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Abstract. The relative role of external forcing and of intrinsic variability is a key question of climate variability in general

and of our planet’s paleoclimatic past in particular. Over the last 100 years since Milankovitch’s contributions, the importance

of orbital forcing has been well established for the last 2.6 Myr and their Quaternary glaciation cycles. A convincing case

has also been made for the role of several internal mechanisms that are active on time scales both shorter and longer than

the orbital ones. Such mechanisms clearly have a causal role in Dansgaard-Oeschger and Heinrich events, as well as in the5

mid-Pleistocene transition. We introduce herein a unified framework for the understanding of the orbital forcing’s effects on

the climate system’s internal variability on time scales from thousands to millions of years. This framework relies on the

fairly recent theory of nonautonomous and random dynamical systems and it has been successfully applied so far in the

climate sciences for problems like the El Niño-Southern Oscillation, the oceans’ wind-driven circulation, and other problems

on interannual to interdecadal time scales. Finally, we provide further examples of climate applications and present preliminary10

results of interest for the Quaternary glaciation cycles in general and the mid-Pleistocene transition in particular.

1 INTRODUCTION AND MOTIVATION

::
In

:::
the

:::::
early

::::
20th

:::::::
century,

:::::::
Milutin

:::::::::::
Milankovitch

:::::::::
presented

:::
his

::::::
theory

::
of

:::
ice

:::::
ages

::::::::::::::::::
(Milankovitch, 1920).

::::::
Based

::
on

::::
his

::::
own

::::::::::
calculations

:::
and

::
on

::::::::
insightful

::::::::::
suggestions

:::::
from

::::::::
Wladimir

::::::
Köppen

::::
and

:::::
Alfred

::::::::
Wegener

:::::::::::::::::::::
(Imbrie and Imbrie, 1986)

:
,
::
he

::::::::
proposed

:::
that

:::
the

:::::::::
transitions

:::::::
between

::::::
glacial

::::
and

:::::::::
interglacial

:::::::
climate

::::::::
conditions

:::::
were

::::::::
primarily

::::::
caused

::
by

:::::::::
variations

::
of

::::::::
incoming

:::::
solar15

::::::::
radiation,

:::::
which

::
by

::::
that

::::
time

:::
was

::::::
known

::
to

::::
vary

::
in

:
a
::::::::::::
quasi-periodic

::::::
manner

:::
on

::::
slow

::::
time

:::::
scales

::
of

::::
tens

::
to

:::::::
hundreds

::
of

:::::::::
thousands

::
of

::::
years

:::::::::::::::::::
(Poincaré, 1892–1899)

:
.
:::::
These

::::::::
variations

::
of

:::::::::
insolation,

::::::
which

::::
arise

::
as

:
a
:::::::::::
consequence

::
of

:::
the

:::::::::::
gravitational

:::::::::
interaction

::
of

::
the

:::::
Earth

::::
with

:::
the

:::::
other

::::::
planets

:::
and

::::
with

:::
its

::::
own

::::::
Moon,

::
are

::::::::
typically

:::::::
referred

::
to

::
as

::::::
orbital

:::::::
forcing.

:::
The

::::::
orbital

::::::
forcing

:::::::::
comprises

:::::::::
variations

::
in

::
(i)

::::
the

::::::::::
eccentricity

::
of

:::
the

::::::
Earth’s

:::::
orbit

::::::
around

:::
the

:::
sun

:::::
with

::::::::
dominant

:::::::
spectral

:::::
peaks

::::::
around

:::
400

::::
kyr

:::
and

::::
100

:::
kyr;

:::
(ii)

:::
the

:::::::::
obliquity,

::
or

::::
axial

::::
tilt,

:::
i.e.,

:::
the

:::::
angle

:::::::
between

:::
the

:::::::
Earth’s

::::::::
rotational

:::
and

:::
its

::::::
orbital20
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::::
axis,

::::
with

::::::::
dominant

:::::::::
periodicity

:::::::
around

::
41

::::
kyr;

::::
and

:::
(iii)

:::
the

:::::::
climatic

::::::::::
precession,

::::::
which

:::::::::
determines

:::
the

:::::
phase

:::
of

:::
the

:::::::
summer

::::::
solstice

:::::
along

:::
the

::::::
Earth’s

::::
orbit

::::
and

:::
has

::
its

:::::
most

::::::::::
pronounced

::::::
spectral

::::::
power

::::::
around

::
23

:::
kyr

::::
and

::
19

:::
kyr

:::::::::::::
(Berger, 1978).

:

For two centuries or more
:
so

:
of modern geology, records of our planet’s physical and biological past were merely discrete

sequences of strata with specific properties, like coloration and composition (Imbrie and Imbrie, 1986). This state of affairs

led, after the initial success of the Milankovitch (1920) theory of the ice ages, to severe criticism of the
:::::::
temporal

:
mismatch25

between insolation minima and glaciation maxima (e.g., Flint, 1971).

The advent of marine-sediment cores after World War II led, for the first time, to the availability of records that were, more or

less, continuous in time. Like all climate records, these cores covered limited time intervals and did so with limited resolution

and with inaccuracies in absolute dating, as well as in the quantities being measured. Moreover, they posed the problem of

inverting proxy records of isotopic and microbiotic counts to physical quantities like temperature and precipitation.30

In spite of these limitations, the spectral analysis of deep-sea records allowed Hays et al. (1976) to overcome the difficulties

previously encountered by the orbital theory of Quaternary glaciations, in particular the absence of the imprint of precesional

and obliquity peaks
::
in

::::::::
glaciation

:::::
proxy

::::::
records. Specifically, Hays et al. (1976) were able to create a composite record — back

to over 400
:
kyr b2k, i.e., over 400 000 yr before the year 2000 A.D.

:::
CE — from two relatively long marine-sediment records

of the best quality available in the early 1970s. The authors demonstrated therewith that
::::::::
significant

:
precessional and obliquity35

peaks near 20
:
kyr and 40

:
kyr were present in this record’s spectral analysis; see Fig. 1. The power spectrum in the figure also

made it quite clear that these peaks were superimposed on a continuous background — the stippled area in the figure — whose

total variance much exceeded the sum of the variances present in the peaks.

The work of Hays et al. (1976) and of the subsequent CLIMAP and SPECMAP projects resulted in a much more detailed

spatio-temporal mapping of the Quaternary and extended the belief in the pacemaking role of orbital variations into the more re-40

mote past.
:::
The

::::::
spectral

:::::
peaks

::::
near

:::
20

:::
kyr

:::
and

::
40

:::
kyr

::::
have

:::::
been

:::::
widely

::::::::::
interpreted

:::::
within

:::
the

:::::::::
geological

:::::::::
community

::
as

::::::::
evidence

::
for

::
a
:::::
linear

::::::::
response

::
of

:::
the

::::::
climate

:::::::
system

::
to

:::
the

::::::
orbital

::::::
forcing

::::::::::::::::::::::
(Imbrie and Imbrie, 1986).

::
A

:::::
third

::::::
spectral

:::::
peak

::
at

:::
100

::::
kyr

::::
was,

:::::::
however,

:::
the

:::::
most

:::::::::::
pronounced,

:::
but

:::::
much

::::
more

:::::::
difficult

:::
to

::::::::
reconcile

::::
with

:::
the

::::::
orbital

:::::
theory

:::
of

::::::::::
Quarternary

::::::::::
glaciations.

