part

of a MCMC chain. Scaling up our topographic analogy from the given two spatial dimensions to the order 30 to 100 ensemble

parameter dimensions of typical paleo simulators makes the burn-in phase potentially much longer.545

The rougher and more complex the topography, the longer it can take to exit a sub-optimal region. Such conditions also

increase the sensitivity of the MCMC chain (search path) to the exact specification of the likelihood and starting point.

When dealing with high-dimensional non-linear systems (such as earth and climate systems), just as one can never be

confident that a global optimum has been found, so one can never be sure if an MCMC chain has converged. To address this

challenge in part, any study using MCMC methods should use some combination of standard MCMC convergence metrics and550

multiple (preferably hundreds of) MCMC sampling chains, each started from a dispersed sample of ensemble vectors from the

prior.

In the first author’s own experience with ice sheet model calibration of approximately 40 ensemble parameters, at least order

ten million point sampling is still required (as compared to the astronomical 1040 for a simple grid search over deciles). As this

is still beyond computational tractability for ice sheet and climate models, one other component is required. This component,555

a set of emulators, consists of very fast approximate statistical models that predict statistical characteristics of simulator output

of interest as a function of an input parameter vector.
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A single emulator might just predict a probability distribution for simulator ice volume as a function of the parameter vector

and time. Or it might incorporate latitude and longitude inputs to predict simulator deglaciation times at specified grid cells.

Thus, a set of emulators could collectively predict model output required for likelihood evaluation. To maintain statistical560

integrity of the inference process, emulators, by definition, must embody a probabilistic distribution for simulator output and

therefore also compute and output their predictive uncertainty.

A more technical discussion about emulation is provided in the implementation section below. Any study claiming to infer

meaningful bounds on ice sheet or climate system evolution using relevant simulators will require emulators to at least address

parameter uncertainty.565

2.8 Uncertainty in making predictions/retrodictions: a missing term in most studies

Once a climate or ice sheet model has been calibrated, or an ensemble of simulations has been otherwise generated, the ultimate

goal is to make prediction/retrodictions and/or improve process understanding. The determination of a collection of simulator

configurations consistent with constraint data after accounting for structural and observational uncertainties is only a first

(though very large) step towards making a prediction. Consistent with the definition of structural uncertainty, predictions need570

to explicitly incorporate structural discrepancy. In our toy example, this would trivially entail adding a bias correction of 20

to the simulator prediction (light blue line in Fig. 2) to offset the structural error and recover the underlying signal (red line in

Fig. 2).

Translating this toy reasoning into a Bayesian framework, one would seek the posterior probability for a future or past

potential system state S (or characteristic thereof, such as mean temperature) to equal value s given constraint data D and a575

simulator M (or set thereof, by simply replacing M with {M} in what follows). Formally, this is denoted by:

P(S = s |D,M) (20)

Invoking the standard statistical procedure of marginalization over all possible model configurations (CM), this

=
∫

P(S = s,CM |D,M)dCM (21)

Marginalization follows from the basic axioms of probability. It corresponds to the reasoning that P(S = s), i.e. the probability580

of S = s irrespective of the value of any other quantities (such as CM), equals the sum of joint probabilities of S = s and CM ,

P(S = s,CM), over the complete set of mutually exclusive values of CM . Application of the multiplication rule to eq. 21 then

provides a tractable expression in terms of the posterior distribution for simulator configurations (P(CM | D,M), i.e. from Bayes

Rule, eq. 7) and the likelihood for S, (P(S = s |CM,D,M)):

P(S = s |D,M) =
∫

P(S = s |CM,D,M)P(CM | D,M)dCM (22)585

To make this more concrete, for a climate model, D might be the observed record of precipitation and temperature. S would

be a statistic for paleo or future temperatures or precipitation or any other climate system characteristic to be inferred from

simulator output. This statistic is any summary function of climate systems fields that are of interest, such as : mean monthly
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temperature, the exceedence or recurrence interval for some chosen extreme value threshold, yearly frequency of category 5

hurricanes,... For a paleo ice sheet model, S would include ice sheet thickness and surface elevation over each geographic590

position and time, while D is the collective set of constraints used for the ice sheet model calibration.

The likelihood P(S = s |CM,D,M) in the above equation makes explicit that any predictions must account for structural

discrepancy in the relevant simulator output (and not just in the simulator output data constraints used to determine the posterior

for CM). As mentioned in the previous discussion on structural discrepancy assessment, the practice of bias correction is a

simplified form of imposing the P(S = s |CM,D,M) term, by assuming that the total predictive error is a time-independent bias595

term (such as the difference between present-day reanalyzed temperature and simulated temperature from a climate model).

It should be noted, that the description to this point assumes a single best best input choice for cM . A more general approach,

especially when components are not physically well-defined, is presented in Sect. 3.1.

Aside from occasional bias correction, to date even most purportedly Bayesian studies with geophysical simulators ignore

this crucial likelihood term and therefore underestimate predictive and retrodictive uncertainties. For those interested in imple-600

mentation, Craig et al. (2001) offers a detailed example of Bayesian forecasting with a complex simulator.

2.9 Multi-model ensembles and dealing with structurally different simulators

For both paleo climate and paleo ice sheet (and sea level) contexts, there are a range of published simulations, many hand-

tuned, some subject to ensemble-based scoring against limited sets of data constraints, and a few that attempt an approximate

Bayesian inference. A natural question is how to make defensible joint inferences from such multi-model ensembles (MMEs)605

of simulations? This has received significant attention within the climate modelling community, in good part arguably driven

by the challenge of drawing summary conclusions for International Panel on Climate Change (IPCC) contexts.

However, even after two decades of relevant literature and workshops, the topic is clouded by a preponderance of ad-hoc

approaches and reasoning. This is evident in contrasting conclusions drawn from existing literature: “Owing to different model

performances against observations and the lack of independence among models, there is now evidence that giving equal weight610

to each available model projection is sub-optimal” (Eyring et al., 2019) versus “an emerging body of research suggests that

an unweighted average of all simulator outputs often performs favourably by comparison with performance-based weighting

schemes” (Chandler, 2013). The latter came after a decade of literature considering different weighting schemes.

This confusion is most evident in approaches that take the ensemble mean and variance as the inferential best estimate and

associated uncertainty. This choice presupposes that the ensemble members are random realizations of the physical system615

with independent, unbiased, additive errors. However for both climate and ice sheet contexts, simulator structural error will

have dependence on the choice of simulator, invalidating this supposition. To make this clear, imagine if each MME member

were a trivial climate simulator that output a different time-independent random temperature field. The MME average would

have no meaningful relationship to the actual climate, contrary to the logic underlying the use of MME means and variances.

As indicated above, many approaches to MMEs assign weights to different simulations according to some performance620

score against historical observations without accounting for structural discrepancy. As in our toy model example, mis-specified

weights (and therefore mis-specified or ignored structural uncertainty) will result in potentially highly inaccurate predictions.
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This has been borne out by explicit tests of performance-based weighting in climate simulation ensembles (e.g., Deque and Somot,

2010) as well as via detailed analyses with idealized simulators (e.g., Weigel et al., 2010).

The ice sheet modelling field has much less relevant literature on MMEs for paleo contexts. As one recent example,625

Batchelor et al. (2019) provide minimum and maximum extent time-slices for past Northern Hemispheric ice sheet evolution,

in part via reliance on published numerical simulations. However, the set of chosen simulations do not include simulations de-

signed to bound uncertainties in past evolution. A similar problem occurs in the climate field, for which simulator contributions

to the IPCC are generally “best-tuned” versions, even though the IPCC attempts to infer bounds on future climate change from

this under-dispersive set of climate simulations.630

The previous subsection on making predictions with models showed how a posterior inference for any observable quantity

requires two structural discrepancy contributions: one (P(D |CM,M)) to get the posterior for model parameters, and one for the

prediction (P(S = s |CM,D,M)). Most MME weighting schemes ignore structural uncertainty in the likelihood (and therefore

for the constraint data). Virtually all schemes to date, including “Bayesian Averaging”, ignore the structural discrepancy for

the final inferred quantity.635

For those delving into MMEs, we recommend first the briefer but more accessible treatment (at least for most ice and climate

modellers) of Williamson et al. (2013) followed by careful reading of Chandler (2013) and Rougier et al. (2013) which offer

practical and theoretically rigorous methods for drawing inferences from MMEs.

2.10 Constraint data : availability and uncertainty specification

To date, based on the first author’s experience with ice sheet modelling, assembling a relevant high-quality constraint data640

set with confident uncertainty specification has been a major challenge. Relatively recent (Briggs and Tarasov, 2013) and

ongoing efforts such as HolSea (https://www.holsea.org/) have improved the situation, but what is really needed is a one stop

shop for complete quality controlled constraint databases that includes detailed uncertainty specification. To be effective and

efficient, such a data site will require easy and flexible data submission, error checking, automated quality control, automatic

age calibration using a choice of protocols, bulk retrieval, and automated generation of a reference list for subsequent citation.645

In the context of relative sea level (RSL), Dusterhus et al. (2015) provides an overview of the issues to consider for such

database design and implementation as well as a list of available RSL databases. Ghub (https://vhub.org/groups/ghub/paleo-

datasets) is a hopeful new endeavour that aims to fulfill many of these criteria for past and present ice sheets. Efforts by relevant

communities to spell out data collection and logging protocols (e.g., Shennan et al., 2015) are also critical.

