1	An Intertropical Convergence Zone shift controlled the terrestrial material supply on the Ninetyeast Ridge
2	Xudong Xu ^{1,2,3,4} , Jianguo Liu ^{1,2,4,*} , Yun Huang ^{1,*} , Lanlan Zhang ^{1,2,4} , Liang ¥‡ ⁴ Yi ^{2,5} , Shengfa Liu⁴Liu^{2,6} , Yiping Yang ^{1,2,4} , Li
3	$Cao^{l_1,2+3,\underline{4}}$, Long $Tan^{l_2,2+3,\underline{4}}$
4	¹ Key Laboratory of Ocean and Marginal Sea Geology, South China Sea Institute of Oceanology, Innovation Academy of
5	South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou 510301, China
6	² Laboratory for Marine Geology, Pilot National Laboratory for Marine Science and Technology, Qingdao 266061,
7	ChinaSouthern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
8	³ University of Chinese Academy of Science, Beijing 100049, China
9	⁴ Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China Laboratory-
10	for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266061, China
11	⁵ State Key Laboratory of Marine Geology, Tongji University, Shanghai 200092, China
12	⁶ Key Laboratory of Marine Geology and Metallogeny, First Institute of Oceanography, Ministry of Natural Resources,
13	Qingdao 266061, China
14	Corresponding authors: Jianguo Liu (jgliu@scsio.ac.cn) and Yun Huang (huangyun@scsio.ac.cn)
15	Abstract
16	Among various climate drivers, direct evidence for the Intertropical Convergence Zone (ITCZ) control of sediment supply
17	on the millenniumal scale is lacking, and the changes in ITCZ migration demonstrated in paleoclimate records need to be
18	better investigated. Here, we use clay minerals and Sr-Nd isotopes obtained from a gravity core on the Ninetyeast Ridge
19	to track the corresponding source variations and analyze the relationship between terrestrial material supplementation
20	supply and climatic changes. On the glacial-interglacial scale, chemical weathering weakened during the North Atlantic
21	cold climate periods, and falling sea level hindered the transport of smectite into the study area due to the exposure of
22	Andaman and Nicobar islandIslandss. However, the influence of the South Asian monsoon on the sediment supply was not

23	obvious on the millennium millennial scale. We suggest that the north-south migration of the ITCZ controlled the rainfall in Myanmar
24	and further directly determined the supply of clay minerals on the millennium scale because the transport of smectite was
25	highly connected with the ITCZ location. Furthermore,; thus, the regional shift of the ITCZ induced an abnormal increase in the smectite
26	percentage during the late Last Glacial Maximum (LGM) in our records. The smectite percentage in the studied core is
27	similar to distinct ITCZ records but different in different timsome periods, revealing that regional changes in the ITCZ were significantly
28	obvious, and that the ITCZ is not a simple N-Snorth-south displacement and closer connections occurred between the Northern-
29	Southern Hemispheres in the eastern Indian Ocean during the late Last Glacial Maximum (LGM).

30 1. Introduction

I.	
31	Deposited sediments are essential recorders of the paleoclimate and paleo-oceanographic conditions since the climate is tied
32	to the whole sedimentation process; from weathering and transport to the deposition of sediments on land. The terrestrial
33	materials of "source-sink" systems are supplied to marine environments under the combined effects of multiple climate-
34	related driving forces and ocean processes (Li et al., 2018; Yu et al., 2019), and understanding these effects is crucial for
35	reconstructing the coevolutionary relationship of the palaeoenvironment with the palae_o-oceans and palaeoclimate. Various
36	factors may control the formation and transport of terrestrial materials at low latitudes, such as the northeastern Indian
37	Ocean. Recently, the South Asian monsoon has been revealed to be the main driving force of terrestrial material supply in
38	Bangladesh and of hydrological changes in the Bay of Bengal (BoB, Dutt et al. al., 2015; Gebregiorgis et al., 2016; Joussain
39	et al., 2017; Li et al., 2018; Liu et al., 2021). Moreover, the Intertropical Convergence Zone (ITCZ) is a nonnegligible nimportant climate-
40	driving force in low-latitude regions (Deplazes et al., 2013; Ayliffe et al., 2013), which has its a pivotal role in the heat
41	transportation on earth Earth (Schneider et al., 2014), and the north-south shift of the ITCZ is thought to connect the climates in
42	the Northern and Southern Hemispheres (Huang et al., 2019; Zhuravleva et al., 2021). Because the monsoon dynamics are
43	shaped by large-scale meridional temperature gradients and an ITCZ shift in tropical monsoon areas (Mohtadi et al., 2016),
44	there are hopeful opportunities to analyze sediment responses to the-ITCZ or monsoon variations. The paleoclimate 2

45	breakthroughs mentioned above enable us to analyze the response of sedimentary records to the ITCZ shift in the BoB
46	more accurately. However, eEvidence for direct control of terrestrial sediment supply by the ITCZ remains lacking, which
47	is an obstacle to understanding the response of the depositional environment to the ITCZ shift. However, the paleoclimate
48	breakthroughs mentioned above enable us to analyze the response of sedimentary records to the ITCZ shift in the BoB
49	more accurately.
50	As the main deposition area for vast amounts of weathered Himalayan materials, the BoB accumulates numerous
51	Himalayan terrestrial materials that are loaded by the Ganges-Brahmaputra (G-B) River (Goodbred and Kuehl, 2000) and
52	forms the largest subaqueous fan-, the Bengal Fan (3000 km long from north to south, 1400 km wide from east to west,
53	with an area of 3.9×10^5 km ² ; Curray et al., 20022003). The eastern and western sides of the BoB correspond to the Andaman
54	Sea and the Indian Peninsula, respectively, and the BoB is a natural site that is useful for studying the interactions between
55	weathering and climatic factors since both sides of the bay are affected by the South Asian monsoon (Ali et al., 2015) 设置了格式: 字体颜色: 自动设置 设置了格式: 字体颜色: 自动设置
56	Previous studies suggest that Himalayan material transported by the G-B River was the predominant source of material in
57	the northern BoB (Li et al., 2018; Ye et al., 2020), and the main sources in the west BoB are the Indian Peninsula and UT COMPACTION COMPACTICON COMPACTION
58	Himalayan weathered material (Kessarkar et al., 2005; Tripathy et al., 2011; Tripathy et al., 2014). In the eastern BoB, the 设置了格式: 字体颜色: 蓝色
59	sediment source areas include the Himalayan (transported by the G-B river), Indo-Burman Ranges and the Myanmar region
60	through which the Irrawaddy River flows (Colin et al., 1999; Joussain et al., 2016). The terrigenous detrital material in the UT Colin et al., 2016). The terrigenous detrital material in the UT Colin et al., 2016). The terrigenous detrital material in the UT Colin et al., 2016). The terrigenous detrital material in the UT Colin et al., 2016). The terrigenous detrital material in the UT Colin et al., 2016). The terrigenous detrital material in the UT Colin et al., 2016). The terrigenous detrital material in the UT Colin et al., 2016). The terrigenous detrital material in the UT Colin et al., 2016). The terrigenous detrital material in the UT Colin et al., 2016). The terrigenous detrital material in the UT Colin et al., 2016). The terrigenous detrital material in the UT Colin et al., 2016). The terrigenous detrital material in the UT Colin et al., 2016). The terrigenous detrital material in the UT Colin et al., 2016). The terrigenous detrital material in the UT Colin et al., 2016). The terrigenous detrital material in the UT Colin et al., 2016). The terrigenous detrital material in the UT Colin et al., 2016). The terrigenous detrital material in the UT Colin et al., 2016). The terrigenous detrital material in the UT Colin et al., 2016). The terrigenous detrital material in the UT Colin et al., 2016). The terrigenous detrital material in the UT Colin et al., 2016). The terrigenous detrital material in the UT Colin et al., 2016). The terrigenous detrital material in the UT Colin et al., 2016). The terrigenous detrital material in the UT Colin et al., 2016). The terrigenous detrital material in the UT Colin et al., 2016). The terrigenous detrital material in the UT Colin et al., 2016). The terrigenous detrital material in the UT Colin et al., 2016). The terrigenous detrital material in the UT Colin et al., 201
61	Andaman Sea is mainly Myanmar-origin sediments transported by the Irrawaddy River (Ali et al., 2015; Awasthi et al., (设置了格式: 字体颜色: 蓝色
62	2014; Colin et al., 2006). A series of terrigenous sediment issues, such as changes in the source area and proportion of
63	terrigenous matter in various regions of the BoB from the LGM to the Holocene, the distribution range of terrigenous
64	materials in the western and eastern BoB, and how the G-B River sediments are transported in the BoB, are unclear until
65	now. LOver the past twenty years, the sediment provenance in the BoB during the late Quaternary has been discussed as a
66	hot topic, especially the provenance of sediments in the Andaman Sea (Ali et al., 2015; Awasthi et al., 2014) and in the
	3

67	northern (Li et al., 2018; Ye et al., 2020), western (Kessarkar et al., 2005; Tripathy et al., 2011; Tripathy et al., 2014) and
68	eastern (Colin et al., 1999; Colin et al., 2006; Joussain et al., 2016) parts of the BoB. However, little attention has been
69	given given to sediment provenance in the southern BoB or, particularly, to the correlation of these sediment sources with
70	climatic driving factors.
71	-Recent studies have revealed that clay minerals can be used to effectively track changes in source areas in the source-
72	sink system of the BoB due to the great differences in clay mineral components among the source areas around the BoB
73	(Joussain et al., 2016; Li et al., 2017; Liu et al., 2019a; Ye et al., 2020). Moreover, Sr-Nd isotopes have been widely reported
74	to track the variations of in sediment provenance in the BoB (Ahmad et al., 2005; Colin et al., 1999; Colin et al., 2006).
75	In this study, we measured clay minerals and Sr-Nd isotopes in a deep-sea gravity core obtained from the southeastern
76	BoB (Figure 1) to reconstruct variations in the sources of sediments in the Ninetyeast Ridge and to further explore the
77	climate forces that affected the supply of terrestrial materials during the past 45 ka. Core 171106 located above the abyssal
78	plain at ~900 m, exempting from the influence of large-scale turbidite activities and receiving only fine-grained pelagic
79	sediments that can reflect the changes in the provenance of the surrounding source area (Figure 1)The Ninetyeast Ridge is
80	far from the G-B river estuary and much shallower than the underwater Bengal Fan, which makes the terrestrial sediments
81	on the Ninetyeast Ridge suitable for exploring the relationship between the paleoclimate and paleoenvironment in the BoB.
82	Here, wWe aim to disentangle the ITCZ variability signal in marine sediments from multiple driving forces and further
83	understand the response of sedimentary records to the ITCZ migrations.
84	2. Material <u>s</u> and methods
85	2.1. Chronology
86	The gGravity core 17I106 (90.0040°E, 6.2105°N, water depth 2928 m) was collected by the <i>R/V Shiyan 1</i> vessel belonging

87 to the South China Sea Institute of Oceanology (SCSIO), Chinese Academy of Sciences (CAS), from the Ninetyeast Ridge,

88	northeast of the Indian Ocean (Figure 1). This core has a total length of 162 cm and consists of gray to green silty clays
89	subsampled at 1-cm intervals. The age model of core 17I106 was reconstructed based on 10 accelerator mass spectrometry
90	(AMS) ¹⁴ C dates and Bayesian interpolations between these dates (Figure 2 and Table 1). AMS ¹⁴ C dating was performed
91	on mixed planktonic foraminifera at Beta Analytic Inc. More than 20 mg of intact mixed planktonic foraminifera shells
92	were selected from the >150 μ m fractions of each sample (10 g dried sample). All radiocarbon ages were converted and
93	reported as calendar years before present with the Calib8.2 software program with the Marine20 calibration dataset (Reimer
94	et al., 2020). A continuous depth-age model was performed using Bacon software by dividing a sedimentary sequence into
95	many thin segments and estimating a linear accumulation rate for each segment based on the calibrated ¹⁴ C dates and a
96	Bayesian approach (Blaauw and Christen, 2011).