::::
Since

:::
no

:::::::::
sufficiently

::::::::::
pronounced

::::::::::
counterpart

:::
can

:::
be

:::::
found

::
in

:::
the

::::::
spectra

::
of

:::
the

:::::::
seasonal

:::::::::
insolation

::::::
forcing,

::::::::::::::::
Hays et al. (1976)

:::::::::::
hypothesized

:
a
::::::::
nonlinear

::::::::
response

::
of

:::
the

:::::::
climate

::::::
system

::
in

:::::
order

::
to

::::::
explain

::::
this

::::::::
dominant

:::::::::
periodicity

::
of

:::
the

::::::::::::::
late-Pleistocene45

:::::::::::::::
glacial–interglacial

::::::
cycles.

:
At the same time, the advent of higher-resolution marine cores and, especially, ice cores from both

Greenland an
:::
and

:
the Antarctica, led to the discovery of Heinrich events (Heinrich, 1988), Dansgaard-Oeschger (D-O) events

(e.g., Dansgaard et al., 1993)
:
,
:
and Bond cycles (Bond et al., 1997)that

:
,
:::::
which

:
were hard to explain by orbital forcing, given

their shorter time scales.

In fact, interest in past climates was heightened not only by these striking observational discoveries, but also by the grow-50

ing concerns about humanity’s impact on the climate (SMIC, 1971; National Research Council, 1975). Given the declining

temperatures between the 1940s and 1970s — on the one hand, as shown in Fig. 21 — and the substantial advances in the

description of the Quaternary glaciations, on the other, that interest was mainly in the planet’s falling into another ice age (e.g.,

National Research Council, 1975).
1see also Ghil and Vautard (1991, Fig. 3)
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Figure 1. Power spectrum of a composite δ18O record using deep-sea cores RC11-120 and E49-18. This figure is based on the work of

Hays et al. (1976), as presented by Imbrie and Imbrie (1986)
:::::::::::::::::::
Imbrie and Imbrie (1986). From Ghil and Childress (1987) with

:::::::
Reprinted

:::
by

permission from Springer
:::::
Nature

::::::::
Customer

::::::
Service

:::::
Centre

::::::
GmbH:

:::::::
Springer

:::::
Nature.

::::::
Topics

::
in

:::::::::
Geophysical

:::::
Fluid

::::::::
Dynamics:

::::::::::
Atmospheric

::::::::
Dynamics,

::::::
Dynamo

::::::
Theory,

:::
and

::::::
Climate

::::::::
Dynamics

::
by

::::::::::::::
Ghil and Childress

:::::
;©1987

:::
by

::::::
Springer

:
Science+Business Media

:::
New

:::::
York.

::
All

:::::
rights

:::::::
reserved.

:::::
(1987).
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As a result of the twofold stimulation provided by data about past glaciations and concern about future ones, a number of55

researchers in the early-to-mid 1970s worked on energy balance models (EBMs) of climate with multiple stable steady states

(Held and Suarez, 1974; North, 1975; Ghil, 1976). Two such stable “equilibria” corresponded to the present climate and to a

“deep-freeze,” as it was called at the time, i.e., to a totally ice-covered Earth. At the time there was some disbelief about this

second climate, as its temperatures were much lower than those associated with the Quaternary glaciations and incompatible

with paleoclimatic evidence available in the 1970s.60

New geochemical evidence, though, led in the early 1990s to the discovery of a snowball or, at least, slushball Earth prior to

the emergence of multicellular life, sometime before 650 Myr b2k (Hoffman et al., 1998). It thus turned out that this climate

state — predicted by several EBMs, and confirmed by a general circulation model (GCM) with much higher spatial resolution

(Wetherald and Manabe, 1975) — had actually occurred and it is now being modeled in much greater detail (Pierrehumbert,

2004; Ghil and Lucarini, 2020).65

On the other hand, it also became clear that a model
:::::
these

::::
early

:::::::
models, whose only stable solutions were stationary, could

not reproduce very well the wealth of variability that the proxy records were describing,
:::
not

:::::
even

::
in

:::
the

:::::::
presence

::
of

:::::::::
stochastic

::::::
forcing

::::::::::::::
(e.g., Ghil, 1994). Certain theoretical paleoclimatologists turned, therefore, to coupling a “climate” equation, with

Figure 2. Comparison of six analyses of the annually and globally averaged surface temperature anomalies through 2018. NASA

= National Aeronautics and Space Administration; NOAA = National Oceanic and Atmospheric Administration. Reproduced from

Lenssen et al. (2019, Fig. 1) with
:::::::
Reprinted

:::
by

:
permission from

:::
John

:
Wiley

::
&

::::
Sons

::::
Inc.:

::::::::
American

::::::::::
Geophysical

::::::
Union.

::::::
Journal

:::
of

:::::::::
Geophysical

::::::::
Research:

::::::::::
Atmospheres.

:::::::::::
Improvements

:::
in

::
the

:::::::::
GISTEMP

:::::::::
Uncertainty

::::::
Model.

::::::::::
Lenssen et al.

::::::
;©2019.

::::::::
American

::::::::::
Geophysical

:::::
Union.

:::
All

:::::
Rights

:::::::
Reserved.

:::::
(2019)
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temperature as its only dependent variable, with an ice-sheet equation (Källén et al., 1979; Ghil and Le Treut, 1981) or a

carbon-dioxide equation (Saltzman et al., 1981; Saltzman and Maasch, 1988).70

These coupled climate models, albeit highly idealized, did produce oscillatory solutions that captured some of the features

of the Quaternary glaciation cycles as known at that time. For instance, the models of Ghil and associates (Källén et al.,

1979; Ghil and Le Treut, 1981) captured the phase differences between peak ice sheet extent and minimum temperatures

suggested by Ruddiman and McIntyre (1981) in the North Atlantic
::::::::
suggested

:::
by

::::::::::::::::::::::::::
Ruddiman and McIntyre (1981), while the

work of Saltzman and associates (e.g., Saltzman and Maasch, 1988) captured the asymmetry of the glaciation cycles with their75

more rapid “terminations” (Broecker and Van Donk, 1970).

The stable self-sustained oscillations of these coupled models, though, were totally independent of any orbital or other time-

dependent forcing, i.e. the solar input to their radiative budget was constant in time. Hence, they could not capture the wealth

of spectral features, with their orbital and other peaks, of the paleorecords available by the 1980s. The basic quandary of the

Quaternary glaciation cycles — at least from the point of view of theoretical climate dynamics (Ghil and Childress, 1987,80

Part IV) — is formulated in Fig. 3 below; see also Ghil (1994).
:
:
::::
How

::::
does

:::
the

::::::::::::
quasi-periodic

::::::
orbital

::::::
forcing,

::::
with

:::
its

::::::::
relatively

::::::
narrow

::::::
spectral

::::::
peaks,

:::
act

::
on

:::
the

::::::::
climate’s

::::::
internal

:::::::::
variability

::
to

:::::::
produce

:
a
:::::::
response

::::
that

::
is

:::::::::::
characterized

::
by

:::::::::
significant

:::::::
spectral

:::::
peaks

:::::::::::
superimposed

:::
on

:
a
::::::

broad
:::::::::
continuous

:::::::::::
background?

::::
And,

:::
in

::::::::
particular,

::::
how

:::::
does

:::
the

::::::::
climate’s

::::::
spectral

:::::
peak

::
at

:::
100

::::
kyr

::::
arise,

:::::
given

:::
its

::::::
absence

::
in
:::
the

::::::
power

::::::::
spectrum

::
of

:::
the

:::::::
forcing?