The ideal constraint data set will have narrow uncertainty and wide spatio-temporal coverage. It will also constrain diverse650

physical characteristics of the system. Consider the Greenland ice sheet. Present-day vertical velocities, relative sea level,

and cosmogenic dates constrain earth model parameters for glacial isostasy as well as deglacial ice extent and peripheral ice

thickness. The present-day observed (or reanalyzed) melt rate fields provide a strong constraint on modelled melt. Observed

deep ice core temperature profiles provide an integrated constraint on past temperature and precipitation for central regions of

the ice sheet. The present-day observed ice thickness field also provides a strong dynamically integrated constraint for glacial655

cycle models.
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As discussed above, the specification of the likelihood (or an alternative to be discussed below) requires specification of con-

straint data uncertainty. In terms of the paleo context, the sea level and C14 dating communities have arguably made the most

progress in data uncertainty specification. Shennan et al. (2015) provides detailed guidance in assessing RSL proxy uncertain-

ties, especially in consideration of the relationship between the proxy (eg a mollusc found at a certain elevation, embedded in660

a specific stratigraphic framework, with a C14 date) and the "indicative meaning", i.e. the inferred probability distribution for

the sea level associated with this datum. The dating communities are the most advanced with online applications that generate

non-Gaussian probability distributions for calendar ages given a C14 or 10Be datum. The provision of a computationally con-

cise and efficient representation of these distributions (e.g., kernel density estimators) would facilitate their incorporation into

paleo inference projects.665

Error model specification for constraint data must account for the complete relationship between the model prediction and

the datum. For the example of 10Be dating, in addition to the uncertainties provided by online calculators, one must also

account for uncertainties arising from inheritance and in the case of samples from boulders, transport and subsequent possible

disturbance. For the case of minimum limiting C14 dates from samples embedded in an end morraine, the inference of when an

end moraine was formed should include a distribution for time of migration of relevant flora to the sample site. All data/proxy670

comparisons must also account for uncertainties arising from limited simulator grid resolution.

Accurate observational uncertainty assessment can be challenging for poor-quality data. In noisy data such as RSL, it is

common for much of the data to have no constraint value beyond increasing the confidence in other data. For instance, most

dated mollusc samples (as in Fig. 4) only indicate that sea level was above the relevant datum for a given sample (with

allowance for downward uncertainty of order 1 to 10 meters for possible tidal changes and upward displacement of the mollusc675

by waves). As such, only the highest mollusc samples for a given time offer useful constraint. In the example of Fig. 4, the

lower-bounding, pre-3 ka data-points below 30 masl have no constraint value and should be eliminated from the constraint

dataset.

This example illustrates the value of database cleaning. Clear outliers and data that apriori provide no additional constraint

should be removed from the calibration (but should still be retained for subsequent posterior checks). Outlier removal requires680

careful, transparent, and documented judgement with explicit consideration of the whole set of local data and relevant signal.

It is best done by those most familiar with the data and outlier assessment should therefore be a part of database entry by the

data-gatherer.

2.11 summary of what the Bayesian framework offers and challenges that ensue

The above provides a high-level framework for making meaningful inferences about the world around us, especially in the685

context of incomplete models used to describe a complex non-linear world. It is also a framework for how to improve these

inferences. For instance, attention to structural discrepancy can guide efficient simulator development by making clear the

largest sources of structural uncertainty for the given context.

However implementation of standard Bayesian inference for complex simulators is a challenging and potentially non-robust

endeavour. Posterior distributions tend to be non-analytical for non-trivial simulators and therefore can only be sampled from.690
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Figure 4. Comparison of modelled RSL histories and data for southwestern Hudson Bay Poste de la Baleine(Tarasov et al., 2012). To avoid

clutter, 1-way error bars have been truncated. Orange 1-way (upper bound) error bars are generally for samples of terrestrial or mammalian

origin, such as wood and bone. Purple 1-way (lower bound) error bars are generally non-intertidal species of molluscs that can live between

shallows and depths of hundreds of meters.

As described in our discussion of MCMC sampling, this sampling may take a long time to converge (perhaps beyond available

computational resource limits). No matter how the sampling is carried out, the result can be highly sensitive to the exact

specification of the error model and therefore the likelihood. This is especially the case for high dimensional constraint data

and parameter spaces, such as is generally the case for complex geophysical simulators. Our toy example also illustrates how

inaccurate uncertainty accounting will lead to erroneous inference. For complex simulators, such error model specification695

will always be dependent on the uncertain specification of the external discrepancy. As such, inferences for say a most likely

ice sheet history will have limited meaning contingent on a large set of assumptions. For those interested in a more complete

and detailed accounting of the challenges involved, we refer the reader to the Frigg et al. (2015a) critique of the most detailed

attempt at full Bayesian inference for future climate change to date (Sexton et al., 2011).

Unlike the norm to date, the Bayesian framework at least tends to force more of these assumptions to be explicitly stated700

and offers conceptual clarity. For many contexts, a more limited product than a rigorous posterior inference may have adequate

25

https://doi.org/10.5194/cp-2021-145
Preprint. Discussion started: 17 November 2021
c© Author(s) 2021. CC BY 4.0 License.



utility and can be much more robust. Such a product could also act as a useful stepping-stone towards a complete posterior

inference. We turn to this now.

3 Two stepping stones towards addressing uncertainty

Below we describe two stepping stones that meaningfully address uncertainty within a tractable framework. Instead of a full705

posterior distribution, they collectively provide an initial set of uncertainty bounds and a sample of simulations within those

bounds. Such bounds help reframe the emphasis of the inferential process from finding the most likely system history to that

of inferring credible bounds on said history. Both stepping stones also align with a major pre-occupation of many modellers:

evaluating to what extent one’s model has the capability to capture the system of interest to the requisite minimal accuracy,

identifying the components most in need of improvement, and then using this evaluation to improve one’s model.710

3.1 The first stepping stone : History Matching

History matching is a Bayesian approach that sidesteps the challenging requirements of a well-defined likelihood function and

complete sampling from the posterior. Instead, it assesses whether individual simulator runs are implausible as approximate

representations of reality. It is much easier to identify clearly bad simulator runs than to assign a defensible likelihood to all

simulator runs. Furthermore, history matching can reject a simulator by assessing that all possible simulator runs are implau-715

sible. A full Bayesian analysis is predicated on the existence of one true value of the simulator configuration and therefore

can’t directly reject a simulator (however, posterior diagnostic validation offers an indirect route to rejection, c.f. subsection

4.5 below).

History matching was originally successfully applied to the determination of parameter settings for computationally expen-

sive geological oil reservoir models (Craig et al., 1995; Cumming and Goldstein, 2009). It has subsequently been applied to720

simulators in a variety scientific contexts, such as ice sheet models (McNeall et al., 2013, though more as a proof of concept

with limited metrics and only 5 ensemble parameters) and a general circulation climate model (Williamson et al., 2013). A

complete application of history matching to a simulator for galaxy formation (Vernon et al., 2010) and to HIV transmission

modelling (Andrianakis et al., 2017) in combination with an application of history matching to the NEMO ocean model that

includes relevant code (Williamson et al., 2017) offers a clear presentation for those interested in implementation.725

History matching involves a series of iterations ("waves") that, through an appropriate rejection criterion, incrementally

refines the subspace of not implausible parameter vectors. A vector is deemed implausible if the output of the simulator or

emulator is sufficiently far away from the observed data given all relevant uncertainties. This requires the definition of a

set of implausibility metrics which quantify data-model misfits (residuals) relative to specified approximate values for total

uncertainty. The simplest implausibility measure is the ratio of the data-model residual to uncertainty specified as a standard730

deviation:

I =
model prediction−observed value

σtotal
. (23)
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Given that the square of total standard deviation for independent sources equals the sum of squared standard deviations for

each source, it is more convenient to work with the square of the above equation. Furthermore, as adequate sampling of the

parameter vectors will generally require emulators, “model prediction” in the above should be replaced by the mean emulator735

prediction for the simulator. Assuming respective emulator, structural, and observational standard deviations (σem, σstruct , and

σobs) for datum di at location and time x, the implausibility value for the emulator mean prediction (technically expectation,

E()) of simulator output E(Mi(x,cm)) using parameter vector cm then takes the form:

I2
i (x,cm) =

(E(Mi(x,cm))−di(x))2

σ2
em +σ2

struct +σ2
obs

(24)

A choice for an initial collective implausibility measure (IM) that avoids dealing with correlations in the error model is the740

maximum implausibility over the set of chosen constraint data (I2
M = maxi(I2

i )). Simulator runs with IM above a rejection

threshold would be deemed implausible and ruled out. As IM would be very sensitive to inaccurate emulation of one single

output for any simulation, it is generally advisable to set IM to the second or third largest implausibility I2
i (x,cm) for at least

early waves.

A common IM rejection threshold is a value of 3 based on the 3 σ rule (Pukelsheim, 1994) that at least 89% of a general745

probabilistic distribution should fall within 3 standard deviations of the mean. For any continuous unimodal distribution, this

rejection threshold is more palatable as 95% of the probability will then fall within 3 standard deviations of the mean according

to the Vysochanskij-Petunin inequality (Vysochanskii D. F., 1980). If it can’t be ruled out that the underlying distribution

is multi-modal, then a threshold of 5 would cover 96% of the probability for any continuous probability distribution (of an

integrable random variable) according to Chebyshev’s inequality (Chebyshev, 1867).750

If the chosen threshold precludes an adequate number of not-implausible runs, then re-assessment of simulator configuration,

inputs, choice of ensemble parameters, and/or simulator discrepancy distribution is required. This contrasts with a full Bayesian

approach that requires the posterior probability distribution to integrate to 1 over all possible choices of the ensemble parameter

vectors and therefore can’t reject a chosen set of simulator, likelihood, and prior.

