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Abstract. The relative role of external forcing and of intrinsic variability is a key question of climate variability in general

and of our planet’s paleoclimatic past in particular. Over the last 100 years since Milankovitch’s contributions, the importance

of orbital forcing has been well established for the last 2.6 Myr and their Quaternary glaciation cycles. A convincing case

has also been made for the role of several internal mechanisms that are active on time scales both shorter and longer than

the orbital ones. Such mechanisms clearly have a causal role in Dansgaard-Oeschger and Heinrich events, as well as in the5

mid-Pleistocene transition. We introduce herein a unified framework for the understanding of the orbital forcing’s effects on

the climate system’s internal variability on time scales from thousands to millions of years. This framework relies on the

fairly recent theory of nonautonomous and random dynamical systems and it has been successfully applied so far in the

climate sciences for problems like the El Niño-Southern Oscillation, the oceans’ wind-driven circulation, and other problems

on interannual to interdecadal time scales. Finally, we provide further examples of climate applications and present preliminary10

results of interest for the Quaternary glaciation cycles in general and the mid-Pleistocene transition in particular.

1 INTRODUCTION AND MOTIVATION

In the early 20th century, Milutin Milankovitch presented his theory of ice ages (Milankovitch, 1920). Based on his own

calculations and on insightful suggestions from Wladimir Köppen and Alfred Wegener (Imbrie and Imbrie, 1986), he proposed

that the transitions between glacial and interglacial climate conditions were primarily caused by variations of incoming solar15

radiation, which by that time was known to vary in a quasi-periodic manner on slow time scales of tens to hundreds of thousands

of years (Poincaré, 1892–1899). These variations of insolation, which arise as a consequence of the gravitational interaction of

the Earth with the other planets and with its own Moon, are typically referred to as orbital forcing.

The orbital forcing comprises variations in (i) the eccentricity of the Earth’s orbit around the sun with dominant spectral

peaks around 400 kyr and 100 kyr; (ii) the obliquity, or axial tilt, i.e., the angle between the Earth’s rotational and its orbital20
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axis, with dominant periodicity around 41 kyr; and (iii) the climatic precession, which determines the phase of the summer

solstice along the Earth’s orbit and has its most pronounced spectral power around 23 kyr and 19 kyr (Berger, 1978).

For two centuries or so of modern geology, records of our planet’s physical and biological past were merely discrete se-

quences of strata with specific properties, like coloration and composition (Imbrie and Imbrie, 1986). This state of affairs led,

after the initial success of the Milankovitch (1920) theory of the ice ages, to severe criticism of the temporal mismatch between25

insolation minima and glaciation maxima (e.g., Flint, 1971).

The advent of marine-sediment cores after World War II led, for the first time, to the availability of records that were, more or

less, continuous in time. Like all climate records, these cores covered limited time intervals and did so with limited resolution

and with inaccuracies in absolute dating, as well as in the quantities being measured. Moreover, they posed the problem of

inverting proxy records of isotopic and microbiotic counts to physical quantities like temperature and precipitation.30

In spite of these limitations, the spectral analysis of deep-sea records allowed Hays et al. (1976) to overcome the difficulties

previously encountered by the orbital theory of Quaternary glaciations, in particular the absence of the imprint of precesional

and obliquity peaks in glaciation proxy records. Specifically, Hays et al. (1976) were able to create a composite record — back

to over 400 kyr b2k, i.e., over 400 000 yr before the year 2000 CE — from two relatively long marine-sediment records of the

best quality available in the early 1970s. The authors demonstrated therewith that significant precessional and obliquity peaks35

near 20 kyr and 40 kyr were present in this record’s spectral analysis; see Fig. 1. The power spectrum in the figure also made

it quite clear that these peaks were superimposed on a continuous background — the stippled area in the figure — whose total

variance much exceeded the sum of the variances present in the peaks.

The work of Hays et al. (1976) and of the subsequent CLIMAP and SPECMAP projects resulted in a much more detailed

spatio-temporal mapping of the Quaternary and extended the belief in the pacemaking role of orbital variations into the more40

remote past. The spectral peaks near 20 kyr and 40 kyr have been widely interpreted within the geological community as

evidence for a linear response of the climate system to the orbital forcing (Imbrie and Imbrie, 1986). A third spectral peak

at 100 kyr was, however, the most pronounced, but much more difficult to reconcile with the orbital theory of Quarternary

glaciations. Since no sufficiently pronounced counterpart can be found in the spectra of the seasonal insolation forcing, Hays

et al. (1976) hypothesized a nonlinear response of the climate system in order to explain this dominant periodicity of the late-45

Pleistocene glacial–interglacial cycles. At the same time, the advent of higher-resolution marine cores and, especially, ice cores

from both Greenland and the Antarctica, led to the discovery of Heinrich events (Heinrich, 1988), Dansgaard-Oeschger (D-O)

events (e.g., Dansgaard et al., 1993), and Bond cycles (Bond et al., 1997), which were hard to explain by orbital forcing, given

their shorter time scales.

In fact, interest in past climates was heightened not only by these striking observational discoveries, but also by the grow-50

ing concerns about humanity’s impact on the climate (SMIC, 1971; National Research Council, 1975). Given the declining

temperatures between the 1940s and 1970s — on the one hand, as shown in Fig. 21 — and the substantial advances in the

description of the Quaternary glaciations, on the other, that interest was mainly in the planet’s falling into another ice age (e.g.,

National Research Council, 1975).
1see also Ghil and Vautard (1991, Fig. 3)
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Figure 1. Power spectrum of a composite δ18O record using deep-sea cores RC11-120 and E49-18. This figure is based on the work of Hays

et al. (1976), as presented by Imbrie and Imbrie (1986). Reprinted by permission from Springer Nature Customer Service Centre GmbH:

Springer Nature. Topics in Geophysical Fluid Dynamics: Atmospheric Dynamics, Dynamo Theory, and Climate Dynamics by Ghil and

Childress;©1987 by Springer Science+Business Media New York. All rights reserved. (1987).

As a result of the twofold stimulation provided by data about past glaciations and concern about future ones, a number of55

researchers in the early-to-mid 1970s worked on energy balance models (EBMs) of climate with multiple stable steady states

(Held and Suarez, 1974; North, 1975; Ghil, 1976). Two such stable “equilibria” corresponded to the present climate and to a

“deep-freeze,” as it was called at the time, i.e., to a totally ice-covered Earth. At the time there was some disbelief about this

second climate, as its temperatures were much lower than those associated with the Quaternary glaciations and incompatible

with paleoclimatic evidence available in the 1970s.60

New geochemical evidence, though, led in the early 1990s to the discovery of a snowball or, at least, slushball Earth prior to

the emergence of multicellular life, sometime before 650 Myr b2k (Hoffman et al., 1998). It thus turned out that this climate

state — predicted by several EBMs, and confirmed by a general circulation model (GCM) with much higher spatial resolution
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(Wetherald and Manabe, 1975) — had actually occurred and it is now being modeled in much greater detail (Pierrehumbert,

2004; Ghil and Lucarini, 2020).65

On the other hand, it also became clear that these early models, whose only stable solutions were stationary, could not

reproduce very well the wealth of variability that the proxy records were describing, not even in the presence of stochastic

forcing (e.g., Ghil, 1994). Certain theoretical paleoclimatologists turned, therefore, to coupling a “climate” equation, with

temperature as its only dependent variable, with an ice-sheet equation (Källén et al., 1979; Ghil and Le Treut, 1981) or a

carbon-dioxide equation (Saltzman et al., 1981; Saltzman and Maasch, 1988). These coupled climate models, albeit highly70

idealized, did produce oscillatory solutions that captured some of the features of the Quaternary glaciation cycles as known

at that time. For instance, the models of Ghil and associates (Källén et al., 1979; Ghil and Le Treut, 1981) captured the

phase differences between peak ice sheet extent and minimum temperatures in the North Atlantic suggested by Ruddiman and

McIntyre (1981), while the work of Saltzman and associates (e.g., Saltzman and Maasch, 1988) captured the asymmetry of the

glaciation cycles with their more rapid “terminations” (Broecker and Van Donk, 1970).75

The stable self-sustained oscillations of these coupled models, though, were totally independent of any orbital or other time-

dependent forcing, i.e. the solar input to their radiative budget was constant in time. Hence, they could not capture the wealth

of spectral features, with their orbital and other peaks, of the paleorecords available by the 1980s. The basic quandary of the

Quaternary glaciation cycles — at least from the point of view of theoretical climate dynamics (Ghil and Childress, 1987,

Figure 2. Comparison of six analyses of the annually and globally averaged surface temperature anomalies through 2018. NASA = Na-

tional Aeronautics and Space Administration; NOAA = National Oceanic and Atmospheric Administration. Reprinted by permission from

John Wiley & Sons Inc.: American Geophysical Union. Journal of Geophysical Research: Atmospheres. Improvements in the GISTEMP

Uncertainty Model. Lenssen et al.;©2019. American Geophysical Union. All Rights Reserved.(2019)
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Part IV) — is formulated in Fig. 3 below; see also Ghil (1994): How does the quasi-periodic orbital forcing, with its relatively80

narrow spectral peaks, act on the climate’s internal variability to produce a response that is characterized by significant spectral

peaks superimposed on a broad continuous background? And, in particular, how does the climate’s spectral peak at 100 kyr

arise, given its absence in the power spectrum of the forcing?
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Figure 3. The theoretical quandary of modeling the Quaternary glaciation cycles, illustrated here by schematic diagrams of the composite

power spectra of (a) the paleorecords and (b) the orbital forcing. In panel (a), the dominant peak for the Late Pleistocene is near 100 kyr,

while in panel (b) eccentricity forcing is distributed over several spectral lines. The peaks at 6–8 kyr and 1–2 kyr in panel (a) correspond to

Bond cycles (Bond et al., 1992, 1993) and to the mean recurrence of D-O events and they lack a match in the forcing lines of panel (b).

In this paper, we try to show a path toward resolving the four fundamental questions listed in Box 1. In the next section, we

summarize existing results on how the climate system’s intrinsic variability arises on Quaternary time scales, and on how this85

variability is modified by the time-dependent orbital forcing, which was added to the previously autonomous climate models

as the next step in paleoclimate modeling evolution; see, for instance, Le Treut and Ghil (1983) and Le Treut et al. (1988) vs.

Ghil and Le Treut (1981). In Sect. 3, we outline a more general framework for the study of such mechanisms, as given by the

theory of nonautonomous and random dynamical systems (NDSs and RDSs), and sketch an application of this theory to other

climate problems. An application to the problem at hand is proposed in Sect. 4 and conclusions follow in Sect. 5.90
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Based on the discussion so far and on the discrepancy between panels (a) and (b) of Fig. 3, we propose
herein the following questions that need to be resolved, still, for a thorough understanding of Quaternary
climate variability:

1. How does the dominant peak of the observed variability near 100 kyr arise, given the rather diffuse
orbital forcing at this periodicity?

2. What causes the continuous part of the observed spectrum, which contains most of the variance?

3. What gives rise to the high-frequency peaks due to the sudden warmings and to the approximate
periodicities associated with Heinrich and D-O events, among others?

4. What are the contributions of the orbital forcing and of the climate system’s intrinsic variability
to items (1)–(3) and how does the former one modify the latter?

1
Box 1. Fundamental questions regarding the Quaternary glacial–interglacial cycles.

2 SELF-SUSTAINED CLIMATE OSCILLATORS

2.1 A Simple Mechanism for Climate Oscillations

We follow Ghil (1994) in sketching the simplest physical mechanism for a self-sustained climate oscillation at fixed insolation

forcing. Consider the Källén et al. (1979, KCG hereafter) oscillator, the first such self-sustained climate oscillator, to the best

of our knowledge. The model itself was built from the ground up, coupling a scalar version of the Ghil (1976) energy balance95

model (EBM) with a simplified, scalar version of the Weertman (1964, 1976) ice sheet model (ISM). The model’s details and

further analyses of its ingredients and variants can be found in several references (e.g., Crafoord and Källén, 1978; Ghil and

Tavantzis, 1983; Ghil, 1984; Bódai et al., 2015).

The basic workings of this climate oscillator can be represented by two coupled ordinary differential equations (ODEs),

written symbolically as100

Ṫ '−V, (1a)

V̇ ' T. (1b)

Here T stands for global temperature and V for global ice volume, while Eq. (1a) is an EBM and Eq. (1b) is an ice-sheet

model (ISM). The ‘'’ symbol stands for a binary relation of rough proportionality and is intended to neglect the details of the

equation’s right-hand side (RHS), including its nonlinearities. The EBM represents the well-known ice-albedo feedback used105

by both Budyko (1969) and Sellers (1969), while the ISM relies on the precipitation-temperature feedback postulated by KCG

and used also by Ghil and Le Treut (1981), who coined the term.
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The latter feedback can be better understood by writing

V̇ ' p, (2a)

p' pac− pab, (2b)110

pac ' T. (2c)

Here p is net precipitation on the single ice sheet of the globally integrated model, given by the difference in Eq. (2b) between

the accumulation pac and the ablation pab (KCG).

As first observed by George C. Simpson — the meteorologist of Robert F. Scott’s Terra Nova expedition to the Antarctica

in 1910–1912 and later the longest serving Director of the U.K. Meteorological Office — warmer winters have more snow and115

hence, at least in central Antarctica, the increase of pac with T exceeds the more obvious increase of pab with T . Hence p' T
and we have derived therewith Eq. (1b), V ' p' T . For more recent studies of the precipitation-temperature feedback, see

Tziperman and Gildor (2002).

More generally, the presence of feedbacks of opposite sign in a system of two linear coupled ODEs

ẋ= y, ẏ =−x,

leads to an oscillation, with the solution given by two trigonometric functions in quadrature with each other, x(t) = sin(t), y(t) =

cos(t) = sin(t+π/2), and the trajectory describing a circle in the (x,y) phase plane, x2(t)+y2(t) = 1. In a nonlinear system,120

however — like the full KCG model or any other climate oscillator mentioned so far — the possibility of an oscillation, as

indicated by the system (1), is actually realized in the explicit, full set of equations only for certain parameter values and not

for others.

This can be understood by considering the so-called normal form of a Hopf bifurcation, which leads from a stable steady

state, called a fixed point in dynamical systems theory, to a stable oscillatory solution, called a limit cycle. The easiest way125

to see this transition is by writing the normal form in polar coordinates, as in Arnold (2012) and in Ghil and Childress (1987,

Sect. 12.2), namely,

ż = (µ+ ıω)z+ c(zz̄)z. (3)

Here z = x+ ıy is complex, where ı=
√
−1 is the imaginary unit, while µ is a real bifurcation parameter, and c,ω are real and

nonzero. Note that the KCG model per se is not in the normal form above and we will discuss its bifurcation parameter µ∗ in130

the next subsection.

A very natural transformation of variables,

ρ= zz̄ > 0, z = ρ1/2 exp(ıθ) (4)

leads from the complex ODE (3) to the system of two real and decoupled ODEs,

ρ̇= 2ρ(µ+ cρ), (5a)135

θ̇ = ω. (5b)
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Figure 4. Supercritical Hopf bifurcation. (a) Vector field ż(z) of Eq. (3) for the parameter values µ=−1 and c=−1; z = x+ ıy. In this

case, the origin constitutes the only stable fixed point and all trajectories will spiral into this point, as illustrated by the single brown trajectory.

(b) Vector field ż(z) and 3 trajectories for µ= 1. In this case, the origin is an unstable fixed point, while the limit cycle with radius ρ1/2∗ = 1

constitutes the only stable solution. Trajectories that start inside this limit cycle, with ρ(t0)< ρ∗, tend to it by spiraling out — as illustrated by

the magenta trajectory — while trajectories that start outside the limit cycle, with ρ(t0)> ρ∗, approach it by spiraling inward, as illustrated

by the gray trajectory. (c) Dependence of the stable solution of Eq. (3) on the parameter µ, for c=−1. For µ≤ 0, the single stable solution

is the fixed point located at the origin, ρ≡ 0. For µ > 0, the stable solution is the limit cycle given by ρ= µ.

Equation (5b) simply provides an angular rotation around the origin ρ= 0 = x= y, since the complex exponential in Eq. (4)

is periodic with period 2π. Equation (5a) is quadratic in ρ and thus it can have two real roots, ρ= ρ0 = 0 and ρ= ρ∗ =−µ/c.
But ρ has to be positive and so, in the case in which c < 0, the only possible solution for µ < 0 is the origin and it is stable,

since ρ(µ+ cρ) is negative for ρ > 0, in this case; hence, ρ has to be monotonically decreasing, i.e., all the solutions of Eq. (5)140

spiral into the origin. The Hopf bifurcation from this stable steady state to a periodic solution, i.e., a limit cycle with radius

ρ1/2 = ρ
1/2
∗ , occurs as µ crosses 0. Since now ρ(µ+ cρ)> 0 for 0< ρ < ρ∗ and ρ(µ+ cρ)< 0 for ρ > ρ∗, the limit cycle is

stable and trajectories spiral out from inside this cycle and into it from outside; see Fig. 4 for the so-called supercritical, or soft,

Hopf bifurcation case with c < 0.