In this paper, we try to show a path toward resolving the four fundamental questions listed in the box below
:::
Box

::
1. In the85

next section, we summarize existing results on how the climate system’
:
’s intrinsic variability arises at

::
on Quaternary time

scales,
:

and on how this variability interacts with
:
is

::::::::
modified

:::
by the time-dependent orbital forcing. In section,

::::::
which

::::
was

:::::
added

::
to

:::
the

:::::::::
previously

:::::::::::
autonomous

::::::
climate

:::::::
models

::
as

:::
the

::::
next

::::
step

::
in
:::::::::::

paleoclimate
:::::::::
modeling

::::::::
evolution;

::::
see,

:::
for

::::::::
instance,

:::::::::::::::::::::
Le Treut and Ghil (1983)

:::
and

::::::::::::::::::
Le Treut et al. (1988)

::
vs.

:::::::::::::::::::::
Ghil and Le Treut (1981).

::
In

:::::
Sect. 3, we outline a more general frame-

work for the study of such interactions
::::::::::
mechanisms, as given by the theory of nonautonomous and random dynamical systems90

(NDSs and RDSs), and sketch an application of this theory to other climate problems. An application to the problem at hand is

proposed in Sec
:::
Sect. 4 and conclusions follow in Sec

:::
Sect. 5.

2 SELF-SUSTAINED CLIMATE OSCILLATORS

2.1 A Simple Mechanism for Climate Oscillations

We follow Ghil (1994) in sketching the simplest physical mechanism for a self-sustained climate oscillation at fixed insolation95

forcing. Consider the Källén et al. (1979, KCG hereafter) oscillator, the first such self-sustained climate oscillator, to the best

of our knowledge. The model itself was built from the ground up, coupling a scalar version of the Ghil (1976)
::::::::::
Ghil (1976)

energy balance model (EBM) with a simplified, scalar version of the Weertman (1964, 1976)
::::::::::::::::::::
Weertman (1964, 1976) ice sheet

model (ISM). The model’s details and further analyses of its ingredients and variants can be found in several references (e.g.,

Crafoord and Källén, 1978; Ghil and Tavantzis, 1983; Ghil, 1984; Bódai et al., 2015).
:

100
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Figure 3. The theoretical quandary of modeling the Quaternary glaciation cycles, illustrated here by schematic diagrams of the composite

power spectra of (a) the paleorecords and (b) the orbital forcing. In panel (a), the dominant peak for the Late Pleistocene is near 100
:

kyr,

while in panel (b) eccentricity forcing is distributed over several spectral lines. The peaks at 6–8 kyr and 1–2
:
kyr in panel (a) correspond

to Bond cycles (Bond et al., 1992, 1993) and to the mean recurrence of D-O events and they lack a match in the forcing lines of panel

(b).Courtesy of N. Boers.

Based on the discussion so far and on the discrepancy between panels (a) and (b) of Fig. 3, we propose
herein the following questions that need to be resolved, still, for a thorough understanding of Quaternary
climate variability:

1. How does the dominant peak of the observed variability near 100 kyr arise, given the rather diffuse
orbital forcing at this periodicity?

2. What causes the continuous part of the observed spectrum, which contains most of the variance?

3. What gives rise to the high-frequency peaks due to the sudden warmings and to the approximate
periodicities associated with Heinrich and D-O events, among others?

4. What are the contributions of the orbital forcing and of the climate system’s intrinsic variability
to items (1)–(3) and how does the former one modify the latter?

1
Box 1. Fundamental questions regarding the Quaternary glacial-interglacial

::::::::::::::
glacial–interglacial cycles.

The basic workings of this climate oscillator can be represented by two coupled ordinary differential equations (ODEs),

written symbolically as

Ṫ '−V, (1a)

V̇ ' T. (1b)6



Here T stands for global temperature and V for global ice volume, while Eq. (1a) is an EBM and Eq. (1b) is an ice-sheet105

model (ISM). The ‘'’ symbol stands for a binary relation of rough proportionality and is intended to neglect the details of the

equation’s right-hand side (RHS),
::::::::
including

:::
its

:::::::::::
nonlinearities. The EBM represents the well-known ice-albedo feedback used

by both Budyko (1969) and Sellers (1969), while the ISM relies on the precipitation-temperature feedback postulated by KCG

and used also by Ghil and Le Treut (1981), who coined the term.

The latter feedback can be better understood by writing110

V̇ ' p, (2a)

p' pac− pab, (2b)

pac ' T. (2c)

Here p is net precipitation on the single ice sheet of the globally integrated model, given by the difference in Eq. (2b) between

the accumulation pac and the ablation pab (KCG).115

As first observed by George C. Simpson — the meteorologist of Robert F. Scott’s Terra Nova expedition to the Antarctica

in 1910–1912 and later the longest serving Director of the U.K. Meteorological Office — warmer winters have more snow and

hence, at least in central Antarctica, the increase of pac with T exceeds the more obvious increase of pab with T . Hence p' T
and we have derived therewith Eq. (1b), V ' p' T . For more recent studies of the precipitation-temperature feedback, see

Tziperman and Gildor (2002).120

More generally, the presence of feedbacks of opposite sign in a system of two linear coupled ODEs

ẋ= y, ẏ =−x,

leads to an oscillation, with the solution given by two trigonometric functions in quadrature with each other, x(t) = sin(t), y(t) =

cos(t) = sin(t+π/2), and the trajectory describing a circle in the (x,y) phase plane, x2(t)+y2(t) = 1. In a nonlinear system,

however — like the
::
full

:
KCG model or any other climate oscillator mentioned so far — the possibility of an oscillation, as

indicated by the system (1), is actually realized in the explicit, full set of equations only for certain parameter values and not

for others.125

This can be understood by considering the so-called normal form of a Hopf bifurcation, which leads from a stable steady

state, called a fixed point in dynamical systems theory, to a stable oscillatory solution, called a limit cycle. The easiest way to see

this transition is by writing the normal form in polar coordinates, as in Arnold (2012) and in Ghil and Childress (1987, Sec. 12.2)

::::::::::::
Arnold (2012)

:::
and

::
in

::::::::::::::::::::::::::::::
Ghil and Childress (1987, Sect. 12.2), namely,

ż = (µ+ ıω)z+ c(zz̄)z. (3)130

Here z = x+ıy is complex, with
::::
where

:
ı=
√
−1

:
is the imaginary unit, while µ is a real bifurcation parameter, and c,ω are real

and nonzero. Note that the KCG model per se is not in the normal form above and we will discuss its bifurcation parameter µ∗

in the next subsection.

7



Figure 4.
::::::::::
Supercritical

::::
Hopf

:::::::::
bifurcation.

::
(a)

::::::
Vector

:::
field

::::
ż(z)

::
of

:::
Eq.

:
(3)

::
for

:::
the

::::::::
parameter

:::::
values

::::::
µ=−1

:::
and

:::::::
c=−1;

:::::::::
z = x+ ıy.

::
In

:::
this

::::
case,

::
the

:::::
origin

::::::::
constitutes

::
the

::::
only

:::::
stable

::::
fixed

::::
point

:::
and

::
all

::::::::
trajectories

:::
will

:::::
spiral

:::
into

:::
this

::::
point,

::
as

::::::::
illustrated

::
by

:::
the

::::
single

:::::
brown

::::::::
trajectory.