97 2.2. Clay mineralogy

98 $Clay\ minerals\ (<\!\!2\ \mu m)\ were\ separated\ from\ the\ sediment\ samples\ \underline{by\ sediment\ according\ to\ Stokes'\ settling\ velocity}$ 99 principle after organic materials and carbonates were removed with 15% hydrogen peroxide (H_2O_2) and 0.1 N 100 chlorohydrochloricie acid (HCl), respectively. We used the sedimentation method by placing the sample in glassware with 101 an inner diameter of 7 cm and a height of 10 cm at an experimental temperature of 19 °C. The sedimentation time was 102 calculated as 4 hours and 10 minutes according to Stokes' formula. The upper 5 cm of liquid was extracted, followed by 103 centrifugation at 4800 rpm for 10 minutes, and the smear was made into a natural slice. The natural slice was heated in an 104 oven at 60 °C for 24 hours to make ethylene glycol saturated slides for the subsequent test. The clay mineral slides were 105 measured using routine X-ray diffraction (XRD) equipment (Bruker Inc, D8 ADVANCE) in the Key Laboratory of Ocean 106 and Marginal Sea Geology, SCSIO, CAS. Clay mineral abundance was calculated by measuring the peak areas of smectite 107 (15-17 Å), illite (10 Å) and kaolinite/chlorite (7 Å). Relative proportions of kaolinite and chlorite were calculated from the 108 ratio of 3.57 Å/3.54 Å peak areas. The relative percentages of the four main clay minerals were estimated by calculating 109 the integrated peak areas of characteristic basal reflections using Topas5P software with the empirical factors by Biscaye

- **设置了格式:** 字体颜色: 蓝色

110 (1965). The reproducibility error of this method is \pm 5-10%.

111 2.3 Sr-Nd isotope analyses

112 22-Twenty-two samples (<63, um) from core 171106 were selected for isotope analyses-, and we used the experimental ____ 份置了格式: 字体: Times New Roman 113 method described by Dou et al. (2016). Carbonates were removed from 70 to 100 mg powdered bulk samples by leaching 设置了格式: 字体颜色: 蓝色 设置了格式:字体颜色:蓝色 114 with 0.25 N HCl for 24 h at 50 °C. The residues were then completely digested in high-pressure Teflon bombs using a HCl 115 + HNO₃ + HClO₄ + HF solution. Rb and Sr were separated in 2.5 N HCl using Bio-Rad AG50W-X12, 200-400 mesh 116 cation exchange resin. Sm and Nd were separated in 0.15 N HCl using P507 cation exchange resin. Strontium The strontium 117 (Sr) and neodymium (Nd) isotopic compositions of the sediment samples were measured using a Thermo Scientific Multi-Collector Inductively Coupled Plasma Mass Spectrometer (MC-ICPMS Nu plasma) at the Key Lab of Marine 118 119 Sedimentology and Environmental Geology, Ministry of Natural Resources, China. The organic materials and carbonate 120 were removed from the samples by H2O2 and HCl, respectively. For the convenience of direct comparison, the Nd isotopic 设置了格式: 下标 **设置了格式:** 下标 121 ratio results are expressed as εNd (0)=[(¹⁴³Nd)¹⁴⁴Nd)meas/0.512638-1]*10000, using the present CHUR value (Jacobsen et al. 1) and the present CHUR value (Jacobsen et al. 1) and the present CHUR value (Jacobsen et al. 1) and the present CHUR value (Jacobsen et al. 1) and the present CHUR value (Jacobsen et al. 1) and the present et al. 1) and 1) a 设置了格式: 上标 设置了格式: 上标 设置了格式:字体颜色:蓝色 122 et aland Wasserburg, 1980). Replicate analyses of NBS-987 during the study gave a mean 87 Sr 86 Sr of 0.710310 ± 0.000003 设置了格式:字体颜色:蓝色 设置了格式: 上标 123 (2s), close to its certified value of 0.710245. Similarly, replicate analyses of JNDi-1 gave a mean $\frac{143}{10}$ Nd/ $\frac{144}{10}$ Nd $\frac{of}{0.512112}$ 设置了格式: 上标 设置了格式: 上标 124 \pm 0.000004 (2s), and its certified value is was 0.511860.

125 3. Results

The age model is built based on 10 radiocarbon dates of from core 171106. The top age is 3.8_{ka} BP₁ and the bottom age is 44.9 ka BP₁, thus, this core covers a continuous sedimentary succession of the last $-45_{2}000$ years. The sedimentation rates in the Holocene (average 3.1 cm/ka) were relatively lower than those during the last glacial period (average 4.6 cm/ka), with the highest rate of 8.3 cm/ka during 12.5–13.6 ka BP (Figure 3a). In the study core, the illite percentage ranges from 31% to 63% with an average of 48%, while the smectite; percentage ranges between 8% and 57%; with an average of 30%

6

设置了格式: 上标

131	(Figure 3b-e). Moreover, the kaolinite percentage ranges from 2% to 16%, and the chlorite percentage ranges from 5% to	
132	20% in the core sediments. In the study core, the ⁸⁷ Sr/ ⁸⁶ Sr ratios range from 0.7122015 to 0.7186141 with an average of	
133	0.7161698, while ENd values range from -13.02 to -10.29, with an average of -11.24 (Figure 3). At this study core, the	
134	⁸⁷ Sr/ ⁸⁶ Sr ratio and ɛNd values stay remain stable before the LGM but show fluctuations after the LGM, without obvious	
135	increasing/decreasing tendencies. During ~14.5-12.5 ka, ⁸⁷ Sr/ ⁸⁶ Sr ratios significantly increased from 0.7139 to 0.7172,	
136	while ENd values decreased abruptly from -10.28 to -13.02.	
137	4. Discussion	
138	4.1. Sediment provenance and transport patterns	
139	The lower sedimentation rates (3-5 cm/ka) measured in core 171106 were in accordance with the normal sedimentation	
140	rates obtained from <u>neighboring</u> cores SK157-14, SK157-15 and SK157-16-around the Ninetyeast Ridge (Ahmad et al.,	
141	2005; Raza et al., 2013). In this region, turbidite activities were less developed (Joussain et al., 2016; Fournier et al., 2017),	
141 142	2005; Raza et al., 2013). In this region, turbidite activities were less developed (Joussain et al., 2016; Fournier et al., 2017), in accordance with its far distance from the Active Channel <u>(Figure 1)</u> . In the northern BoB, due to heavy river runoff and	设置了格式: 字体颜色: 红色
		设置了格式: 字体颜色: 红色
142	in accordance with its far distance from the Active Channel (Figure 1). In the northern BoB, due to heavy river runoff and	设置了格式: 字体颜色: 红色
142 143	in accordance with its far distance from the Active Channel (Figure 1). In the northern BoB, due to heavy river runoff and steep topography, the G-B river system transports a large amount of the products of Himalayan physical denudation; these	设置了格式: 字体颜色: 红色
142 143 144	in accordance with its far distance from the Active Channel (Figure 1). In the northern BoB, due to heavy river runoff and steep topography, the G-B river system transports a large amount of the products of Himalayan physical denudation; these products mainly consist of illite and chlorite formed under dry and cold climate conditions (Chamley, 1989; Khan et al.,	设置了格式: 字体颜色: 红色
142 143 144 145	in accordance with its far distance from the Active Channel <u>(Figure 1)</u> . In the northern BoB, due to heavy river runoff and_ steep topography, the G-B river system transports a large amount of the products of Himalayan physical denudation; these products mainly consist of illite and chlorite formed under dry and cold climate conditions (Chamley, 1989; Khan et al., 2019). Because of the hot and humid conditions in Myanmar and the Indian Peninsula, sediments in these regions are	设置了格式: 字体颜色: 红色
142 143 144 145 146	in accordance with its far distance from the Active Channel (Figure 1). In the northern BoB, due to heavy river runoff and_ steep topography, the G-B river system transports a large amount of the products of Himalayan physical denudation; these products mainly consist of illite and chlorite formed under dry and cold climate conditions (Chamley, 1989; Khan et al., 2019). Because of the hot and humid conditions in Myanmar and the Indian Peninsula, sediments in these regions are formed through the chemical weathering of silicate minerals and thus have high smectite percentages. Moreover, the	设置了格式: 字体颜色: 红色
142 143 144 145 146 147	in accordance with its far distance from the Active Channel (Figure 1). In the northern BoB, due to heavy river runoff and_ steep topography, the G-B river system transports a large amount of the products of Himalayan physical denudation; these products mainly consist of illite and chlorite formed under dry and cold climate conditions (Chamley, 1989; Khan et al., 2019). Because of the hot and humid conditions in Myanmar and the Indian Peninsula, sediments in these regions are formed through the chemical weathering of silicate minerals and thus have high smectite percentages. Moreover, the Irrawaddy River brought weathered products characterized by high smectite percentages from Myanmar into the Andaman	设置了格式: 字体颜色: 红色
142 143 144 145 146 147 148	in accordance with its far distance from the Active Channel (Figure 1). In the northern BoB, due to heavy river runoff and steep topography, the G-B river system transports a large amount of the products of Himalayan physical denudation; these products mainly consist of illite and chlorite formed under dry and cold climate conditions (Chamley, 1989; Khan et al., 2019). Because of the hot and humid conditions in Myanmar and the Indian Peninsula, sediments in these regions are formed through the chemical weathering of silicate minerals and thus have high smectite percentages. Moreover, the Irrawaddy River brought weathered products characterized by high smectite percentages from Myanmar into the Andaman Sea, leading to high smectite percentages in the terrestrial sediments deposited in this marine environment (Ali et al., 2015).	

152	are relatively small, and consequently, their sediment contributions are limited in the study area, although their sediments	
153	are also characterized by relatively high illite percentages (Joussain et al., 2016). Evidence of surface sediments in the BoB	
154	further reveals that the smectite percentages of sediments in the central region are significantly lower than those in the	
155	eastern and western regions (Li et al., 2017; Liu et al., 2019a), indicating that sediments of Indian Peninsula origin are	
156	difficult to transport into the eastern BoB through the central BoB. Because the limited weathering area of Andaman-and	
157	Nicobar islands Islands cannot provide a large amount of smectite according to provenance studies (Ali et al., 2015), the	
158	Myanmar materials characterized by high smectite percentages have the advantage of shorter transport distances compared	
159	to those sourced from the Indian Peninsula as the main source area of smectite around the BoB,Therefore, the most	
160	important source of smectite in the study area is the Myanmar region. In marine environments, kaolinite is preferentially	
161	deposited in estuary areas due to mineral segregation (Gibbs, 1977) and thus eannot may not be transported over long	
162	distances, so the kaolinite in the study area was most likely sourced from neighboring Sumatra (Figure 4a, Liu et al., 2012).	
163	The Sr-Nd isotopes measured in the studied core are close to those measured in the Irrawaddy/Indo-Burman	
164	Ranges/Sumatra source regions (Figure 4b), indicating that terrestrial materials with diameters <63 µm mainly come from	
165	the Irrawaddy River, Indo-Burman Ranges and the Sumatra source areas; these source areas are closer to the study area	
166	than the G-B River system, as, which was confirmed by a Sr-Nd isotope study in the southwestern part of the study area	
167	(Ahmad et al., 2005) and consistent with sediment provenance studies in the Ninetyeast Ridge on different timescales (Ali_	设置了格式: 字体颜色: 蓝色
168	et al., 2021; Seo et a., 2022). This result is not consistent with the evidence provided by clay minerals, which indicate that	
169	the Himalayas were the main sediment source. This difference in clay minerals and isotopes may be consistent with the	
170	view that clay minerals may be transported over long distances, while coarser terrestrial sediments can only be transported	
171	to more proximate locations.	
172	In the northeastern BoB, the southwest monsoon turns southward into the Andaman Sea, resulting in the transport of	
173	sediments from the Indo-Burman Range and Irrawaddy River to the central Andaman Sea (Colin et al., 2006). The location	
	8	