2.2 Intrinsic Climate Oscillations and the Mid-Pleistocene Transition (MPT)145

In this subsection, we present an argument for the role of intrinsic oscillations in the mid-Pleistocene transition (MPT). The first

point to be made is that — while orbital forcing clearly plays a major role in the power spectrum of the Quaternary’s climatic

variability — it cannot be, in and of itself, the cause of the MPT. Indeed, changes in the solar system’s orbital periodicities only

occur on much longer time scales than the entire Quaternary’s duration (Varadi et al., 2003; Laskar et al., 2004). Our argument

continues with a further analysis of the Hopf bifurcation presented in the previous subsection. Such an analysis was carried out150

for the KCG model by Ghil and Tavantzis (1983).
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Physically speaking, the presence or absence of the regular, purely periodic oscillations obtained by KCG and illustrated

in Ghil and Childress (1987, Fig. 12.6) depends on whether c≷ 0 in Eq. (5a). The KCG model’s bifurcation parameter is

µ∗ = cT /cL, where cT is the heat capacity in its EBM, while cL is the “mass capacity” in its ISM (Ghil and Tavantzis, 1983).

Large µ∗ corresponds physically to a very small, possibly pre-Pleistocene ice cap (Ghil, 1984; Saltzman and Sutera, 1987). At155

these values of µ∗, the KCG model’s isoclines and fixed points — the latter being given by the intersection of the former — are

very different from those that are obtained for Quaternary-size ice sheets, for which cL is comparable in value to cT ; see Ghil

and Tavantzis (1983, Figs. 3–5). As µ∗ decreases to O(1), i.e., as we proceed from very small to more substantial ice sheets,

the fixed point transfers its stability to a branch of periodic solutions, by a subcritical Hopf bifurcation (Källén et al., 1979;

Ghil and Tavantzis, 1983); see also Ghil and Childress (1987, Figs. 12.8 and 12.9).160

To clarify the simple physical concepts that underlie sub- and supercritical Hop bifurcations, let us consider a purely me-

chanical oscillator with mass m, a spring kx and a dashpot αẋ (Landau and Lifshitz, 1960; Jordan and Smith, 1987),

mẍ=−α(x)ẋ− k(x)x. (6)

If k = const. and α = const., we have the simplest, linear setup, but we will be interested here in the nonlinear cases. Normalizing

by the mass m and not changing notation otherwise, we get by rearranging terms and adding a periodic forcing165

ẍ+α(x)ẋ+ k(x)x= F cos(ωt). (7)

Two classical nonlinear cases are those of the Duffing (1918) equation, in which k(x) = x2 and α = const., and of the Van der

Pol (1926) equation, in which k = const. and α(x) = ν(x2− 1) . The fully nonlinear case in which both the spring and the

damping are nonlinear, with k(x) = x2 and α(x) = ν(x2− 1), is known as the Van der Pol–Duffing oscillator (e.g., Jackson,

1991; Pierini et al., 2018). Note that all three types of nonlinear oscillators can exhibit chaotic behavior even in the presence of170

simply periodic forcing (e.g., Guckenheimer and Holmes, 1983; Pierini et al., 2018, and references therein). The idea of using

such simple, classical oscillators in modeling Quaternary glaciation cycles goes back to Saltzman et al. (1981).

Jordan and Smith (1987, Sect. 5.6) discuss specifically the case of a soft and a hard spring for a generalized Duffing equation,

with k(x) = k0 + εh(x), where 0< |ε| � 1, h(−x) = h(x), and h′′ > 0. A spring is soft if it is sublinear, ε < 0, and hard if it

is superlinear, ε > 0; see their Eq. (5.37) and Figs. 5.4(a,b), with h(x) = x2.175

The supercritical Hopf bifurcation in the absence of forcing is analogous to the nonlinear response of a soft, sublinear spring

to periodic forcing in which the oscillations in the position x of the mass m increase gradually in amplitude as the spring

constant k0 increases past a critical value k∗, while the subcritical case is analogous to the response of a hard, superlinear

spring, for which the oscillations in x jump suddenly from zero amplitude to a finite amplitude as the spring constant k0

crosses the value k∗. Please compare the behavior of supercritical and subcritical Hopf bifurcations in Ghil and Childress180

(1987, Sect. 12.2 and Figs. 12.7–12.9)) and see Jordan and Smith (1987, Fig. 5.7) for the change in the nonlinear response of

a Duffing oscillator as its spring changes from soft, with ε < 0, to hard, with ε > 0.

There is a clear-cut analogy with the mid-Pleistocene transition, occurring at roughly 0.8 Ma b2k, at which small-amplitude

climate variability with a dominant periodicity near 40 kyr becomes larger, dominated by a periodicity that is close to 100 kyr,
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as well as being more irregular (e.g., Huybers, 2009; Quinn et al., 2017; Rousseau et al., 2020). A fair number of distinct185

dynamical theories for this transition have been formulated (e.g., Maasch and Saltzman, 1990; Ghil, 1994; Crucifix, 2012;

Ashwin and Ditlevsen, 2015; Daruka and Ditlevsen, 2016; Omta et al., 2016; Ditlevsen and Ashwin, 2018). A rather obvious

one is that a Hopf bifurcation occurs at that point, which leads to a more vigorous response to the multi-periodic orbital forcing;

thus, the latter does not need to change in the least in order to explain the observed phenomena. In Saltzman and Sutera (1987),

there is only a comment on the likely role of a Hopf bifurcation in the transition, but their Fig. 3 suggests that, in their model,190

such a bifurcation would have to be of the supercritical type, and lead to a fairly gradual transition.

To the contrary, the subcritical Hopf bifurcation of the KCG and Ghil and Le Treut (1981) oscillators would have to lead to

a more abrupt transition, as suggested by Ghil (1984). Later Crucifix (2012) showed that the models by Saltzman and Maasch

(1990, 1991) exhibit MPT-like behavior via supercritical or subcritical Hopf bifurcations, depending on the parameter values.

The existing δ18O and δ13C records might or might not have sufficient resolution back in time up to 1.2 Ma to settle this195

question about the abruptness of the transition. In case some of them do, an objective test of suddenness — as proposed by

Bagniewski et al. (2021) for the high-resolution NGRIP record (North Greenland Ice Core Project members, 2004) — will

have to be applied to such records.

3 TIME-DEPENDENT FORCING, NDSS AND RDSS

3.1 Orbital Forcing of a Climate Oscillator200

We start this section by describing some fairly simple ways in which the orbital forcing might have modified intrinsic climate

variability, thus helping to solve the mismatch between Figs. 3(a) and 3(b) in Sect. 1. To explore this possibility, Le Treut

and Ghil (1983) used somewhat simplified insolation forcing, based on the calculations of Berger (1978), and applied it to

a slightly modified version of the Ghil and Le Treut (1981) oscillator. These authors found that, as expected for a nonlinear

oscillator, its internal frequency f0 is affected strongly by the forcing ones, {f1, . . . ,f5}, resulting in both nonlinear resonance205

and combination tones (Landau and Lifshitz, 1960).

Depending on parameter values, the periodicity P0 = 1/f0 of the Ghil and Le Treut (1981) oscillator is P0 ' 6–7 kyr. The

lines in the simplified insolation spectrum used by Le Treut and Ghil (1983) had the periodicities

P1 = 19 kyr, P2 = 23 kyr, P3 = 41 kyr, P4 = 100 kyr, and P5 = 400 kyr; (8)

these periodicities correspond to the two precessional ones, the obliquity one, and two eccentricity ones. The actual celestial-210

mechanics calculations that Berger (1978) based his insolation calculations on have been substantially updated since (e.g.,

Varadi et al., 2003; Fienga et al., 2015). But these advances have not modified much the spectrum of the planetary-orbit

solutions over the 2.6 Myr of the Quaternary, a rather short interval in celestial-mechanics terms.

The results of the Le Treut and Ghil (1983) model on the evolution of the primary climate variables T and V were converted

to δ18O values in simulated isotopic records of marine-sediment and ice cores by Le Treut et al. (1988); the spectra of the latter215

are plotted in Fig. 5. The values on the abscissa of Fig. 5(a) are values of the logarithm of frequency, while those in Fig. 5(b)
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are values of the frequency itself; the values on the ordinate of both panels are powers of 10. One refers to such figures as being

in (a) log-log coordinates vs. (b) log-linear coordinates for short.

Aside from the spectral features noted in the figure caption and discussed in greater detail by Ghil (1994), it is important

to realize (i) that the large continuous background in Fig. 5(a) is purely of deterministically chaotic origin, since there is no220

stochastic element whatsoever in the Le Treut and Ghil (1983) model or in its forcing; and (ii) that the dominant peak at

109 kyr is not directly forced by the f4 = 1/100 (kyr)−1 ecentricity line but rather it is due to the difference tone between

the two precessional frequencies, f1 and f2. Finally, it is the nonlinear, broad resonance of the model’s f0 frequency with the

quasi-periodic forcing that produces the bump in the spectrum of Fig. 5(a) to the right of the orbital frequencies.
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Figure 5. Power spectra of simulated (a) deep-sea and (b) ice core records for the forced climate oscillator of Le Treut and Ghil (1983) with

idealized orbital forcing. Panel (a) is in log-log coordinates and clearly shows a dominant peak at 109 kyr and a very large amount of variance

in the continuous spectrum, which has a roughly −2 power law slope. The orbital peaks at P1 = 19 kyr, P2 = 23 kyr and P3 = 41 kyr are

also present along with peaks at 14.7 kyr and 10.4 kyr, which correspond to the sum tones f2 + f3 and f1 + f2, respectively. Panel (b) is

in log-linear coordinates and shows additional harmonics and sum tones, as well as the difference tone f1− f2, which corresponds to the

dominant peak at 109 kyr. Adapted by permission from John Wiley & Sons Inc.: American Geophysical Union. Journal of Geophysical

Research: Atmospheres. Orbital Forcing, Climatic Interactions, and Glaciation Cycle by Le Treut and Ghil; Copyright 1983 by the American

Geophysical Union. (1983)

In returning to the “fundamental question #2” in Box 1, one must recall that, on the paleoclimatic time scales of interest225

— apart from deterministic chaos à la Lorenz (1963), as obtained by H. Le Treut and colleagues (Le Treut and Ghil, 1983;
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Le Treut et al., 1988) and shown here in Fig. 5(a) — stochastic contributions à la Hasselmann (1976) to the continuous part of

the spectrum must also play an important role. In fact, RDS theory, as outlined in the next subsection, provides an excellent

framework for a “grand unification” of these two complementary points of view (Ghil, 2014, 2019). In the paleoclimatic

context, Ditlevsen et al. (2020) have suggested that, aside from red-noise processes, dating uncertainties in the proxy records230

from which the spectra are derived may contribute, in all likelihood, to this background; see also Boers et al. (2017a, b). In this

context, Verbitsky and Crucifix (2020) also provide a simple theory that addresses scaling properties in the glacial cycles and

their spectra, based on the so-called Buckingham π-theorem (e.g., Barenblatt, 1996).

3.2 Basic Facts of NDS and RDS Life

The highly preliminary results summarized in Sect. 3.1 encourage us to pursue in a more systematic way the effects of the235

orbital forcing on intrinsic climatic variability, effects that may have contributed to generate the rich paleoclimate spectrum

on Quaternary and longer time scales (e.g., Westerhold et al., 2020). In fact, several research groups in the climate sciences

have carried out during the past two decades an important extension of the dynamical-systems and model hierarchy framework

presented by Ghil and Childress (1987) and by Ghil (2001), from deterministically autonomous to nonautonomous and random

dynamical systems (NDSs and RDSs: e.g., Ghil et al., 2008; Chekroun et al., 2011; Bódai and Tél, 2012).240

On the road to including deterministically time-dependent, as well as random effects, one needs to realize first that the climate

system — as well as any of its subsystems, and on any time scale — is not closed: it exchanges energy, mass and momentum

with its surroundings, whether other subsystems or the interplanetary space and the solid earth. The typical applications of

dynamical systems theory to climate variability until not so long ago have only taken into account exchanges that are constant

in time, thus keeping the model — whether governed by ordinary, partial or other differential equations — autonomous; i.e.,245

the models had coefficients and forcings that were constant in time.

Alternatively, the external forcing or the parameters were assumed to change either much more slowly than a model’s internal

variability, so that the changes could be assumed to be quasi-adiabatic, or much faster, so that they could be approximated by

stochastic processes. Some of these issues are covered in much greater detail by Ghil and Lucarini (2020, Sect. III.G). The key

concepts and tools of NDSs and RDSs go beyond such approaches that rely in an essential way on a scale separation between250

the characteristic times of the forcing and the internal variability of a given system; such a separation is rarely, if ever, actually

present in the climate sciences.

The presentation of the key NDS and RDS concepts and tools in this subsection is aimed at as large a readership as possible

and it follows Ghil (2014). Slightly more in-depth, but still fairly expository presentations can be found in Crauel and Kloeden

(2015) and in Caraballo and Han (2017). Readers who are less interested in this mathematical framework — which allows a255

truly thorough understanding of the way that orbital forcing acts on intrinsic climate variability on Quaternary time scales —

may skip at a first reading the remainder of this section and continue with Sect. 4.

Autonomous and nonautonomous systems. Succinctly, one can write an autonomous system as

Ẋ = F(X;µ), (9)
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where X stands for any state vector or climate field. While F is a smooth function of X and of the parameter µ, it does not260

depend explicitly on time. This autonomous character of Eq. (9) greatly facilitates the analysis of its solutions’ properties.

For instance, two distinct trajectories, X1(t) and X2(t), of a well-behaved, smooth autonomous system cannot intersect —

i.e., they cannot pass through the same point in phase space — because of the uniqueness of solutions. This property helps

one draw the phase portrait of an autonomous system, as does the fact that we only need to consider the behavior of solutions

X(t) as time t tends to +∞. The sets of points so obtained are — possibly multiple — equilibria, periodic and quasi-periodic265

solutions, and chaotic sets. In the language of dynamical systems theory, these are called, respectively: fixed points, limit cycles,

tori, and strange attractors.

We know only too well, however, that the seasonal cycle plays a key role in climate variability on interannual time scales,

while orbital forcing is crucial on the Quaternary time scales of many millennia. And, more recently, it has become obvious

that anthropogenic forcing is of utmost importance on the interdecadal time scales in-between.270

How can one take into account these types of time-dependent forcings, and analyze the nonautonomous systems that they

lead us to formulate? One writes succinctly such a system as

Ẋ = F(X, t;µ). (10)

In Eq. (10), the dependence of F on t may be periodic, F(X, t+P ) = F(X, t), as in various El Niño–Southern Oscillation

(ENSO) models, where the period P = 12 months, or monotonic, |F|(X, t+τ)≥ |F|(X, t), as in studying scenarios of anthro-275

pogenic climate forcing. An even more general situation includes time dependence in one or more parameters {µ1, . . . ,µp}.
To illustrate the fundamental distinction between an autonomous system like Eq. (9) and a nonautonomous one like Eq. (10),

consider the simple scalar version of these two equations:

Ẋ =−βX, and (11a)

Ẋ =−βX + γt, (11b)280

respectively. We assume that both systems are dissipative, i.e. β > 0, and that the forcing is monotonically increasing, γ ≥ 0,

as would be the case for anthropogenic forcing in the industrial era. Lorenz (1963) pointed out the key role of dissipativity in

giving rise to strange, but attracting solution behavior, while Ghil and Childress (1987) emphasized its importance and pervasive

character in climate dynamics. Clearly the only attractor for the solutions of Eq. (11a), given any initial point X(0) =X0, is

the stable fixed point X∗ = 0, attained as t→+∞.285

In the case of Eq. (11b), though, this forward-in-time approach yields blow-up as t→+∞, for any initial point. To make

sense of what happens in the case of time-dependent forcing, one introduces instead the pullback approach, in which solutions

are allowed to still depend on the time t at which we observe them, but also on a time s from which the solution is started, with

X(s) =X0 and s� t. With this little change of approach, one can easily verify that

|X(s, t;X0)−At| → 0 as s→−∞, (12)290

for all t and X0, whereAt = (γ/β)(t−1/β). We obtain therewith, in this pullback sense, the intuitively obvious result that the

solutions, if we start them far enough in the past, all approach the family of attracting sets At; this family follows the forcing
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γt and it thus has a linear growth in time t. Hence, the fixed point X∗ of Eq. (11b) is, in fact, a moving target and it is given by

X∗ = γt/β. Due to the system’s inertia, the set At that is approached by the trajectories lags this time-dependent fixed point

by a constant offset of γ/β2.295

Pullback attractor (PBA). Formally, the indexed family A of all pullback attracting sets At,

A = {At}t∈R (13)

is termed the pullback attractor (PBA) of the NDS if the following two conditions are fulfilled:

(i) each snapshot At is compact and the family of snapshots {A(t)}t∈R is invariant with respect to the dynamics

X(t,s;X0) ∈ At ∀s≤ t andX0 ∈As; and (14)300

(ii) the pullback attraction occurs for all times:

lim
s→−∞

|X(t,s;X0)−At|= 0 ∀t. (15)

To further improve the reader’s intuition for PBAs, we provide a second illustrative example here. A system defined in polar

coordinates by

ρ̇= α(µ− ρ), φ̇= ω, with ρ, µ ∈ R+ and φ ∈ R/2π, (16)305

can easily be seen to exhibit a limit cycle in the (x,y)-plane with (x= ρcosφ,y = ρsinφ). An initial deviation of ρ from µ

will decay exponentially and the system converges to an oscillation of radius µ with the angular velocity ω. Here, we transform

this autonomous dynamical system into a nonautonomous one by modulating the target radius µ with a sinusoidal forcing

µ→ µ(t) = µ0 +β sin(νt), (17)

where the modulation is moderate, so as to guarantee that µ0 +β sin(νt)> 0 for all t.310

Since the dynamics of the phase φ and of the radius ρ are decoupled, the corresponding equations can be solved and analyzed

separately. While the temporal development of the phase is trivial, the pullback invariant attracting set of the radius for the initial

condition ρ(s) = ρ0 is given by

A(ρ)(t;ρ0) = lim
s→−∞

ρ(t,s;ρ0) = αβ sin(νt+ϑ) +µ0, with (18a)

ϑ= arctan(−ν/α), (18b)315

as shown in Appendix B. Note that, in the limit s→−∞, the dependence on the initial value ρ0 vanishes and the attracting

set A(ρ)
t performs an oscillation of the same frequency as the forcing. It lags the phase of the time-dependent fixed point by

the constant ϑ, while its amplitude is amplified by the factor α. Since ρ is restricted to positive values, this solution requires

αβ < µ0.
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The PBA with respect to the coordinate ρ is comprised of the family of all the sets A(ρ)
t as defined in (18) and thus reads320

A (ρ) = {αβ sin(νt+ϑ) +µ0}t∈R. (19)

Since the pullback limit for the phase φ does not exist, no constraints on it other than φ ∈ [0,2π) are imposed by the dynam-

ics. Hence, for the system (16) comprised of radius and phase, we find that the distance of any trajectory at time t — i.e.
(
ρ(t; t0,ρ0),φ(t; t0,φ0)

)
— to the set At = {

(
αβ sin(νt+ϑ) +µ0,ϕ

)
: ϕ ∈ [0,2π)} tends to zero, as we pullback the initial

time t0 to −∞. The pullback attracting sets At at time t are circles in the (x,y)-plane with a radius that oscillates in time, and325

the system’s PBA is given by the family of these circles

A = {
(
αβ sin(νt+ϑ) +µ0,ϕ

)
: ϕ ∈ [0,2π)}t∈R. (20)

Figure 6 shows trajectories of the system starting from different points in the past. In panel (a), the trajectories are depicted

in the three-dimensional (3-D) space spanned by the two cartesian coordinates (x,y) and the time t, where the usual transfor-

mation from polar to cartesian coordinates was applied. The shaded surface in this panel represents the PBA of the system.330

Corresponding trajectories of ρ(t) and their convergence to the PBA A(ρ)
t are shown in panel (b). Panel (f) shows a heat map

(Wilkinson and Friendly, 2009) that approximates a portion of the PBA’s invariant measure projected onto the (x,y)-plane.