::
(b)

:::::
Vector

::::
field

::::
ż(z)

:::
and

:
3
::::::::
trajectories

:::
for

:::::
µ= 1.

::
In

:::
this

::::
case,

:::
the

::::
origin

::
is
::
an

:::::::
unstable

::::
fixed

::::
point,

:::::
while

::
the

::::
limit

::::
cycle

::::
with

:::::
radius

:::::::
ρ
1/2
∗ = 1

::::::::
constitutes

::
the

::::
only

::::
stable

:::::::
solution.

:::::::::
Trajectories

:::
that

:::
start

:::::
inside

:::
this

::::
limit

::::
cycle,

::::
with

:::::::::
ρ(t0)< ρ∗,

:::
tend

::
to

:
it
:::
by

::::::
spiraling

:::
out

::
—

::
as

::::::::
illustrated

::
by

::
the

:::::::
magenta

:::::::
trajectory

::
—

:::::
while

::::::::
trajectories

::::
that

:::
start

::::::
outside

::
the

::::
limit

:::::
cycle,

::::
with

:::::::::
ρ(t0)> ρ∗,

:::::::
approach

:
it
::
by

:::::::
spiraling

::::::
inward,

::
as

::::::::
illustrated

::
by

::
the

::::
gray

::::::::
trajectory.

::
(c)

::::::::::
Dependence

::
of

::
the

:::::
stable

::::::
solution

::
of

:::
Eq.

:
(3)

::
on

:::
the

:::::::
parameter

::
µ,

:::
for

::::::
c=−1.

:::
For

:::::
µ≤ 0,

:::
the

:::::
single

::::
stable

:::::::
solution

:
is
:::
the

::::
fixed

::::
point

::::::
located

:
at
:::
the

:::::
origin,

:::::
ρ≡ 0.

:::
For

:::::
µ > 0,

:::
the

:::::
stable

::::::
solution

::
is

::
the

::::
limit

::::
cycle

:::::
given

::
by

:::::
ρ= µ.

A very natural transformation of variables,

ρ= zz̄ > 0, z = ρ1/2 exp(ıθ) (4)135

leads from the complex ODE (3) to the system of two real and decoupled ODEs,

ρ̇= 2ρ(µ+ cρ), (5a)

θ̇ = ω. (5b)

Equation (5b) simply provides an angular rotation around the origin ρ= 0 = x= y, since the complex exponential in Eq. (4)

is periodic with period 2π. Equation (5a) is quadratic in ρ and thus it can have two real roots, ρ= ρ0 = 0 and ρ= ρ∗ =−µ/c.140

But ρ has to be positive and so, in the case in which c < 0, the only possible solution for µ < 0 is the origin and it is stable,

since ρ(µ+ cρ) is negative for ρ > 0, in this case; hence, ρ has to be monotonically decreasing, i.e., all the solutions of Eq. (5)

spiral into the origin. The
::::
Hopf

:
bifurcation from this stable steady state to a periodic solutionwith radius ρ= ρ∗ ,

::::
i.e.,

:
a
:::::
limit

::::
cycle

::::
with

::::::
radius

::::::::::
ρ1/2 = ρ

1/2
∗ ,

:
occurs as µ crosses 0, and this solution is stable, since .

:::::
Since

:
now ρ(µ+cρ)> 0 for 0< ρ < ρ∗

and ρ(µ+ cρ)< 0 for ρ > ρ∗, i.e. solutions will
::
the

:::::
limit

::::
cycle

::
is
::::::
stable

:::
and

::::::::::
trajectories spiral out from inside the limit

:::
this145

cycle and into it from the outside; see Ghil and Childress (1987, Fig. 12.7)
::::
Fig.

:
4
:
for the so-called supercritical, or soft,

:::::
Hopf

bifurcation case with c < 0.
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2.2 Intrinsic Climate Oscillations and the Mid-Pleistocene Transition (MPT)

In this subsection, we present an argument for the role of intrinsic oscillations in the mid-Pleistocene transition (MPT). The

argument starts
:::
first

:::::
point

::
to

::
be

:::::
made

::
is
::::
that

::
—

:::::
while

::::::
orbital

:::::::
forcing

::::::
clearly

::::
plays

::
a
:::::
major

::::
role

::
in

:::
the

::::::
power

:::::::
spectrum

:::
of

:::
the150

::::::::::
Quaternary’s

:::::::
climatic

:::::::::
variability

:::
—

:
it
::::::
cannot

:::
be,

::
in

::::
and

::
of

:::::
itself,

:::
the

:::::
cause

::
of

:::
the

:::::
MPT.

:::::::
Indeed,

:::::::
changes

::
in

:::
the

::::
solar

::::::::
system’s

:::::
orbital

::::::::::
periodicities

::::
only

:::::
occur

:::
on

::::
much

::::::
longer

::::
time

:::::
scales

::::
than

:::
the

:::::
entire

::::::::::
Quaternary’s

:::::::
duration

:::::::::::::::::::::::::::::::::
(Varadi et al., 2003; Laskar et al., 2004)

:
.
:::
Our

::::::::
argument

::::::::
continues

:
with a further analysis of the Hopf bifurcation presented in the previous subsection. Such an analysis

was carried out for the KCG model by Ghil and Tavantzis (1983).

Physically speaking, the presence or absence of the regular, purely periodic oscillations obtained by KCG and illustrated155

in Ghil and Childress (1987, Fig. 12.6) depends on whether c≷ 0 in Eq. (5a). The KCG model’s bifurcation parameter is

µ∗ = cT /cL, where cT is the heat capacity in its EBM, while cL is the “mass capacity” in its ISM (Ghil and Tavantzis, 1983).

Large µ∗ corresponds physically to a very small, possibly pre-Pleistocene ice cap (Ghil, 1984; Saltzman and Sutera, 1987). At

these values of µ∗, the KCG model’s isoclines and fixed points — the latter being given by the intersection of the former — are

very different from those that are obtained for Quaternary-size ice sheets, for which cL is comparable in value to cT ; see Ghil160

and Tavantzis (1983, Figs. 3–5). As µ∗ decreases to O(1), i.e., as we proceed from very small to more substantial ice sheets,

the fixed point transfers its stability to a branch of periodic solutions, by a subcritical Hopf bifurcation (Källén et al., 1979;

Ghil and Tavantzis, 1983); see also Ghil and Childress (1987, Figs. 12.8 and 12.9).

To clarify the simple physical concepts that underlie sub- and supercritical Hop bifurcations, let us consider a purely me-

chanical oscillator with mass m, a spring kx and a dashpot αẋ (Landau and Lifshitz, 1960; Jordan and Smith, 1987),165

mẍ=−α(x)ẋ− k(x)x. (6)

If k = const. and α = const., we have the simplest, linear setup, but we will be interested here in the nonlinear cases. Normalizing

by the mass m and not changing notation otherwise, we get by rearranging terms and adding a periodic forcing

ẍ+α(x)ẋ+ k(x)x= F cos(ωt). (7)

Two classical nonlinear cases are those of the Duffing (1918)
::::::::::::
Duffing (1918) equation, in which k(x) = x2 and α = const.,170

and of the Van der Pol (1926)
:::::::::::::::
Van der Pol (1926) equation, in which k = const. and α(x) = ν(x2− 1) . The fully nonlinear

case in which both the spring and the damping are nonlinear, with k(x) = x2 and α(x) = ν(x2− 1), is known as the Van der

Pol–Duffing oscillator (e.g., Jackson, 1991; Pierini et al., 2018). Note that all three types of nonlinear oscillators can exhibit

chaotic behavior even in the presence of simply periodic forcing (e.g., Guckenheimer and Holmes, 1983; Pierini et al., 2018,

and references therein). The idea of using such simple, classical oscillators in modeling Quaternary glaciation cycles goes back175

to Saltzman et al. (1981).