History matching is generally carried out with emulators, to ensure that the structure of the model response to the parameter755

space is reasonably well resolved. In our topographic MCMC analogy, “well resolved” would mean that every valley has at

least one sample, even though the minima are generally not identified. During each successive wave, additional points in the

parameter space are ruled out as implausible, leading to an ongoing refinement of the remaining not-ruled-out-yet (NROY)

subspace.

History matching is much simpler to credibly implement than a full application of Bayes rule. It features a much freer760

selection of metrics and the lack of need for a multivariate error model and associated likelihood function, especially during

initial waves. For instance, in calibrating a model for Greenland ice sheet deglaciation, one could initially separately apply RSL,

present-day topographic, and ice temperature profile misfit metrics instead of a complete multivariate likelihood. A rigorous

Bayesian inference would require the latter. As the NROY parameter space is narrowed through successive waves, internal

discrepancy assessment can be carried out to refine the implausibility metric, including the addition of multivariate structure.765
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Another useful feature of history matching is that there is no need to include all metric components for the initial waves.

Instead, it makes more sense to start only with metrics that use easier to emulate outputs of the simulator. Furthermore, the

emulators only need to be accurate enough to significantly shrink the NROY parameter space during the given wave. As the

NROY parameter space is narrowed, accurate emulation becomes easier, especially for variables with spatial and/or temporal

dependence. Further metric components can then be added. This improvement in emulator accuracy is due both to the narrowed770

range of simulator response and the increasing density of simulator runs in the NROY parameter space with each successive

wave that is used to create the revised emulators.

History matching also offers an heuristic route to inferring an order of magnitude estimate of external structural discrepancy.

Goldstein et al. (2013) provide an example of history matching using a fast rainfall runoff model with 17 ensemble parameters.

In their case, out of 100,000 emulated model runs, they first select the best 8 that have the lowest implausibility when structural775

discrepancy is not counted (i.e. excluded from the denominator of equation 24). They then set the structural discrepancy for

each metric component i (σstruct) so that the value of the full implausibility metric is just below the rejection criterion:

max
over 8 models

(I2
i (x,cm,σstruct))≤ 3. (25)

Though crude, such an estimate for structural uncertainty can be used as a starting point to assess whether the current model

configuration is of requisite accuracy for the given context.780

History matching is a learning process about the relationship between the simulator and the system in question. One does

not require a complete and accurate error model for the first wave, only an error model that doesn’t underestimate structural

and observational uncertainties to one’s best judgement. To avoid such underestimation, one can go as far as specifying a

large structural discrepancy such that any larger would lead one to judge the simulator as useless for the given context. As

one progresses through the waves, the error model can be refined. This thereby enables both learning about the structural785

discrepancy and the impact thereof on simulator calibration and predictions.

A methodological error to avoid is to initially underestimate the structural uncertainty and subsequently require its expan-

sion. This would require a complete repetition of all previous waves. Such an error is much more difficult to avoid in a full

Bayesian analysis. Given this and the requirement of a single accurate multivariate emulator for all relevant outputs that a full

Bayesian inference would entail, we strongly recommend initial history matching even for those seeking a complete posterior790

distribution.

Note that a low value of the implausibility does not imply a plausible or “good” parameter vector, only that the vector has

not yet been ruled out. A low implausibility of a parameter vector can arise from large emulator variance and/or lack of data

constraints in the current wave for which simulator fits would be poor. For those interested in working through an actual toy

example of history matching, Vernon et al. (2018) provide a detailed, lucid presentation (along with a non-toy case study for a795

systems biology model) that includes the complete R script in the supplement.
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3.2 The second stepping stone and structural discrepancy check: data-bracketing

A pragmatic criterion that classical history matching doesn’t explicitly address is whether the simulator has enough degrees

of freedom to fully bracket (i.e. from both above and below) critical constraint data within observational uncertainties given

parametric degrees of freedom. The choice of what constitutes “critical data” will depend on context (including correspondence800

of constraint data to quantities of interest for prediction), simulator complexity, and simulator cost. An NROY ensemble

for which every member consistently overestimates present-day Greenland ice sheet ice thickness and ice area, for instance,

would suggest some combination of too restrictive prior ranges for ensemble parameters and/or problems with inputs and/or

some fundamental deficiency in the simulator. Such an ensemble would tend to have much less inferential value than one

whose members collectively bracket all constraint data, preferably with bracketing by just two bounding simulations for each805

qualitatively different subset of data (such as temperature and precipitation for a climate simulator).

For computationally expensive climate simulators, the presence of persistent biases would necessitate a more restricted

and context-dependent choice of critical constraint data that the ensemble would need to bracket. It will also require careful

selection of ensemble parameter vectors informed by understanding of simulator response to individual and joint parameter

variations. A persistent under-prediction of e.g., monsoon intensity may be unavoidable, and acceptable for say the context810

of coupling with ice sheet models for which tropical features have no direct relevance (though this could be complicated by

teleconnections). However, for a similar context, a climate simulator ensemble for which all models under-predict the observed

mean seasonal cycle over Northern Europe (a critical control on ice sheet surface mass-balance) would tend to have much less

inferential value than one that fully bracketed the observed cycle.

From a statistical perspective, such bracketing would not be directly considered. Instead, any persistent biases would properly815

be subsumed into the (combined internal and external) structural discrepancy error model used to defined the likelihood. Such

an allowance for simulator bias could therefore also be added to the implausibility metric in history matching. However, in non-

linear, spatially-temporally-coupled systems such as ice sheets and climate, large persistent biases are structural discrepancies

that potentially make the resultant inferences of minimal value due to error amplification from positive feedbacks. This is

especially the case for inferences related to simulator predictions not closely associated with available constraint data which820

is generally the case for paleo contexts. If the lack of data-bracketing were due to large external discrepancy (as opposed to

internal discrepancy), this would induce a further inferential challenge of adequately specifying a large external discrepancy.

It is important to note that data-bracketing should not be a simulator tuning or calibration target as it doesn’t account for

structural discrepancy. It is also unlikely to hold for a final NROY set (given the lack of accounting for structural discrepancy).

Instead, data-bracketing is a pragmatic early-stage modelling check on observational error models, parametric choices, and825

prior ranges for parameters. It may also force a reconsideration of whether the simulator structural discrepancy is acceptable

for the given context.
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3.3 An interim inferential reframing: bounding reality:

Given the previously described challenges and fragility of full Bayesian inference, we urge a shift from the common focus on

a best-guess chronology for the system under consideration to that of "bounding reality", i.e. determining credible upper and830

lower bounds on, for example, the glacial cycle evolution of an ice sheet. Even for very expensive simulators, such as general

circulation climate models (GCMs), this would entail multiple simulator configurations designed to credibly offer some bound

on key characteristics of the climate system that are of interest.

A full Bayesian calibration with a well-specified error model provides a posterior probability distribution for simulator

predictions and therefore such bounds. However, for at least the near future, most modelling projects are unlikely to invest the835

resources for the required careful specification of the error model. Bounding reality offers a more accessible target. And history

matching offers a tractable approach to reach this target.

An important part of bounding reality is ruling out that bounds are due to inadequate sampling of ensemble parameters, in-

complete use of available data constraints, or inadequate structural discrepancy assessment. Ruling out of inadequate sampling

requires use of validated emulators and an appropriate sampling scheme. The creation of relevant online community databases840

should help address data availability and assessment of the extent to which relevant paleo constraint data is used. Internal

structural discrepancy assessment can be judged on the extent to which noise was introduced to all relevant processes and the

appropriateness of the amplitude and structure of the introduced noise. The adequacy of external discrepancy assessment is

more difficult to judge, though diagnostic checks described in subsequent sections can help.

A further check on the inferred bounds is from analysis of the contribution from data constraints and this ties in closely to845

data-bracketing. For instance, a number of studies using glaciological simulators for the last glacial cycle have inferred varying

contributions to last glacial maximum sea level from Antarctica (e.g., Whitehouse et al., 2012; Golledge et al., 2014). However,

to date, only Briggs et al. (2014) and Albrecht et al. (2020) have explicitly demonstrated that their glaciological simulators are

able to produce significantly larger Antarctic contributions that were ruled out (tentatively in the first case) by data-constraints.

These are also the two such studies that have inferred the largest upper bound estimates for Antarctica contribution to last850

glacial maximum sea level.

4 Implementation and shortcuts

The first parts of this perspective have outlined the general framework and challenges in carrying out a complete Bayesian

inference for past ice and climate evolution. Rigorously carrying out such an inference can be a large-scale multi-year project

beyond the ambitions of most modellers.855

However, as we’ve argued above, uncertainty assessment is a critical part of the scientific endeavour and needs to be a core

part of the whole modelling process. Just as in model building and experimental design, the researcher will need to make

defensible judgements about trade-offs between inferential rigour and computational ease. Below, we sketch out a simpler

framework for inferring past earth system evolution based on history matching. This framework provides a credible uncertainty
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assessment as well as a stepping-stone to a more rigorous approach. We then selectively discuss implementation considerations860

for various components of the inferential process of relevance to both approximate and completely rigorous approaches.

All of this section, except for the next subsection 4.1, can be skipped by those not interested in the actual implementation of

simulator-based inferences of past ice/climate/earth system evolution.

4.1 A minimal framework for inferring past ice and climate system evolution with uncertainty quantification

The following simplified framework offers an example approximate approach towards quantifying past system evolution.865

Furthermore, it would also form the stepping stone towards a complete Bayesian inversion. The example numbers of model

runs given below are for ice sheet modelling contexts. For more expensive climate modelling contexts, run numbers can be

reduced, in most steps, by an order of 10, with more attention put on efficient emulator development. Details on many of the

steps are discussed in both prior and subsequent sections.