For a clean definition of such a measure in NDSs and RDSs, please see Caraballo and Han (2017); Chekroun et al. (2011);

Crauel and Kloeden (2015) or Ghil et al. (2008). Essentially, the heat map here counts the number of times that 100 trajectories

integrated from t=−200 to t= 200, with randomized initial conditions like the ones shown in panel (a), cross small pixels in335

the (x,y)-plane.

Panels (c–e) demonstrate a particularity of this system, which is characteristic of dynamics confined to a torus. Namely, the

structure of the system’s trajectories depends on the frequency ratio ω/ν and three different cases must be distinguished. If

the radius is modulated with the same frequency as the oscillation itself, i.e. ω = ν as in panel (c), the forcing and the system

have a fixed phase relation. That is, for a given phase of the system, its radius is always attracted by the same fixed point.340

Hence, the system practically repeats its orbit after a short time. More precisely, the radius of the oscillation does differ from

one “roundtrip” around the torus to the next, but this difference tends to zero as ρ(t) approaches the PBA A(ρ)
t .

If ω and ν are rationally related, i.e., mω = nν with n,m ∈ N, as in panel (d), then — after n periods of the radial modu-

lation and m periods of the system’s oscillation — the phase relation between the system and its forcing will repeat itself and

hence we observe the same quasi-repetition of the orbit after the time n 2π/ν =m2π/ω. That is, such a trajectory will appear345

as an n-fold quasi-closed loop.

Finally, if ω/ν /∈ Z, as in panel (e), then a given phase of the system will never coincide with the same phase of the radius

modulation more than once. Hence, the trajectory does not repeat itself but instead covers densely the annular discD = {(ρ,φ) :

ρ ∈ [µ0−αβ,µ0 +αβ] and φ ∈ [0,2π)}.
Random attractor. Let us return now to the more general, nonlinear case of Eq. (10) and add not only deterministic time350

dependence F(X, t), but also random forcing,

dX = F(X, t)dt+G(X)dη, (21)

15



Figure 6. Trajectories and PBA of the system defined by Eqs. (16) and (17); in all the panels the parameter values are µ0 = 15, α=

10, ν = 0.2 and ω = 0.3, unless stated otherwise. (a) Trajectories (ρ(t),φ(t)) of the system starting from different times in the past in

the 3-D space spanned by (x,y) and time t; the system’s PBA lies on the red-shaded surface. (b) Temporal evolution of the radius (solid

colors) of the three trajectories shown in (a) together with its PBA (dotted red). (c)–(e) Trajectories integrated from t0 =−100 to tf = 200

for ν = 0.3,0.2,0.51/2 in panels (c), (d) and (e), respectively). The values are chosen such that the ratio between ν and ω is ω/ν = 1,

ω/ν ∈ Z \ {1} and ω/ν ∈ R \Z in panels (c) to (e), respectively. Correspondingly, in (c) the trajectory quickly converges to a circle, whose

center is slightly shifted from the originin. In panel (d) a quasi-closed three-fold loop can be observed, since ω/ν = 3/2. In panel (e) the

trajectories will densely fill the annular disc defined by Eq. (32). (f) Heat map of numerous trajectories projected onto the (x,y)-plane. The

trajectories start at random points in state space and are integrated from ti =−200 to tf = 200. A video of the heat map filling up, as more

and more trajectories with different initial conditions are added, is provided in the Supplementary Material to this article. The heat map

shown here is a snapshot of the video taken at time t= 0.20; see details in the video supplement.
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where η = η(t,ω) represents a Wiener process — with dη commonly referred to as “white noise” — and ω now labels the

particular realization of this random process. When G = const. the noise is additive, while for ∂G/∂X 6= 0 we speak of

multiplicative noise. The distinction between dt and dη in the stochastic differential equation (21) is necessary since, roughly355

speaking and following the Einstein (1905) paper on Brownian motion, it is the variance of a Wiener process that is proportional

to time and thus dη ∝ (dt)1/2. In Eq. (21), we dropped the dependence on a parameter µ for the sake of simplicity.

The noise processes may include “weather” and volcanic eruptions when X(t) is “climate,” thus generalizing the linear

model of Hasselmann (1976), or cloud processes when dealing with the weather itself: one person’s signal is another person’s

noise, as the saying goes. In the case of random forcing of Eq. (21), the concepts introduced by the simple deterministic360

examples of Eq. (11b) and of Eqs. (16, 17) above can be illustrated by the random attractor A (ω) in Fig. 7.

A key feature of the pullback point of view on noise-perturbed dynamical systems that characterizes RDS theory is the use

of a single noise realization, as opposed to the traditional, forward viewpoint of the Fokker-Planck equation and associated

concepts, in which multiple noise realizations play a role. For a precise definition of a random attractor — as well as the

commonalities and differences between the deterministic and random cases of time-dependent forcing — please see Caraballo365

and Han (2017).

Chekroun et al. (2011) studied a specific case of such a random attractor for the paradigmatic, climate-related Lorenz (1963)

convection model. The authors introduced multiplicative noise into each of the ODEs of the original, deterministically chaotic

system, as shown below:

dX = Pr(Y −X)dt+σXdη, (22a)370

dY = (rX −Y −XZ)dt+σY dη, (22b)

dZ = (−bZ +XY )dt+σZdη; (22c)

here r = 28, Pr = 10, b= 8/3 are the standard parameter values for chaotic behavior in the absence of noise, and σ is a

constant variance of the Wiener process that is not necessarily small; both the noise realization η(t) and σ are the same in

all three equations. The well-known strange attractor of the deterministic case is replaced by the Lorenz model’s random375

attractor, dubbed LORA by the authors. Four snapshots At(ω) of LORA are plotted in Fig. 8 and a video of its evolution in

time A (ω) = {At(ω)}t∈R is available as Supplementary Material in Chekroun et al. (2011) at https://doi.org/10.1016/j.physd.

2011.06.0052011.06.005.

Charó et al. (2021) have further analyzed the striking effects of the noise on the nonlinear dynamics that are visible in Fig. 8

here and in the video of Chekroun et al. (2011), and gathered further insights into the abrupt changes of the snapshots’ topology380

at critical points in time. These remarkable changes suggest the possibility of random processes giving rise to qualitative jumps,

such as the MPT, in paleoclimatic variability.

3.3 Application to Dansgaard-Oeschger (D-O) events

Before discussing conceptual glacial cycle models, we take a little detour and introduce a simpler — yet interesting and, at

the same time, highly instructive — application of NDS theory to another important climate phenomenon. During past glacial385
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Figure 7. Schematic diagram of a random attractor A (ω) and of the pullback attraction to it; here ω labels the particular realization of the

random process θ(t)ω that drives the system. We illustrate the evolution in time t of the random process θ(t)ω (light solid black line at

the bottom); the random attractor A (ω) itself (yellow band in the middle), with the snapshots A0(ω) =A(ω; t= 0)) and A(ω; t) (the two

vertical sections, heavy solid); and the flow of an arbitrary compact set B from “pullback times” t=−τ2 and t=−τ1 onto the attractor

(heavy blue arrows). See Ghil et al. (2008, Appendix A) for the requisite properties of the random process θ(t)ω that drives the RDS (21).

Adapted from Physica D: Nonlinear Phenomena, 237, Ghil et al., Climate dynamics and fluid mechanics: natural variability and related

uncertainties, 2111–2126, ©2008 Elsevier B.V. All rights reserved. (2008), with permission from Elsevier.

periods, Greenland experienced a series of sudden decadal-scale warming events that left a clear trace in ice core records

(Dansgaard et al., 1993). These so-called D-O events were followed by intervals of steady moderate cooling, before a short

phase of enhanced cooling brought the temperatures back to their pre-event levels (e.g., Rasmussen et al., 2014). This pattern

is very clearly apparent in NGRIP δ18O records (North Greenland Ice Core Project members, 2004) and it can be qualitatively

simulated by the fast component of a FitzHugh-Nagumo (FHN) model (FitzHugh, 1961; Nagumo et al., 1962), as pointed out390

by Mitsui and Crucifix (2017), among others; see also Kwasniok (2013); Rial and Yang (2007); Roberts and Saha (2017);

Vettoretti et al. (under review).

We discuss the example of the FHN model at some length in order to illustrate how external forcing can act on a system’s

internal variability and thereby give rise to more complex dynamics. This model’s concise mathematical formulation and

its widespread application in paleoclimate modeling and other fields make it ideally suited for this goal. We start with a395

description of the autonomous model, with no time-dependent forcing. Subsequently, we introduce a simple sinusoidal forcing

and numerically compute the corresponding PBA. We then extend these consideration into the realm of random dynamical

systems by adding stochastic forcing and discuss the resulting random attractor. Finally, we replace the synthetic forcings by
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Figure 8. Heat maps of the time-dependent invariant measure νt(ω) supported on four snapshots At(ω) of LORA. The values of the

parameters r,s and b are the classical ones, while the variance of the noise σ = 0.5. The color bar is on a log-scale and it quantifies the

probability of landing in a particular region of phase space; shown is a projection of the 3-D phase space (X,Y,Z) onto the (X,Z)-plane.

Note the complex, interlaced filament structures between highly populated regions (in yellow) and moderately populated ones (in red).

Reprinted from Physica D: Nonlinear Phenomena, 240, Ghil et al., Stochastic climate dynamics: Random attractors and time-dependent

invariant measures, 1685–1700, ©2011 Elsevier B.V. All rights reserved. (2011), with permission from Elsevier.

one that corresponds to a paleoclimate proxy record of past CO2 concentrations retrieved from Antarctic ice cores (Bereiter

et al., 2015) and show that this setup brings the model’s trajectories into good qualitative agreement with the D-O patterns400

observed in δ18O records from Greenland ice cores. In doing so, we pay less attention to the physical interpretation of the

model’s variables, while focusing on the detailed explanation of model behavior and on the role of the forcing in the resulting

dynamics.

The FitzHugh-Nagumo (FHN) model of fast–slow oscillations. The FHN model consists of two coupled ODEs that govern

behavior alternating between slow evolutions and fast transitions. Typically, the time scales of the two variables are separated405
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Figure 9. Nullclines of the autonomous FHN model governed by Eqs. (23) with large time scale separation, for α= 2, τx = 100 and τy = 10;

the nullclines of the fast y-component are in blue and of the slow x-component in orange. (a–c) One illustrative trajectory (red dotted) for

γ = 0,0.5, and 1.0, respectively. The upper branch and the lower branch (solid blue) correspond to the roots yr and y`, respectively, as

defined in the text. For fixed values of x, they constitute stable fixed points for Eq. (23b). The middle branch (dashed blue) corresponds to

the unstable fixed point for Eq. (23b) for a given x. The trajectories for panels (a) and (b) follow a limit cycle, since the x-nullcline does not

intersect with either of the stable branches of the y-nullcline, given that |γ|<
√

1/3, while the trajectory in panel (c) approaches a single

stable fixed point for the coupled system, formed by the intersection of the x-nullcline with the y` branch of the y-nullcline.

by introducing the parameters τx and τy , with x(t) being the slow component and y(t) the fast one:

ẋ=
1

τx
(y− γ), (23a)

ẏ =
1

τy
[α(y− y3)−x]. (23b)

In order to develop an understanding for the way that such a model can simulate the rapid D-O warmings, followed by slow

coolings, we start by discussing its autonomous behavior, for time-independent γ. First, consider the case of large time scale410

separation

τx� τy. (24)

This choice guarantees that the fast y-component adjusts adiabatically to quasi-static changes of the slow x-component. The

time derivative of y(t), as shown in Fig. 10(a), exhibits either three real roots or a single one, depending on the value of x(t),

which shifts the graph of the cubic polynomial P3(x,y) = α(y−y3)−x globally upwards or downwards. Of the three potential415

roots, the outer two are stable fixed points for y(t) at a fixed value of x, while the inner one is unstable. Note that the two stable

fixed points are always located either left or right of the local minimum or maximum of P3(x,y), respectively. Accordingly,

we label them y` and yr. The positions of the local extrema, namely ymin =−
√

1/3 and ymax =
√

1/3, provide an upper and

a lower bound for the left and right stable fixed point, respectively.
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Figure 10. FitzHugh-Nagumo (FHN) model with parameters τx = 100, τy = 60, and α= 2. (a) The cubic polynomial P3(x,y) of the fast

derivative as a function of y for x= 0 (solid blue line); the red lines point to the local maximal and minimal values of P3(x,y), namely
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√
27, respectively — these are the maximal values by which P3 can be shifted up or down, while maintaining all of its three roots;

the dotted gray lines indicate the shifted function with x=±2α/
√
27. The purple lines labeled ymin and ymax mark the right and left

boundaries for the roots y` and yr , respectively: y` and yr can never be located in between the two purple lines. (b) Trajectories of the

nonautonomous model with γ(t) = 0.8sin(t/τf) and τf = 1 000, plotted in the (x,y) phase plane; the trajectories are colored by their

starting times {t0 =−20 kyr, t1 =−16 kyr, t2 =−13 kyr, t3 =−7 kyr} and the initial positions were drawn from a standard Gaussian

bivariate distribution. (c) The slow time-dependent forcing γ(t) = sin(t/1 000). (d, e) The same trajectories as in (b), but plotted in time

as y = y(t) and x= x(t), respectively; (f–h) Same as panels (c–e), but for the fast time-dependent forcing γ(t) = sin(t/350). The gray

shading in panels (c)–(h) indicates intervals during which |γ|>
√

1/3 and the internal oscillation is hence suppressed.
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Now, let us investigate the coupled dynamics of the slow and fast variables x(t) and y(t). Assume we are in a state where420

x > 2α/
√

27 such that y` is the only root of P3(x,y). Provided that |γ|<
√

1/3, the time derivative ẋ and x itself will have

opposite signs, with the consequence that a slow adjustment process of x(t) sets in. This will shift the polynomial P3(x,y)

upwards in panel (a) of Fig. 10 which in turn revives the other two roots of P3(x,y). The fast y(t) closely follows y`, which is

shifted accordingly. Once x(t) =−2α/
√

27, the root y` stops existing and a fast transition to the neighborhood of the opposite

root yr ensues. This transition switches the sign of ẋ(t) and the slow adjustment of x(t) now happens in the opposite direction.425

In the (x,y)-plane, this behavior manifests itself as a stable limit cycle. However, any value |γ|>
√

1/3 prevents ẋ(t) from

switching sign and therefore interrupts the cyclic destruction and revival of the respective opposite root of P3(x,y). Instead,

|γ|>
√

1/3 gives rise to a single stable fixed point for the entire system in the (x,y)-plane and, in this case, both variables

relax towards it.

In fact, in the autonomous setting, the system’s qualitative behavior is controlled by the value of the parameter γ, which430

decides between internal oscillations along a limit cycle and relaxation towards a fixed point in the (x,y)-plane. Note that

previously we referred to the roots y` and yr also as stable fixed points of y for a given value of x. Here, the term stable fixed

point refers to the entire system defined by the coupled ODEs (23a) and (23b). Both γ =±
√

1/3 are critical values of γ that

give rise to supercritical Hopf bifurcations of the coupled system’s fixed points; recall Fig. 4 of Sect. 2.1.