174	of core 171106, drilled on the Ninetyeast Ridge, was above the the normal seafloor abyssal plain, and the terrestrial materials	
175	deposited to the west of this location are difficult to resuspend and deposit on the ridge under the force of bottom currents	
176	or turbidity currents. In fact, the G-B River-loaded materials are mainly carried eastward by surface ocean currents in	
177	summer to the Andaman Sea, where the seasonal surface currents load materials from the Himalayan and Indo-Burman	
178	Ranges into the Andaman Sea through the northern strait (NS) (Figure 5, Liu et al., 2020a; Rayaroth et al., 2016);). These	
179	G-B River sediments can also be transported southward along the west side of the Andaman and Nicobar Islands (Figure	设置了格式: 字体颜色: 红色
180	5)then, and a westward ocean surface current in the middle strait (MS) loads sediments of the Irrawaddy River southwest	
181	into the study area (Chatterjee et al., 2017).	
182	4.2. Factors affecting sediment provision	
183	In general, illite is the major mineral produced during the strong physical erosion of metamorphic rocks and granite rocks	
184	and during the reprocessing of sedimentary rocks (Chamley, 1989; Winkler et al., 2002), while smectite is the secondary	
185	mineral produced during the chemical weathering of parent aluminosilicate and iron-magnesium silicate under warm and	
186	humid climate conditions (Chamley, 1989; Erosion, 1995). The climatic forces from the North Atlantic are thought to	
187	extensively impact the tropical Eastern Indian Ocean (EIO) and surrounding areas in of the BoB (Sun et al., 2011; DiNezio	设置了格式: 字体颜色: 蓝色
188	and Tierney, 2013; Dutt et al., 2015; Gautam et al., 2020; Mohtadi et al., 2014; Peng et al., 2019; Liu et al., 2021), whose	
189	climate signals can be transmitted via the tropical Atlantic bipolar SST anomaly and associated southward shift of the ITCZ	
190	(Marzin et al., 2013), westerlies teleconnection and sea ice (Sun et al., 2011) or the reorganization of the Hadley circulation	设置了格式: 字体颜色: 蓝色
191	(Mohtadi et al., 2014) During the North Atlantic cold-climate periods (Heinrich events and YD period, Figure 3h), when	设置了格式: 非突出显示
192	when rainfall and temperatures decreased in the South Asian monsoon region (An et al., 2011; DiNezio and Tieryney, 2013;	设置了格式: 字体颜色: 蓝色
193	Gautam et al., 2020), physical weathering was enhanced in the Himalayas (Joussain et al., 2016), which made illite	
194	percentages at core 171106 relatively high during these cold-climate periods, while but chemical weathering weakened in	
195	Myanmar, and the smectite percentage thus decreased in the source area before these cold periods and continued to increase 9	

196	after these periods. The increasing (decreasing) trend of illite (smeetite) percentages before cold-climate periods and the		
197	decreasing (increasing) trend of illite (smectite) percentages after cold-climate periods in our records suggest that the		
198	weathering degree in the source area influenced the supply of clay minerals during these cold-climate periods.		
199	Sea level fluctuation is also critical in controlling the supplementation of terrestrial materials, especially clay minerals	 带格式的: 缩进: 首行缩进: 2 字符	
200	(Li et al., 2018; Liu et al., 2019a), by changing the transport paths and/or distances as well as the further input of sediments		
201	into the study area. The changing trends of the sea level in seas adjacent to the BoB (Figure 3i, Waelbroecka et al., 2002;		
202	Grant et al., 2014; Hanebuth et al., 2000; Thompson and Goldstein, 2006) are well correlated with the smectite percentages		
203	measured in core 171106, especially during 35-21 ka, when the smectite percentages declined continuously. Since the		
204	Andaman-and Nicobar Islands connecting the Andaman Sea and the BoB have continuously expanded as the sea level has		
205	continuously declined, the strait width has been consistently reduced, thereby preventing the entrance of terrestrial		
206	materials into the Andaman Sea and the further continuous decline in smectite percentages in the study area. Here, we		
207	suggest that the variations in the measured illite percentages were mainly caused by changes in smectite deposition because		
208	the sedimentary records obtained from the northern BoB do not support the controlling effect of the sea level on illite		
209	percentages over the past 50 ka (Joussain et al., 2016; Li et al., 2018; Liu et al. al., 2019a). The relative exposure of 200		
210	km from the current Irrawaddy River delta may affect the deposition process on the continental shelf or further deposition		
211	of the sediments delivered to the deep ocean, but core 171106 is formed by the long-distance transport of large amounts of		
212	fine-grained terrestrial material, indicating that these sediments can be transported over long distances, and the ~200 km		
213	change in the shelf distance is not a dominant factor of sediment transport in the study area. Moreover, the decreasing		
214	smectite percentages from the Myanmar area as sea level decreases suggests that shelf denudation is also not the main		
215	factor affecting our smectite record, which is in accordance with previous studies in the Andaman Sea that have not	 - 设置了格式: 非突出显示	
216	specifically emphasized the alteration of terrestrial source material supply by exposed shelves (Ali et al., 2015; Awasthi et	设置了格式: 非突出显示 设置了格式: 非突出显示	
217	al., 2014).	设置了格式: 非突出显示 设置了格式: 字体颜色: 蓝色	
$V \perp I$	al., 2014).		

218	The South Asian summer monsoon is normally thought to be an important factor affecting weathering conditions
219	around the BoB (Dutt et al., 2015; Gebregiorgis et al., 2016; Joussain et al., 2017; Li et al., 2018; Rashid et al., 2011; Zhang
220	et al., 2020; Zorzi et al., 2015). Stalagmites in Mawmluh Cave record variations in river runoff in the surrounding area;
221	these variations are determined by the impacts of SST and water vapor transport paths (Dutt et al., 2015). In fact, the
222	Mawmluh Cave records of the South Asian monsoon strength are driven by temperature gradients which that drive changes
223	in winds and moisture transport into the BoB (Dutt et al., 2015), not just respondingse to the rainfall amount. The smectite
224	percentage changes measured in core 171106 were slightly correlated after Heinrich event 1_(H1) but were irrelevant before
225	H1 (Figure 6b). This indicated that the combination of temperature and moisture failed to play a crucial role in smectite
226	importationtransport to core 171106, al-though weathering features in the source area may be shaped by the South Asian
227	monsoon. Moreover, the view could be confirmed by the smectite record obtained from the studied core was-not being
228	well_correlated with records previously obtained in the Andaman Sea (Figure 6c, 6d, Gebregiorgis et al., 2016) or with a
229	sporopollen record obtained in Southwest China (Figure 6e, 6f, Zhang et al., 2020), especially before the LGM. The
230	consistency of salinity,and SST in core SK 168 (Figure 6c, 6d) and moisture,and temperature Index index (Figure 6e,
231	6f) in Southwest China reveal that the hydroclimate in the South Asian monsoon region might have been influenced by
232	SST in the Indian Ocean. All these inconsistencies between the smectite percentage in core 17I106 and monsoon records
233	indicate that smectite supplementation may be mainly controlled by rainfall rather than by chemical weathering due to
234	thermodynamic differences between sea and land environments (Liu et al., 2020b).
235	During the late LGM, the smectite percentage increased abnormally in core 171106, and this increase cannot be
236	explained by dry and cold weathering conditions, a lower sea level or a weakened summer monsoon at that time. In contrast,
237	this abnormal change may have been attributed to an increase in the smectite input in sediments from the Burman source
238	area or to a decrease in the amounts of sediments input from the Himalayas. Under the influence of the winter monsoon

during the LGM, the denudated sediments on the Irrawaddy Estuary shelf may have been transported southward through

240	the west side of Andaman Island (Prajith et al., 2018), as was confirmed in previous work showing that the winter monsoon	
241	led to an increase in terrestrial materials from the Irrawaddy River to the Ninetyeast Ridge during the Heinrich event	
242	(Ahmad et al., 2005). However, the winter monsoon was strong in the western part of the study area from 21 to 15 ka	
243	(Figure 6g), and the sea level remained relatively low during that period (Gautam et al., 2020). The smectite percentages	
244	in the studied core increased significantly from 21 to 19 ka and dropped rapidly after 19 ka. This inconsistency contradicts	
245	the conclusion that the increased smectite percentage in the source area was caused by a strong winter monsoon. Moreover,	
246	the changes in the sediment compositions measured in the Himalayan source area were probably related to variations in	
247	regional glaciers. During the LGM period, the increased glacial cover may have reduced surface runoff and furthered the	
248	transport of physical weathering products, while the increased amount of ice meltwater may have transported more illites	
249	following glacial melt. However, the reduced glacial area in the Himalayas during 18-15 ka did not occur simultaneously	
250	with the increased illite percentage (Yan et al., 2020; Weldeab et al., 2019, Figure 6h). Therefore, the abnormal changes	
251	measured in the smectite percentage during the late LGM period were caused by other climate-driven mechanisms, and the	
252	millennium-scale smectite percentage fluctuations that occurred before the LGM require a more reasonable explanation.	
253	4.3. The ITCZ shift in the EIO	
254	Changes in rainfall and the corresponding runoff are generally utilized to explain short-term variations in clay minerals. In	
255	the EIO, rainfall is controlled by monsoon activities (An et al., 2011; Beck et al., 2018; Gebregiorgis et al., 2016) and/or	
256	ITCZ migrations (Deplazes et al., 2013; Stoll et al., 2007; Tan et al., 2019). Glacial-interglacial monsoon precipitation	
257	changes at the regional scale are shaped by dynamics (changes in the wind fields) and temperature (McGee, 2020). The	设置了格式: 字体颜色: 蓝色
258	wind fields may be driven by the relative dominance of the northern low-pressure and southern high-pressure systems (An	设置了格式: 字体颜色: 蓝色
259	et al., 2011) and cross-equatorial moisture transport (Clemens et al., 2021), while the SST in the eastern Indian Ocean	设置了格式: 字体颜色: 蓝色
260	(Zhang et al., 2020) or western Indian Ocean (Wang et al., 2022), surface and subsurface temperature changes (Tierney et	设置了格式: 字体颜色:蓝色
261	al., 2015), and temperature gradients (Weldeab et al., 2022) also play an important role in South Asian rainfall. At the same	设置了格式: 字体颜色: 蓝色

262	time, as As a climate-driving force in low-latitude regions, ITCZ migrations may be the main factor responsible for regional	
263	hydrological changes (Deplazes et al., 2013; Weber et al., 2018) since the shift in the ITCZ was considered to control	设置了格式: 字体颜色: 蓝色
264	rainfall distribution and intensity in central India over geological time scales (Zorzi et al., 2015) and to cause summer	设置了格式: 字体颜色: 蓝色
265	temperature and moisture fluctuations in southwestern China during the last deglaciation (Zhang et al., 2019-).	设置了格式: 字体颜色: 蓝色
266	During the glacial-interglacial period, the ITCZ migrated north-south and balanced thermal differences by transferring	(带格式的: 缩进:首行缩进:2字符
267	atmospheric heat; this process represents an indispensable climate-regulating power on earth Earth (Broccoli et al., 2006;	
268	McGee et al., 2018; Schneider et al., 2014). In the Cariaco Basin and Arabian Seas (Figure 7), tropical rainfall is highly	
269	correlated with the North Atlantic climate, and sea ice variations in the North Atlantic affect the north-south shift of the	
270	ITCZ in low-latitude regions through atmospheric circulation and ocean processes (Deplazes et al., 2013). The smectite	
271	particles measured in core 171106 mainly came from the Myanmar source area; in this area, rainfall is greatly affected by	
272	the seasonal shift of the ITCZ. Before the LGM, the smectite percentages in the study core were wellmatched with the	
273	ITCZ record in the Arabian Sea (Deplazes et al., 2013). T, where the supplementation of smectite percentages reached the	
274	peak when the ITCZ shifted significantly northernmost-northward according to record of Arabian Sea(Deplazes et al.,	
275	<u>2013</u>) <u>And-dD</u> uring coldclimate events _a when the ITCZ moved significantly southward, rainfall decreased, and the	
276	smectite percentages decreased correspondingly in the source area. Therefore, we suggest that these changes in the smectite	
277	percentages in the studied core are correlated with ITCZ migration and the that rainfall is an important factor determining	
278	the smectite percentage from the source area of Myanmar-on the millennial scale. The sporopollen evidence suggested a	
279	cold and wet period during MIS 3 in Yunnan, China (Zhang et al., 2020), which may have been caused by the frequent	设置了格式: 字体颜色: 蓝色
280	northward movement of the ITCZ during this period. If precipitation induced by wind and temperature of the South Asian	
281	monsoon have an intense impact on the source area, the source area monsoon indicators, for example, foraminifera,	
282	sporopollen, stalagmite (Figure 6) and other indicators, would correspondingly change, but our record failed to catch these	设置了格式: 字体颜色: 红色
283	variations in monsoon indicators in the BoB. We suggest that every factor affecting precipitation induced by wind and	设置了格式: 非突出显示
	13	