Jordan and Smith (1987, Sec. 5.6)
::::::::::::::::::::::::::::
Jordan and Smith (1987, Sect. 5.6) discuss specifically the case of a soft and a hard spring

for a generalized Duffing equation, with k(x) = k0+εh(x), where 0< ε� 1, h(−x) = h(x),h′ ≥ 0,
::::::::::
0< |ε| � 1,

::::::::::::
h(−x) = h(x),

and h′′ > 0. A spring is soft if it is sublinear, ε < 0, and hard if it is superlinear, ε > 0; see their Eq. (5.37) and Figs. 5.4(a,b),

with h(x) = x2.180
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The supercritical Hopf bifurcation corresponds to
::
in

:::
the

:::::::
absence

::
of

::::::
forcing

::
is

:::::::::
analogous

::
to

:::
the

::::::::
nonlinear

:::::::
response

::
of

:
a soft,

sublinear spring
::
to

:::::::
periodic

::::::
forcing

:
in which the oscillations in the position x of the mass m increase gradually in amplitude as

the spring constant k0 increases past a critical value k∗, while the subcritical case corresponds to
:
is
:::::::::

analogous
::
to

:::
the

::::::::
response

::
of a hard, superlinear spring, where

::
for

:::::
which

:
the oscillations in x jump suddenly from zero amplitude to a finite amplitude

as the spring constant k0 crosses the value k∗. :::::
Please

:::::::
compare

:::
the

::::::::
behavior

::
of

:::::::::::
supercritical

:::
and

:::::::::
subcritical

:::::
Hopf

::::::::::
bifurcations185

::
in

::::::::::::::::::::::::::::::::::::::::::::::
Ghil and Childress (1987, Sect. 12.2 and Figs. 12.7–12.9)

:
)
:::
and

::::
see

::::::::::::::::::::::::::::
Jordan and Smith (1987, Fig. 5.7)

::
for

:::
the

::::::
change

:::
in

:::
the

::::::::
nonlinear

:::::::
response

::
of

::
a

::::::
Duffing

::::::::
oscillator

::
as

:::
its

:::::
spring

:::::::
changes

:::::
from

::::
soft,

::::
with

:::::
ε < 0,

::
to

:::::
hard,

::::
with

:::::
ε > 0.

There is a clear-cut analogy with the mid-Pleistocene transition, occurring at roughly 0.8 Myr
:::
Ma b2k, at which small-

amplitude climate variability with a dominant periodicity near 40 kyr becomes larger, dominated by a periodicity that is close to

100 kyr, as well as being more irregular (e.g., Huybers, 2009; Rousseau et al., 2022)
:::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g., Huybers, 2009; Quinn et al., 2017; Rousseau et al., 2020)190

. A fair number of distinct dynamical theories for this transition have been formulated (e.g., Ghil, 1994; Crucifix, 2012; Ashwin and Ditlevsen, 2015; Daruka and Ditlevsen, 2016; Ditlevsen and Ashwin, 2018)

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g., Maasch and Saltzman, 1990; Ghil, 1994; Crucifix, 2012; Ashwin and Ditlevsen, 2015; Daruka and Ditlevsen, 2016; Omta et al., 2016; Ditlevsen and Ashwin, 2018)

. A rather obvious one is that a Hopf bifurcation occurs at that point, which leads to a more vigorous response to the multi-

periodic orbital forcing; thus, the latter does not need to change in the least in order to explain the observed phenomena. In

Saltzman and Sutera (1987), there is only a comment on the likely role of a Hopf bifurcation in the transition, but their Fig. 3195

suggests that, in their model, such a bifurcation would have to be of the supercritical type, and lead to a fairly gradual transition.

To the contrary, the subcritical Hopf bifurcation of the KCG and Ghil and Le Treut (1981) oscillators would have to lead to a

more abrupt transition, as suggested by Ghil (1984).
::::
Later

::::::::::::::
Crucifix (2012)

::::::
showed

:::
that

:::
the

::::::
models

:::
by

:::::::::::::::::::::::::::::
Saltzman and Maasch (1990, 1991)

::::::
exhibit

::::::::
MPT-like

:::::::
behavior

:::
via

:::::::::::
supercritical

::
or

:::::::::
subcritical

::::
Hopf

:::::::::::
bifurcations,

:::::::::
depending

:::
on

:::
the

::::::::
parameter

::::::
values.

:
The existing

δ18O and δ13C records might or might not have sufficient resolution back in time up to 1.2 Ma to settle this question about the200

abruptness of the transition. In case some of them do, an objective test of suddenness ,
::
—

:
as proposed by Bagniewski et al.

(2021) for the high-resolution NGRIP record (North Greenland Ice Core Project members, 2004) ,
::
— will have to be applied

to such records.

3 TIME-DEPENDENT FORCING, NDSS AND RDSS

3.1 Orbital Forcing of a Climate Oscillator205

We start this section by describing some fairly simple ways in which the orbital forcing might have interacted with
:::::::
modified

intrinsic climate variability, thus helping to solve the mismatch between Figs. 3(a) and 3(b) in Section
::::
Sect. 1. To explore this

possibility, Le Treut and Ghil (1983) used somewhat simplified insolation forcing, based on the calculations of Berger (1978),

and applied it to a slightly modified version of the Ghil and Le Treut (1981) oscillator. These authors found that, as expected for

a nonlinear oscillator, its internal frequency f0 interacts with
::
is

::::::
affected

::::::::
strongly

::
by

:
the forcing ones, {f1, . . . ,f5}, to produce210

:::::::
resulting

::
in

:
both nonlinear resonance and combination tones (Landau and Lifshitz, 1960).
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Depending on parameter values, the periodicity P0 = 1/f0 of the Ghil and Le Treut (1981) oscillator is P0 ' 6–7 kyr. The

lines in the simplified insolation spectrum used by Le Treut and Ghil (1983) had the periodicities

P1 = 19 kyr, P2 = 23 kyr, P3 = 41 kyr, P4 = 100 kyr, and P5 = 400 kyr; (8)

these periodicities correspond to the two precessional ones, the obliquity one, and two eccentricity ones. The actual celestial215

mechanics
::::::::::::::::
celestial-mechanics

:
calculations that Berger (1978) based his insolation calculations on have been substantially

updated since (e.g., Varadi et al., 2003; Fienga et al., 2015). But these advances have not modified much the spectrum of the

planetary-orbit solutions over the 2.6 Myr of the Quaternary, a rather short interval in celestial-mechanics terms.

The results of the Le Treut and Ghil (1983) model on the evolution of the primary climate variables T and V were converted

to δ18O values in simulated isotopic records of marine-sediment and ice cores by Le Treut et al. (1988); the spectra of the latter220

are plotted in Fig. 5. The values on the abscissa of Fig. 5(a) are values of the logarithm of frequency, while those in Fig. 5(b)

are values of the frequency itself; the values on the ordinate of both panels are powers of 10. One refers to such figures as being

in (a) log-log coordinates vs. (b) log-linear coordinates for short.