This behavior can be better understood by considering the nullclines of (23b) and (23a) in the (x,y)-plane, as shown in435

Fig. 9. If the branches of the y-nullcline that correspond to y` and yr, and thus to stable fixed points of (23b) for a given value

of x, intersect with the x-nullcline given by y = γ, then this intersection constitutes a stable fixed point for the entire system.

If they do not, the system first relaxes along the fast direction toward the y-nullcline. Only then the adjustment of the slow

component starts to drag the system along the y-nullcline in the direction where the distance to the x-nullcline decreases. At

the point where the y-nullcline reverses, the fast component is immediately attracted by the other branch of the fast nullcline440

and the same process starts all over again.

So far we have described the formation of the limit cycle in the FHN model under the assumption of clear time scale

separation and the independence of the x-nullcline {y = γ} from x. See Rocsoreanu et al. (2012) for the emergence of the

limit cycle in the more general FHN model.

The highly nonlinear, two-time behavior of the FHN model modifies somewhat the way that stable limit cycles arise in it.445

While we saw the oscillation’s radius grow with the square root of the bifurcation parameter in the case of the normal form

given by Eqs. (3–5), in the case of the FHN model, the radius of the oscillations actually grows exponentially over a small

range of γ-values right after the bifurcation point and then stabilizes. These exponentially growing stable limit cycles have

been termed “canard cycles” (Benoît, 1983). Roberts and Saha (2017) have pointed out a possible link between canard cycles

and D-O cycles and they play a role in other excitable climate models; see Pierini and Ghil (2021, and references therein).450

A pullback attractor of a periodically forced FHN model. Introducing a sinusoidal time dependence

γ→ γ(t)∝ sin(t/τf) (25)
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into the slow equation (23a) makes the system nonautonomous, as discussed in general terms in Sect. 3.2, and it periodically

switches the self-oscillatory behavior on and off. We consider here the case in which the variations of the external forcing

γ(t;τf) occur on a slower time scale than the entire internal dynamics, i.e.,455

τf > τx > τy. (26)

Note that we give up here on the restriction of strict time scale separation between x(t) and y(t), as expressed by Eq. (24).

The trajectories plotted in Figs. 10(c)–(e) and (f)–(h) represent the solutions of such a periodically forced FHN model starting

at different points in the past. The time units are arbitrary and the two sets of solutions are for two different forcing time scales

τf. These trajectories illustrate the applicability of the pullback perspective suggested by Sect. 3.2 and Fig. 6 to the periodically460

forced FHN model. In contrast to the illustrative examples of Sect. 3.2, an analytical solution is not available in this case.

However, this small sample of numerically computed trajectories, together with the phenomenological discussion herein, is

quite sufficient for an intuitive understanding of the system’s pullback behavior.

For panels (c)–(e) of Fig. 10, the forcing’s time scale is much slower then the internal time scales. The amplitude of the

forcing γ(t) was chosen such that it repeatedly crosses the two thresholds ±
√

1/3 and thus induces a sequence of Hopf465

bifurcations by switching between intervals of self-sustained oscillation and attraction to a stable fixed point. Crossing such a

bifurcation point due to slow changes in the forcing is referred to as a bifurcation-induced tipping or B-tipping (Ashwin et al.,

2012; Ghil, 2019; Ghil and Lucarini, 2020).

Strikingly, all trajectories converge to one another during non-oscillatory time intervals, when they are simultaneously at-

tracted by the single existing fixed point. During oscillatory intervals, phase differences between individual trajectories may,470

in principle, persist. Still, convergence during a single non-oscillatory interval is so strong that, after it, the trajectories can no

longer be discriminated visually. Numerically, however, the distance between trajectories only tends to zero but never reaches

it. At the end of non-oscillatory intervals, the trajectories reenter the oscillatory regime always from the same location in the

(x,y)-plane — to within negligible numerical differences — and, hence, very nearly repeat themselves. Qualitatively speaking,

the PBA A — i.e., the family of invariant snapshots {A(t)}t∈R of Eq. (14) — is an infinite repetition of the common trajectory475

structure that can be observed in Figs. 10(d,e) between −5 000 and 15 000 time units. In the case at hand, each snapshot A(t)

consists of a single point.

For panels (f)–(h) of Fig. 10, the time scale separation between the forcing and the internal dynamics is reduced, resulting

in a qualitatively different behavior of the nonautonomous system. The frequency of occurrence of B-tipping points is much

higher, and hence the trajectories do not even execute a full oscillation during a single time interval that permits oscillations.480

As a result, two stable patterns of trajectories are formed. These two patterns can be brought into agreement by switching the

sign of one pattern and shifting it in time by τf/2. This symmetry reflects the symmetry of the stable nullcline of the fast system

component as shown in Fig. 9.

Again, the PBA of this nonautonomous system can be thought of as an infinite repetition of the common trajectory structure

that can be observed in Figs. 10(g,h) between−5 000 and 15 000 time units. In contrast to the slow-forcing case, each snapshot485

A(t) now is comprised of two points in the (x,y)-plane. This example illustrates how the action of an external force on
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an autonomous system can give rise to considerably richer dynamics, which crucially depends on both the system’s internal

variability and the nature of the forcing.
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Figure 11. Random attractor of the periodically and stochastically forced FHN model governed by Eqs. (27). (a) Results for slow periodic

forcing with period τf = 1 000. The top graph shows the periodic forcing, with non-oscillatory intervals marked by gray shading. The next

three graphs show the fast y-component of the approximate random attractors, as per Eq. (27b); the noise variance σ increases from top

to bottom. Each random attractor (solid red) is approximated by integrating 20 trajectories with different initial conditions over time and

using the same Wiener process as their common stochastic forcing; the corresponding deterministic PBA is shown in blue. The random

attractors and the PBA are very similar for small noise variances, but they differ more and more as the noise variance increases. (b) Results

for faster periodic forcing with period τf = 350. The forcing is only shown for the first 8000 time units, with non-oscillatory intervals again

shaded gray. The left part of panel (b) shows 5 approximate random attractors, computed as in panel (a), on a common time axis. The panel’s

right part shows their continuations on individual time axis in order to display the moment when full noise-induced synchronization of the

trajectories takes place. Prior to this point, the random attractor is split into two branches, which closely follow the PBA of the deterministic

system (blue and green). For σ = 0.7, the synchronization takes place already during the first 8 000 time units.
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A random attractor of a periodically and stochastically forced FHN model. Based on the brief introduction to RDSs in

Sect. 3.2, we take our investigation of the periodically forced FHN model one step further and include a random component490

into the external forcing, acting on the model’s fast y-component:

dx=
1

τx
(y− γ(t))dt, (27a)

dy =
1

τy
[α(y− y3)−x]dt+σdη. (27b)

Here, η denotes a Wiener process, as in Eq. (21) — i.e., a continuous stochastic process whose increments dη are indepen-

dently and normally distributed, with mean zero and unit variance — and γ(t) remains a periodic forcing of the x-component495

proportional to sin(τft).

In order to study the random attractor of this system, we compute trajectories with random initial conditions over a time

span long enough to reveal the asymptotic behavior, as shown in Fig. 11. For both the slower and the faster deterministic

forcing — i.e., τf = 1 000 and τf = 350, as studied in the previous paragraphs — several random attractors are approximated

for increasing noise variance values σ in Eq. (27b). For each attractor approximation, we use 20 trajectories with the same500

noise realization. Each random attractor (red) is shown together with the corresponding PBA of the FHN system subject to

purely periodic forcing (blue and green).

For the long-periodic forcing with τf = 1 000, the trajectories in Fig. 11(a) converge fairly rapidly to a single one, as in the

case with no noise in Figs. 10(d,e). Furthermore, there is a clear similarity of pattern and proximity in phase between the PBA

of the deterministic system and the random attractor. However, the deviations of the random attractor from the PBA increase505

in both pattern and phase as the noise variance increases. These deviations are most striking during the oscillatory intervals,

because the noise can induce phase shifts in the oscillations, which then persist for the duration of the oscillatory interval.

During non-oscillatory intervals, the random attractor is less susceptible to the noise, because the resulting perturbations decay

in the presence of a stable fixed point of the underlying deterministic system.

For the shorter-period forcing with τf = 350, the PBA of the deterministic system features two stable branches, which could510

in principle persist in the random attractor. As for the case of τf = 1 000, a rapid convergence of the trajectories can be observed

for all noise variances. However, two separate bundles of trajectories persist, each associated with one of the two separate

branches of the deterministic PBA. Only after some time do the two bundles merge and subsequently follow either one of the

two branches of the PBA or the other. This phenomenon is called noise-induced synchronization (e.g., Arnold, 1988; Chekroun

et al., 2011). Which of the two PBA branches the random attractor follows depends on the exact noise realization. The random515

attractor may also switch irregularly from one branch of the PBA to the other (not shown). Already in the simple setup explored

here, one notices that the higher the noise variance, the faster the synchronization of the trajectories. This statement must be

understood probabilistically: it may certainly happen for two given noise realizations that the random attractor with the higher

noise level takes longer to synchronize, as is the case for σ = 0.7 and σ = 0.8 in Fig. 11(b).

The investigation carried out herein assesses a very special case of an FHN model’s random attractor. Random attractors of520

FHN-type models have been studied intensively (e.g., Wang, 2009; Yamakou et al., 2019). Most studies so far, however, have

concentrated on the excitable regime of the stochastically forced FHN model, i.e., the deterministic model’s parameters were
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chosen so as to exhibit a single stable fixed point in the absence of the noise. The noise variance was then chosen sufficiently

high to ensure that random fluctuations can push the system out of equilibrium and allow it to take a round trip on what would

be the deterministic model’s limit cycle, given different parameter values. The situation studied here is rather different, as525

shown across Figs. 9–11.
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Figure 12. FHN model fit to the NGRIP δ18O data. (a) Fast component yFHN(t) of an FHN model forced with historical CO2 concentrations

(orange) together with the observed δ18O record (blue) from the NGRIP ice core (Seierstad et al., 2014). (b) Rescaled atmospheric CO2

concentrations from Antarctic ice cores in arbitrary units (au) (Bereiter et al., 2015); the horizontal red lines indicate the upper and lower

bounds, ymin =−
√

1/3 and ymax =
√

1/3, of the free-oscillation regime.

An FHN model of the NGRIP record. Readers who are familiar with the NGRIP δ18O record (North Greenland Ice Core

Project members, 2004) might have realized already the qualitative resemblance between the proxy data and the fast compo-

nent’s trajectory of the periodically forced FHN model in Fig. 10(d). In particular, the prominent sawtooth pattern of the data

is satisfactorily captured by the fast–slow dynamics of the model.530

Figure 12 shows a trajectory of the FHN model for which the sinusoidal forcing used in Fig. 10 was replaced by a rescaled

time series of atmospheric CO2 concentrations retrieved from Antarctic ice cores (Bereiter et al., 2015):

γ(t)∝ CO2(t). (28)

Is it remarkable how well this simple forcing brings the oscillatory intervals of the FHN model into agreement with the time

intervals of the record that are dominated by D-O cycles, without any systematic tuning of the model parameters. Clearly, the535

CO2-forced FHN model fails to reproduce the exact waiting times between D-O events. However, with these waiting times

being at least in part stochastically determined (Ditlevsen et al., 2007), the purely deterministic FHN model is not meant to
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reproduce the exact pattern of D-O events. Vettoretti et al. (under review) have carried out a detailed study on the use of a

CO2-forced FHN model to simulate D-O variability.

In fact, Rousseau et al. (2022, Fig. 6) describe in detail a somewhat more complex, proxy record-based picture of the540

interaction between D-O event-rich episodes, (Heinrich, 1988) events, and longer-term cooling trends. It is quite possible that

a simple model like the one in this section but including explicitly continental ice sheets could capture such a detailed picture.

In the present framework, the FHN model’s fast variable y(t) may be interpreted as the intensity of the Atlantic Meridional

Overturning Circulation (AMOC), which switches between on and off states during self-oscillatory behavior; see, for instance,

Henry et al. (2016), Ghil (1994, Table 5) and Ghil and Lucarini (2020, Table I). The slower x-variable that drives the transition545

between the on and off states of the AMOC may then be taken, for instance, as the waxing and waning of northern hemisphere

ice sheets (e.g., Ghil et al., 1987), linked in turn to varying ice shelf extent (e.g., Boers et al., 2018) or as the weakening and

strengthening of Antarctic bottom water production (Vettoretti et al., under review).

The interaction between the fast variable and the slow one happens here in the presence of a climate forcing represented by

CO2 concentration. On the much slower time scales of Quaternary glaciations, an interplay between the CO2 concentration550

and mean global temperature might also occur, as we shall see in the next section.

4 AN NDS FOR THE QUATERNARY GLACIATIONS

Apparently, it is Crucifix (2013) who first applied pullback ideas to the problems of Quaternary glaciations, independently of

earlier work on the topic in the climate literature (Ghil et al., 2008; Chekroun et al., 2011; Bódai and Tél, 2012). His work

concentrated mainly on the connection between the pacemaking role of the orbital forcing and the observed irregularity of the555

glacial terminations during the late Pleistocene, cf. Broecker and Van Donk (1970) and Ghil and Childress (1987, Fig. 11.2).

Based on the considerable success of NDS and RDS applications to other climate problems — such as ENSO (Ghil et al.,

2008; Ghil and Zaliapin, 2015; Chekroun et al., 2018; Marangio et al., 2019), the wind-driven ocean circulation (Pierini et al.,

2016, 2018) or the evaluation of the ensemble simulations routinely performed in support of the Assessment Reports of the

Intergovernmental Panel on Climate Change (Drótos et al., 2015; Vissio et al., 2020) — it would appear worthwhile to proceed560

further along these lines.

Box 2 summarizes open questions with respect to Quarternary glaciations whose investigation should be aided by NDS and

RDS theory. Of course, each of these problems requires one or more distinct climate models, as well as very careful modeling

of the kinds of time-dependent changes in forcing and parameters that are most enlightening, as well as most relevant and

plausible. A good way would be to start testing ideas with relatively simple models and pursue the investigation systematically565

across a hierarchy of models — through intermediate ones and on to the most detailed ones — in order to further increase

understanding of the climate system and of its predictability on the various paleoclimatic time scales mentioned in the list

above.

Such an approach can usefully complement the more common one of merely pushing onwards to higher and higher model

resolution in order to achieve ever more detailed simulations of the system’s behavior for a limited set of semi-empirical570
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The concepts and tools summarized in Sec. 3.2 could shed further light on several problems not quite yet
solved concerning Quaternary glaciations and paleoclimate in general. A short and highly incomplete
list of the interesting problems that might gain by such a treatment is the following:

1. What are the causes of the MPT and what is the part of intrinsic climate variability and that of
the orbital forcing therein? See discussion in Sec. 2.2.

2. What causes the large continuous backgound of the observed spectrum: is it deterministic chaos,
stochastic forcing or both? See discussion of Fig. 4.

3. Particularly complex problems are associated with Heinrich and D-O events and their modulation
over longer time intervals by orbital forcing and other slow-acting changes in atmospheric composi-
tion, geology, ocean circulation, and so on. See, for instance, Rousseau et al. (2021, and references
therein).

4. It is well established by now that a snowball mode occurred several times in Earth’s geologic
history, but we still know fairly little about how the planet got into, and especially out of, such a
mode (e.g., Pierrehumbert,2004).

1
Box 2. Some open questions concerning Quaternary glaciations.

parameter values. Ghil (2001) and Held (2005), among others, have emphasized the need to pursue such a model hierarchy,

as originally proposed by Schneider and Dickinson (1974), in order to balance the need to broaden the number of plausible

hypotheses vs the need for confronting them with spatio-temporal details derived from observations.

In this section, we illustrate how the PBA concept can help shed more light upon the dynamics of ice age models. As pointed

out in Sect. 3.1 and elsewhere in this paper, there is a long history of modeling the climate of the Quaternary by means of575

conceptual models, and many nonautonomous models have been proposed to simulate glacial-interglacial cycles of the last

400 kyr to 2.6 Myr, based on the orbital forcing. In Appendix A, we provide a long but still not exhaustive list of glacial-cycle

models and specify some of their key characteristics, including the degree of their success at simulating the MPT; see also the

discussion in Sect. 2.2.

Among these glacial-cycle models, the model of Daruka and Ditlevsen (2016, DD16 hereafter) belongs to the more abstract580

ones, as it is not derived from detailed physical considerations. Still, its concise form, interesting nonlinear dynamics, and

ability to simulate glacial cycles, as well as the MPT, make the DD16 model well suited for our illustrative purposes. We first

slightly modify this model from its original formulation. We do so mainly in order for the model to better approximate the

benthic δ18O proxy reconstruction of glacial–interglacial cycles due to Lisiecki and Raymo (2005), especially the timing of

glacial terminations; compare our Fig. 13 with Fig. 1 in DD16. Thereafter, we compute the PBAs of the modified DD16 model,585

M-DD16 hereafter, to investigate the dynamical stability of its glacial cycles over the past 2.6 Myr.