1		
284	temperature of the South Asian monsoon, as mentioned above, may have made it difficult to cause millennial-scale	
285	fluctuations similar to the ITCZ shift during the MIS3 period. The South Asian monsoon is indeed the result of combined	
286	factors that may contribute to the heterogeneity of monsoon rainfall in the BoB, which were also influenced by the north-	
287	south shift of the ITCZ. In core 171106, the corresponding variations in the relatively high smectite percentages and the	
288	northward shift of the ITCZ indicate that the northward movement of the ITCZ is the most important factor influencing the	
289	incremental changes in river sediment load corresponding to the increased smectite percentages in the Myanmar region.	
290	Here we emphasize that the northward and southward ITCZ shifts bring about rainfall increases and decreases relative to	
291	other rainfall forces. The changes in clay minerals reflect changes in clay mineral supply in the source area, and it is that	
292	these relative increases and decreases in rainfall lead to changes, which is a response to environmental changes. The	
293	sporopollen evidence suggested a cold and wet period during MIS3 in Yunnan, China (Zhang et al., 2020), which may have_	设置了格式: 字体颜色: 蓝色
294	been caused by the frequent northward movement of the ITCZ during this period.	
295	Although the changes in smectite percentages in the study area are associated with ITCZ shifts before and after the	
296	LGM, the ITCZ shift in the Indo-Pacific warm pool (IPWP) was more "regional" than those in the Arabian Sea and the	
297	Cariaco Basin (Deplazes et al., 2013). During the late LGM, when the ITCZ did not move extensively in the Arabian Sea,	
298	the ITCZ gradually shifted northward in the IPWP from 21-18 ka (Figure 7, Ayliffe et al., 2013). However, the smectite	
299	percentage increased significantly in the study area, and we have excluded the possibility that the winter monsoon or	
300	meltwater influenced these changes. Further comparisons with IPWP records reveal that the ITCZ changes agree well with	
301	the smectite percentage variations during the late LGM, indicating that the northern migration of the ITCZ induced high	
302	smectite percentages in core 171106 (Figure 7c, d). These results suggest that the clay minerals of core 171106 are	设置了格式: 字体颜色: 红色
303	inextricably linked to ITCZ shifts on the millennial scale. In summary, our smectite record shows that before the LGM, the	
304	ITCZ was in a relatively southerly position in the Myanmar area, while during the late LGM, the northward movement of	
305	the ITCZ in the BoB led to increased rainfall in the Myanmar source area and an increased supply of smectite. At the same	
1	14	

1		
306	time, the ITCZ was not significantly shifted in the Arabian Sea region either pre-LGM or post-LGM, which is what the	
307	Arabian Sea record shows (Deplaze et al., 2013).	(设置了格式: 字体颜色:蓝色
308	The smectite percentage in the studied core is similar to distinct different from the ITCZ records in different timesome	
309	periods, such as the late LGM, revealing that regional changes in the ITCZ were significantly obvious, which propose and	
310	that the ITCZ is not a simple N-S displacement. This consistency may indicate that the regional extension of the north-	
311	south thermodynamic gradient in the EIO exceeded that in the Arabian Sea and that the north-south shift of the ITCZ	
312	caused the climate systems of the Northern and Southern Hemispheres to be more closely connected in the EIO during the	
313	late LGM (Huang et al., 2019; Zhuravleva et al., 2021). <u>A recent study considered less northward migration of the summer</u>	
314	ITCZ position in the western BoB than in the eastern BoB during Heinrich Stadials HS1 and HS5 (Ota et al., 2022), which	设置了格式: 字体颜色:蓝色
315	indicated that regional ITCZ variations in the BoB may be very common. These factors may be correlated with observed	
316	variations in regional air-sea interactions, such as the exposure of the Sunda Shelf (DiNezio and Tierney, 2013)-and, the	
317	effect of the thermocline in the EIO (Mohtadi et al., 2017) and even potential El Nino-like mode (Thirumalai et al., 2019)	设置了格式: 字体颜色: 蓝色
318	and IOD (Abram et al., 2020) changes, which may make the ITCZ shift more dramatic or keep the ITCZ position in the	设置了格式: 字体颜色: 蓝色
319	Northern Hemisphere longer. Thus, the regional variations in the ITCZ should be fully considered when studying climate	设置了格式: 字体颜色:蓝色
320	change, especially in low-latitude regions that are sensitive to climatic and environmental changes, such as the EIO	
321	(Niedermeyer et al., 2014).	
322	5. Conclusion	
000		
323	We reconstructed the variations in sediment sources on the Ninetyeast Ridge over the past 45 ka. The main source areas	
324	comprise the Himalayan-Himalayas transported by the G-B River and Irrawaddy River; sediments were stably supplied	
325	from these regions throughout the studied core. When North Atlantic cold events (Heinrich and YD) occurred, chemical	
326	weathering weakened and physical weathering increased; correspondingly, the smectite percentage decreased and the illite	
	15	

327	percentage increased. From 35-21 ka, the falling sea level led to an increase in the exposed area of the Andaman-and
328	Nicobar Islands and further hindered the entrance of smectite from the Andaman Sea into the study area. At the same time,
329	the influence of the South Asian monsoon on the sediment supply was not obvious. The time-phase mismatches observed
330	among records excluded the influence of Burman shelf sediment erosion forced by the winter monsoon or of variations in
331	G-B river sediments induced by ice meltwater on the abnormal increases observed in the smectite percentages during the
332	late LGM. The smectite record of core 171106 is consistent with the ITCZ changes recorded on the millennium millennial
333	scale, indicating that the ITCZ controls the rainfall in the Burman source area and, further, the clay mineral variations in
334	the study area. The inferred ITCZ shift recorded in the studied core coincided with the global ITCZ change that occurred
335	before the LGM, but during the late LGM, the core record was consistent with the change in the regional ITCZ recorded
336	in the EIOby the IPWP. This revealed that regional changes in the ITCZ were very significant, and the ITCZ is not a simple
337	N-S displacement at the same time. Thus, the regional variations in the ITCZ should be fully considered when studying
338	climate change, especially in low-latitude regions that are sensitive to climate and environmental changes, indicating that
339	the regional ITCZ was significantly connected with the Northern-Southern Hemispheres.
340	Author contributions.
341	J.L. and Y.H. conceived and designed the experiment. X.X. wrote the manuscript with contributions from all authors. L.Z.
342	and L.Y. provided the ages of planktonic foraminifera, and S.L., Y.Y., L.C., and L.T. helped to analyze the measured data
343	and discuss the related relevant topics of in this manuscript.
344	Competing interests.
345	The authors declare that they have no conflicts of interest.
346	Acknowledgements.

347 We thank Hui Zhang for <u>the</u> Sr-Nd isotope measurements. Core sediment samples were collected on-board of R/V "Shiyan 16

349	Financial support.		
350	This work has been jointly funded by the National Nature Natural Science Foundation of China (42176075, 42130412 and		
351	41576044), Key Special Project for Introduced Talents Team of Southern Marine Science and Engineering Guangdong		
352	Laboratory (Guangzhou) (GML2019ZD0206), and the Strategic Priority Research Program of the Chinese Academy of		
353	Sciences (XDB42000000) and the Open Fund of the Key Laboratory of Submarine Geosciences, Ministry of Natural		
354	Resources (KLSG2102).		
355	Data Availability Statement.		
356	All dataset is available on Science Data Bank		
357	(https://www.scidb.cn/detail?dataSetId=55c7dcf1f8344c658099dfe030264b2f).		
358	References		
359	Abram, N.J., Hargreaves, J.A., Wright, N.M., Thirumalai, K., Ummenhofer, C.C., and England, M.H.: Palaeoclimate		
360	perspectives on the Indian Ocean Dipole, Quat. Sci. Rev., 237, 106302,		
361	https://doi.org/10.1016/j.quascirev.2020.106302, 2020.		
362	Ahmad, SM., Anil Babu, G., Padmakumari, VM., Dayal, AM., Sukhija, BS., and Nagabhushanam, P.: Sr, Nd isotopic		
363	evidence of terrigenous flux variations in the Bay of Bengal: Implications of monsoons during the last ~34,000 years,		
364	Geophys. Res. Lett., 32, L22711, <u>https://doi.org/10.1029/2005GL024519</u> , 2005.		
365	Ahmad, SM., Padmakumari, VM. and Babu, GA.: Strontium and neodymium isotopic compositions in sediments from		
366	Godavari, Krishna and Pennar rivers, Curr. Sci., 97, 1766-1769, 2009.		
367	Ali, S., Hathorne, EC., Frank, M., Gebregiorgis, D., Stattegger, K., Stumpf, R., Kutterolf, S., Johnson, JE., and Giosan,		
368	L.: South Asian monsoon history over the past 60 kyr recorded by radiogenic isotopes and clay mineral assemblages		

1" implementing the open research cruise NORC 2012-08 supported by the NSFC Shiptime Sharing Project.

348

ages 17

369	in the Andaman Sea, Geochem., Geophys., Geosy., 16, 505-521, https://doi.org/10.1002/2014gc005586, 2015.
370	Ali, S., Hathorne, E.C., and Frank, M.: Persistent Provenance of South Asian Monsoon-Induced Silicate Weathering Over
371	the Past 27 Million Years, Paleoceanogr. Paleocl., 36, e2020PA003909, https://doi.org/10.1029/2020PA003909, 2021.
372	An, Z., Clemens, S., Shen, J., Qiang, X., Jin, Z., Sun, Y., Prell, W., Luo, J., Wang, S., Xu, H., Cai, Y., Zhou, W., Liu, X.,
373	Liu, W., Shi, Z., Yan, L., Xiao, X., Chang, H., Wu, F., Ai, L., and Lu, F.: Glacial-Interglacial Indian Summer Monsoon
374	Dynamics, Science, 333, 719-723, https://doi.org/10.1126/science.1203752, 2011.
375	Awasthi, N., Ray, JS., Singh, AK., Band, ST., and Rai, VK.: Provenance of the Late Quaternary sediments in the
376	Andaman Sea: Implications for monsoon variability and ocean circulation, Geochem., Geophys., Geosy., 15, 3890-
377	3906, <u>https://doi.org/10.1002/2014gc005462</u> , 2014.
378	Ayliffe, LK., Gagan, MK., Zhao, JX., Drysdale, RN., Hellstrom, JC., Hantoro, WS., Griffiths, M.L., Scott-Gagan,
379	H., Pierre, ES., Cowley, JA., and Suwargadi, BW.: Rapid interhemispheric climate links via the Australasian
380	monsoon during the last deglaciation, Nat. Commun., 4, 2908, https://doi.org/10.1038/ncomms3908, 2013.
381	Beck, JW., Zhou, W., Li, C., Wu, Z., White, L., Xian, F., Kong, XH., and An, Z.: A 550,000-year record of East Asian
382	monsoon rainfall from Be-10 in loess, Science, 360, 877-881, https://doi.org/10.1126/science.aam5825, 2018.
383	Bejugam, P., and Nayak, GN.: Source and depositional processes of the surface sediments and their implications on
384	productivity in recent past off Mahanadi to Pennar River mouths, western Bay of Bengal, Palaeogeogr.,
385	Palaeoclimatol., Palaeoecol., 483, 58-69, https://doi.org/10.1016/j.palaeo.2016.12.006, 2017.
386	Biscaye, P.E.: Mineralogy and sedimentation of recent deep-sea clay in Atlantic Ocean and adjacent seas and oceans, Geol.
387	Soc. Amer. Bull., 76, 803-832, <u>https://doi.org/10.1130/0016-7606(1965)76[803:masord]2.0.co;2</u> , 1965.
388	Blaauw, M., and Christen, JA.: Flexible Paleoclimate Age-Depth Models Using an Autoregressive Gamma Process,
389	Bayesian Analysis, 6, 457-474, <u>https://doi.org/10.1214/11-ba618</u> , 2011.
390	Broccoli, AJ., Dahl, KA., and Stouffer, RJ.: Response of the ITCZ to Northern Hemisphere cooling, Geophys. Res.