1. Assemble a team who can provide relevant expertise on: a) interpretation of paleo data and associated uncertainties, b)870

emulator development and uncertainty quantification, and c) proficiency and understanding of the simulator, including

assessment of systemic simulator uncertainties and prior ranges for ensemble simulator parameters.

2. Select and/or develop a simulator relevant for the given context with both fast and computationally expensive higher

quality configurations. The slow, higher-quality version of the simulator would include some combination of finer grid

resolution and/or higher-order representation of relevant processes. The fast configuration should enable order one to ten875

thousand simulations. The exact number of runs will depend on the number of simulator parameters, choice of emulators,

and complexity of simulator response. If the fast simulator has adequate accuracy for the given context, a slow version

is not needed and the implementation framework can be appropriately simplified.

Relevant criteria for selection and development of both fast and slow simulators include the following. a) Process prox-

imity to paleo constraint data (e.g., the use of relative sea level constraints requires a confident representation of glacio880

isostatic adjustment in the model system). b) Quality of the modelling, including : level of numerical validation, inclusion

of processes judged to play a significant role, and defensible choice of approximations to the dynamical equations. These

choices necessarily involve trade-offs, with a poorer quality simulator presumably being faster and therefore enabling

more simulations, some of which may be required to address more sources of internal discrepancy. c) Ease/breadth of

internal discrepancy assessment possible. For example, a model with multiple easy-to-implement options for basal drag885

(for an ice sheet model) or cloud representation (climate model) would enable a reduced estimate for contributions from

harder-to-assess external discrepancy. d) Relatedness between fast and slow simulators to an extent that permits the fast

simulator to be appropriately informative of the slow simulator. e) An adequate number of degrees of freedom in the

forcing components (such as climate forcing for a paleo ice sheet model or volcanic forcing for a paleo climate model)

to capture uncertainty in past forcing evolution on a scale relevant for the context.890

For at least the paleo ice sheet modelling context, there are existing simulators available that can largely meet the

above criteria with criteria (e) necessarily involving some trade-offs. This model selection step may require subsequent
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iterations to determine a fast simulator configuration (e.g., choice of resolution, and process approximations) that can be

sufficiently informative of the expensive slow simulator response in the steps below.

3. Assemble paleo data. Selection should emphasize constraint value and spatio-temporal coverage (c.f. Sect. 2.10). Iden-895

tify a provisional hierarchy of the data (c.f. Sect. 4.2) for history matching waves. Top-level data should provide wide

spatio-temporal constraint. Consider what transformation of the data may be appropriate to facilitate implausibility

metric specification ((c.f. Sect. 4.2 and 4.4). The choice of data hierarchy and transformation will need subsequent re-

consideration according to which relevant simulator outputs can be accurately emulated during a given history matching

wave.900

Set aside a small hold-out subset of the data for assessment of the final NROY predictive/retrodictive confidence.

4. Identify potential ensemble parameters and specify their prior ranges. Start with listed simulator ensemble or tuning

parameters. Identify the main sources of model uncertainty (such as basal drag and climate forcing in an ice sheet model).

Introduce further ensemble parameters, as needed, to minimize the model uncertainties not covered by existing ensemble

parameters (c.f. subSect. 4.3 below).905

5. Run an initial order 200 member ensemble of the fast model with a dispersed random sample of parameter vectors

from the prior ranges. Latin hypercube sampling (Urban and Fricker, 2010) is recommended as it ensures that the final

set of vectors has values for every individual ensemble parameter well-spaced across its entire prior range. The ensemble

should have variations in all simulator parameters that are not physically well constrained and that do not result in

effectively duplicate simulator response.910

6. Examine whether the model can bracket critical data (cf previous Sect. 3.2 for selection of “critical data”). Assess

whether all top level data are collectively bounded within observational uncertainties by the ensemble. If not, reconsider:

priors for the model parameters, deficiencies in inputs (especially degrees of freedom in the climate forcing for paleo ice

sheet models), missing processes that could be explicitly incorporated, existing processes that could be better represented,

the possibility of data processing and/or code errors, and the observational uncertainty error model (which specifies the915

relation of the datum to the model output, c.f. Sect. 2.10). If none of these solve the deficiency, consider if the slow

simulator provides adequate bounding for the problematic critical data.

Ideally this bounding is surface-wise so that only a few ensemble members are required to collectively bound key data.

However, it may be the case that a significant fraction of the key data can only be bounded point-wise, i.e. each datum

requiring distinct ensemble members.920

From past experience, this is one of the most time-consuming steps for model development. It also is an informative step

in developing understanding of requisite minimal processes and inputs for the given modelling context as well as serving

as a partial diagnostic check on specified parameter ranges, model configuration, and observational uncertainties.

7. Increase initial simulator ensemble size as needed for emulator development. For last glacial cycle ice sheet modelling

with order 40 ensemble parameters, the first author has found that about one thousand fast simulator runs are adequate for925
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configuration of Bayesian artificial neural network emulators of requisite accuracy for wave 1 history matching. Those

using Regression Stochastic Process emulators (RSPE) may find a few hundred simulations adequate and would start

fast/slow simulator emulator development at this stage, for which case slow simulator runs will also be required. Such

development would use the global structure of the fast simulator RSPE to inform the structure of the RSPE for the slow

simulator. More details on emulator development are in subSect. 4.6.930

8. Carry out initial internal discrepancy assessment. Select two to three runs that best fit data constraints while being

substantially distinct (sufficiently different parameters and features in the output). Generate a 50 member internal dis-

crepancy noise sub-ensemble with the fast simulator for each parameter vector from the above runs. The noise should

incorporate as many potential sources of internal discrepancy as feasible. Extract the resultant estimates for bias and

variance components of internal discrepancy from the sub-ensembles (c.f. subSect. 2.6.1).935

This assessment should also consider how internal discrepancy from fast simulator experiment can be used to estimate

internal discrepancy for the slow simulator. At least a few internal discrepancy simulations with the slow simulator will

therefore be required. Inflate the assessed discrepancy by an ad hoc amount, e.g., 10%, to account for the limited number

of runs and reliance on the fast simulator. The inferential error from imposing too small an internal discrepancy is much

worse than that arising from too large an estimate thereof.940

9. Provisionally assess external discrepancies for the slow model (c.f. Sect. 2.6.2) and add these to the error model used

in the implausibility metric. This will require informed judgement by one or more experts familiar with the model.

10. Refine simulator configuration if required. Evaluate if the internal discrepancy is unacceptably large. If so, one will

need to identify the specific problematic sources of internal discrepancy. To determine the strength of internal discrepancy

sources, generate noise ensembles with a single noise source each (such as climate forcing noise for paleo ice sheet945

modelling). Start with those sources judged likely to be the largest contributors to internal discrepancy. Use the two basis

parameter vectors from the previous internal discrepancy step that provided the largest internal discrepancy estimates

(i.e. variance of relevant simulator outputs across their respective noise sub-ensembles).

Consider reducing the largest contributions by the addition of new ensemble parameters (i.e. not those already removed in

the ensemble parameter selection step above). This can take both deterministic or stochastic forms, such as a coefficient950

controlling the addition of physically motivated precipitation anomalies in the climate forcing of a paleo ice sheet model

in a correspondingly deterministic or stochastic fashion. However, ensemble parameter addition comes at the cost of

repeating a number of the steps above.

11. Construct a test ensemble for emulators. Randomly sample 100 or more parameter vectors from the prior range and

run these with the fast simulator. If using RSPEs, also create a small test set of slow model simulations.955

12. Construct a set of emulators from the initial ensemble and select those that validate on the test ensemble for

history matching. The validation should verify that the distribution of emulator-simulator residuals is consistent both
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with the distribution predicted by the emulators and with any relevant assumptions that were made in the structure of the

emulators. Emulators that fail this test can be rebuilt/retested during later waves with a refined NROY space.

13. Carry out an initial history matching wave with the emulators. The error model for history matching should include960

observational, internal and external discrepancy, and emulator uncertainty components. Uncertainty components should

err on the side of over-estimation of possible uncertainty.

14. Refine NROY space with successive history matching waves. Preferentially choose parameter vectors for simula-

tor runs from the NROY space with high emulator uncertainty. However, a few parameter vectors with low emulator

uncertainty can provide a diagnostic check on emulator uncertainty self-estimation.965

15. More carefully assess internal discrepancy. From the set of model runs, select 8 more runs with low correlation

between key metrics and between associated parameter vectors that otherwise have the closest fits to the constraint data

within observational and structural uncertainties. Use the cumulative 10 parameter vectors (including the two from the

original assessment) to reassess internal discrepancy.

In addition to internal discrepancy ensemble variance, consider biases and correlations. If there are significant correla-970

tions, then implement a multivariate implausibility. Consider which aspects of internal discrepancy can be emulated or

transferred into a stochastic component of the simulator.

16. Construct an emulator for the slow simulator if not already done. Carry out 50-100 runs with the slow simulator

using a dispersed NROY sample of the same parameters vectors already used for the fast simulator ensembles. Use the

joint set of matched parameter slow and fast simulator runs to construct an emulator for the slow model. This emulator975

may be built on top of the existing fast emulator with the addition of emulation to predict the difference between slow and

fast simulator runs for the same parameter vector. Both practitioner experience and some experimentation will facilitate

effective emulator development for the slow simulator.