Aside from the spectral features noted in the figure caption and discussed in greater detail by Ghil (1994), it is important

to realize (i) that the large continuous background in Fig. 5(a) is purely of deterministically chaotic origin, since there is no225

stochastic element whatsoever in the Le Treut and Ghil (1983) model or in its forcing; and (ii) that the dominant peak at

109 kyr is not directly forced by the f4 = 1/100 (kyr)−1 ecentricity line but rather it is due to the difference tone between

the two precessional frequencies, f1 and f2. Finally, it is the nonlinear, broad resonance of the model’s f0 frequency with the

quasi-periodic forcing that produces the bump in the spectrum of Fig. 5(a) to the right of the orbital frequencies.

In returning to the “fundamental question #2” in Box 1, one must recall that,
:::
on

:::
the

:::::::::::
paleoclimatic

::::
time

::::::
scales

::
of

::::::
interest

:
—230

apart from deterministic chaos à la Lorenz (1963)
::::::::::::
Lorenz (1963), as obtained by H. Le Treut and colleagues (Le Treut and Ghil,

1983; Le Treut et al., 1988) and shown here in Fig. 5(a) — stochastic contributions à la Hasselmann (1976)
::::::::::::::::
Hasselmann (1976)

to the continuous part of the paleoclimatic spectrum must also play an important role. In fact, the theoryof random dynamical

systems touched upon
::::
RDS

::::::
theory,

::
as

:::::::
outlined

:
in the next subsection

:
, provides an excellent framework for a “grand unifi-

cation” of these two complementary points of view (Ghil, 2014, 2019). In the paleoclimatic context, Ditlevsen et al. (2020)235

::::::::::::::::::
Ditlevsen et al. (2020) have suggested that, aside from red-noise processes, dating uncertainties in the proxy records from

which the spectra are derived may contribute, in all likelihood, to this background; see also Boers et al. (2017a, b).

::::::::::::::::::
Boers et al. (2017a, b).

:::
In

:::
this

:::::::
context,

::::::::::::::::::::::::::
Verbitsky and Crucifix (2020)

:::
also

:::::::
provide

:
a
::::::
simple

::::::
theory

::::
that

::::::::
addresses

:::::::
scaling

::::::::
properties

::
in

:::
the

::::::
glacial

:::::
cycles

::::
and

::::
their

:::::::
spectra,

:::::
based

::
on

:::
the

::::::::
so-called

::::::::::
Buckingham

:::::::::
π-theorem

:::::::::::::::::::
(e.g., Barenblatt, 1996)

:
.

3.2 Basic Facts of NDS and RDS Life240

The highly preliminary results on interaction between external forcing and internal variability summarized in Sec
::::::::::
summarized

::
in

::::
Sect. 3.1 encourage us to pursue in a more systematic way the interaction between orbital forcing and

::::::
effects

::
of

:::
the

::::::
orbital

::::::
forcing

::
on

:
intrinsic climatic variability,

::::::
effects that may have contributed to generate the rich paleoclimate spectrum on Quater-

nary and longer time scales (e.g., Westerhold et al., 2020). In fact, several research groups in the climate sciences have carried
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out during the past two decades an important extension of the dynamical-systems and model hierarchy framework presented by245

Ghil and Childress (1987) and by Ghil (2001), from deterministically autonomous to nonautonomous and random dynamical

systems (NDSs and RDSs: e.g., Ghil et al., 2008; Chekroun et al., 2011; Bódai and Tél, 2012).

On the road to including deterministically time-dependent, as well as random effects, one needs to realize first that the climate

system — as well as any of its subsystems, and on any time scale — is not closed: it exchanges energy, mass and momentum

with its surroundings, whether other subsystems or the interplanetary space and the solid earth. The typical applications of250

dynamical systems theory to climate variability until not so long ago have only taken into account exchanges that are constant

in time, thus keeping the model — whether governed by ordinary, partial or other differential equations — autonomous; i.e.,

the models had coefficients and forcings that were constant in time.
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Alternatively, the external forcing or the parameters were assumed to change either much more slowly than a model’s

internal variability, so that the changes could be assumed to be quasi-adiabatic, or much faster, so that they could be approxi-255

mated by stochastic processes. Some of these issues are covered in much greater detail by Ghil and Lucarini (2020, Sec. III.G)

:::::::::::::::::::::::::::::
Ghil and Lucarini (2020, Sect. III.G). The key concepts and tools of NDSs and RDSs go beyond such approaches that rely in

an essential way on a scale separation between the characteristic times of the forcing and the internal variability of a given

system; such a separation is rarely, if ever, actually present in the climate sciences.

The presentation of the key NDS and RDS concepts and tools in this subsection is aimed at as large a readership as possible260

and it follows Ghil (2014). Slightly more in-depth, but still fairly expository presentations can be found in Crauel and Kloeden

(2015) and in Caraballo and Han (2017). Readers who are less interested in this mathematical framework — which allows a

truly thorough understanding of the way that orbital forcing interacts with
:::
acts

::
on

:
intrinsic climate variability on Quaternary

time scales — may skip at a first reading the remainder of this section and continue with Section
::::
Sect. 4.

Autonomous and nonautonomous systems. Succinctly, one can write an autonomous system as265

Ẋ = F(X;µ), (9)

where X stands for any state vector or climate field. While F is a smooth function of X and of the parameter µ, it does not

depend explicitly on time. This autonomous character of Eq. (9) greatly facilitates the analysis of its solutions’ properties.

For instance, two distinct trajectories, X1(t) and X2(t), of a well-behaved, smooth autonomous system cannot intersect —

i.e., they cannot pass through the same point in phase space — because of the uniqueness of solutions. This property helps270

one draw the phase portrait of an autonomous system, as does the fact that we only need to consider the behavior of solutions

X(t) as time t tends to +∞. The sets of points so obtained are — possibly multiple — equilibria, periodic and quasi-periodic

solutions, and chaotic sets. In the language of dynamical systems theory, these are called, respectively: fixed points, limit cycles,

tori, and strange attractors.

We know only too well, however, that the seasonal cycle plays a key role in climate variability on interannual time scales,275

while orbital forcing is crucial on the Quaternary time scales of many millennia. And, more recently, it has become obvious

that anthropogenic forcing is of utmost importance on the interdecadal time scales in-between.

How can one take into account these types of time-dependent forcings, and analyze the nonautonomous systems that they

lead us to formulate? One writes succinctly such a system as

Ẋ = F(X, t;µ). (10)280

In Eq. (10), the dependence of F on t may be periodic, F(X, t+P ) = F(X, t), as in various El Niño–Southern Oscillation

(ENSO) models, where the period P = 12 months, or monotone, F(X, t+ τ)≥ F(X, t)
:::::::::
monotonic,

:::::::::::::::::::::
|F|(X, t+ τ)≥ |F|(X, t),

as in studying scenarios of anthropogenic climate forcing. An even more general situation includes time dependence in one or

more parameters {µ1, . . . ,µp}.
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To illustrate the fundamental distinction between an autonomous system like Eq. (9) and a nonautonomous one like Eq. (10),285

consider the simple scalar version of these two equations:

Ẋ =−βX, and (11a)

Ẋ =−βX + γt, (11b)

respectively. We assume that both systems are dissipative, i.e. β > 0, and that the forcing is monotone
::::::::::::
monotonically increas-

ing, γ ≥ 0, as would be the case for anthropogenic forcing in the industrial era. Lorenz (1963) pointed out the key role of290

dissipativity in giving rise to strange, but attracting solution behavior, while Ghil and Childress (1987) emphasized its impor-

tance and pervasive character in climate dynamics. Clearly the only attractor for the solutions of Eq. (11a), given any initial

point X(0) =X0, is the stable fixed point X∗ = 0, attained as t→+∞.

