Supplement of

Impact of terrestrial biosphere on the atmospheric CO₂ concentration across Termination V

Gabriel Hes et al.

Correspondence to: Gabriel Hes (gabriel.hes@ens.fr)

<table>
<thead>
<tr>
<th>Depth (cmcd)</th>
<th>Age (kyrs BP)</th>
<th>Sed. rate (cm/kyr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>136</td>
<td>401</td>
<td>31</td>
</tr>
<tr>
<td>138,5</td>
<td>405</td>
<td>63</td>
</tr>
<tr>
<td>144,17</td>
<td>431</td>
<td>22</td>
</tr>
<tr>
<td>172,17</td>
<td>508</td>
<td>36</td>
</tr>
</tbody>
</table>

Table S1: Tie points used to build U1386 age model (from Kaboth et al. (2017))

Figure S1: Age model for U1386 pollen record. Each cross corresponds to an analysed pollen sample.
Figure S2: Reconstructed pollen concentration (10^3/cm3) as a function of depth (cmcd) at site U1386 defined as the following: \[\frac{\text{Pollen counts}}{\text{Added Lycopodium number}} \times \frac{\text{Lycopodium counts}}{\text{Sample volume}}. \] Numbers and corresponding shadings refer to the pollen zones defined in Section 3.1. The dashed line indicates the onset of the terrestrial interglacial.
Figure S3: Comparison of ice melt proxies from different records. δ¹⁸O from (Kaboth et al., 2017) at Site U1386 measures ice volume. C₃⁷:₄ at site MD03-2699 (Rodrigues et al., 2017) indicates freshwater input resulting from iceberg melting and Si/Sr (Hodell et al., 2008) driven by detrital silicate deposition (European ice sheet sources) depicts arrival of IRDs at Site U1308.
Quantitative climatic reconstructions: Paleoclimate reconstructions from fossil pollen is based on the Actualism principle whereby past terrestrial biosphere had the same ecological and climatic requirements as present ones. The underlying hypothesis, which is fulfilled for the studied period (Gould, 1965; Birks and Birks, 1980), is that fossil pollen species still exist nowadays. We obtain three quantitative estimates of Termination V climate (temperature and precipitation, Fig. S4) by selecting the modern climate tolerances of the nearest living relatives of the fossil taxa present in the pollen assemblage with different reconstruction methods applied to each sample: Modern Analogue Technique (MAT), Weighted Averaging (WA) and Weighted Averaging-Partial Least squares (WA-PLS) (Salonen et al., 2012). We use the extensive European Modern Pollen Database (Davis et al., 2013) which includes 3813 pollen assemblages.
Figure S5: Forest pollen percentage time series for all compiled records across TV (time in kyr BP).
Figure S6: Simulated temperature (light purple, current Degla-I experiment) and temperature reconstruction (brown, by Shakun et al., 2012) across termination I. The moving 100 yr-window average of the simulated temperature is shown in dark purple. For more analysis of the simulated changes across T1 we refer to Roche et al. (2011).

References

Shakun, Jeremy D., et al. «Global warming preceded by increasing carbon dioxide concentrations during the last deglaciation.» (Springer Science and Business Media LLC) 484 (April 2012): 49–54.