17. Carry out further history matching waves with expanding constraint data sets and/or refined emulators built on the

cumulative set of simulator runs. History matching will be complete when the whole chosen constraint data set is imposed980

via the implausibility metric and emulator uncertainty has stopped decreasing. The mix of fast/slow simulator runs will

depend on the choice of emulator, computational costs, parameter vector dimension, and accuracy of the slow emulators.

18. Reduce structural error as needed (and as is possible within the timeline of the project): Assess retrodictive/predictive

confidence on the hold-out test data set (c.f. Sect. 4.5). Refine the simulator and add ensemble parameters to address

persistent unacceptable misfits. Such refinements may necessitate reconsideration and revision of the structural error985

model.

19. The final NROY set of slow model runs, associated emulators, and associated structural uncertainties using the

complete set of paleo data provides one’s inferential estimate of past system evolution. This is an inference con-

sistent with the simulator and constraint data, subject to the complete error model. This error model itself represents an
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important inferential product for making predictions/retrodictions (c.f. Sect. 2.8). Though a rigorous posterior probabil-990

ity distribution can not be defined without significantly more effort, the distribution of implausibility metric values has

interpretative value as long the distinction between low implausibility and high probability is clearly conveyed.

Unless the NROY parameter space is very small, the set of simulations with this set will likely be an incomplete sample

and therefore only provide a partial inference. As such, key predictions/retrodictions from the NROY set of simulations

should be compared against predictions/retrodictions by emulators run over the whole NROY parameter vector set. Pre-995

dictions for which emulator uncertainties are large can be further constrained by careful selection of further simulations

to reduce emulator uncertainties.

20. Clearly state remaining misfits. This is of value to data gatherers to re-evaluate relevant constraint data and/or prioritize

future data. The modelling community will also benefit from associated prioritization of required simulator improve-

ments.1000

After a set of history matching waves that has reduced the NROY space adequately to allow appropriately accurate emulation

of relevant simulator outputs, this minimal framework can be expanded in various ways. This could entail the specification of

a full multivariate covariance structure for use in a Bayes Linear forecasting/retrocasting approach (Craig et al., 2001) or in

sampling from the posterior (Andrianakis et al., 2015). The latter could also be carried out with an approximate, simplified

likelihood as discussed below. Whatever approach is chosen, a posterior diagnostic checking of the error model (c.f. Sect. 4.5),1005

and verification of MCMC convergence (if employed) should also be done.

4.2 Selection of a hierarchy of constraint data

The initial phase of history matching will use a limited high-quality subset of the data of wide spatio-temporal constraint value

for which model response is easy to emulate. For instance, a relative sea level curve from Hudson Bay near the center of the

Laurentide ice sheet will offer much more constraint and easier emulation than a deglaciation age from the northern periphery1010

of the ice sheet. The latter would be quite sensitive to local ice load history and would only offer a spatially local constraint on

past ice sheet evolution.

This hierarchical selection of constraint data can be guided by physical reasoning in conjunction with judgment of what

are priority characteristics for the given context. Consider a climate model coupled to an ice sheet model for paleo contexts.

First-order climate characteristics most relevant to ice sheet evolution would be mid- to high-latitude regional summer day-time1015

temperatures (controlling surface melt) and yearly net snow accumulation. The strength of the seasonal cycle (summer minus

winter temperatures) reflects sensitivity to insolation forcing and therefore would also be an important primary target for this

context (assuming this sensitivity on seasonal scales has some relation to that on orbital timescales).

There are also rigorous options for hierarchical selection of data for simulator constraint. Cumming and Wooff (2007) and

Cumming and Goldstein (2009) describe a relatively straightforward approach (principal variables) based on analysis of en-1020

semble model output of variables that correspond to available data. They step-wise select variables that are most correlated with

35

https://doi.org/10.5194/cp-2021-145
Preprint. Discussion started: 17 November 2021
c© Author(s) 2021. CC BY 4.0 License.



the remaining not-yet-selected variables after eliminating the effects of correlations already accounted for by the expanding set

of selected variables. This is akin to step-wise variable selection in linear regression.

4.3 Selection of ensemble parameters

The choice of ensemble parameters should attempt to take into consideration all the possible parameters in the model. Geo-1025

physical models will have a set of specified explicit parameters, but there are a host of effectively implicit parameters for

processes not explicitly parametrized or otherwise lacking appropriate parametric degrees of freedom. If one considers only

the uncertainty in past climate over a glacial cycle, parametrized climate forcings for glacial cycle ice sheet models can easily

add dozens of ensemble parameters. However most paleo ice sheet models use a handful or less of ensemble or tuning parame-

ters for their climate forcing. For comparison, GCM climate models generally have more than one hundred poorly constrained1030

explicit parameters. Even for simpler earth system models of intermediate complexity such as LoveClim (Goosse et al., 2010),

there are at least a few dozen explicitly listed tunable parameters (Shi et al., 2019).

Ideally, the modeller will start with a large set of possible parameters, and then rigorously select a minimal subset that

adequately probes the possible response of the model. This selection should encompass all parametric uncertainties, while

minimizing duplicate response. For paleo ice sheet models, in addition to those from parametrized processes in the model1035

(surface mass balance, sub-shelf melt, calving, basal drag, glacio-isostatic adjustment, and especially climate), consideration

should be given to parametrizing uncertainties in ice sheet initialization and boundary conditions (such as the deep geothermal

heat flux for all ice sheets as well as subglacial sediment cover and bed topography for Greenland and Antarctica).

The parameter selection process partly falls under the model sensitivity analysis rubric which quantifies model response

to parametric variations. There is a large literature on this topic for approaches that at least partially account for interactions1040

between parameters (e.g., Saltelli et al., 2008; Santner et al., 2003).

However a more direct, informative, and efficient approach for parameter selection is step-wise parameter selection for

linear regression with linear, quadratic, and lowest order interaction terms (with the latter intelligently selected if simulator

computational expense precludes an adequate number of runs). The regression should be repeated for all critical simulator

outputs (or statistics thereof) on an initial ensemble with parameter vectors from an orthogonal Latin Hypercube (e.g., using1045

the lhs R package) covering their full prior range. To improve confidence in the results, both step-wise delete and step-wise

add selection should be run. Parameters that are not selected by any of the step-wise procedures would be tentatively rejected.

This Latin hypercube will also be used for training emulators, thereby minimizing the number of simulations.

The initial reject set of parameters could then be tested by four more simulator evaluations that simultaneously adjusted all

reject set members to their 1% or 99% prior range value, chosen so that all parameters were expected to give the same sign of1050

simulator output response. The four simulations would have the non-reject part of the parameter vector set to two different (i.e.

with large parameter space separation in distance and angle) basis vectors for which the simulator gave near best fits to data

constraints. If this all at time subset test showed significant response, then a quick sort (Hoare, 1961) could be used to identify

the subset of tentatively rejected parameters for which the simulator has a significant collective response.
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4.4 Simplifying the error model: data transformation (dimensional reduction and aggregation) and data weighting1055

Simulators of ice sheet evolution or paleoclimate will generally have correlated data-model residuals over possible ice sheet

and/or climate trajectories. For instance, a simulator with chronically delayed deglaciation over northern Greenland will tend

to have increased regional RSL and deglaciation-age data-model residuals. These correlations may arise between residuals of

the same constraint data type (e.g., RSL or deglaciation age) but at different locations and/or times and between residuals of

different data types. If this deglaciation delay was structural, then all these correlations would propagate into the structural1060

discrepancy. As our above toy example has shown, accurate inference requires accurate accounting of structural uncertainty.

Therefore, in general, structural discrepancy models need to account for this multivariate structure when sampling from a

posterior.

The importance of accounting for such correlations for posterior inference can also be understood by considering the relative

constraint value of different data. Consider, for instance, the relative sea level database for North America (Fig. 5). The largest1065

spatial density of RSL data is over the Canadian High Arctic, a region covering only a few percent of the total LGM ice sheet

extent. If each data-point were given equal weight and correlations were ignored, the much higher density of RSL data over the

Canadian High Arctic would skew any sampling from a posterior toward models with better fits to this relatively small region

at the likely cost of worse fits for the rest of the ice sheet. From a statistical point of view, equal weighting would imply that

one is treating all the data-points as statistically independent, and thereby ignoring the high correlation between data-model1070

residuals for RSL in this region arising from spatial proximity.

A multivariate likelihood function (such as a multivariate Gaussian) would account for all correlations between all available

data-model residuals. Such a function would thereby, for example, not let the high RSL data-point density in the High Arctic

skew a calibration. However, the robust assessment of multivariate structural discrepancy can be highly non-trivial and can

become computationally expensive for large constraint datasets.1075

For at least all but final waves, history matching can avoid much of these challenges by not requiring a fully specified

likelihood. This is because history matching only uses the error model in implausibility metrics for sample rejection (c.f.

subSect. 3.1) and not for posterior inference. The metrics need only be based on those features of the joint structural discrepancy

model that are easy to specify. Furthermore, especially for early waves, constraint data for history matching need only be a

small highly informative (low uncertainty, high variation, and spatio-temporally dispersed) subset of what is available that is1080

easy to emulate.

Even after database cleaning, for most geophysical contexts, the quantity of available constraint data can challenge likelihood

specification and inferential tractability. As such, dimensional reduction of the constraint data space will often be required. The

previously discussed use of principal variables (cf subSect. 4.2) is one option to consider for dimensional reduction. Principal

components are another option that extract high-variance, dimensionally-reduced representations of the data. They are useful1085

when there is extensive spatially-dependent data. They have been used to efficiently represent present-day grounding line posi-

tion for a limited calibration of a glacial cycle model of the West Antarctic ice sheet (Chang et al., 2016). Sexton et al. (2011)

similarly used principal component reduction in the context of GCM climate model calibration. Note, principal components
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Figure 5. Specified site weights for a relative sea level database for North America().

can be noise sensitive due to a non-uniqueness problem for subsets of components corresponding to very similar eigenvalues.