In the case of Eq. (11b), though, this forward-in-time approach yields blow-up as t→+∞, for any initial point. To make

sense of what happens in the case of time-dependent forcing, one introduces instead the pullback approach, in which solutions295

are allowed to still depend on the time t at which we observe them, but also on a time s from which the solution is started, with

X(s) =X0 and s� t. With this little change of approach, one can easily verify that

|X(s, t;X0)−At| → 0 as s→−∞, (12)

for all t and X0, whereAt = (γ/β)(t−1/β). We obtain therewith, in this pullback sense, the intuitively obvious result that the

solutions, if we start them far enough in the past, all approach the family of attracting sets At; this family follows the forcing300

γt and it thus has a linear growth in time t. Hence, the fixed point X∗ of Eq. (11b) is, in fact, a moving target and it is given by

X∗ = γt/β. Due to the system’s inertia, the set At that is approached by the trajectories lags this time-dependent fixed point

by a constant offset of γ/β2.

Pullback attractor (PBA). Formally, the indexed family A of all pullback attracting sets At,:

A = {At}t∈R (13)305

is termed the pullback attractor (PBA) of the NDS if the following two conditions are fulfilled:

(i) each snapshotAt is compact and the family of snapshots {A(t)}t∈R ::::::::
{A(t)}t∈R:is invariant with respect to the dynamics

X(t,s;X0) ∈ At ∀s≤ t andX0 ∈As; and (14)

(ii) the pullback attraction occurs for all times:310

lim
s→−∞

|X(t,s;X0)−At|=:0 ∀t. (15)

To further improve the reader’s intuition for PBAs, we provide a second illustrative example here. A system defined in polar

coordinates by

ρ̇= α(µ− ρ), φ̇= ω, with ρ, µ ∈ R+ and φ ∈ R/2π, (16)
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can easily be seen to exhibit a limit cycle in the (x,y)-plane with (x= ρcosφ,y = ρsinφ). An initial deviation of ρ from µ315

will decay exponentially and the system converges to an oscillation of radius µ with the angular velocity ω. Here, we transform

this autonomous dynamical system into a nonautonomous one by modulating the target radius µ with a sinusoidal forcing

µ→ µ(t) = µ0 +β sin(νt), (17)

where the modulation is moderate, so as to guarantee that µ+β sin(νt)> 0
:::::::::::::::
µ0 +β sin(νt)> 0

:
for all t.

Since the dynamics of the phase φ and of the radius ρ are decoupled, the corresponding equations can be solved and analyzed320

separately. While the temporal development of the phase is trivial, the pullback invariant attracting set of the radius for the initial

condition ρ(s) = ρ0 is given by

A(ρ)(t;ρ0) = lim
s→−∞

ρ(t,s;ρ0) = αβ sin(νt+ϑ) +µ0, with (18a)

ϑ= arctan(−ν/α), (18b)

as shown in Appendix B. Note that, in the limit s→−∞, the dependence on the initial value ρ0 vanishes and the attracting325

set A(ρ)
t performs an oscillation of the same frequency as the forcing. It lags the phase of the time-dependent fixed point by

the constant ϑ, while its amplitude is amplified by the factor α. Since ρ is restricted to positive values, this solution requires

αβ < µ
:::::::
αβ < µ0.

The PBA with respect to the coordinate ρ is comprised of the family of all the sets A(ρ)
t as defined in (18) and thus reads

A (ρ) = {αβ sin(νt+ϑ) +µ0}t∈R. (19)330

Since the pullback limit for the phase φ does not exist, no constraints on it other than φ ∈ [0,2π) are imposed by the dynamics.

Hence, for the system (16) comprised of radius and phase, we find that

lim
t0→−∞

dH

((
ρ(t; t0,ρ0),φ(t; t0,φ0)

)
,{
(
αβ sin(νt+ϑ) +µ,ϕ

)
: ϕ ∈ [0,2π)}︸ ︷︷ ︸

At

)
= 0,

where dH denotes the Hausdorff semi-distance
::
the

::::::::
distance

::
of

::::
any

::::::::
trajectory

::
at

::::
time

::
t
::
—

:::
i.e.

:::::::::::::::::::::

(
ρ(t; t0,ρ0),φ(t; t0,φ0)

)
::
—

:::
to

::
the

:::
set

::::::::::::::::::::::::::::::::::::::
At = {

(
αβ sin(νt+ϑ) +µ0,ϕ

)
: ϕ ∈ [0,2π)}

:::::
tends

::
to

:::::
zero,

::
as

:::
we

::::::::
pullback

:::
the

:::::
initial

::::
time

:::
t0 ::

to
::::
−∞. The pullback335

attracting setsAt at time t are circles in the (x,y)-plane with oscillating radius
:
a
:::::
radius

::::
that

::::::::
oscillates

::
in

::::
time, and the system’s

PBA is given by the family of these circles

A = {
(
αβ sin(νt+ϑ) +µ0,ϕ

)
: ϕ ∈ [0,2π)}t∈R. (20)

Figure 6 shows trajectories of the system starting from different points in the past. In panel (a)
:
, the trajectories are depicted in

the three-dimensional (3-D) space spanned by the two cartesian coordinates (x,y) and the time t, where the usual transforma-340

tion from polar to cartesian coordinates was applied. The shaded surface in this panel represents the PBA of the system. Panel

::::::::::::
Corresponding

:::::::::
trajectories

:::
of

:::
ρ(t)

::::
and

::::
their

:::::::::::
convergence

::
to

:::
the

::::
PBA

::::
A(ρ)
t :::

are
::::::
shown

::
in

:::::
panel

:
(b).

:::::
Panel

:::
(f) shows a heat map
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(Wilkinson and Friendly, 2009) that approximates a portion of the PBA’s invariant measure projected onto the (x,y)-plane. For

a clean definition of such a measure in NDSs and RDSs, please see Caraballo and Han (2017); Chekroun et al. (2011); Crauel and Kloeden (2015)

or Ghil et al. (2008)
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
Caraballo and Han (2017); Chekroun et al. (2011); Crauel and Kloeden (2015)

::
or

::::::::::::::
Ghil et al. (2008). Essen-345

tially, the heat map here counts the number of times that 100 trajectories integrated from t=−200 to t= 200
:
, with randomized

initial conditions like the ones shown in panel (a)
:
, cross small pixels in the (x,y)-plane.

Note that
:::::
Panels

:::::
(c–e)

:::::::::::
demonstrate

:
a
::::::::::
particularity

:::
of

:::
this

:::::::
system,

:::::
which

::
is
::::::::::::

characteristic
::
of

::::::::
dynamics

::::::::
confined

::
to

::
a

:::::
torus.

:::::::
Namely, the structure of the system’

:
’s trajectories depends on the

::::::::
frequency ratio ω/ν and three different cases must be

distinguished. If the radius is modulated with the same frequency as the oscillation itself, i.e. ω = ν , after one period
::
as350

::
in

:::::
panel

:::
(c),

:::
the

:::::::
forcing

:::
and

::::
the

::::::
system

::::
have

::
a
:::::
fixed

:::::
phase

:::::::
relation.