391 Lett., 33, L01702, https://doi.org/10.1029/2005GL024546, 2006.

392	Chamley, H.: Clay Sedimentology, Springer, Berlin, 623 pp., 1989.		
393	Chatterjee, A., Shankar, D., McCreary, JP., Vinayachandran, PN., and Mukherjee, A.: Dynamics of Andaman Sea		
394	circulation and its role in connecting the equatorial Indian Ocean to the Bay of Bengal, J. Geophys. Res. Oceans, 122,		
395	3200-3218, https://doi.org/10.1002/2016JC012300, 2017.		
396	Clemens, S.C., Yamamoto, M., Thirumalai, K., Giosan, L., Richey, J.N., Nilsson-Kerr, K., Rosenthal, Y., Anand, P.,		
397	McGrath, S.M.: Remote and local drivers of Pleistocene South Asian summer monsoon precipitation: A test for future		
398	predictions. Sci. Adv., 7(23), eabg3848. https://doi.org/10.1126/sciadv.abg3848, 2021.	· 设置了相	
399	Colin, C., Turpin, L., Bertaux, J., Desprairies, A., and Kissel, C.: Erosional history of the Himalayan and Burman Ranges	设置了相 设置了相 设置了相	
400	during the last two glacial-interglacial cycles, Earth Planet. Sci. Lett., 171, 647-660, https://doi.org/10.1016/s0012-	()、设置了相)、设置了相	
401	<u>821x(99)00184-3</u> , 1999.	设置了相议置了相议	
402	Colin, C., Turpin, L., Blamart, D., Frank, N., Kissel, C., and Duchamp, S.: Evolution of weathering patterns in the Indo-	(
403	Burman Ranges over the last 280 kyr: Effects of sediment provenance on ⁸⁷ Sr/ ⁸⁶ Sr ratios tracer, Geochem., Geophys.,		
404	Geosy., 7, Q03007, <u>https://doi.org/10.1029/2005gc000962</u> , 2006.		
405	Curray, JR., Emmel, FJ., and Moore, DG.: The Bengal Fan: morphology, geometry, stratigraphy, history and processes,		
406	Mar. Petrol. Geol., 19, 1191-1223, https://doi.org/10.1016/S0264-8172(03)00035-7, 20022003.		
407	Deplazes, G., Lückge, A., Peterson, LC., Timmermann, A., Hamann, Y., Hughen, KA., Röhl, U., Laj, C., Cane, MA.,		
408	Sigman, DM., and Haug, GH.: Links between tropical rainfall and North Atlantic climate during the last glacial		
409	period, Nat. Geosci., 6, 213-217, <u>https://doi.org/10.1038/ngeo1712</u> , 2013.		
410	DiNezio, PN., and Tierney, JE.: The effect of sea level on glacial Indo-Pacific climate, Nat. Geosci., 6, 485-491,		
411	https://doi.org/10.1038/ngeo1823, 2013.		

412 Dou, Y., Yang, S., Shi, X., Clift, P.D., Liu, S., Liu, J., Li, C., Bi, L., and Zhao, Y.: Provenance weathering and erosion____ / - (设置了格式: 非突出显示

格式: 字体: 非倾斜 **格式:** 非突出显示 **格式:** 字体: 非倾斜 **格式:** 非突出显示 格式: 字体: 非倾斜 格式: 字体: 非倾斜 **格式:** 字体: (默认) Times New Roman, 10 磅 **格式:** 非突出显示

1				
413	records in southern Okinawa Trough sediments since 28 ka: Geochemical and Sr-Nd-Pb isotopic evidences, Chem,		- 设 设	
414	Geol., 425, 93-109. https://doi.org/10.1016/j.chemgeo.2016.01.029, 2016.			
415	Dutt, S., Gupta, AK., Clemens, SC., Cheng, H., Singh, RK., Kathayat, G., and Edwards, RL.: Abrupt changes in Indian			
416	summer monsoon strength during 33,800 to 5500 years B.P., Geophys. Res. Lett., 42, 5526-5532,			
417	https://doi.org/10.1002/2015gl064015, 2015.			
418	Erosion, HS.: Sedimentation and sedimentary origin of clays, in: Velde, B. (Ed.), Origin and Mineralogy of Clays. Clays			
419	Environment., Springer, Berlin, pp. 162-219, 1995.			
420	Fournier, L., Fauquembergue, K., Zaragosi, S., Zorzi, C., Malaize, B., Bassinot, F., Joussain, R., Colin, C., Moreno, E., and			
421	Leparmentier, F.: The Bengal fan: external controls on the Holocene Active Channel turbidite activity, Holocene, 27			
422	(6), 900-913, <u>https://doi.org/10.1177/0959683616675938</u> , 2017.			
423	Gautam, PK., Narayana, AC., Kumar, PK., Bhavani, PG., Yadava, MG., and Jull, AJT.: Indian monsoon variability			
424	during the last 46 kyr: isotopic records of planktic foraminifera from southwestern Bay of Bengal, J. Quat. Sci., 36,			
425	138-151, https://doi.org/10.1002/jqs.3263, 2020.			
426	Gebregiorgis, D., Hathorne, EC., Sijinkumar, AV., Nath, BN., Nürnberg, D., and Frank, M.: South Asian summer			
427	monsoon variability during the last ~54 kyrs inferred from surface water salinity and river runoff proxies, Quat. Sci.			
428	Rev., 138, 6-15, <u>https://doi.org/10.1016/j.quascirev.2016.02.012</u> , 2016.			
429	Gibbs, RJ.: Clay mineral segregation in the marine environment, J. Sediment. Res., 47, 237-243, 1977.			
430	Goodbred, SL., and Kuehl, SA.: Enormous Ganges-Brahmaputra sediment discharge during strengthened early Holocene			
431	monsoon, Geology, 28, 1083-1086, <u>https://doi.org/10.1130/0091-7613(2000)028<1083:Egbsdd>2.3.Co;2</u> , 2000.			
432	Grant, KM., Rohling, EJ., Ramsey, CB., Cheng, H., Edwards, RL., Florindo, F., Heslop, D., Marra, F., Roberts, AP.,			
433	Tamisiea, ME., and Williams, F.: Sea-level variability over five glacial cycles, Nat. Commun., 5, 5076,			
434	https://doi.org/10.1038/ncomms6076, 2014.			

-{	设置了格式: 非突出显示
-	设置了格式: 字体: 非倾斜
	设置了格式: 非突出显示
ĺ	设置了格式: 字体: 非倾斜
1	设置了格式: 非突出显示
Ì	设置了格式: 字体: 非倾斜
Ì	设置了格式: 字体: (默认) Times New Roman, 10 磅
ſ	设置了格式: 字体: 10 磅, 非突出显示

435	Hanebuth, T., Stattegger, K., and Grootes, PM.: Rapid Flooding of the Sunda Shelf: A Late-Glacial Sea-Level Record,
436	Science, 288, 1033-1035, https://doi.org/10.1126/science.288.5468.1033, 2000.
437	Huang, J., Wan, S., Li, A., and Li, T.: Two-phase structure of tropical hydroclimate during Heinrich Stadial 1 and its global
438	implications, Quat. Sci. Rev., 222, 105900, https://doi.org/10.1016/j.quascirev.2019.105900, 2019.
439	Jacobsen, SB. and Wasserburg, GJ.: Sm-Nd isotopic evolution of chondrites, Earth Planet. Sci. Lett., 50, 139-155,
440	https://doi.org/10.1016/0012-821x(80)90125-9, 1980.
441	Joussain, R., Colin, C., Liu, Z., Meynadier, L., Fournier, L., Fauquembergue, K., Zaragosi, S., Schmidt, F., Rojas, V., and
442	Bassinot, F.: Climatic control of sediment transport from the Himalayas to the proximal NE Bengal Fan during the
443	last glacial-interglacial cycle, Quat. Sci. Rev., 148, 1-16, https://doi.org/10.1016/j.quascirev.2016.06.016, 2016.
444	Joussain, R., Liu, Z., Colin, C., Duchamp-Alphonse, S., Yu, Z., Moréno, E., Fournier, L., Zaragosi, S., Dapoigny, A.,
445	Meynadier, L., and Bassinot, F.: Link between Indian monsoon rainfall and physical erosion in the Himalayan system
446	during the Holocene, Geochem., Geophys., Geosy., 18, 3452-3469, https://doi.org/10.1002/2016gc006762, 2017.
447	Kessarkar, PM., Rao, VP., Ahmad, SM., Patil, SK., Kumar, AA., Babu, GA., Chakraborty, S., and Rajan, RS.:
448	Changing sedimentary environment during the Late Quaternary: Sedimentological and isotopic evidence from the
449	distal Bengal Fan, Deep Sea Res. Pt I: Oceanogr. Res. Papers, 52, 1591-1615,
450	https://doi.org/10.1016/j.dsr.2005.01.009, 2005.
451	Khan, MHR., Liu, J., Liu, S., Seddique, AA., Cao, L., and Rahman, A.: Clay mineral compositions in surface sediments
452	of the Ganges-Brahmaputra-Meghna river system of Bengal Basin, Bangladesh, Mar. Geol., 412, 27-36,
453	https://doi.org/10.1016/j.margeo.2019.03.007, 2019.
454	Li, J., Liu, S., Shi, X., Feng, X., Fang, X., Cao, P., Sun, XQ., Ye, WX., Khokiattiwong, S., and Kornkanitnan, N.:
455	Distributions of clay minerals in surface sediments of the middle Bay of Bengal: Source and transport pattern,
456	Continent. Shelf Res., 145, 59-67, https://doi.org/10.1016/j.csr.2017.06.017, 2017.

457	Li, J., Liu, S., Shi, X., Zhang, H., Fang, X., Chen, MT., Cao, P., Sun, X. Q., Ye, WX., Wu, KK., Khokiattiwong, S., and				
458	Kornkanitnan, N.: Clay minerals and Sr-Nd isotopic composition of the Bay of Bengal sediments: Implications for				
459	sediment provenance and climate control since 40 ka, Quat. Internat., 493, 50-58,				
460	https://doi.org/10.1016/j.quaint.2018.06.044, 2018.				
461	Licht, A. France-Lanord, C., Reisberg, L., Fontaine, C., Soe, AN., and Jaeger, JJ.: A palaeo Tibet-Myanmar connection?				
462	Reconstructing the Late Eocene drainage system of central Myanmar using a multi-proxy approach, J. Geol. Soc.,				
463	170, 929-939, https://doi.org/10.1144/jgs2012-126, 2013.				
464	Liu, J., He, W., Cao, L., Zhu, Z., Xiang, R., Li, T., Shi, X., and Liu, S.: Staged fine-grained sediment supply from the				
465	Himalayas to the Bengal Fan in response to climate change over the past 50,000 years, Quat. Sci. Rev., 212, 164-177,				
466	https://doi.org/10.1016/j.quascirev.2019.04.008, 2019a.				
467	Liu, J., Zhu, Z., Xiang, R., Cao, L., He, W., Liu, S., and Shi, X.: Geochemistry of core sediments along the Active Channel,				
468	northeastern Indian Ocean over the past 50,000 years: Sources and climatic implications, Palaeogeogr.,				
469	Palaeoclimatol., Palaeoecol., 521, 151-160, https://doi.org/10.1016/j.palaeo.2019.02.021, 2019b.				
470	Liu, J. P., Kuehl, SA., Pierce, AC., Williams, J., Blair, NE., Harris, C., Aung, DW., and Aye, YY.: Fate of Ayeyarwady				
471	and Thanlwin Rivers Sediments in the Andaman Sea and Bay of Bengal, Mar. Geol., 423, 106137,				
472	https://doi.org/10.1016/j.margeo.2020.106137, 2020a.				
473	Liu, S., Li, J., Zhang, H., Cao, P., Mi, B., Khokiattiwong, S., Kornkanitnan, N., and Shi, X.: Complex response of				
474	weathering intensity registered in the Andaman Sea sediments to the Indian Summer Monsoon over the last 40 kyr,				
475	Mar. Geol., 426, 106206, https://doi.org/10.1016/j.margeo.2020.106206, 2020b.				
476	Liu, S., Ye, W., Cao, P., Zhang, H., Chen, MT., Li, X., Li, J., Pan, HJ., Khokiattiwong, S., Kornkanitnan, N., and Shi,				
477	X.: Paleoclimatic responses in the tropical Indian Ocean to regional monsoon and global climate change over the last				
478	42 kyr, Mar. Geol., 438, 106542, https://doi.org/10.1016/j.margeo.2021.106542, 2021.				