They can also complicate functional dependencies, resulting in larger uncertainties for the emulator predictions and increased1090

difficulty in specifying external discrepancy.

The community would benefit from an explicit comparison of options for dealing with large space-time dependent datasets,

including: principal components, principal variables, and the addition of spatial dependence into emulators for different con-

texts. For instance, principal components are likely a good choice for global scale characteristics, especially when the compo-

nents (or rotations thereof) are physically meaningful. Principal variables would tend to be better suited for characteristics with1095

regional dependencies and scope.

The effective data dimension can also be reduced by spatial aggregation. Consider the collection of data-points aggregated

to site Poste de La Baleine in Fig. 4. Instead of having the likelihood directly a function of each data-point residual, the whole

set of residuals could be replaced by a single RSL site score.
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Unless all constraint data can be sensibly dimensionally reduced to a tractable size, both the computational costs of internal1100

discrepancy assessment and the challenge of emulator development for a high dimensional multivariate likelihood may lead

modellers to adhoc shortcuts that weight the data by some measure of effective constraint value (e.g., Briggs and Tarasov,

2013). However such weighting is a clear break from posterior assessment as the latter effectively measures simulation consis-

tency with data given uncertainties and prior. This is logically distinct from measuring constraint value.

However a consistent synthesis is perhaps possible. The choice of constraint data for posterior inference or history matching1105

requires informed judgement. One criterion is the constraint value of the data and data-weighting can be use to created dimen-

sionally reduced representations of constraint data. For the RSL example above, this could take the extreme form of weighting

RSL scores for all sites on an ice sheet to create a single RSL score. For which cases this is more appropriate than previously

discussed approaches such as principal components and principal variables is a research question yet to be addressed. A signif-

icant challenge will be the specification of the likelihood as the observational error model will be convoluted into the aggregate1110

data score.

Data-weighting is a heuristic approach and should therefore be explicitly justified. This could involve demonstrating that

the inferential results have limited sensitivity to an appropriate range of plausible assumptions in the weighting scheme. Much

better would be explicitly comparing results against a multivariate error model for a regional subset of the output space derived

from internal discrepancy experiments.1115

4.5 How to test structural discrepancy specification?

Structural discrepancy specification requires scientifically informed and defensible judgement. Although internal discrepancy

can be much more rigorously assessed (via simulator experiments), it is still subject to, for instance, the choice of noise forcing

used in the assessment. As such, error models are always provisional. Furthermore, at least some of the assumptions that go

into error model specification are likely to be broken for most geophysical modelling contexts.1120

If one is aiming to infer a posterior probability distribution, it is therefore important to assess whether inconsistencies

between resultant high probability (or low implausibility) data-simulator residuals and error model assumptions significantly

impact inferences for the given context. History matching is much less sensitive to the detailed structure of specified structural

discrepancy and especially in early waves, one only need ensure that structural discrepancy has not been under-specified. A

empty NROY space would be strong evidence of such under-specification. A very small NROY space may also be indicative1125

of such under-specification, but it could also reflect inadequate sampling or very informative constraint data.

For the final history matching wave, a simple diagnostic check on error model specification is the comparison of NROY

data-simulator residual distributions against the total error model. This comparison should be done for one simulation at a time

over a small sub-ensemble that has the least implausibility score14. If then proceeding to a full Bayesian determination of the

posterior, one would examine residuals for a sample from the final high posterior probability subset. This check is potentially1130

14Given the error model is only defined for the “most appropriate” parameter vector, one can’t use a set of NROY simulations to create a sample as required

for standard residual analysis approaches such as Q-Q plots. Instead, the data vector from an individual simulation could, for example, be transformed to a set

of un-correlated standardized sample points, such as via an inverse Cholesky transform.

39

https://doi.org/10.5194/cp-2021-145
Preprint. Discussion started: 17 November 2021
c© Author(s) 2021. CC BY 4.0 License.



stronger if applied to a hold-out set of data not used in the history matching or posterior inference. For multivariate Gaussian

error models, Bastos and OHagan (2009) offers a detailed example of such diagnostic checking.

The consistency between residuals and the error model is not a sufficient condition for error model validation. For instance,

if the discrepancy between the observations + observational uncertainties and the blue linear (least squares) regression line in

our toy model was chosen as the structural discrepancy, residuals would be consistent but the model would have much less1135

predictive value than the optimal choice line after accounting for the biased structural uncertainty (light blue line in Fig. 2).

This example reinforces the importance of making the selection of the structural error model (and therefore a component of the

likelihood) independent of simulator fit to data. More fundamentally, the parametric form of the structural error and the prior

for all simulator and error parameters needs to be set apriori, while parametric values of the structural error representation can

be selected as part of the Bayesian inference.1140

Unlike history matching, full Bayesian inference assumes that there is a simulator configuration that is consistent with the

likelihood, prior, and constraint data. It is therefore important to check for such consistency. Two relevant diagnostics for such

checking are the prior and posterior predictive checks. Prior predictive checks are a useful diagnostic near the beginning of a

Bayesian model calibration. They consider the prior predictive distribution, P(d), for data constraint (d) given a prior for the

simulator parameter vector (P(cM)) and the likelihood function (P(d |cM)):1145

P(d) =
∫

P(d |cM)P(cM)dcM (26)

Various diagnostics can then be constructed to examine the consistency of the predictive distribution with the actual datum d̃.

A cause for concern might arise if d̃ were far in the tail of P(d). As the above integral requires adequate sampling over cM , it

would need to be numerically evaluated with an appropriate emulator. Rougier (2007) provides a more detailed discussion of

this diagnostic in the context of climate modelling.1150

Once a posterior for model parameters has been determined, the posterior predictive check (Kruschke, 2013) can be applied.

It considers where the actual constraint data sits in the model posterior distribution for the data . This can thereby help diagnose

the absence of any models that are consistent with the data. In contrast, history matching effectively checks the quality of the

match between the model and data throughout the sequential waves.

Few detailed examples of diagnostic error model assessments for geophysical contexts have been published. In the context1155

of a Bayesian calibration of a GCM, Sexton et al. (2011) and their followup Sexton and Murphy (2011) offer an example of

some relevant tests that can be carried out for checking the order of magnitude of the structural error estimate as well as

examining posterior sensitivity to assumptions in the error model. Schoups and Vrugt (2010) provide an example of how to

assess a posteriori validity of the error model for a hydrological context which has the further complication of auto-correlation.

4.6 Emulation1160

Emulators are approximate models of simulators that explicitly estimate their own uncertainties relative to the predictions of

the simulator. For our purposes, they can be thought of as generalized regression models. More accurately, emulators introduce
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a probability distribution for simulator output as a function of the input parameter vector (with dependence on time and

geographic location when appropriate).

Common emulators are regression models with Gaussian process residuals (e.g., OHagan, 2006; Rougier et al., 2009), or1165

their second order equivalents which we’ll denote as regression stochastic process emulators (relaxing the Gaussian process to

a general second order stochastic process, e.g., Goldstein and Huntley, 2017), and, less frequently, Bayesian artificial neural

networks (BANNs) (Neal, 1996). Given their greater familiarity, pure linear regression models (such as the lm() function in R)

can be used for initial waves (or depending on the desired reduction in the non-implausible space, can be used for a full history

matching exercise, c.f. Ferreira et al., 2020).1170

The use of standard linear regression emulators has the major advantage of much wider familiarity within and outside of the

statistical community. For initial waves in history matching, Ferreira et al. (2020) have demonstrated for a high dimensional

(2136 outputs) synthetic case study of a geological water reservoir model that standard linear regression for second-order

polynomial emulators can be quite effective. They achieved a 99.5% reduction in the parameter space after two waves. At this

point, the reduction in the parameter space enabled adequate emulation of a multivariate objective function for the third wave1175

(with only an increase of emulator complexity to third order polynomials, still with standard linear regression).

Regression stochastic process emulators (RSPEs) typically contain three terms. Firstly, a “global” (i.e. across the parameter

space) term from linear regression with basis functions (such as polynomials) chosen with consideration of the expected

response surface of the simulator. The second term is a stochastic process to characterize the residuals from the global term.

This is a probability density function with explicit spatial, and possibly temporal, dependence, as well as dependence on the1180

simulator parameter vector. This contrasts with linear regression that assumes residuals are independent and therefore will be

especially more limited in emulating the simulator response to small variations of parameter vectors.