Our model’s variables, following DD16, are a global temperature anomaly y that is proportional to minus the global ice

volume and an effective climatic memory term x that represents the internal degrees of freedom. In the deterministic case, the
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Figure 13. Glacial-interglacial cycles simulated by the modified Daruka and Ditlevsen model of Eqs. (29, 31): (a) June 21 insolation F (t)

at 65◦N, normalized to have mean zero and unit standard deviation over the last 1 000 kyr. (b) Slowly changing parameters α(t) and β(t)

introduced to give rise to the MPT. (c) Simulated glacial-interglacial cycles δ18Omodel (red) in comparison with the benthic δ18O (blue).

governing equations of the M-DD16 model are given by

τ ẋ= λy, (29a)590

τ ẏ =−α(t) +x−x3−β(t)F (t)x−κy; (29b)

here t is the time in kyr and F (t) is the normalized June 21 insolation at 65◦N, based on the calculations of Laskar et al. (2004),

as shown in Fig. 13(a). The constant parameter values are chosen as κ= 1, τ = 100, and λ= 10. Note that — with this choice

of λ and unlike in the FHN model of D–O oscillations in Sect. 3.3 — x is the fast variable and y is the slow one.

In the original DD16 model, MPT-like behavior was produced by a slow sigmoid variation of the parameter κ in Eq. (29b),595

κ(t) = κ1 + 0.5(κ0−κ1)

(
1.0− tanh

(
t− t0
ts

))
. (30)
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In our M-DD16 model, we introduce instead a slow change in the parameters α(t) and β(t) of Eq. (29b), as follows:

α(t) = 2.1− 1.4tanh((t+ 1100)/500) , (31a)

β(t) = 2.5 + 1.4tanh((t+ 1100)/500) . (31b)

The functions α(t) and β(t) so defined are plotted in Fig. 13(b) and they induce, as we shall see forthwith, a change in model600

behavior that not only resembles the MPT but also shows correct timings for most of the terminations. Moreover, to simulate

δ18Omodel, we add a linear trend to the slow variable y to mimic the overall cooling at time scales of millions of years, thus:

δ18Omodel = 4.3−1.4y+0.0003t. Equations (29) generalize a first-order ODE system that is equivalent to the Duffing form of

the nonlinear-spring equation (7) discussed in Sect. 2.2. The use of such classical first-order systems — like the Duffing and

Van der Pol ones — in paleoclimate models was initiated by Saltzman et al. (1981); see also Sect. 2.2 herein.605

Figure 13(c) shows a time series of simulated glacial–interglacial changes δ18Omodel (red) in comparison with the benthic

δ18O (blue) of Lisiecki and Raymo (2005). The model’s initial condition is taken to be x=−1 and y = 0 at t= 10 000 kyr

b2k and, since the insolation forcing in panel (a) is prescribed as a time series with 100-yr sampling, we solved Eq. (29) using

Heun’s predictor-corrector method (Isaacson and Keller, 2012, Ch. 8) with a step size of 100 yr. A large spin up time is chosen

to guarantee that transient effects caused by the initial conditions have abated by the year 2.6 Ma b2k, which is the starting610

point for the time interval under study. The correlation between the model simulation and the proxy record is 0.75 for the

time interval from 2 600 kyr to 0 kyr b2k, and 0.72 over the interval from 1 000 kyr to 0 kyr b2k. Varying the parameters

slowly across the time interval of interest, as shown in Fig. 13(b), leads to a change in the frequency — from a dominant

41-kyr periodicity prior to the MPT, at roughly 1.2 Ma kyr b2k, to a dominant 100-kyr periodicity after the MPT, at roughly

800 kyr b2k — and a substantial increase in the amplitude.615

We next approximate the PBA by taking 40 random initial conditions at 10 Ma b2k and integrating the model of Eqs. (29, 31)

up to the present time. The PBA in this case is simply a moving fixed point, as plotted in Fig. 14(a), since the model dynamics

is predominantly stable in the long time interval prior to the MPT. It would appear, therewith, that the orbital forcing simply

moves this fixed point around and fully determines Earth’s climate. This agrees with the clear statement in DD16 that “First

and foremost, our model does not have any internal periods of oscillation.”620

However, when keeping the parameters α and β fixed at their post-MPT values α= 0.7 and β = 3.9 throughout the simu-

lation interval and repeating the computation of the PBA, a more complex picture arises. In the latter case, Fig. 14(b) shows a

bunching of trajectories into separate fuzzy clusters, subject to the quasi-periodic orbital forcing of Fig. 13(a).

There are two interesting inferences to be drawn. First, post-MPT dynamics is much more irregular and unstable than the

more stable dynamics prior to the MPT. The robustness of the 40-kyr glacial cycles and instability of 100-kyr glacial cycles625

against perturbations is in line with the conclusions of previous studies (Mitsui et al., 2015; Quinn et al., 2017). It also appears

to be consistent with the Willeit et al. (2019) simulation of the last 3 Myr of Earth history that used an Earth System Model of

Intermediate Complexity (CLIMBER-2) that included ice sheets and a carbon cycle, along with atmosphere–ocean dynamics.

In their work, trajectories starting from different initial states tended to converge to a single attracting trajectory in the Early

Pleistocene, while several distinct trajectories survived in the Late Pleistocene after the MPT.630
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Figure 14. PBA of the M-DD16 model governed by Eqs. (29), approximated by forty trajectories starting from random initial conditions in

(x,y) ∈ [−2,2]× [−2,2] at t=−10 000 kyr. (a) The PBA corresponding to Fig. 13, with the slowly changing parameters α(t) and β(t)

given by Eqs. (31); and (b) the PBA for α(t) and β(t) kept constant at the post-MPT values of α= 0.7 and β = 3.9. In panel (b), the PBA

is shown over a shorter time interval of the last 1 000 kyr so that the detailed structure is more clearly visible. Without changes in α and β in

time, the overall structure of the PBA is similar before and after 1 000 kyr b2k.

Second, the separate bundles or “ropes” of trajectories in Fig. 14(b) seem to point to the type of generalized synchronization

discussed in the paleoclimate context by De Saedeleer et al. (2013) and in the context of interannual and interdecadal climate

variability by Pierini and Ghil (2021) and Vannitsem et al. (2021). Generalized synchronization in the strict sense of the

existence of a map between a time-dependent control and the system’s asymptotic behavior has only been shown to hold for

nonchaotic systems. Work is under way, though, to further generalize this concept to chaotic systems as well (e.g., Rulkov635

et al., 1995; Zhang et al., 2007).

5 Conclusions

In this review-and-research paper, we have covered in Sect. 1 the contributions of the 1970s to the rebirth of the Milankovitch

(1920) theory of the ice ages and in Sect. 2 the 1980s advances in modeling the Quaternary climate’s intrinsic variability. In
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Sect. 3, we presented first results on the effects of the orbital insolation forcing of Sect. 1 on the intrinsic variability of Sect. 2,640

and proceeded to introduce the novel concepts and tools of the theory of nonautonomous and random dynamical systems (NDSs

and RDSs) that can help to better model and understand these effects. The section concluded by the formulation and study of a

FitzHugh-Nagumo (FHN)-type model of recurrent Dansgaard-Oeschger (D-O) events, in which historical CO2 concentrations

induced episodes of D-O events alternating with episodes of their absence, in excellent qualitative agreement with NGRIP

δ18O data; see again Fig. 12.645

Finally, in Sect. 4, we listed a number of open issues on Quaternary and longer paleoclimate time scales, and proposed to

address them by using the tools of Sect. 3.2. This approach was illustrated by a Duffing-type model of Daruka and Ditlevsen

(2016), modified to include slow changes in the parameters that mimic such changes in the Earth system over the duration of

the Quaternary period.

When the parameters are gradually changed in time so as to exhibit the mid-Pleistocene transition (MPT), the PBA is simply650

a moving fixed point. However, when the parameters are fixed at their post-MPT values, the PBA so obtained is chaotic

and exhibits clusters of trajectories that we termed ropes. This suggests (a) that the stability of the system is gradually lost

while crossing the MPT; and (b) that Late Pleistocene climate, albeit chaotic, may well be subject to a kind of generalized

synchronization (cf. De Saedeleer et al., 2013; Pierini and Ghil, 2021; Vannitsem et al., 2021) with the orbital forcing that

is illustrated in Fig. 5 of Sect. 3.1 herein. In the specific situation at hand, separate ropes may be associated with various655

combination tones of the forcing frequencies.

In a broader perspective — and leaving aside various finer points of the MPT conversation outlined in Sect. 2.2 — one can

see the work that was reviewed and extended in this paper as a confirmation of the fine intuition of Emiliani and Geiss (1959),

six decades ago, as summarized in and further expanded by Ghil and Childress (1987, Sect. 12, pp. 446-447):

“Hence the following scenario (compare Emiliani and Geiss, 1959) suggests itself for the successive climatic transitions from660

Pliocene to Pleistocene and from Early to Late Pleistocene: As land masses moved towards more northerly positions, small

ice caps formed on mountain chains and at high latitudes. These ice caps, due to their feedback on albedo, made climate more

sensitive to insolation variations than it was in the total absence of ice. The response of the climatic system to such variations

during the Early Pleistocene (2 000 [kyr]–1 000 [kyr] ago) was still relatively weak, of a fraction of a degree centigrade in

global temperature perhaps, in agreement with the quasi-equilibrium results of Sect. 10.2.665

As ice caps passed, about 1 000 [kyr] ago, a certain critical size, the unforced system jumped from its stable equilibrium

to its stable limit-cycle state (Figures 12.5 and 12.9), increasing dramatically the climate’s total variability, to a few degrees

centigrade in global temperature. Furthermore, resonant response became possible (see also Oerlemans (1984) [in Berger et al.

(1984)] and Sergin (1979)), enhancing abruptly the amplitude of the peak at 100 kyr, among others.”

The take-home message is that slow and fast processes, both intrinsic and extrinsic, interact on all paleoclimatic time scales670

and that we are mastering the art of modeling such interactions.
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Code and data availability. All code used to generate the figures presented in this article is available from the authors upon request. NGRIP

δ18O and the historical CO2 data shown in Fig. 12 are available from https://www.iceandclimate.nbi.ku.dk/data/ (last accessed: 2. Septem-

ber 2021) and as a supplement to Seierstad et al. (2014), respectively. The benthic δ18O data shown in Fig. 13 have been obtained from

https://lorraine-lisiecki.com/LR04stack.txt (last accessed: 2. September 2021).675

Video supplement. The video supplement to this article illustrates the pullback attractor (PBA) associated with the simple system governed

by Eqs. (16) and (17). It shows a heat map of the phase plane, derived from an increasing number of trajectories with common initial

time ti =−200 and final time tf = 200. The initial radius and phase of each trajectory are randomly sampled from Gaussian distributions

centered at µρ = 20 and µφ = 0 with standard deviations of σρ = 5 and σφ = 10, respectively. Over the course of the video, 100 trajectories

are continuously added to the heat map and the annular disc680

D = {(ρ,φ) : ρ ∈ [µ−αβ,µ+αβ] and φ ∈ [0,2π)} (32)

fills up. The heat map in Fig. 6(b) is a snapshot from this video at time t= 0.2.

Appendix A: Low-order dynamical-system models of glacial cycles

The dynamical modeling of glacial cycles dates back to the 1970s. Calder (1974) proposed a model of global ice volume

changes that had different sensitivities to the insolation when ice sheets were waxing and waning, respectively. His model685

can be written as an NDS, according to Paillard (2001). Subsequently, conceptual dynamical models were further developed

(e.g., Imbrie and Imbrie, 1980; Berger, 1999). Some of the more recent models simulate the proxy records of glacial cycles

remarkably well (Paillard, 1998; Imbrie et al., 2011; Parrenin and Paillard, 2012).

Shortly after Calder (1974) presented his work, Weertman (1976) proposed a simple ice-sheet model based on the flow law

of a perfectly plastic solid. Next, researchers extended this simple ice sheet model by coupling it with an energy-balance model690

(Källén et al., 1979) and further with the isostatic response of the underlying bedrock (Oerlemans, 1980; Ghil and Le Treut,

1981; Le Treut and Ghil, 1983; Pollard, 1983). Källén et al. (1979) found self-sustained oscillations in their simple coupled

ice sheet–energy balance model. Le Treut and Ghil (1983) showed that the dominant 100-kyr periodicity of glacial cycles

is generated — in their simple oscillator coupling ice sheet volume with the bedrock’s isostatic rebound, on the one hand,

and with the atmosphere and ocean’s energy balance, on the other — via nonlinear resonance with the multi-periodic orbital695

forcing. More recently, Verbitsky et al. (2018) developed a simple physical model through a scaling argument that respects the

underlying physics. Another branch of simple models explicitly includes the carbon cycle as an essential ingredient (Saltzman

and Maasch, 1990; Paillard and Parrenin, 2004; Hogg, 2008; Toggweiler, 2008; Omta et al., 2016; Talento and Ganopolski,

2021).

A deeper understanding of glaciation cycles cannot be obtained without process-based models that focus on the detailed700

physics and biogeochemical phenomena involved (Berger et al., 1999; Ganopolski and Calov, 2011; Abe-Ouchi et al., 2013;

Ganopolski and Brovkin, 2017; Willeit et al., 2019). Still, simple dynamical models like the ones mentioned above, as well
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Author(s) (year) Succint description Dynamical properties Is the Middle-Pleistocene Tran-

sition (MPT)-like behavior gen-

erated?

Additional comments

Low-order dynamical systems models of glacial cycles

Calder (1974) Model of the global ice vol-

ume with different sensitivities

to the insolation during growth

and retreat, respectively.

Nonchaotic. No self-sustained

oscillation in the absence of

forcing

Not specifically addressed His model can be written as

a non-autonomous dynamical

system (NDS) (Paillard, 2001)

Weertman (1976) Simplified ice sheet model

based on the flow law of a

perfectly plastic solid

Nonchaotic. No self-sustained

oscillation in the absence of

forcing

Not specifically addressed

Källén et al. (1979)

Ghil and Le Treut (1981)

Le Treut and Ghil (1983)

Ghil (1994)

Ice sheet–bedrock–temperature

coupled oscillator; see the text

for details

Chaotic in the presence of

orbital forcing (Ghil, 1994).

Exhibits self-sustained oscilla-

tions with a period of≈10 kyr;

the basic mechanism for get-

ting ∼100-kyr cycle is non-

linear resonance at a differ-

ence tone between the 19-kyr

and 23-kyr precession cycles

(Le Treut and Ghil, 1983); see

Sect. 2.1 herein.

Not explicitly. It can exhibit,

however, the MPT in princi-

ple, since 41-kyr oscillations as

well as dominant 100-kyr os-

cillations can be generated, de-

pending on the model’s param-

eter values.

Källén et al. (1979) is an ice

sheet–temperature coupled os-

cillator. Ghil and Le Treut

(1981) introduced the bedrock

and Le Treut and Ghil (1983)

added the orbital forcing.

Imbrie and Imbrie (1980) Piecewise-linear model with

two different time scales for ice

sheet waxing and wanning

Nonchaotic. No self-sustained

oscillation in the absence of

forcing

Not specifically addressed 400-kyr periodicity is more

dominant than 100-kyr period-

icity.

Saltzman and Maasch (1988)

Saltzman and Maasch (1990)

Maasch and Saltzman (1990)

Coupled oscillator based on

ice–CO2–ocean temperature

(or NADW) coupling. Non-

linearlity is only in the CO2

component.

Nonchaotic. After the MPT, it

exhibits self-sustained oscilla-

tions with a period of∼100 kyr

in the absence of forcing.

Yes, the MPT arises via a

Hopf bifurcation in the under-

lying system; see also Crucifix

(2012).

It has a strange nonchaotic at-

tractor, as well as a chaotic one,

depending on the parameter set-

ting (Mitsui and Aihara, 2014).

Paillard (1998)

Parrenin and Paillard (2003)

Parrenin and Paillard (2012)

Hybrid dynamical system with

discrete states that switch when

conditions are satisfied

Nonchaotic but the dynam-

ics is sensitive to parame-

ter changes near the switch-

ing boundaries (Paillard, 2001).

No self-sustained oscillations

in the absense of forcing.

Yes, in Paillard (1998) The authors call these models

relaxation oscillators, in spite

of their discrete-state formula-

tion.

Berger (1999) Delayed differential equation

for ice volume

Robustness of trajectories

against random perturbations is

mentioned. It exhibits damped

oscillations in the absence of

forcing.

Not specifically addressed.

Paillard and Parrenin (2004) Coupled oscillator based

on Northern hemisphere ice

volume–Antarctic ice extent–

CO2 coupling.

Nonchaotic. It exhibits self-

sustained oscillations in the ab-

sence of forcing.

Yes, the MPT is induced by a

slow drift in the bottom water

formation efficiency around the

Antarctic

Ashwin et al. (2018) showed

that this model can exhibit

chaotic dynamics when it is

slightly modified.

Ashkenazy and Tziperman (2004)

Tziperman et al. (2006)

An ice mass model, which

simplifies the sea-ice switch

model of Gildor and Tziperman

(2000)

It exhibits self-sustained oscil-

lations in the absence of forc-

ing. Nonchaotic under the or-

bital forcing.

Yes, in Ashkenazy and Tziper-

man (2004), where the maxi-

mum ice volume threshold is

increased in time according to

the regolith hypothesis.

Uses the temperature-

precipitation feedback in-

troduced by Källén et al.

(1979).
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Author(s) (year) Succint description Dynamical properties Is the Middle-Pleistocene Tran-

sition (MPT)-like behavior gen-

erated?