479	Liu, Z., Wang, H., Hantoro, W. S., Sathiamurthy, E., Colin, C., Zhao, Y., Li, J.: Climatic and tectonic controls on chemical	
480	weathering in tropical Southeast Asia (Malay Peninsula, Borneo, and Sumatra), Chem. Geol., 291, 1-12,	
481	https://doi.org/10.1016/j.chemgeo.2011.11.015, 2012.	
482	Lupker, M., France-Lanord, C., Galy, V., Lavé, J., and Kudrass, H.: Increasing chemical weathering in the Himalayan	
483	system since the Last Glacial Maximum, Earth Planet. Sci. Lett., 365, 243-252,	
484	https://doi.org/10.1016/j.epsl.2013.01.038, 2013.	
485	Marzin, C., Kallel, N., Kageyama, M., Duplessy, J.C., and Braconnot, P.: Glacial fluctuations of the Indian monsoon and	
486	their relationship with North Atlantic climate: new data and modelling experiments, Clim. Past., 9, 2135-2151,	
487	https://doi.org/10.5194/cp-9-2135-2013, 2013.	
488	McGee, D., Moreno-Chamarro, E., Green, B., Marshall, J., Galbraith, E., and Bradtmiller, L.: Hemispherically asymmetric	
489	trade wind changes as signatures of past ITCZ shifts, Quat. Sci. Rev., 180, 214-228,	
490	https://doi.org/10.1016/j.quascirev.2017.11.020, 2018.	
491	McGee, D. Glacial-Interglacial Precipitation Changes. Ann. Rev. Mar. Sci., 12, 525-557.	设置了格式: 非突出显示
492	https://doi.org/10.1146/annurev-marine-010419-010859, 2020.	设置了格式:字体:非倾斜 设置了格式:非突出显示
493	Mohtadi, M., Prange, M., Oppo, D. W., De Pol-Holz, R., Merkel, U., Zhang, X., Steinke, S., and Luckge, A.: North Atlantic	设置了格式: 字体: 非倾斜 设置了格式: 非突出显示 设置了格式: 字体: 非倾斜
494	forcing of tropical Indian Ocean climate, Nature, 509, 76-80, https://doi.org/10.1038/nature13196, 2014.	111 设置了格式: 非突出显示 111 设置了格式: 宇侯: 非倾斜
495	Mohtadi, M., Prange, M., Steinke, S.: Palaeoclimatic insights into forcing and response of monsoon rainfall, Nature, 533,+	↓ 设置了格式: 非突出显示 ↓ 设置了格式: 字体: 非倾斜
496	191-199, https://doi.org/10.1038/nature17450, 2016.	设置了格式: 非突出显示 带格式的: 缩进: 左侧: 0 厘米, 悬挂缩进: 2 字符, 首行缩进:
497	Mohtadi, M., Prange, M., Schefuss, E., and Jennerjahn, TC.: Late Holocene slowdown of the Indian Ocean Walker	-2 字符, 行距: 2 倍行距
498	circulation, Nat. Commun., 8, 1015, https://doi.org/10.1038/s41467-017-00855-3, 2017.	
499	Niedermeyer, EM., Sessions, AL., Feakins, SJ., and Mohtadi, M.: Hydroclimate of the western Indo-Pacific Warm Pool	
500	during the past 24,000 years, Proc. NationNatl. Acad. Sci. USA, 111, 9402-9406,	

501 <u>https://doi.org/10.1073/pnas.1323585111</u>, 2014.

502	Ota,	Y.,	Kawahata,	Η.,	Kuroda,	J., 1	Suzuki,	A.,	Abe-	Ouchi,	A.,	and	Jimenez	-Espej	o, F.J	": Mil	lennia	l-scale	varia	ability	y of	 - 设	と置了	格式:	非突出	出显示

503 Indian summer monsoon constrained by the western Bay of Bengal sediments: Implication from geochemical proxies

- 504 of sea surface salinity and river runoff, Glob, Planet, Change, 208, https://doi.org/10.1016/j.gloplacha.2021.103719,
- 505 <u>2022.</u>
- Peng, J., Yang, X., Toney, J.-L., Ruan, J., Li, G., Zhou, Q., Gao, H., Xie, Y., Chen, Q., and Zhang, T.: Indian Summer
- 507 Monsoon variations and competing influences between hemispheres since ~35 ka recorded in Tengchongqinghai Lake,
- 508 southwestern China, Palaeogeogr., Palaeoclimatol., Palaeoecol., 516, 113-125,
- 509 <u>https://doi.org/10.1016/j.palaeo.2018.11.040</u>, 2019.
- 510 Prajith, A., Tyagi, A., and John Kurian, P.: Changing sediment sources in the Bay of Bengal: Evidence of summer monsoon
- 511 intensification and ice-melt over Himalaya during the Late Quaternary, Palaeogeogr., Palaeoclimatol., Palaeoecol.,
- 512 511, 309-318, <u>https://doi.org/10.1016/j.palaeo.2018.08.016</u>, 2018.
- 513 Rashid, H., England, E., Thompson, L., and Polyak, L.: Late Glacial to Holocene Indian Summer Monsoon Variability
- 514 Based upon Sediment Records Taken from the Bay of Bengal, Terr., Atmosp. Ocean. Sci., 22, 215-228,
 515 https://doi.org/10.3319/TAO.2010.09.17.02(TibXS), 2011.
- Rayaroth, M.-K., Peter, B.-N., and Mahmud, M.-R.: High-resolution surface circulation of the Bay of Bengal derived from
 satellite observation data, J. Mar. Sci. Technol., 24, 656-668, https://doi.org/10.6119/JMST-015-1215-2, 2016.
- 518 Raza, T., and Ahmad, S.-M.: Surface and deep water variations in the northeast Indian Ocean during 34-6 ka BP: evidence
- 519 from carbon and oxygen isotopes of fossil foraminifera, Quat. Internat., 298, 37-44,
 520 <u>https://doi.org/10.1016/j.quaint.2012.05.005</u>, 2013.
- 521 Reimer, P.-J., Austin, W.-E.-N., Bard, E., Bayliss, A., Blackwell, P.-G., Bronk Ramsey, C., Butzin, M., Cheng, H., Edwards,
- 522 R.L., Friedrich, M., Grootes, P.-M., Guilderson, T.-P., Hajdas, I., Heaton, T.-J., Hogg, A.-G., Hughen, K.-A., Kromer,

- 设置了格式: 非突出显示
设置了格式: 字体: 非倾斜
设置了格式: 非突出显示
设置了格式: 字体: 非倾斜
设置了格式: 非突出显示
\ 设置了格式: 字体: 非倾斜
\ 设置了格式: 字体: 非倾斜, 非突出显示
域代码已更改
设置了格式: 字体: 非倾斜, 非突出显示

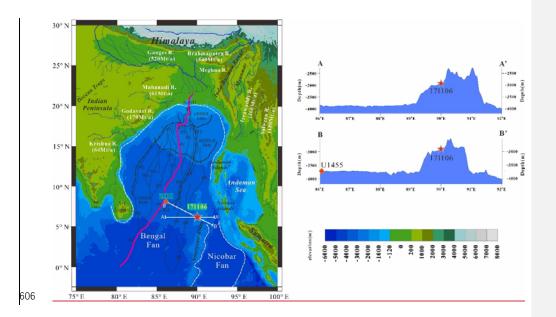
523	B., Manning, SW., Muscheler, R., Palmer, JG., Pearson, C., van der Plicht, J., Reimer, RW., Richards, DA., Scott,	
524	EM., Southon, JR., Turney, CSM., Wacker, L., Adolphi, F., Büntgen, U., Capano, M., Fahrni, SM., Fogtmann-	
525	Schulz, A., Friedrich, R., Köhler, P., Kudsk, S., Miyake, F., Olsen, J., Reinig, F., Sakamoto, M., Sookdeo, A., and	
526	Talamo, S.: The intcal20 northern hemisphere radiocarbon age calibration curve (0-55 cal kBP), Radiocarbon, 62,	
527	725-757, https://doi.org/10.1017/RDC.2020.41, 2020.	设置了格式: 字体: (默认) Times New Roman, 10 磅
528	Rodolfo, KS.: Sediments of Andaman Basin, northeastern Indian Ocean, Mar. Geol., 7, 371-380,	
529	https://doi.org/10.1016/0025-3227(69)90014-0, 1969.	
530	Schneider, T., Bischoff, T., and Haug, GH.: Migrations and dynamics of the intertropical convergence zone, Nature, 513,	
531	45-53, https://doi.org/10.1038/nature13636, 2014.	
532	Schott, FA., and McCreary, JP.: The monsoon circulation of the Indian Ocean, Progr. Oceanogr., 51, 1-123,	
533	https://doi.org/10.1016/s0079-6611(01)00083-0, 2001.	
534	Seo, I., Khim, BK., Cho, H.G., Huh, Y., Lee, J., and Hyeong, K.: Origin of the Holocene Sediments in the Ninetyeast	
535	Ridge of the Equatorial Indian Ocean, Ocean Sci. J., https://doi.org/10.1007/s12601-021-00052-w, 2022.	
536	Shankar, D., Vinayachandran, PN., and Unnikrishnan, AS.: The monsoon currents in the north Indian Ocean, Progr.	
537	Oceanogr., 52, 63-120, https://doi.org/10.1016/s0079-6611(02)00024-1, 2002.	
538	Stoll, H. M., Vance, D., and Arevalos, A.: Records of the Nd isotope composition of seawater from the Bay of Bengal:	
539	Implications for the impact of Northern Hemisphere cooling on ITCZ movement, Earth Planet. Sci. Lett., 255, 213-	
540	228, https://doi.org/10.1016/j.epsl.2006.12.016, 2007.	
541	Sun, Y., Clemens, S.C., Morrill, C., Lin, X., Wang, X., and An, Z. Influence of Atlantic meridional overturning circulation	设置了格式: 非突出显示
542	on the East Asian winter monsoon, Nat. Geosci. 5, 46-49. https://doi.org/10.1038/ngeo1326, 2011.	设置了格式: 非突出显示 设置了格式: 字体: 非倾斜
543	Svensson, A., Andersen, KK., Bigler, M., Clausen, HB., Dahl-Jensen, D., Davies, SM., Johnsen, SJ., Muscheler, R.,	设置了格式: 非突出显示 () (设置了格式: 字体: 非倾斜
544	Parrenin, F., Rasmussen, SO., Röthlisberger, R., Seierstad, I., Steffensen, JP., and Vinther, BM.: A 60 000 year	\/ (设置了格式: 非突出显示 \/ (设置了格式: 字体: 非倾斜
	25	域代码已更改