The last “nugget” term in an RSPE represents the remaining sources of discrepancy that do not show up in the residuals as

a local white noise. This relates to a key feature of emulators with a linear regression global component for history matching

contexts. Especially during initial waves, emulators of adequate accuracy for a given simulator target will tend to only require1185

a small subset of the whole set of simulator ensemble parameters as inputs. RSPE’s account for the impact of dropped pa-

rameters via the nugget. The active subset of inputs will vary between emulators for different targets. The potentially much

smaller dimension of the active parameter vector simplifies emulator construction as well as parameter space sampling. For

those interested in learning more about RSPEs, Vernon et al. (2018) includes a supplementary R script that reproduces RSPE

construction and history matching for a simplified toy example.1190

A key advantage of emulators with regression and stochastic process components is that emulators developed for fast

simulators can strongly inform the development of emulators for expensive slow simulators. This thereby minimizes the

number of expensive simulator runs required for developing the emulator for the slow simulator. Rougier et al. (2009) and

Williamson et al. (2012) offer two relevant detailed examples of such fast/slow emulator construction in the context of climate

modelling. Cumming and Goldstein (2009) provide a more detailed derivation for such joint construction.1195

Emulation intersects with machine learning. Machine learning tools generally build computational models that generalize

a training set of input/output relationships, such as in speech recognition. They could therefore also apply to advanced ice
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sheet and climate models. Machine learning (useful reviews include Ghahramani, 2015; LeCun et al., 2015) has undergone

an explosive advance in capability over the last few decades as evidenced by the quality of speech and image recognition

and successful application to highly complicated games such as Go. However, aside from the development of BANNs (e.g.,1200

Neal, 1996), the machine learning community has to date put much less emphasis on uncertainty estimation. Therefore many

machine learning tools cannot be used as emulators unless an added structure is imposed. A second challenge is that machine

learning generally relies on large training data sets, which might not be computationally feasible with complex simulators. The

non-linear formulation of most machine learning algorithms also calls into question their ability to extrapolate as effectively

required for the high dimensional parameter spaces of complex geophysical models.1205

As for any regression tool, emulators will tend to more accurately predict quantities that have a smoother and more systematic

response to input variables. This can result in trade-offs between direct emulation of fields of interest (eg the ice thickness field

over time for an ice sheet simulator) versus emulation of smoother quantities that can be more easily compared to certain

observations such as relative sea level.

The development of emulators of requisite accuracy can be challenging and time-consuming, especially given a wide prior1210

range of ensemble parameters values. An important shortcut within the history matching framework is to identify a subset of

data constraints for which the relevant simulator predictions are easier to emulate (eg scalar values with smooth and more linear

dependence on inputs such as present-day ice volume or global mean temperature). Initial history matching waves should be

carried out with this subset. The resultant reduced NROY parameter subspace (and thereby reduced dynamical range of the

simulator) can facilitate the sequential development of emulators for more difficult-to-emulate simulator outputs in subsequent1215

waves.

An informative calibration requires validation that the emulator-predicted uncertainties are consistent with actual simulator-

emulator discrepancies. Given sufficient simulator runs, this is most easily done with a set of parameter vectors not used to

create the emulators. For a single output emulator with Gaussian uncertainty, this could be done by comparing the standardized

residuals (simulator - emulator output expectation all divided by the predicted standard deviation of the emulator) to a standard1220

Gaussian distribution. For expensive simulators, extra validation runs can be avoided with leave-one-out cross-validation.

Bastos and OHagan (2009) provides a more detailed examination of emulator diagnostics that account for correlation between

residuals.

Emulators are not just used to represent deterministic simulators. Emulators can also emulate models that have stochastic

components. When internal discrepancy has spatial, temporal, and/or ensemble parametric dependence, an emulator can there-1225

fore offer an efficient representation. Such emulation also may enable the introduction of ensemble parameters (i.e. thereby

subject to history matching and/or posterior inference) to set the structure or amplitude of the stochastic noise used to assess

the internal discrepancy. For components of internal discrepancy that are relatively too large, this could thereby potentially

reduce these contributions to internal discrepancy.
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5 Moving forward1230

We offer below some key steps that relevant communities can take so that inferences about past ice sheet and/or climate states

have meaningful value.

5.1 Ensuring uncertainty is addressed in model-based studies

Over the last two decades there has been an increasing rate of publication based on computer-based simulations of past earth

and climate system evolution. Yet very few offer any clear uncertainty assessment. As such, the relationship between simu-1235

lator output and system state is unclear. This becomes especially challenging for the non-modeller faced with often opposing

inferences from simulation-based studies.

One core trade-off is between ensemble size and model resolution. How does one weigh the conflicting inferences of say

a 5 km grid resolution hand-tuned model of Antarctica equilibrated for last glacial maximum (e.g., Golledge et al., 2012)

versus a large (4000 member) ensemble of 40 km grid resolution last glacial cycle simulations with 31 ensemble parameters1240

(Briggs et al., 2014)? More constructively, how do we intelligently synthesize the information from a handful of higher resolu-

tion simulations that lack uncertainty assessment with that provided by a much larger ensemble of lower resolution simulations

that have been subject to some limited form of history matching and uncertainty assessment?

The above quandaries would strongly diminish if all model-based studies making inferences about states and state changes

in past earth system evolution were required to have clear uncertainty assessments. Studies that focus on understanding the role1245

of physical processes (e.g., through model sensitivity and/or feedback analyses) may not require data comparisons but should

still explicitly consider to what extent their analyses are about the physical system versus just the simulator representation

thereof.

A key step to towards encouraging rigorous uncertainty assessment about earth system evolution would be for modellers,

editors, and reviewers to ensure the following questions are answered:1250

– What assumptions and approximations are made?

– What model parameters are adjusted and to what extent is the criteria used for their selection explicit and appropriate

(c.f. Sect. 4.3)?

– To what extent does the chosen set of constraint data capture what is available and relevant?

– To what extent have the associated uncertainties been explicitly accounted for? In detail:1255

– What are the error models for the data and how have they been justified (c.f. Sect. 2.10)?

– How is structural discrepancy assessed for the numerical simulator (c.f. Sect. 2.6)?

– How has parametric uncertainty been addressed (c.f. Sect. 2.7 and Sect. 3.1)?

– Are predictive/retrodictive uncertainties appropriately assessed (c.f. Sect. 2.8)?
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– How sensitive are the inferences to assumptions and approximations in the error model (c.f. Sect. 4.4)?1260

– Have relevant uncertainties been clearly communicated to the intended audiences (which usually will include those

not familiar with the details of the model used)?

– Is an appropriate representative subset of the results of the higher likelihood or not-ruled-out-yet set of simulations

provided from an open-access server?

As we’ve outlined in this survey, addressing all of the above are required if one is to make a principled approach to uncertainty1265

assessment. Sufficiently addressing all points above is a major endeavour for any one or even a small group of researchers.

Therefore a judgement has to be made and justified as to what are the most important aspects for the present context. At the

very least, the answers to these questions should be explicitly provided in submissions that claim to make inferences about

Earth system evolution to ensure that such inferences are scientifically interpretable.

5.2 Addressing uncertainty in data-based studies1270

As many data-oriented studies invoke models to relate measured quantities to inferred system characteristics, many of the

considerations from the previous subsection are also relevant for them. Additional relevant questions for data-oriented studies

include:

– Clear statement of assumptions in data interpretation.

– Clearer specification of errors than just ±. Data providers need to consider a broad audience and detail uncertainties in1275

the relation between proxy and inference. This should include an appropriate error model for the data that is specified or

cited (c.f. Sect. 2.10).

– Emphasis on data quality. Though there is some trade-off, high quality data (i.e. with tight error bars and strong signal)

is generally of much more value than a large quantity of low quality data (c.f. Sect. 4.4). Data gatherers can also use the

uncertainty maps from calibrated modelling studies to prioritize data collection and ensure that their efforts will offer1280

the greatest constraint value for modelling (c.f. Sect. 5.4). Tier rating of data quality in databases would also facilitate

intelligent data usage.

– Deposition of data in centralized online databases. To ensure data-utilization, easy-to-use online data-servers are critical.

Servers such as the world data centres (http://www.ncdc.noaa.gov/paleo/icgate.html) are a good example, but need to

much more strongly encourage detailed uncertainty specifications, ease of conversion of data formats, and fully inte-1285

grated age calibration tools (c.f. Sect. 2.10).

Those who gather, process, and make direct inferences from paleo proxies are most likely to have the clearest understanding

of associated uncertainties. Data gatherers generally have their own conceptual uncertainty models that are only starting to

be fully elucidated in peer-reviewed literature. An important contribution would be for each proxy community to develop

44

https://doi.org/10.5194/cp-2021-145
Preprint. Discussion started: 17 November 2021
c© Author(s) 2021. CC BY 4.0 License.



a consensus error model for their specific proxies. By “consensus”, we mean an error model that incorporates an extended1290

distribution of all scientifically credible assessments of relevant uncertainties.

Data assessment and use requires easy data access in public online databases. Some journals and funding agencies are already

implementing requirements to ensure such access. Perhaps the community can work towards entrenching this throughout the

discipline. This requirement should not just apply upon publication, but also to unpublished data that has languished for say

more than a PhD interval of 5 years since being gathered.1295

5.3 A potentially new level of constraint : fully coupled ice and climate modelling of glacial cycle intervals

As already evidenced in past climate model development, the coupling of previously separately forced dynamical earth sys-

tem components, such as atmospheric and ocean general circulation models, can make the coupled system more unstable in

response to mis-calibration and/or structural errors. Coupled systems, as such, can impose more self-constraint on simula-

tor parameters and structure. The paleo ice and climate modelling communities are moving to a similar juncture with efforts1300

towards fully coupled ice and climate modelling of extended glacial intervals including the complete last glacial cycle (c.f.

https://www.palmod.de/).

To date, paleo ice sheet modellers have made extensive use of the large uncertainties in past climate evolution to provide easy

tuning knobs for their glacial simulations. Fully coupled ice and climate models will have more limited tuning ranges as well

as a wide collective set of constraints from both ice sheet relevant proxies as well as climate proxies. It may well be a major1305

challenge for a fully coupled ice and climate model to just replicate the rapid last glacial inception inferred sea level lowering

as well as the even more rapid sea level rise of the last deglaciation (Grant et al., 2012). Such replication would likely provide

a strong constraint on model responses to radiative changes such as we are currently imposing on our planet. A tightening

up of proxy-based inferences for sea level changes and rates of change during the last glacial cycle would therefore be very

beneficial for such model constraint.1310

The coupling of two expensive simulators raises a number of interesting issues and questions for the context of this overview.