Additional comments

Low-order dynamical systems models of glacial cycles

Huybers (2007)

Huybers (2011)

The ice mass grows monoton-

ically and collapses to zero

when it exceeds a threshold

modulated by the obliquity

(Huybers, 2007) or by a hy-

brid measure consisting of the

obliquity and climatic preces-

sion (Huybers, 2011).

It exhibits self-sustained oscil-

lations in the absence of forc-

ing; nonchaotic.

Yes, in Huybers (2007)

Imbrie et al. (2011) Data-based, phase-space model

for Pleistocene ice volume with

thresholds.

Due to the presence of the

threshold, the model is sensitive

to changes in parameters or in

its position in phase space.

Yes, MPT-like behavior is pro-

duced solely by changes in or-

bital parameters.

Crucifix (2012)

De Saedeleer et al. (2013)

Forced Van der Pol (VdP) os-

cillator model; closely related

to the FHN model used in

Sect. 3.3 herein.

Nonchaotic (Crucifix, 2012)

but sensitive to the noise;

see Additional Comment. It

exhibits self-sustained oscilla-

tions in the absence of forcing.

Yes, MPT-like behavior is gen-

erated via a Hopf bifurcation

with an explosive character

(Crucifix, 2012)

Ashwin et al. (2018) showed

that this model has only a small

parameter region correspond-

ing to chaotic dynamics, but

may have a wider chaotic re-

gion when it is generalized to

the VdP-Duffing system.

Mitsui et al. (2015) One-dimensional phase oscilla-

tor model

Nonchaotic Yes, MPT-like frequency

change accompanies a smooth

or nonsmooth saddle-node

bifurcation of tori.

It has a strange nonchaotic at-

tractor or a quasiperiodic attrac-

tor in a classical sense, i.e., not

in the pullback sense.

Ashwin and Ditlevsen (2015) Two-dimensional forced limit

cycle oscillator

Nonchaotic; overall stability of

simulated glacial cycles against

dynamical noise is reported.

It exhibits MPT-like behavior

via a transcritical bifurcation of

the slow manifold in the fast dy-

namics.

Omta et al. (2016) Forced two-dimensional oscil-

lator consisting of ocean alka-

linity and calcifier population

Nonchaotic or chaotic given pe-

riodic forcing, depending on

the parameters. It exhibits self-

sustained oscillations in the ab-

sence of forcing.

Yes

Daruka and Ditlevsen (2016) Forced Duffing oscillator–type

model.

No self-sustained oscillations

in the absence of forcing. Can

be chaotic depending on param-

eter values; the authors call this

the “climatic butterfly effect.”

Yes, MPT-like behavior is in-

duced by a slow change in the

damping coefficient parameter

κ.

See also Sect. 4 herein.

Huybers and Langmuir (2017) Coupled system of ice volume,

temperature and atmospheric

CO2, incorporating a delayed

CO2 contribution from ocean

ridge volcanism. It is reduced to

a forced 1-D delay differential

equation

A phase-locking property is re-

ported. The underlying system

has two stable and one unsta-

ble stationary states. However,

it is close to a Hopf bifurca-

tion point and is excitable by

the forcing.

Yes, the MPT is modeled as

a switch from small-amplitude

oscillations to large-amplitude

ones, which is triggered by the

amplitude modulation of obliq-

uity cycles.
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Author(s) (year) Succint description Dynamical properties Is the Middle-Pleistocene Tran-

sition (MPT)-like behavior gen-

erated?

Additional comments

Low-order dynamical systems models of glacial cycles

Quinn et al. (2017) Scalar delay-differential equa-

tion for ice volume, derived

from the Saltzman and Maasch

(1988) model, via the linear

chain approximation.

Nonchaotic before the MPT

and temporarily chaotic after

the MPT around 800 kyr b2k.

In the absence of astronomi-

cal forcing, the delayed feed-

back leads to bistable behavior,

in which stable large-amplitude

oscillations and an equilibrium

coexist.

Yes, MPT-like behavior is in-

duced by summer insolation

forcing as a transition from

small-amplitude ∼41-kyr cy-

cles to large-amplitude ∼100-

kyr cycles.

Ashwin et al. (2018) Study of several low-order dy-

namical systems models, in-

cluding Paillard and Parrenin

(2004), Crucifix (2012) and a

generalized VdP-Duffing oscil-

lator.

Chaotic or nonchaotic depend-

ing on the model and its param-

eter values.

Not explicitly discussed. The

models can, however, exhibit

MPT-like behavior in principle,

because 41-kyr oscillations as

well as dominant 100-kyr oscil-

lations are generated depending

on parameter values.

The authors stress the possibil-

ity of chaotic dynamics occur-

ring.

Verbitsky et al. (2018) Coupled model relying on ice-

sheet basal temperature–ocean

temperature coupling, deduced

from physical laws via a scaling

analysis.

Nonchaotic. No self-sustained

oscillations in the absence of

forcing. The 100-kyr cycles are

attributed to a period-doubling

response to 41-kyr obliquity cy-

cles.

Yes, MPT-like behavior is in-

duced by an enhancement of

positive feedbacks against neg-

ative feedbacks in the model.

Talento and Ganopolski (2021) Ice volume–CO2 coupled con-

ceptual model

Not specifically addressed. This model was developed to

simulate the last 800-kyr of

glacial cycles and Earth’s future

climate on the Myr time scale.

Low-order dynamical models in which stochastic processes are of the essence

Benzi et al. (1981, 1982)

Nicolis (1981)

Two independent formulations

of a stochastic-resonance

model. Additive noise favors

the bimodal response of a

periodically modified double-

well potential to global annual

insolation variations

Additive stochastic perturba-

tions play a key role

Not specifically addressed. An

MPT-llike transition could be

obtained by subjecting both the

depth of the deterministic dou-

ble well and the pure periodic-

ity of its modulation to a more

or les gradual modification.

Benzi et al. (1981, 1982) and

Nicolis (1981) proposed the

stochastic-resonance idea for

ice-age cyclicity, independently

of each other.

Matteucci (1989) Generalized stochastic reso-

nance model with obliquity and

precessional forcing

Additive stochastic perturba-

tions play a key role.

Not specifically addressed.

Pelletier (2003) Model based on the coher-

ence resonance mechanism

(Pikovsky and Kurths, 1997)

uses a single temperature ODE

with a discrete delay.

Additive stochastic perturba-

tions play a key role.

Yes The delay feedback in the tem-

perature is based on ice sheet

extent reconstructions and af-

fects the model’s albedo.

Ditlevsen (2010) Generalized stochastic reso-

nance model with obliquity and

precessional forcing

Additive stochastic perturba-

tions play a key role.

Yes The model has an underlying

bifurcation structure following

Paillard (1998) .

Table A1. List of simple conceptual glacial-cycle models with only 1-to-3 variables. Note that, while extensive, this list is not exhaustive.
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as models based on more mathematical considerations, are useful, too, for understanding the climate system’s behavior and

changes therein, since complex systems can sometimes exhibit familiar dynamics, regardless of the details (Nicolis and Nicolis,

2012; Crucifix, 2011). As Henri Poincaré pointed out, “mathematics is the art of giving the same name to different things.”705

For example, coupled nonlinear oscillators frequently exhibit synchronization with simple frequency ratios, either with each

other (Pikovsky et al., 2001) or with the forcing (Ghil and Childress, 1987). Thus, mathematical models that ignore many

physical details may also help us elucidate emergent properties in paleoclimatic dynamics (Tziperman et al., 2006; Crucifix,

2011, 2012; De Saedeleer et al., 2013; Mitsui et al., 2015; Ashwin and Ditlevsen, 2015; Daruka and Ditlevsen, 2016) or test

different orbital hypotheses (Huybers, 2011). Many low-order models of glacial dynamics are listed in Tab. A1, although it is710

by no means exhaustive.

Appendix B: PBA for a limit cycle with sinusoidally modulated radius

Here we study the system of two formally decoupled ODEs

dρ

dt
= α(µ+β sin(νt)− ρ),

dφ

dt
= ω with ρ > 0, µ > 0 (B1)

that was introduced in Sect. 3.2 and analytically derive its invariant sets715

A(t) = {
(
αβ sin(νt+ϑ) +µ,ϕ

)
: ϕ ∈ [0,2π)} ∀t ∈ R, (B2)

as well as the corresponding pullback attractor (PBA). Following Crauel and Kloeden (2015), the PBA is given by the family

A = {A}t:t∈R (B3)

First, we define ∆ρ(t) = ρ(t)−µ, which gives rise to

d∆ρ(t)

dt
=−α∆ρ(t) +αβ sin(νt). (B4)720

This is an inhomogeneous ODE and can thus be solved by the variation of parameters method (e.g., Boyce and DiPrima, 2005).

The Ansatz

∆ρ(t) = c(t) e−α(t−t0) (B5)

yields

d∆ρ(t)

dt
=−α∆ρ(t) +

dc(t)
dt

e−α(t−t0). (B6)725

A comparison with Eq. (B4) requires

d
dt
c(t) = αβ sin(νt)e+α(t−t0), (B7)
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and hence

c(t) =

t∫

t0

αβ sin(νt′)e+α(t
′−t0)dt′+ γ = [αβ sin(νt′)

1

α
e+α(t

′−t0)]tt0 −
t∫

t0

ν

α
αβ cos(νt′)e+α(t

′−t0)dt′+ γ. (B8)

Repeated partial integration yields730

t∫

t0

ν

α
αβ cos(νt′)e+α(t

′−t0)dt′ = [
ν

α
αβ cos(νt′)

1

α
e+α(t

′−t0)]tt0 +

t∫

t0

ν2

α2
αβ sin(νt′)e+α(t

′−t0)dt′. (B9)

Therefore, we find

(1 +
ν2

α2
)

t∫

t0

αβ sin(νt′)e+α(t
′−t0)dt′ = [αβ sin(νt′)

1

α
e+α(t

′−t0)]tt0 − [
ν

α
αβ cos(νt′)

1

α
e+α(t

′−t0)]tt0 (B10)

and finally

c(t) =
1

(1 + ν2

α2 )


 [β sin(νt′)e+α(t

′−t0)]tt0︸ ︷︷ ︸
=β[sin(νt)eα(t−t0)−sin(νt0)]

− [
νβ

α
cos(νt′)e+α(t

′−t0)]tt0︸ ︷︷ ︸
= νβ
α [cos(νt)eα(t−t0)−cos(νt0)]

+γ


 . (B11)735

Plugging this result into the Ansatz (B5) yields

∆ρ(t, t0) =
1

(1 + ν2

α2 )

(
β[sin(νt)− sin(νt0)e−α(t−t0)]− νβ

α
[cos(νt)− cos(νt0)e−α(t−t0)]

)
+ γe−α(t−t0), (B12)

with the initial conditions

∆ρ(t0, t0) = γ. (B13)

In the pullback limit, all the terms that carry a factor e−α(t−t0) vanish and thus740

lim
t0→−∞

∆ρ(t, t0) =
1

(1 + ν2

α2 )

(
β sin(νt)− νβ

α
cos(νt)

)
= αβ sin(νt+ϑ), (B14)

with ϑ= arctan(−ν/α). For comparison, the modulation of the target radius itself was given by β sin(νt) and hence it is

amplified by the factor of α. Since ρ is restricted to positive values, this solution requires αβ < µ.

Since the evolution in time of the phase φ(t) is trivial, different initial conditions for the phase do not converge. Hence, the

time-dependent sets that are invariant with respect to the dynamics of the system are745

A(t) = {(ρ(t),φ) : φ ∈ [0,2π)}= {(αβ sin(νt+ϑ),φ) : φ ∈ [0,2π)}. (B15)

Defined as the indexed family of all A(t), the system’s PBA is comprised of the family of circles

A = {A(t)}t∈R = {(αβ sin(νt+ϑ),φ) : φ ∈ [0,2π)}t∈R. (B16)

38



Author contributions. MG conceived and designed the study. KR and TM carried out the major part of the article’s new research. All authors

interpreted and discussed the results and wrote the manuscript.750

Competing interests. The authors declare that they have no conflict of interest.

Acknowledgements. We thank Andreas Groth for helpful comments on an earlier version of this manuscript. It is a pleasure to thank Tamás

Bódai and two anonymous referees for their thorough and constructive comments. István Daruka’s public comments motivated in part the

addition of Appendix A and its Table A1, in order to give a broader perspective of relevant work on the Quaternary’s glacial cycles and the

mid-Pleistocene transition (MPT). TM and NB acknowledge funding by the Volkswagen Foundation. The present work is TiPES contribution755

#52; the TiPES (Tipping Points in the Earth System) project has received funding from the European Union’s Horizon 2020 research and

innovation program under Grant Agreement No. 820970. MG acknowledges support by the EIT Climate-KIC; EIT Climate-KIC is supported

by the European Institute of Innovation & Technology (EIT), a body of the European Union.

39



References

Abe-Ouchi, A., Saito, F., Kawamura, K., Raymo, M. E., Okuno, J., Takahashi, K., and Blatter, H.: Insolation-driven 100,000-year glacial760

cycles and hysteresis of ice-sheet volume, Nature, 500, 190–193, https://doi.org/10.1038/nature12374, 2013.

Arnold, L.: Random Dynamical Systems, Springer, New York, 1988.

Arnold, V. I.: Geometrical Methods in the Theory of Ordinary Differential Equations, Springer Science & Business Media; first Russian

edition 1978, 2012.

Ashkenazy, Y. and Tziperman, E.: Are the 41 kyr glacial oscillations a linear response to Milankovitch forcing?, Quaternary Science Reviews,765

23, 1879–1890, https://doi.org/10.1016/j.quascirev.2004.04.008, 2004.

Ashwin, P. and Ditlevsen, P.: The middle Pleistocene transition as a generic bifurcation on a slow manifold, Climate Dynamics, 45, 2683–

2695, 2015.

Ashwin, P., Wieczorek, S., Vitolo, R., and Cox, P.: Tipping points in open systems: bifurcation, noise-induced and rate-dependent examples

in the climate system, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 370, 1166–770

1184, 2012.

Ashwin, P., David Camp, C., and von der Heydt, A. S.: Chaotic and non-chaotic response to quasiperiodic forcing: limits to predictability of

ice ages paced by Milankovitch forcing, Dynamics and Statistics of the Climate System, 3, 1–20, https://doi.org/10.1093/climsys/dzy002,

2018.

Bagniewski, W., Ghil, M., and Rousseau, D. D.: Automatic detection of abrupt transitions in paleoclimate records, Chaos: An Interdisci-775

plinary Journal of Nonlinear Science, 31, 113 129, https://doi.org/10.1063/5.0062543, 2021.

Barenblatt, G. I.: Scaling, Self-Similarity, and Intermediate Asymptotics, Cambridge University Press, 1996.

Benoît, É.: Systèmes lents-rapides dans R3 et leurs canards, Astérisque, pp. 109–110, 1983.

Benzi, R., Sutera, A., and Vulpiani, A.: The mechanism of stochastic resonance, Journal of Physics A: mathematical and general, 14, L453,

1981.780

Benzi, R., Parisi, G., Sutera, A., and Vulpiani, A.: Stochastic resonance in climatic change, Tellus, 34, 10–15,

https://doi.org/10.3402/tellusa.v34i1.10782, 1982.

Bereiter, B., Eggleston, S., Schmitt, J., Nehrbass-Ahles, C., Stocker, T. F., Fischer, H., Kipfstuhl, S., and Chappellaz, J.: Revision of the

EPICA Dome C CO2 record from 800 to 600 kyr before present, Geophysical Research Letters, 42, 542–549, 2015.

Berger, A.: Long-term variations of daily insolation and Quaternary climatic changes, Journal of the Atmospheric Sciences, 35, 2362–2367,785

1978.

Berger, A., Imbrie, J., Hays, J., Kukla, G., and Saltzman, B., eds.: Milankovitch and Climate: Understanding the Response to Astronomical

Forcing, vols. I & II, D. Reidel Publ. Co., Dordrecht/Boston, reissued in 2013 by Springer Science & Business Media, 1984.

Berger, A., Li, X., and Loutre, M.-F.: Modelling northern hemisphere ice volume over the last 3 Ma, Quaternary Science Reviews, 18, 1–11,

1999.790

Berger, W. H.: The 100-kyr ice-age cycle: Internal oscillation or inclinational forcing?, International Journal of Earth Sciences, 88, 305–316,

https://doi.org/10.1007/s005310050266, 1999.

Bódai, T. and Tél, T.: Annual variability in a conceptual climate model: Snapshot attractors, hysteresis in extreme events, and climate

sensitivity, Chaos: An Interdisciplinary Journal of Nonlinear Science, 22, 023110, https://doi.org/http://dx.doi.org/10.1063/1.3697984,

2012.795

40

https://doi.org/10.1038/nature12374
https://doi.org/10.1016/j.quascirev.2004.04.008
https://doi.org/10.1093/climsys/dzy002
https://doi.org/10.1063/5.0062543
https://doi.org/10.3402/tellusa.v34i1.10782
https://doi.org/10.1007/s005310050266
https://doi.org/http://dx.doi.org/10.1063/1.3697984


Bódai, T., Lucarini, V., Lunkeit, F., and Boschi, R.: Global instability in the Ghil-Sellers model, Climate Dynamics, 44, 3361–3381, 2015.