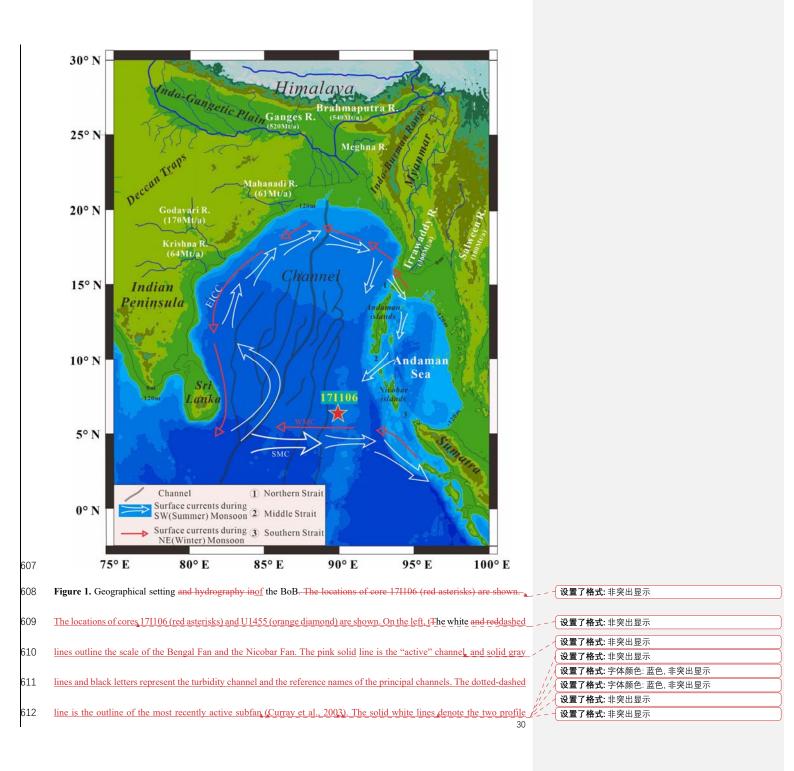
545	Greenland stratigraphic ice core chronology, Clim. Past, 4, 47-57, https://doi.org/10.5194/cp-4-47-2008, 2008.	
546	Tan, L., Shen, CC., Lowemark, L., Chawchai, S., Edwards, RL., Cai, Y., Breitenbach, SFM., Cheng, H., Chou, YC.,	
547	Duerrast, H., Partin, JW., Cai, W., Chabangborn, A., Gao, Y., Kwiecien, O., Wu, CC., Shi, Z., Hsu, HH., and	
548	Wohlfarth, B.: Rainfall variations in central Indo-Pacific over the past 2,700 y, Proe. Nation. Acad. Sci. USA, 116,	
549	17201-17206, https://doi.org/10.1073/pnas.1903167116, 2019.	
550	Thompson, WG., and Goldstein, SL.: A radiometric calibration of the SPECMAP timescale, Quat. Sci. Rev., 25, 3207-	
551	3215, <u>https://doi.org/10.1016/j.quascirev.2006.02.007</u> , 2006.	
552	Thirumalai, K., DiNezio, P.N., Tierney, J.E., Puy, M., Mohtadi, M.: An El Niño Mode in the Glacial Indian Ocean?	
553	Paleoceanogr. Paleoclimatol., 34, 1316-1327, https://doi.org/10.1029/2019pa003669, 2019.	
554	Tierney, J.E., Pausata, F.S.R., and deMenocal, P.; Deglacial Indian monsoon failure and North Atlantic stadials linked by	设置了格式: 非突出显示
555	Indian Ocean surface cooling, Nat. Geosci., 9, 46-50, https://doi.org/10.1038/ngeo2603, 2015.	设置了格式: 非突出显示 设置了格式: 非突出显示
556	Tripathy, GR., Singh, SK., and Bhushan, R.: Sr-Nd isotope composition of the Bay of Bengal sediment i: Impact of	设置了格式: 字体: 非倾斜 设置了格式: 字体: 非倾斜, 非突出显示
557	climate on erosion in the Himalaya, Geochem. J., 45, 175-186, 2011.	し置了格式: 字体: 非倾斜 していたい (0) (0) (0) していたい (0) (0) (0)
558	Tripathy, GR., Singh, SK., and Ramaswamy, V.: Major and trace element geochemistry of Bay of Bengal sediments:	(人 设置了格式: 字体: 非倾斜 人 设置了格式: 字体: (默认) Times New Roman 设置了格式: 非突出显示
559	Implications to provenances and their controlling factors, Palaeogeogr., Palaeoclimatol., Palaeoecol., 397, 20-30,	
560	https://doi.org/10.1016/j.palaeo.2013.04.012, 2014.	
561	Turner, S., and Foden, J.: U, Th and Ra disequilibria, Sr, Nd and Pb isotope and trace element variations in Sunda arc lavas:	
562	predominance of a subducted sediment component, Contr. Mineral. Petrol., 142, 43-57,	
563	https://doi.org/10.1007/s004100100271, 2001.	
564	Waelbroecka, C., Labeyrieab, L., Michela, E., Duplessya, JC., McManusc, JF., Lambeckd, K., Balbona, E., and	
565	Labracherie, M.: Sea-level and deep water temperature changes derived from benthic foraminifera isotopic records,	
566	Quat. Sci. Rev., 21, 295-305, https://doi.org/10.1016/s0277-3791(01)00101-9, 2002.	

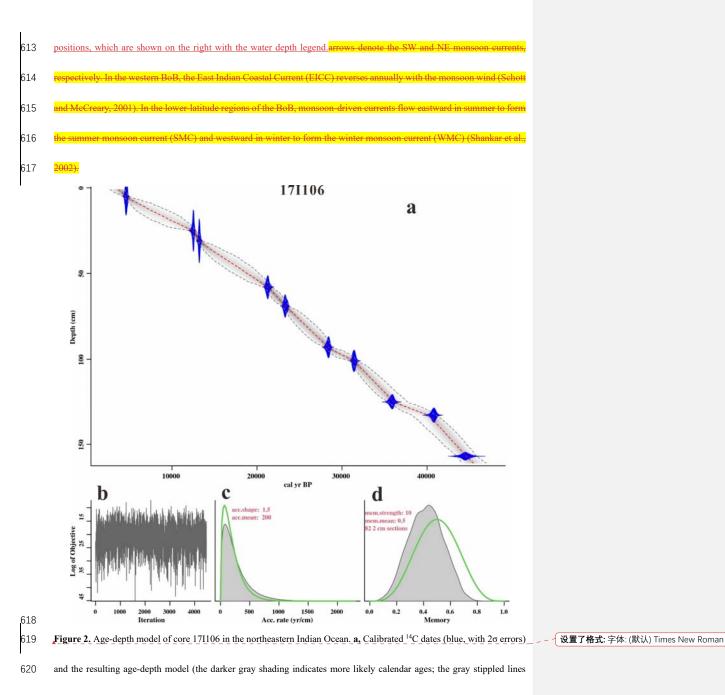
567	Wang, Y.V., Larsen, T., Lauterbach, S., Andersen, N., Blanz, T., Krebs-Kanzow, Gierz, P., and Schneider, R.R.: Higher sea		设置了格式: 非突出显示
568	surface temperature in the Indian Ocean during the Last Interglacial weakened the South Asian monsoon, P. Natl.		
500	surface temperature in the indian ocean during the Last intergratian weakened the South Asian monsoor, raited.	17.1	设置了格式: 宇体: 非倾斜
500		125	
569	Acad. Sci. USA,119, e2107720119. https://doi.org/10.1073/pnas.2107720119, 2022.		设置了格式: 字体:非倾斜,非突出显示
		111	设置了格式: 字体:非倾斜
570	Weber, M.E., Lantzsch, H., Dekens, P., Das, S.K., Reilly, B.T., Martos, Y.M., Meyer-Jacob, C., Agrahari, S., Ekblad, A.,	- 11.	设置了格式: 字体:非倾斜,非突出显示
			设置了格式: 字体:非倾斜
571	Titschack, J., Holmes, B., and Wolfgramm, P. 200,000 years of monsoonal history recorded on the lower Bengal Fan		域代码已更改
		N	设置了格式: 非突出显示
572	- strong response to insolation forcing Glob Planet Change, 166, 107-119	\sim	设置了格式: 非突出显示
		Se	设置了格式: 非突出显示
573	https://doi.org/10.1016/j.gloplacha.2018.04.003, 2018.	Million	设置了格式: 非突出显示
		1 111	设置了格式: 字体:非倾斜
574	Weldeab, S., Rühlemann, C., Bookhagen, B., Pausata, FSR., and Perez - Lua, FM.: Enhanced Himalayan Glacial	1 111	设置了格式: 字体: 非倾斜, 非突出显示
574	Weideab, S., Kullenham, C., Dooklagen, D., Fadsaud, F. S. K., and Ferez Eud, F. M., Enhanced Hinnanyan Glacia	11 11	↓ 设置了格式:字体:非倾斜
		111	(设置了格式: 字体: 非倾斜, 非突出显示
575	Melting During YD and H1 Recorded in the Northern Bay of Bengal, Geochem., Geophys., Geosy., 20, 2449-2461,	11.1	【 设置了格式: 字体: 非倾斜
			【 设置了格式: 非突出显示
576	https://doi.org/10.1029/2018GC008065, 2019.	1	【 设置了格式: 非突出显示
1			设置了格式: 非突出显示
577	Weldeab, S., Rühlemann, C., Ding, Q., Khon, V., Schneider, B., and Gray, W.R.; Impact of Indian Ocean surface		设置了格式: 非突出显示
			设置了格式: 非突出显示
578	temperature gradient reversals on the Indian Summer Monsoon, Earth Planet, Sci, Lett., 578, 117327,	s	设置了格式: 非突出显示
			设置了格式: 字体: 非倾斜
579	https://doi.org/10.1016/j.epsl.2021.117327, 2022.	Maria	设置了格式: 字体: 非倾斜, 非突出显示
		9111 V	设置了格式: 字体:非倾斜
580	Winkler, A., Wolf-Welling, T., Stattegger, K., and Thiede, J.: Clay mineral sedimentation in high northern latitude deep-	A MILLY	设置了格式: 字体: 非倾斜, 非突出显示
		1 111	设置了格式: 字体:非倾斜
581	sea basins since the Middle Miocene (ODP Leg 151, NAAG), Interna. J. Earth Sci., 91 (1), 133-148,	1.11	【设置了格式:字体:非倾斜,非突出显示
001		111	设置了格式: 字体:非倾斜
582	https://doi.org/10.1007/s005310100199, 2002.	111	设置了格式:字体:非倾斜,非突出显示
502	<u>nups.//doi.org/10.100///8005510100177</u> , 2002.	11	设置了格式: 非突出显示
583	Yan, Q., Owen, LA., Zhang, Z., Jiang, N., and Zhang, R.: Deciphering the evolution and forcing mechanisms of glaciation	1	设置了格式: 字体: 非倾斜, 非突出显示
000	ran, Q., Owen, L. A., Zhang, Z., Jiang, N., and Zhang, K.: Deciphering the evolution and forcing mechanisms of graciation		设置了格式: 非突出显示
504			设置了格式:字体:非倾斜,非突出显示
584	over the Himalayan-Tibetan orogen during the past 20,000 years, Earth Planet. Sci. Lett., 541, 116295,		
505			
585	https://doi.org/10.1016/j.epsl.2020.116295, 2020.		
586	Ye, W., Liu, S., Fan, D., Zhang, H., Cao, P., Pan, HJ., Li, J., Li, X., Fang, X., Khokiattiwong, S., Kornkanitnan, N., and		

- 587 Shi, X.: Evolution of sediment provenances and transport processes in the central Bay of Bengal since the Last Glacial
- 588 Maximum, Quat. Internat., (in press). <u>https://doi.org/10.1016/j.quaint.2020.12.007</u>, 2020.

.