If the two components have been previously history matched, how can the existing emulators and NROY sets be most effi-

ciently used to facilitate history matching of the coupled simulator? How can the structural discrepancy of each component

be explicitly introduced into the coupling? To what extent are internal discrepancies amplified due to feedbacks between the

two components? Or are such amplifications more than offset by the parameter space restriction required for stability of the1315

coupled model?

5.4 Treasure maps: using inferential uncertainty to prioritize data collection

The widely read book Sapiens (Harari, 2015) argues that the key reason for the success of the scientific revolution over the last

few hundred years was an underlying focus on searching for ignorance in the western scientific community. The quantification

of uncertainty in Bayesian inference enables clear delineation of what is unknown and what is in need of further constraint,1320

arguably consistent with a search for ignorance.
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An example of quantifying this search for ignorance are maps of say 90% uncertainty ranges (or ranges from a NROY set in

the context of history matching) in combination with space-time correlation maps. These combined maps represent a "treasure

map" of where new data is most needed to better constrain the system.

This treasure map concept can be further expanded by extracting sensitivity kernels that display the dependence of some1325

potentially measurable or proxy-inferable quantity on some system characteristic of interest. Meltwater pulse fingerprints (e.g.,

Mitrovica et al., 2011) and emergent constraints (e.g., Hall et al., 2019) are existing examples of this.

5.5 A needed community test of past inference: a blind, noisy inference intercomparison

As we move towards more rigorous inference and uncertainty assessment, there is a growing need for an independent test

of methodologies. Noisy twin tests are a standard test for data-model inference algorithms. They involve adding noise to the1330

output of a (high-complexity) "truth" simulator which then acts as input into the inferential algorithm. However, when done

in-house, it is difficult for the researcher to not carry over relevant prior information from the truth model. Furthermore, if

the same simulator is used for both (which has generally been the case), then even with added noise, the test is unlikely to

adequately address structural discrepancy.

A complete test would therefore involve the following. Firstly, the selection of an advanced, higher-order ice sheet model,1335

coupled climate representation, and coupled 3D glacio-isostatic adjustment, with all components at a resolution and complexity

above that currently employed for ensemble-based inference of past glacial cycle ice sheet evolution. The model would be run

over the last glacial cycle, preferably in a configuration that is approximately consistent with model paleo proxies given relevant

uncertainties. It would be important to have the configuration replicate inferred ice and climate system variance. Secondly,

participants would only have access to the model output with subtracted structural bias and added observational noise in a1340

form that reflects available proxy data. Thirdly, the selection of a representative ice sheet that minimizes the computational

burden. The Eurasian and Greenland ice sheets are the two smallest paleo ice sheets with extensive marine and terrestrial

components and therefore either one could be appropriate. The Greenland ice sheet would add the significant challenge of

testing appropriate ice sheet initialization and spin-up. Organizers would then compare inferential submissions against the

actual chronology of the truth simulator less its structural discrepancy. Ideally, submissions would include inferences from1345

multiple approaches and multiple error models using the same simulator to isolate the evaluation of the inferential approach

and error model assessment.

The machine learning community has long relied on community-wide machine learning competitions and this is arguably

one reason why machine learning has achieved such large progress over the last two decades. This blind test would entail a

major community effort, especially given what is involved in complete model calibration. A major benefit is that this could1350

thereby be used to test and refine inferential strategies, algorithms and structural discrepancy models. The results would also

inform the general community of the maximum extent to which inferences to date of past ice sheet evolution might correspond

to their actual evolution.
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5.6 a community methodology research and development agenda

This review is in part a challenge to the community and in part a statement of vision. Much is still needed to get to a point1355

where inferential probability distributions or at least bounds are robust and make efficient use of available simulators and proxy

data for paleo contexts. We’ve identified a number of key issues in the discussion above. They largely break down as follows:

– Emulator development: What relevant simulator outputs and internal discrepancies can be appropriately emulated,

especially given computational costs of earth system simulators? To what extent can this apply to joint emulators for

slow/fast versions of a simulator as well as structurally different simulators? For the latter case, how can emulators for1360

different simulators be usefully combined? How do different emulators compare (e.g., Gaussian process versus Bayesian

artificial neural networks)? Could hybrid neural network and Gaussian process emulators be formulated that encapsulate

the strengths of each? Can near turn-key toolkits be developed for easy application to different simulators? To what

extent can emulators for climate models be used to drive paleo ice-sheet models?

– Specification of observational uncertainties: Examples of observational uncertainties that are not yet well specified1365

include those due to: inheritance in cosmogenic dating samples, time required for plant migration into post-glacial

terrain for 14C ka ages, changing tidal ranges in the context of relative sea level proxies, identification of non-analogue

assemblages of foraminifera, and all the uncertainties that go into relating oxygen and deuterium isotope records to past

climate. As none of the above uncertainties are likely to be well represented by a Gaussian distribution, the efficient

representation of the uncertainties for likelihood application also needs consideration.1370

– Specification of external discrepancy: Well-formulated expert elicitation (e.g., Sexton et al., 2019) of external discrep-

ancy is needed to both inform its specification as well as help guide simulator development to most efficiently reduce

structural uncertainty.

– Specification of internal discrepancy: This includes the identification and extraction of the largest sources of internal

discrepancy for individual and classes of simulators as well as the examination of the extent to which internal discrepancy1375

varies between structurally-different simulators. There is a need to determine plausible noise structures to use for internal

discrepancy experiments. Simulators also need to be configured to facilitate such noise injection.

– Parameter space sampling: The core challenge is sampling the apriori unknown and likely very small high posterior

probability (or larger NROY) subspace of a large dimensional parameter space, the so-called “curse of dimensionality”.

This includes comparative testing of available sampling schemes for both history matching and full Bayesian inferential1380

contexts. Such testing may inform the development of new schemes that are more efficient and/or reliable especially for

exploiting parameter space reduction via restriction to active variables (c.f. 4.6).

– Forecast/retrocast: What are the pros/cons of using ensemble predictions, emulator predictions, and full Bayes? How

can the design for the final history matching wave improve retrocast accuracy? How might forecast context affect stop-

ping criteria for history matching waves?1385
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– Useful and tractable steps after history matching: Given the challenges of a completely rigorous and robust Bayesian

inference, the development and testing of suitable approximations might permit meaningful steps beyond history match-

ing.

– Synthesis of results from different simulators and/or different simulator analyses: Suggestions towards a systematic

approach for this are presented in (Goldstein and Rougier, 2010).1390

Each of the above should be judged as to how they contribute towards the efficient use of the available set of simulators and

computational resources to make meaningful inferences about past earth system evolution. Past experience with community

simulators and model intercomparison projects indicate the progress that can be achieved from community collaboration. The

challenge of working towards meaningful inference about past earth system evolution is large enough to also strongly benefit

from, if not require, similar or larger scales of collaboration.1395

6 Conclusions

This review started from the premise that a defining feature of any aspect of science which is concerned about making state-

ments about the real world is the rigorous quantification of uncertainties. Within the context of computational models, this

claim can be easily supported if one recognizes that uncertainty assessment is simply the principled assessment of the relation

of model results to the physical system. Without robust uncertainty estimation or, at the very least, a more limited mix of quan-1400

titative and qualitative assessment by the modeller, the reader has no basis to interpret the relevance of modelling results to the

actual physical system. As our toy model illustration demonstrated above (c.f. Sect. 2.5), ignorance of structural uncertainties

will generally result in model predictions that do not intersect the physical system within computed prediction limits, even if

Bayes Rule is used for the inference.

The challenges in robust uncertainty assessment for complex systems, such as the earth and climate system, imply that1405

the paleo community needs to move away from relying on a single or a few “best fit” simulations. Instead, the development

and analysis of a distribution of reconstructions that bound reality within scientifically meaningful uncertainties would offer a

considerable step forward. Though still requiring detailed uncertainty assessment, the focus on bounding permits one to safely

err on the side of excessive uncertainty. The history matching framework described herein offers a tractable route to such

inference.1410

This review is intended to encourage uncertainty assessment that is scientifically defensible within the paleo community and

to sketch a picture of what it can look like. As should be clear, this is a highly non-trivial process. Many if not most modellers are

more interested in improving model process representation, understanding model sensitivities, and analyzing modelling results

than working through the numerous statistical issues and algorithms required for such meaningful uncertainty assessment.

Collaboration with uncertainty quantification practitioners provides an efficient way forward. To be fruitful, such collaboration1415

has to be from the ground up, and not just seen as an add-on near the end of a modelling project.
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As discussed above, a key part of learning is the clear delineation of where theories, hypotheses, and models break down.

Clear uncertainty assessment enables meaningful interpretation of inferences as well as the clear delineation of misfits between

models and paleo data. It is these misfits that can guide both model improvement and the prioritization of future data collection.

Arguably, there should therefore be as much published attention to simulator/data misfit as there is to simulator/data fits and1420

predictions.

To conclude, for all modellers (in the general sense of modelling) making real world inferences about Earth system evolution,

we reiterate some of Rougier (2007) guiding questions: What do your probabilities or inferred bounds represent? Why should

a scientist believe your inferences about real world properties from simulation results or proxies more than that of someone

else’s? Relatedly, what are your observational and structural error models? How have they been justified? If these are not1425

addressed, then a core question underlying many model-based studies has no answer: What does your modelling work actually

contribute to our collective understanding about the physical world?
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