Boers, N., Chekroun, M. D., Liu, H., Kondrashov, D., Rousseau, D.-D., Svensson, A., Bigler, M., and Ghil, M.: Inverse stochastic–dynamic

models for high-resolution Greenland ice core records, Earth System Dynamics, 8, 1171–1190, https://doi.org/10.5194/esd-8-1171-2017,

2017a.

Boers, N., Goswami, B., and Ghil, M.: A complete representation of uncertainties in layer-counted paleoclimatic archives, Climate of the800

Past, 13, 1169–1180, https://doi.org/10.5194/cp-13-1169-2017, 2017b.

Boers, N., Ghil, M., and Rousseau, D.-D.: Ocean circulation, ice shelf, and sea ice interactions explain Dansgaard–Oeschger cycles, Pro-

ceedings of the National Academy of Sciences, 115, E11 005–E11 014, https://doi.org/10.1073/pnas.1802573115, 2018.

Bond, G., Showers, W., Cheseby, M., Peter Almasi, R. L., deMenocal, P., Priore, P., Irka Hajdas, H. C., and Bo-

nani, G.: A pervasive millennial-scale cycle in North Atlantic Holocene and glacial climates, Science, 278, 1257–1266,805

https://doi.org/10.1126/science.278.5341.1257, 1997.

Boyce, W. E. and DiPrima, R. C.: Elementary Differential Equations and Boundary Value Problems, 8th Edition, John Wiley & Sons, 2005.

Broecker, W. S. and Van Donk, J.: Insolation changes, ice volumes, and the O18 record in deep-sea cores, Reviews of Geophysics, 8, 169–198,

1970.

Budyko, M. I.: The effect of solar radiation variations on the climate of the Earth, Tellus, 21, 611–619, 1969.810

Calder, N.: Arithmetic of ice ages, Nature, 252, 216–218, https://doi.org/https://doi.org/10.1038/252216a0, 1974.

Caraballo, T. and Han, X.: Applied Nonautonomous and Random Dynamical Systems: Applied Dynamical Systems, Springer Science +

Business Media, 2017.

Charó, G. D., Chekroun, M. D., Sciamarella, D., and Ghil, M.: Noise-driven topological changes in chaotic dynamics, arXiv:2010.09611v7

[nlin.CD], 2021.815

Chekroun, M. D., Simonnet, E., and Ghil, M.: Stochastic climate dynamics: random attractors and time-dependent invariant measures,

Physica D: Nonlinear Phenomena, 240, 1685–1700, https://doi.org/10.1016/j.physd.2011.06.005, 2011.

Chekroun, M. D., Ghil, M., and Neelin, J. D.: Pullback attractor crisis in a delay differential ENSO model, in: Advances in Nonlinear

Geosciences, edited by Tsonis, A. A., pp. 1–33, Springer Science & Business Media, https://doi.org/10.1007/978-3-319-58895-7, 2018.

Crafoord, C. and Källén, E.: A note on the condition for existence of more than one steady state solution in Budyko-Sellers type models, J.820

Atmos. Sci, 35, 1123–1125, 1978.

Crauel, H. and Kloeden, P. E.: Nonautonomous and random attractors, Jahresbericht der Deutschen Mathematiker-Vereinigung, 117, 173–

206, 2015.

Crucifix, M.: How can a glacial inception be predicted?, The Holocene, 21, 831–842, 2011.

Crucifix, M.: Oscillators and relaxation phenomena in Pleistocene climate theory, Philosophical Transactions of the Royal Society A: Math-825

ematical, Physical and Engineering Sciences, 370, 1140–1165, 2012.

Crucifix, M.: Why could ice ages be unpredictable?, Clim. Past, 9, 2253–2267, 2013.

Dansgaard, W., Johnsen, S. J., Clausen, H. B., Dahl-Jensen, D., Gundestrup, N. S., Hammer, C. U., Hvidberg, C. S., Steffensen, J. P.,

Sveinbjörnsdottir, A. E., Jouzel, J., and Bond, G.: Evidence for general instability of past climate from a 250-kyr ice-core record, Nature,

364, 218–220, https://doi.org/10.1038/364218a0, 1993.830

Daruka, I. and Ditlevsen, P. D.: A conceptual model for glacial cycles and the middle Pleistocene transition, Climate Dynamics, 46, 29–40,

2016.

41

https://doi.org/10.5194/esd-8-1171-2017
https://doi.org/10.5194/cp-13-1169-2017
https://doi.org/10.1073/pnas.1802573115
https://doi.org/10.1126/science.278.5341.1257
https://doi.org/https://doi.org/10.1038/252216a0
https://doi.org/10.1016/j.physd.2011.06.005
https://doi.org/10.1007/978-3-319-58895-7
https://doi.org/10.1038/364218a0


De Saedeleer, B., Crucifix, M., and Wieczorek, S.: Is the astronomical forcing a reliable and unique pacemaker for climate? a conceptual

model study, Climate Dynamics, 40, 273–294, 2013.

Ditlevsen, P., Mitsui, T., and Crucifix, M.: Crossover and peaks in the Pleistocene climate spectrum; understanding from simple ice age835

models, Climate Dynamics, 54, 1801–1818, 2020.

Ditlevsen, P. D.: Extension of stochastic resonance in the dynamics of ice ages, Chemical Physics, 375, 403–409,

https://doi.org/10.1016/j.chemphys.2010.05.022, http://dx.doi.org/10.1016/j.chemphys.2010.05.022, 2010.

Ditlevsen, P. D. and Ashwin, P. B.: Complex climate response to astronomical forcing: The middle-Pleistocene transition in glacial cycles

and changes in frequency locking, Frontiers in Physics, 6, https://doi.org/10.3389/fphy.2018.00062, 2018.840

Ditlevsen, P. D., Andersen, K. K., and Svensson, A.: The DO-climate events are probably noise induced: Statistical investigation of the

claimed 1470 years cycle, Climate of the Past, 3, 129–134, https://doi.org/10.5194/cp-3-129-2007, 2007.

Drótos, G., Bódai, T., and Tél, T.: Probabilistic concepts in a changing climate: A snapshot attractor picture, Journal of Climate, 28, 3275–

3288, 2015.

Duffing, G.: Erzwungene Schwingungen bei veränderlicher Eigenfrequenz und ihre technische Bedeutung, vol. 41/42 of Sammlung Vieweg,845

R. Vieweg & Sohn, Braunschweig, 1918.

Einstein, A.: Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten

Teilchen, Annalen der Physik, 322, 549–560; reprinted in Investigations on the Theory of the Brownian Movement, five articles by A.

Einstein, R. Furth (ed.) and A. D. Cowper (transl.), 1956, Dover Publ., New York, 122 pp., 1905.

Emiliani, C. and Geiss, J.: On glaciations and their causes, Geologische Rundschau, 46, 576–601, 1959.850

Fienga, A., Laskar, J., Exertier, P., Manche, H., and Gastineau, M.: Numerical estimation of the sensitivity of INPOP planetary ephemerides

to general relativity parameters, Celestial Mechanics and Dynamical Astronomy, 123, 325–349, 2015.

FitzHugh, R.: Impulses and physiological states in theoretical models of nerve membrane, Biophysical journal, 1, 445–466, 1961.

Flint, R. F.: Glacial and Quaternary Geology, Wiley New York, 1971.

Ganopolski, A. and Brovkin, V.: Simulation of climate, ice sheets and CO2 evolution during the last four glacial cycles with an Earth system855

model of intermediate complexity, Climate of the Past, 13, 1695–1716, https://doi.org/10.5194/cp-13-1695-2017, 2017.

Ganopolski, A. and Calov, R.: The role of orbital forcing, carbon dioxide and regolith in 100 kyr glacial cycles, Climate of the Past, 7,

1415–1425, https://doi.org/10.5194/cp-7-1415-2011, 2011.

Ghil, M.: Climate stability for a Sellers-type model, Journal of the Atmospheric Sciences, 33, 3–20, 1976.

Ghil, M.: Climate sensitivity, energy balance models, and oscillatory climate models, Journal of Geophysical Research: Atmospheres, 89,860

1280–1284, 1984.

Ghil, M.: Cryothermodynamics: the chaotic dynamics of paleoclimate, Physica D, 77, 130–159, 1994.

Ghil, M.: Hilbert problems for the geosciences in the 21st century, Nonlinear Processes in Geophysics, 8, 211–211,

https://doi.org/10.5194/npg-8-211-2001, 2001.

Ghil, M.: Climate variability: Nonlinear and random aspects, in: Encyclopedia of Atmospheric Sciences, 2nd edn., edited by G. R. North,865

J. P. and Zhang, F., vol. 2, pp. 38–46, Elsevier, 2014.

Ghil, M.: A century of nonlinearity in the geosciences, Earth and Space Science, 6, 1007–1042, https://doi.org/10.1029/2019EA000599,

2019.

42

https://doi.org/10.1016/j.chemphys.2010.05.022
http://dx.doi.org/10.1016/j.chemphys.2010.05.022
https://doi.org/10.3389/fphy.2018.00062
https://doi.org/10.5194/cp-3-129-2007
https://doi.org/10.5194/cp-13-1695-2017
https://doi.org/10.5194/cp-7-1415-2011
https://doi.org/10.5194/npg-8-211-2001
https://doi.org/10.1029/2019EA000599


Ghil, M. and Childress, S.: Topics in Geophysical Fluid Dynamics: Atmospheric Dynamics, Dynamo Theory, and Climate Dynamics,

Springer Science+Business Media, Berlin/Heidelberg, https://doi.org/10.1007/978-1-4612-1052-8, Reissued as an eBook in 2012, 978-1-870

4612-1052-8, 1987.

Ghil, M. and Le Treut, H.: A climate model with cryodynamics and geodynamics, Journal of Geophysical Research: Oceans, 86, 5262–5270,

1981.

Ghil, M. and Lucarini, V.: The physics of climate variability and climate change, Reviews of Modern Physics, 92, 035 002,

https://doi.org/10.1103/RevModPhys.92.035002, 2020.875

Ghil, M. and Tavantzis, J.: Global Hopf bifurcation in a simple climate model, SIAM Journal on Applied Mathematics, 43, 1019–1041,

https://doi.org/10.1137/0143067, 1983.

Ghil, M. and Vautard, R.: Interdecadal oscillations and the warming trend in global temperature time series, Nature, 350, 324–327, 1991.

Ghil, M. and Zaliapin, I.: Understanding ENSO variability and its extrema: A delay differential equation approach, in: Extreme Events:

Observations, Modeling and Economics, Geophysical Monograph 214, edited by Chavez, M., Ghil, M., and Urrutia-Fucugauchi, J., pp.880

63–78, Wiley Online Library, 2015.

Ghil, M., Mullhaupt, A., and Pestiaux, P.: Deep water formation and Quaternary glaciations, Climate Dynamics, 2, 1–10, 1987.

Ghil, M., Chekroun, M. D., and Simonnet, E.: Climate dynamics and fluid mechanics: natural variability and related uncertainties, Physica

D: Nonlinear Phenomena, 237, 2111–2126, https://doi.org/10.1016/j.physd.2008.03.036, 2008.

Gildor, H. and Tziperman, E.: Sea ice as the glacial cycles’ climate switch: Role of seasonal and orbital forcing, Paleoceanography, 15,885

605–615, 2000.

Guckenheimer, J. and Holmes, P. J.: Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Applied Mathematical

Sciences, Springer Science & Business Media, 1983.

Hasselmann, K.: Stochastic climate models. I: Theory, Tellus, 28, 473–485, 1976.

Hays, J. D., Imbrie, J., Shackleton, N. J., et al.: Variations in the Earth’s orbit: pacemaker of the ice ages, science, 194, 1121–1132, 1976.890

Heinrich, H.: Origin and consequences of cyclic ice rafting in the Northeast Atlantic Ocean during the past 130,000 years, Quaternary

Research, 29, 142–152, https://doi.org/10.1016/0033-5894(88)90057-9, 1988.

Held, I. M.: The gap between simulation and understanding in climate modeling, Bulletin of the American Meteorological Society, 86,

1609–1614, https://doi.org/10.1175/bams-86-11-1609, 2005.

Held, I. M. and Suarez, M. J.: Simple albedo feedback models of the ice caps, Tellus, 26, 613–629, 1974.895

Henry, L. G., McManus, J. F., Curry, W. B., Roberts, N. L., Piotrowski, A. M., and Keigwin, L. D.: North Atlantic ocean circulation and

abrupt climate change during the last glaciation, Science, 353, 470–474, https://doi.org/10.1126/science.aaf5529, 2016.

Hoffman, P. F., Kaufman, A. J., Halverson, G. P., and Schrag, D. P.: A Neoproterozoic snowball earth, Science, 281, 1342–1346, 1998.

Hogg, A. M. C.: Glacial cycles and carbon dioxide: A conceptual model, Geophysical Research Letters, 35, 1–5,

https://doi.org/10.1029/2007GL032071, 2008.900

Huybers, P.: Glacial variability over the last two million years: an extended depth-derived agemodel, continuous obliquity pacing, and the

Pleistocene progression, Quaternary Science Reviews, 26, 37–55, https://doi.org/10.1016/j.quascirev.2006.07.013, 2007.

Huybers, P.: Combined obliquity and precession pacing of late Pleistocene deglaciations, Nature, 480, 229–232,

https://doi.org/10.1038/nature10626, http://dx.doi.org/10.1038/nature10626, 2011.

Huybers, P. and Langmuir, C. H.: Delayed CO2 emissions from mid-ocean ridge volcanism as a possible cause of late-Pleistocene glacial905

cycles, Earth and Planetary Science Letters, 457, 238–249, 2017.

43

https://doi.org/10.1007/978-1-4612-1052-8
https://doi.org/10.1103/RevModPhys.92.035002
https://doi.org/10.1137/0143067
https://doi.org/10.1016/j.physd.2008.03.036
https://doi.org/10.1016/0033-5894(88)90057-9
https://doi.org/10.1175/bams-86-11-1609
https://doi.org/10.1126/science.aaf5529
https://doi.org/10.1029/2007GL032071
https://doi.org/10.1016/j.quascirev.2006.07.013
https://doi.org/10.1038/nature10626
http://dx.doi.org/10.1038/nature10626


Huybers, P. J.: Pleistocene glacial variability as a chaotic response to obliquity forcing, Climate of the Past, 2009.

Imbrie, J. and Imbrie, J. Z.: Modeling the Climatic Response to Orbital Variations, Science, 207, 943–953, 1980.

Imbrie, J. and Imbrie, K. P.: Ice Ages: Solving the Mystery, 2nd ed., Harvard University Press, 1986.

Imbrie, J. Z., Imbrie-Moore, A., and Lisiecki, L. E.: A phase-space model for Pleistocene ice volume, Earth and Planetary Science Letters,910

307, 94–102, https://doi.org/10.1016/j.epsl.2011.04.018, http://dx.doi.org/10.1016/j.epsl.2011.04.018, 2011.

Isaacson, E. and Keller, H. B.: Analysis of numerical methods, Dover Publications, Inc., New York, NY, 2012.

Jackson, E. A.: Perspectives of Nonlinear Dynamics, Cambridge University Press, New York, 1991.

Jordan, D. W. and Smith, P.: Nonlinear Ordinary Differential Equations – An Introduction for Scientists and Engineers, Oxford University

Press, Oxford/New York, 2 edn., 1987.915

Källén, E., Crafoord, C., and Ghil, M.: Free oscillations in a climate model with ice-sheet dynamics, Journal of the Atmospheric Sciences,

36, 2292–2303, 1979.

Kwasniok, F.: Analysis and modelling of glacial climate transitions using simple dynamical systems, Philosophical Transactions of the Royal

Society A: Mathematical, Physical and Engineering Sciences, 371, https://doi.org/10.1098/rsta.2011.0472, 2013.

Landau, L. D. and Lifshitz, E. M.: Mechanics, vol. I of Course on Theoretical Physics, Pergamon Press, Oxford, 1960.920

Laskar, J., Robutel, P., Joutel, F., Gastineau, M., Correia, A., and Levrard, B.: A long-term numerical solution for the insolation quantities of

the Earth, Astronomy & Astrophysics, 428, 261–285, 2004.

Le Treut, H. and Ghil, M.: Orbital forcing, climatic interactions, and glaciation cycles, Journal of Geophysical Research: Oceans, 88, 5167–

5190, 1983.

Le Treut, H., Portes, J., Jouzel, J., and Ghil, M.: Isotopic modeling of climatic oscillations: Implications for a comparative study of marine925

and ice core records, Journal of Geophysical Research: Atmospheres, 93, 9365–9383, 1988.

Lenssen, N. J. L., Schmidt, G. A., Hansen, J. E., Menne, M. J., Persin, A., Ruedy, R., and Zyss, D.: Improvements in the GISTEMP

uncertainty model, Journal of Geophysical Research: Atmospheres, 124, 6307–6326, 2019.

Lisiecki, L. E. and Raymo, M. E.: A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records, Paleoceanography, 20, 2005.

Lorenz, E. N.: Deterministic nonperiodic flow, Journal of the Atmospheric Sciences, 20, 130–141, 1963.930

Maasch, K. A. and Saltzman, B.: A Low-Order Dynamical Model of Global Climatic Variability Over the Full Pleistocene, Journal of

Geophysical Research, 95, 1955–1963, 1990.

Marangio, L., Sedro, J., Galatolo, S., Di Garbo, A., and Ghil, M.: Arnold maps with noise: Differentiability and non-monotonicity of the

rotation number, Journal of Statistical Physics, 179, 1–31, https://doi.org/10.1007/s10955-019-02421-1, 2019.