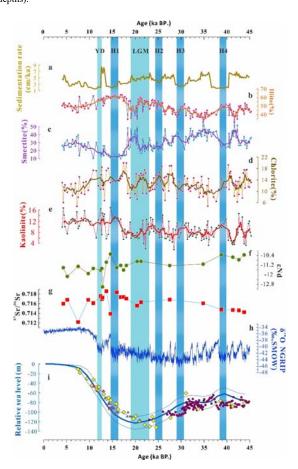

589	Yu, Z., Colin, C., Wan, S., Saraswat, R., Song, L., Xu, Z., Clift, P., Lu, H., Lyle, M., Kulhanek, D., Hahn, A., Tiwari, M.,	
590	Mishra, R., Miska, S., and Kumar, A.: Sea level-controlled sediment transport to the eastern Arabian Sea over the past	
591	600 kyr: clay minerals and Sr-Nd isotopic evidence from IOD site U1457, Quat. Sci. Rev., 205, 22-34,	
592	https://doi.org/10.1016/j.quascirev.2018.12.006, 2019.	
593	Zhang, E., Chang, J., Shulmeister, J., Langdon, P., Sun, W., Cao, Y., Yang, X., and Shen, J.; Summer temperature	- 设置了格式
594	fluctuations in Southwestern China during the end of the LGM and the last deglaciation Earth Planet. Sci. Lett., 509,	设置了格式
595	78-87, https://doi.org/10.1016/j.epsl.2018.12.024, 2019.	
596	Zhang, X., Zheng, Z., Huang, K., Yang, X., and Tian, L.: Sensitivity of altitudinal vegetation in southwest China to changes	、 域代码已更 设置了格式
597	in the Indian summer monsoon during the past 68000 years, Quat. Sci. Rev., 239, 106359,	
598	https://doi.org/10.1016/j.quascirev.2020.106359, 2020.	
599	Zhuravleva, A., Hüls, M., Tiedemann, R., and Bauch, H. A.: A 125-ka record of northern South American precipitation and	
600	the role of high-to-low latitude teleconnections, Quat. Sci. Rev., 270, 107159,	
601	https://doi.org/10.1016/j.quascirev.2021.107159, 2021.	
602	Zorzi, C., Sanchez Goñi, MF., Anupama, K., Prasad, S., Hanquiez, V., Johnson, J., and Giosan, L.: Indian monsoon	
603	variations during three contrasting climatic periods: The Holocene, Heinrich Stadial 2 and the last interglacial-glacial	
604	transition, Quat. Sci. Rev., 125, 50-60, https://doi.org/10.1016/j.quascirev.2015.06.009, 2015.	
605	Figure Captions	


设置了格式:非突出显示 **设置了格式:**非突出显示 **设置了格式:**非突出显示


 设置了格式:
 非突出显示

 域代码已更改

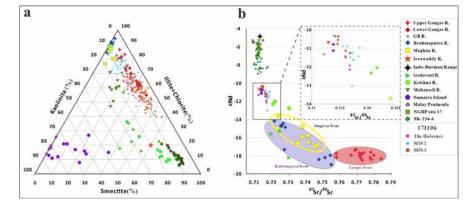
 设置了格式:
 非突出显示



621 show 95% confidence intervals; and the red curve shows the single 'best' model based on the weighted mean age for each 31

depth). b, Number of Markov chain Monte Carlo (MCMC) iterations used to generate the grayscale graphs. c, Prior (green)
and posterior (gray) distributions of the sediment accumulation rates (the mean sediment accumulation rate was ~2
years/cm). d, Prior (green) and posterior (gray) memory distributions (dependence of the sediment accumulation rate
between neighboring depths).

626

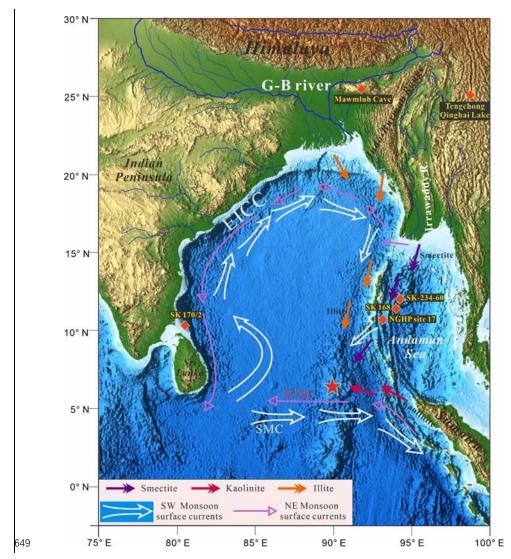

627 Figure 3. Comparison of clay mineral and Sr-Nd isotopes data in the northeastern Indian Ocean with paleoclimate records.

a, Sedimentation rate in core 171106; **b**, **c**, **d**, **e**, illite, smectite, chlorite and kaolinite percentages in core 171106 (thick line

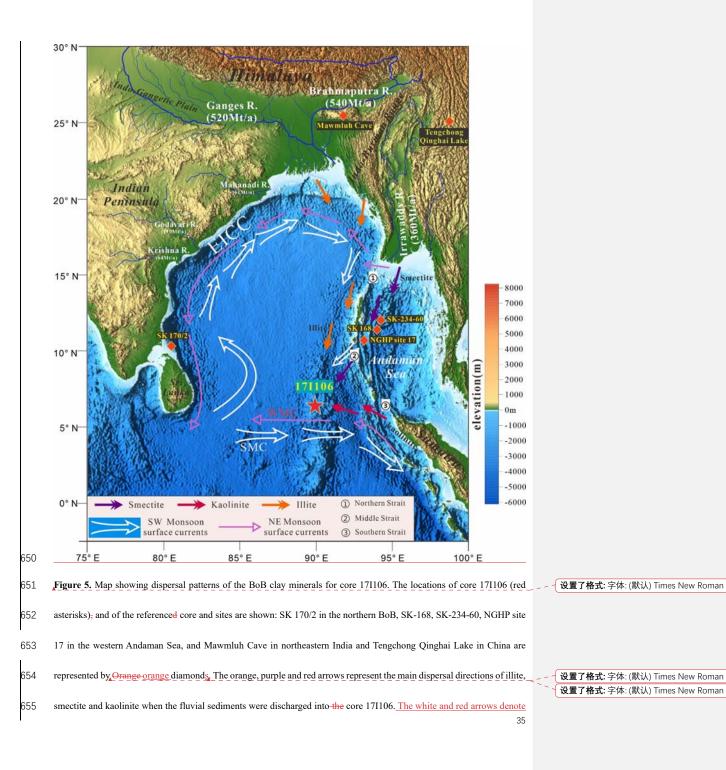
629 represents a 3-point running average); **f**, **g** ⁸⁷Sr/⁸⁶Sr and εNd values of core 17I106 in the northeastern Indian Ocean; **h**,

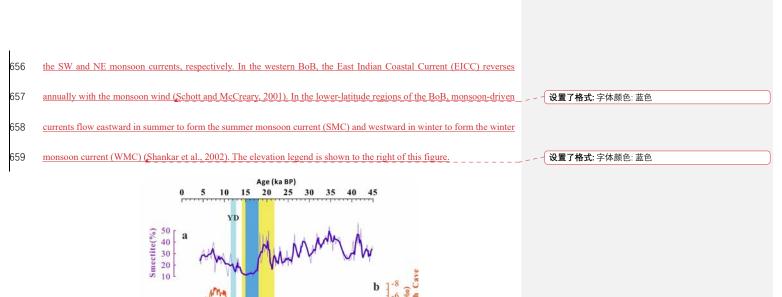
 δ^{18} O data of Greenland ice core NGRIP (Svensson et al., 2008); i, Global sea level as proxy for ice volume, reconstructed from benthic δ^{18} O (thick cyan line, thin cyan line represents the 95% confidence interval, Thompson and Goldstein, 2006), globally distributed corals (yellow dots, Waelbroecka et al., 2002) and sea level data (Triangles and red dots) collected by Grant et al.(2014) and Hanebuth et al. (2000). Blue and cyan bars represent cold climate periods of Heinrich events (H1-

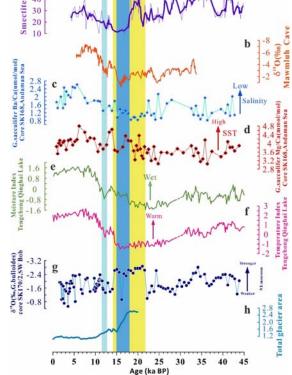
634 H4) together with Younger Dryas (YD) and the last glacial maximum (LGM), respectively.



635


636 Figure 4. Sediment provenance of core 171106 in the northeastern Indian Ocean. a, Sediment provenance discrimination 637 diagram in the northeastern Indian Ocean. For comparison, clay mineral data obtained from sediments collected in the 638 modern Ganges River, Brahmaputra River Lower, Ganges-Brahmaputra River Lower and Meghna River (Khan et al., 2019), 639 Mahanadi and Krishna Rivers of Indian Peninsula (Bejugam and Nayak, 2017), Irrawaddy River (Rodolfo, 1969), and 640 Sumatra and Malay Peninsula rivers (Liu et al., 2012) are also plotted. The referenced cores comprise NGHP Site 17 (Ali 641 et al., 2015), representing the Irrawaddy River as the main clay mineral source in the Andaman Sea. b, Variations in ENd 642 (0) vs. 87Sr/86Sr measured in core 171106 compared with those measured in river sediments and bulk rock samples collected 643 around the BoB. In this diagram, we display data collected from Indian river samples (from the Godavari and Krishna 644 Rivers) (Ahmad et al., 2009); from different parts of the modern G-B River system (Lupker et al., 2013). Measurements 645 taken from sediments obtained from the Irrawaddy River (Colin et al., 1999), formations from the Indo-Burman ranges 646 (Licht et al., 2013) and volcanic products of Sumatra Island (Turner et al., 2001) are also plotted. The referenced cores 33


- 设置了格式: 字体颜色: 蓝色


647 include NGHP Sites 17 and SK-234-60, both of which indicate that the Irrawaddy River is the main Sr-Nd isotope source

648 for the Andaman Sea.

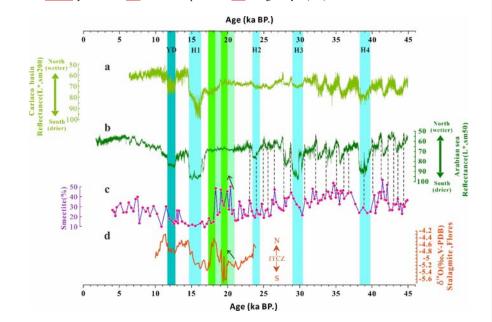


Figure 6. Comparison of smectite percentages in core 171106 with paleoclimate records. **a**, smectite Smectite percentages

662 in core 171106 (thick line represents a 3-point running average); **b**, Mawmluh Cave δ^{18} O record for the interval 33,800 to

5500 years BP (Dutt et al., 2015). c, d, Ba/Ca and Mg/Ca of the mixed layer species G. sacculifer in core SK 168 from the

664 Andaman seaSea, which represent the surface sea salinity and temperature, and the lower salinity and higher temperature 665 showed <u>a</u> strong SW monsoon (Gebregiorgis et al., 2016). e, f, Moisture index and temperature index form-from pollen 666 records from Tengchong Qinghai Lake, respectively (Peng et al., 2019; Zhang et al., 2020). g, δ^{18} O variability record of 667 planktic foraminifera Orbulina universa obtained from core SK-170/2 recovered from the southwestern Bay of Bengal, 668 which represents the strength of the NE monsoon (Gautam et al., 2020). h, Ratio of the modeled total glacier area over the 669 southern parts of the Himalayan-Tibetan orogen to the present level (Yan et al., 2020). Yellow, blue and cyan bars represent 670 the strong NE monsoon period showed shown by line g, the main periods of glacier melting in the southern Himalayas 671 showed shown by line h and the cold climate periods of the Younger Dryas (YD).

672

673 Figure 7. Comparison of smectite percentages with ITCZ north-south shift records. a, L* represents the ITCZ shift from

the Cariaco Basin (Deplazes et al., 2013); b, L* represents the ITCZ shift from the Arabian Sea (Deplazes et al., 2013); c,

Smectite percentages in core 171106; d, Stalagmite δ^{18} O record from Flores (Ayliffe et al., 2013). The gold dotted line

676 denotes the connection between the northward movement of the ITCZ and the peak smectite percentage, and the series of

677 color bars from 21-18 ka represent the ITCZ-shift periods recorded in d. The green bars represent the consistent periods

678 shown in c and d in the late LGM, and the black arrows in c and d indicate great differences between the smectite

percentages and ITCZ record in the EIO. 679

680 Table 1. Carbon-14 and calibrated calendar ages of mixed planktonic foraminifera measured in core 171106 in the ___ 设置了格式: 字体: Times New Roman

38

681 northeastern Indian Ocean.

Number	Depth (cm)	Materials	Measured ^{14}C age (yr BP, $\pm 1\sigma)$	Calendar median age (yr BP)
1	5	mixed planktonic foraminifera	4160±30	4053
2	25	mixed planktonic foraminifera	10690±40	11880
34	31	mixed planktonic foraminifera	11460±40	12801
4	58	mixed planktonic foraminifera	17910±50	20710
5	69	mixed planktonic foraminifera	20050±60	23183
6	93	mixed planktonic foraminifera	24590±90	27883
7	101	mixed planktonic foraminifera	27820±120	31074
8	125	mixed planktonic foraminifera	31820±200	35455
9	133	mixed planktonic foraminifera	36370±280	40434
10	157	mixed planktonic foraminifera	42190±560	44167