Matteucci, G.: Orbital forcing in a stochastic resonance model of the Late-Pleistocene climatic variations, Climate Dynamics, 3, 179–190,935

https://doi.org/https://doi.org/10.1007/BF01058234, 1989.

Milankovitch, M.: Théorie mathématique des phénomènes thermiques produits par la radiation solaire, Gauthier-Villars, Paris, 1920.

Mitsui, T. and Aihara, K.: Dynamics between order and chaos in conceptual models of glacial cycles, Climate Dynamics, 42, 3087–3099,

https://doi.org/10.1007/s00382-013-1793-x, 2014.

Mitsui, T. and Crucifix, M.: Influence of external forcings on abrupt millennial-scale climate changes: a statistical modelling study, Climate940

Dynamics, 48, 2729–2749, 2017.

Mitsui, T., Crucifix, M., and Aihara, K.: Bifurcations and strange nonchaotic attractors in a phase oscillator model of glacial–interglacial

cycles, Physica D: Nonlinear Phenomena, 306, 25–33, 2015.

44

https://doi.org/10.1016/j.epsl.2011.04.018
http://dx.doi.org/10.1016/j.epsl.2011.04.018
https://doi.org/10.1098/rsta.2011.0472
https://doi.org/10.1007/s10955-019-02421-1
https://doi.org/https://doi.org/10.1007/BF01058234
https://doi.org/10.1007/s00382-013-1793-x


Nagumo, J., Arimoto, S., and Yoshizawa, S.: An active pulse transmission line simulating nerve axon, Proceedings of the IRE, 50, 2061–2070,

1962.945

National Research Council: Understanding Climatic Change, a Program for Action, National Academy of Sciences, Washington, DC, 239

pages, 1975.

Nicolis, C.: Solar variability and stochastic effects on climate, Solar Physics, 74, 473–478, https://doi.org/10.1007/BF00154530, 1981.

Nicolis, G. and Nicolis, C.: Foundations of Complex Systems, World Scientific, 2nd edn., https://doi.org/10.1142/8260, https://www.

worldscientific.com/doi/abs/10.1142/8260, 2012.950

North, G. R.: Analytical solution to a simple climate model with diffusive heat transport, Journal of the Atmospheric Sciences, 32, 1301–

1307, 1975.

North Greenland Ice Core Project members: High-resolution record of the Northern Hemisphere climate extending into the last interglacial

period, Nature, 431, 147–151, 2004.

Oerlemans, J.: Model experiments on the 100,000-yr glacial cycle, Nature, 287, 430–432, 1980.955

Oerlemans, J.: On the origin of the ice ages, in: Milankovitch and Climate: Understanding the Response to Astronomical Forcing, vols. I &

II, edited by Berger, A., Imbrie, J., Hays, J., Kukla, G., and Saltzman, B., pp. 607–611, D. Reidel Publ. Co., 1984.

Omta, A. W., Kooi, B. W., van Voorn, G. A., Rickaby, R. E., and Follows, M. J.: Inherent characteristics of sawtooth cycles can explain

different glacial periodicities, Climate dynamics, 46, 557–569, 2016.

Paillard, D.: The timing of Pleistocene glaciations from a simple multiple-state climate model, Nature, 391, 378–381, 1998.960

Paillard, D.: Glacial cycles: Toward a new paradigm, Reviews of Geophysics, 39, 325–346,

https://doi.org/https://doi.org/10.1029/2000RG000091, 2001.

Paillard, D. and Parrenin, F.: The Antarctic ice sheet and the triggering of deglaciations, Earth and Planetary Science Letters, 227, 263–271,

https://doi.org/10.1016/j.epsl.2004.08.023, 2004.

Parrenin, F. and Paillard, D.: Amplitude and phase of glacial cycles from a conceptual model, Earth and Planetary Science Letters, 214,965

243–250, https://doi.org/10.1016/S0012-821X(03)00363-7, 2003.

Parrenin, F. and Paillard, D.: Terminations VI and VIII (∼ 530 and ∼ 720 kyr BP) tell us the importance of obliquity and precession in the

triggering of deglaciations, Climate of the Past, 8, 2031–2037, https://doi.org/10.5194/cp-8-2031-2012, 2012.

Pelletier, J. D.: Coherence resonance and ice ages, Journal of Geophysical Research, 108, 1–14, https://doi.org/10.1029/2002jd003120, 2003.

Pierini, S. and Ghil, M.: Climate tipping points induced by parameter drift: an excitable system study, Scientific Reports, in press, 2021.970

Pierini, S., Ghil, M., and Chekroun, M. D.: Exploring the pullback attractors of a low-order quasigeostrophic ocean model: The deterministic

case, Journal of Climate, 29, 4185–4202, 2016.

Pierini, S., Chekroun, M. D., and Ghil, M.: The onset of chaos in nonautonomous dissipative dynamical systems: A low-order ocean–model

case study, Nonlin. Processes Geophys., 25, 671–692, https://doi.org/10.5194/npg-25-671-2018, 2018.

Pierrehumbert, R. T.: High levels of atmospheric carbon dioxide necessary for the termination of global glaciation, Nature, 429, 646–649,975

https://doi.org/10.1038/nature02640, 2004.

Pikovsky, A., Rosenblum, M. G., and Kurths, J.: Synchronization, A Universal Concept in Nonlinear Sciences, Cambridge University Press,

Cambridge, 2001.

Pikovsky, A. S. and Kurths, J.: Coherence resonance in a noise-driven excitable system, Physical Review Letters, 78, 775–778,

https://doi.org/10.1103/physrevlett.78.775, 1997.980

Poincaré, H.: Méthodes nouvelles de la Mécanique céleste, vols. I-III, Gauthier-Villars, 1892–1899.

45

https://doi.org/10.1007/BF00154530
https://doi.org/10.1142/8260
https://www.worldscientific.com/doi/abs/10.1142/8260
https://www.worldscientific.com/doi/abs/10.1142/8260
https://www.worldscientific.com/doi/abs/10.1142/8260
https://doi.org/https://doi.org/10.1029/2000RG000091
https://doi.org/10.1016/j.epsl.2004.08.023
https://doi.org/10.1016/S0012-821X(03)00363-7
https://doi.org/10.5194/cp-8-2031-2012
https://doi.org/10.1029/2002jd003120
https://doi.org/10.5194/npg-25-671-2018
https://doi.org/10.1038/nature02640
https://doi.org/10.1103/physrevlett.78.775


Pollard, D.: A coupled climate-ice sheet model applied to the Quaternary ice ages, Journal of Geophysical Research: Oceans, 88, 7705–7718,

1983.

Quinn, C., Sieber, J., Von Der Heydt, A. S., and Lenton, T. M.: The Mid-Pleistocene Transition induced by delayed feedback and bistability,

arXiv, pp. 1–17, https://doi.org/10.1093/climsys/dzy005, 2017.985

Rasmussen, S. O., Bigler, M., Blockley, S. P., Blunier, T., Buchardt, S. L., Clausen, H. B., Cvijanovic, I., Dahl-Jensen, D., Johnsen, S. J.,

Fischer, H., et al.: A stratigraphic framework for abrupt climatic changes during the Last Glacial period based on three synchronized

Greenland ice-core records: refining and extending the INTIMATE event stratigraphy, Quaternary Science Reviews, 106, 14–28, 2014.

Rial, J. A. and Yang, M.: Is the frequency of abrupt climate change modulated by the orbital insolation?, Geophysical Monograph Series,

173, 167–174, https://doi.org/10.1029/173GM12, 2007.990

Roberts, A. and Saha, R.: Relaxation oscillations in an idealized ocean circulation model, Climate Dynamics, 48, 2123–2134,

https://doi.org/10.1007/s00382-016-3195-3, 2017.

Rocsoreanu, C., Georgescu, A., and Giurgiteanu, N.: The FitzHugh-Nagumo model: bifurcation and dynamics, vol. 10, Springer Science &

Business Media, 2012.

Rousseau, D.-D., Antoine, P., Boers, N., Lagroix, F., Ghil, M., Lomax, J., Fuchs, M., Debret, M., Hatté, C., Moine, O., Gauthier, C., Jor-995

danova, D., and Jordanova, N.: Dansgaard-Oeschger–like events of the penultimate climate cycle: the loess point of view, Climate of the

Past, 16, 713–727, https://doi.org/10.5194/cp-16-713-2020, 2020.

Rousseau, D.-D., Bagniewski, W., and Ghil, M.: Abrupt climate changes and the astronomical theory: are they related?, Climate of the Past,

18, 249–271, https://doi.org/10.5194/cp-18-249-2022, 2022.

Ruddiman, W. F. and McIntyre, A.: The North Atlantic Ocean during the last deglaciation, Palaeogeography, Palaeoclimatology, Palaeoecol-1000

ogy, 35, 145–214, 1981.

Rulkov, N. F., Sushchik, M. M., Tsimring, L. S., and Abarbanel, H. D. I.: Generalized synchronization of chaos in directionally coupled

chaotic systems, Physical Review E, 51, 980–994, https://doi.org/10.1103/physreve.51.980, 1995.

Saltzman, B. and Maasch, K. A.: Carbon cycle instability as a cause of the late Pleistocene ice age oscillations: modeling the asymmetric

response, Global Biogeochemical Cycles, 2, 177–185, 1988.1005

Saltzman, B. and Maasch, K. A.: A first-order global model of late Cenozoic climatic change, Transactions of the Royal Society of Edinburgh:

Earth Sciences, 81, 315–325, https://doi.org/10.1017/S0263593300020824, 1990.

Saltzman, B. and Maasch, K. A.: A first-order global model of late Cenozoic climatic change II. Further analysis based on a simplification

of CO2 dynamics, Climate Dynamics, 5, 201–210, https://doi.org/10.1007/BF00210005, 1991.

Saltzman, B. and Sutera, A.: The mid-Quaternary climatic transition as the free response of a three-variable dynamical model, Journal of the1010

Atmospheric Sciences, 44, 236–241, 1987.

Saltzman, B., Sutera, A., and Evenson, A.: Structural stochastic stability of a simple auto-oscillatory climatic feedback system, Journal of

the Atmospheric Sciences, 38, 494–503, 1981.

Schneider, S. H. and Dickinson, R. E.: Climate modelling, Reviews of Geophysics and Space Physics, 25, 447–493, 1974.

Seierstad, I. K., Abbott, P. M., Bigler, M., Blunier, T., Bourne, A. J., Brook, E., Buchardt, S. L., Buizert, C., Clausen, H. B.,1015

Cook, E., Dahl-Jensen, D., Davies, S. M., Guillevic, M., Johnsen, S. J., Pedersen, D. S., Popp, T. J., Rasmussen, S. O., Sever-

inghaus, J. P., Svensson, A., and Vinther, B. M.: Consistently dated records from the Greenland GRIP, GISP2 and NGRIP ice

cores for the past 104 ka reveal regional millennial-scale δ18O gradients with possible Heinrich event imprint, Quaternary Science

Reviews, 106, 29–46, https://doi.org/https://doi.org/10.1016/j.quascirev.2014.10.032, https://www.sciencedirect.com/science/article/pii/

46

https://doi.org/10.1093/climsys/dzy005
https://doi.org/10.1029/173GM12
https://doi.org/10.1007/s00382-016-3195-3
https://doi.org/10.5194/cp-16-713-2020
https://doi.org/10.5194/cp-18-249-2022
https://doi.org/10.1103/physreve.51.980
https://doi.org/10.1017/S0263593300020824
https://doi.org/10.1007/BF00210005
https://doi.org/https://doi.org/10.1016/j.quascirev.2014.10.032
https://www.sciencedirect.com/science/article/pii/S027737911400434X
https://www.sciencedirect.com/science/article/pii/S027737911400434X
https://www.sciencedirect.com/science/article/pii/S027737911400434X


S027737911400434X, dating, Synthesis, and Interpretation of Palaeoclimatic Records and Model-data Integration: Advances of the IN-1020

TIMATE project(INTegration of Ice core, Marine and TErrestrial records, COST Action ES0907), 2014.

Sellers, W. D.: A global climatic model based on the energy balance of the Earth atmosphere, Journal of Applied Meteorology, 8, 392–400,

1969.

Sergin, V. Y.: Numerical modeling of the glaciers-ocean-atmosphere global system, Journal of Geophysical Research: Oceans, 84, 3191–

3204, 1979.1025

SMIC: Inadvertent Climate Modification: Report of the Study of Man’s Impact on Climate, The MIT Press, Cambridge, Mass., 308 pp.,

1971.

Talento, S. and Ganopolski, A.: Reduced-complexity model for the impact of anthropogenic CO2 emissions on future glacial cycles, Earth

System Dynamics, 12, 1275–1293, https://doi.org/10.5194/esd-12-1275-2021, 2021.

Toggweiler, J.: Origin of the 100,000-year timescale in Antarctic temperatures and atmospheric CO2, Paleoceanography, 23, 2008.1030

Tziperman, E. and Gildor, H.: The stabilization of the thermohaline circulation by the temperature–precipitation feedback, Journal of Physical

Oceanography, 32, 2707–2714, 2002.

Tziperman, E., Raymo, M. E., Huybers, P., and Wunsch, C.: Consequences of pacing the Pleistocene 100 kyr ice ages by nonlinear phase

locking to Milankovitch forcing, Paleoceanography, 21, 1–11, https://doi.org/10.1029/2005PA001241, 2006.

Van der Pol, B.: On relaxation-oscillations, The London, Edinburgh and Dublin Phil. Mag. and J. Sci., 2, 978–992, 1926.1035

Vannitsem, S., Demaeyer, J., and Ghil, M.: Extratropical low-frequency variability with ENSO forcing: A reduced-order coupled model

study, J. Adv. Model. Earth Syst., p. e2021MS002530, 2021.

Varadi, F., Runnegar, B., and Ghil, M.: Successive refinements in long-term integrations of planetary orbits, The Astrophysical Journal, 592,

620–630, 2003.

Verbitsky, M. Y. and Crucifix, M.: π-theorem generalization of the ice-age theory, Earth System Dynamics, 11, 281–289, 2020.1040

Verbitsky, M. Y., Crucifix, M., and Volobuev, D. M.: A theory of Pleistocene glacial rhythmicity, Earth System Dynamics, 9, 1025–1043,

https://doi.org/10.5194/esd-9-1025-2018, 2018.

Vettoretti, G., Ditlevsen, P., Jochum, M., and Rasmussen, S. O.: Millennial-scale Ice Age Climate Oscillations Controlled by Atmospheric

CO2, Nature Geoscience, under review.

Vissio, G., Lembo, V., Lucarini, V., and Ghil, M.: Evaluating the performance of climate models based on Wasserstein distance, Geophysical1045

Research Letters, 47, e2020GL089 385, https://doi.org/10.1029/2020GL089385, 2020.

Wang, B.: Random attractors for the stochastic FitzHugh-Nagumo system on unbounded domains, Nonlinear Analysis, Theory, Methods and

Applications, 71, 2811–2828, https://doi.org/10.1016/j.na.2009.01.131, 2009.

Weertman, J.: Rate of growth or shrinkage of non-equilibrium ice-sheets, J. Glaciology, 6, 145–158, 1964.

Weertman, J.: Milankovitch solar radiation variations and ice-age ice-sheet sizes, Nature, 261, 17–20, 1976.1050

Westerhold, T., Marwan, N., Drury, A. J., Liebrand, D., Agnini, C., Anagnostou, E., Barnet, J. S. K., Bohaty, S. M., De Vleeschouwer, D.,

Florindo, F., et al.: An astronomically dated record of Earth’s climate and its predictability over the last 66 million years, Science, 369,

1383–1387, 2020.

Wetherald, R. T. and Manabe, S.: The effects of changing the solar constant on the climate of a general circulation model, Journal of the

Atmospheric Sciences, 32, 2044–2059, 1975.1055

Wilkinson, L. and Friendly, M.: The History of the Cluster Heat Map, The American Statistician, 63, 179–184,

https://doi.org/10.1198/tas.2009.0033, 2009.

47

https://www.sciencedirect.com/science/article/pii/S027737911400434X
https://www.sciencedirect.com/science/article/pii/S027737911400434X
https://doi.org/10.5194/esd-12-1275-2021
https://doi.org/10.1029/2005PA001241
https://doi.org/10.5194/esd-9-1025-2018
https://doi.org/10.1029/2020GL089385
https://doi.org/10.1016/j.na.2009.01.131
https://doi.org/10.1198/tas.2009.0033


Willeit, M., Ganopolski, A., Calov, R., and Brovkin, V.: Mid-Pleistocene transition in glacial cycles explained by declining CO2 and regolith

removal, Science Advances, 5, eaav7337, 2019.

Yamakou, M. E., Tran, T. D., Duc, L. H., and Jost, J.: The stochastic Fitzhugh–Nagumo neuron model in the excitable regime embeds a leaky1060

integrate-and-fire model, Journal of Mathematical Biology, 79, 509–532, https://doi.org/10.1007/s00285-019-01366-z, 2019.

Zhang, G., Liu, Z., and Ma, Z.: Generalized synchronization of different dimensional chaotic dynamical systems, Chaos, Solitons & Fractals,

32, 773–779, https://doi.org/10.1016/j.chaos.2005.11.099, 2007.

48

https://doi.org/10.1007/s00285-019-01366-z
https://doi.org/10.1016/j.chaos.2005.11.099