:::::
That

::
is,

:::
for

::
a
:::::
given

:::::
phase

::
of
::::

the
::::::
system,

:::
its

::::::
radius

::
is

::::::
always

:::::::
attracted

::
by

:::
the

:::::
same

:::::
fixed

:::::
point.

::::::
Hence, the system practically repeats its orbit

::::
after

::
a

::::
short

::::
time. More precisely, the

radius of the oscillation does differ from one “roundtrip”
::::::
around

:::
the

::::
torus

:
to the next, but this difference tends to zero as ρ(t)

asymptotically approaches
:::::::::
approaches

:::
the

::::
PBA

:
A(ρ)
t .

If ω and ν are rationally related,
:::
i.e., mω = nν with n,m ∈ N, then the same quasi-repetition of the orbit occurs

::
as

::
in

:::::
panel355

:::
(d),

::::
then

::
—

:
after n periods of the radial modulation and m periods of the system’s oscillation . Such

:
’s
:::::::::
oscillation

:::
—

:::
the

:::::
phase

::::::
relation

:::::::
between

:::
the

::::::
system

::::
and

::
its

:::::::
forcing

:::
will

::::::
repeat

::::
itself

::::
and

:::::
hence

:::
we

::::::
observe

:::
the

:::::
same

:::::::::::::
quasi-repetition

::
of

:::
the

:::::
orbit

::::
after

::
the

::::
time

::::::::::::::::
n 2π/ν =m2π/ω.

::::
That

:::
is,

::::
such a trajectory will appear as an n-fold quasi-closed loop.

Finally, if ω/ν /∈ Z, then
::::::::
ω/ν /∈ Z,

::
as

::
in

:::::
panel

:::
(e),

::::
then

:
a
:::::
given

:::::
phase

::
of

:::
the

::::::
system

::::
will

:::::
never

:::::::
coincide

::::
with

:::
the

:::::
same

:::::
phase

::
of

:::
the

:::::
radius

::::::::::
modulation

:::::
more

::::
than

:::::
once.

::::::
Hence,

:
the trajectory does not repeat itself but instead covers densely the annular360

disc D = {(ρ,φ) : ρ ∈ [µ−αβ,µ+αβ] and φ ∈ [0,2π)}. The trivial evolution of the phase is depicted in panel (c), while the

trajectories of ρ(t) and their convergence toA(ρ)
t are shown in panel (d).

::::::::::::::::::::::::::::::::::::::::::::
D = {(ρ,φ) : ρ ∈ [µ0−αβ,µ0 +αβ] and φ ∈ [0,2π)}.

Random attractor. Let us return now to the more general, nonlinear case of Eq. (10) and add not only deterministic time

dependence F(X, t), but also random forcing,365

dX = F(X, t)dt+G(X)dη, (21)

where η = η(t,ω) represents a Wiener process — with dη commonly referred to as “white noise” — and ω
:::
now

:
labels the

particular realization of this random process. When G = const. the noise is additive, while for ∂G/∂X 6= 0 we speak of

multiplicative noise. The distinction between dt and dη in the stochastic differential equation (21) is necessary since, roughly

speaking and following the Einstein (1905) paper on Brownian motion, it is the variance of a Wiener process that is proportional370

to time and thus dη ∝ (dt)1/2. In Eq. (21), we dropped the dependence on a parameter µ for the sake of simplicity.

The noise processes may include “weather” and volcanic eruptions when X(t) is “climate,” thus generalizing the linear

model of Hasselmann (1976), or cloud processes when we are dealing with the weather itself: one person’s signal is another

person’s noise, as the saying goes. In the case of random forcing
::
of

:::
Eq. (21), the concepts introduced by the simple example

::::::::::
deterministic

::::::::
examples

:
of Eq. (11b)

:::
and

::
of

::::
Eqs.

::::
(16,

:::
17)

:
above can be illustrated by the random attractor A (ω) in Fig. 7.375
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Figure 6. Trajectories and PBA of the system defined by Eqs. (16) and (17)
:
;
::

in
:::

all
::::

the
::::::

panels
:::

the
:::::::::

parameter
:::::
values

::::
are

:::::::::::::::::::
µ0 = 15, α= 10, ν = 0.2

::::
and

::::::
ω = 0.3,

::::::
unless

::::
stated

::::::::
otherwise. (a) Trajectories (ρ(t),φ(t)) of the system starting from different times

in the past in the 3-D space spanned by the two cartesian coordinates (x,y) and time t; the system’s PBA lies on the red-shaded surface. (b)

:::::::
Temporal

:::::::
evolution

::
of

:::
the

:::::
radius

::::
(solid

::::::
colors)

::
of

::
the

:::::
three

::::::::
trajectories

:::::
shown

::
in

:::
(a)

::::::
together

::::
with

::
its

::::
PBA

:::::
(dotted

::::
red).

::::::
(c)–(e)

:::::::::
Trajectories

:::::::
integrated

::::
from

:::::::::
t0 =−100 ::

to
::::::
tf = 200

:::
for

:::::::::::::::
ν = 0.3,0.2,0.51/2

:
in
::::::

panels
:::
(c),

::
(d)

:::
and

:::
(e),

::::::::::
respectively).

::::
The

:::::
values

::
are

::::::
chosen

::::
such

:::
that

:::
the

:::
ratio

:::::::
between

:
ν
:::
and

::
ω
::
is

:::::::
ω/ν = 1,

:::::::::::
ω/ν ∈ Z \ {1}

::::
and

:::::::::
ω/ν ∈ R \Z

::
in
:::::
panels

:::
(c)

::
to

:::
(e),

:::::::::
respectively.

:::::::::::::
Correspondingly,

::
in

:::
(c)

::
the

::::::::
trajectory

:::::
quickly

::::::::
converges

::
to

:
a
:::::
circle,

:::::
whose

:::::
center

::
is

::::::
slightly

:::::
shifted

::::
from

:::
the

::::::
originin.

::
In

:::::
panel

::
(d)

:
a
::::::::::

quasi-closed
::::::::
three-fold

:::
loop

:::
can

::
be

::::::::
observed,

::::
since

:::::::::
ω/ν = 3/2.

::
In

::::
panel

::
(e)

:::
the

:::::::::
trajectories

:::
will

::::::
densely

::
fill

:::
the

::::::
annular

:::
disc

::::::
defined

::
by

:::
Eq. (32)

:
.
::
(f) Heat map of the

:::::::
numerous

:
trajectories

projected onto the (x,y)-plane.
:::
The

::::::::
trajectories

::::
start

:
at
::::::
random

:::::
points

::
in

::::
state

::::
space

:::
and

:::
are

:::::::
integrated

::::
from

::::::::
ti =−200::

to
::::::::
tf = 200. A video

of the heat map filling up, as more and more trajectories with different initial conditions are added, is provided in the Supplementary Material

to this article. The heat map
:::::
shown

:
here is a snapshot of the video taken at time t= 0.20; see details in the Video

::::
video

:
supplement.(c)

Temporal evolution of the phase. (d) Temporal evolution of the radius (solid colors) together with its PBA (dotted red).
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:
A
::::
key

::::::
feature

::
of

:::
the

::::::::
pullback

::::
point

::
of

:::::
view

::
on

:::::::::::::
noise-perturbed

:::::::::
dynamical

:::::::
systems

::::
that

:::::::::::
characterizes

::::
RDS

::::::
theory

::
is

:::
the

:::
use

::
of

:
a
::::::
single

:::::
noise

:::::::::
realization,

::
as

::::::::
opposed

::
to

:::
the

:::::::::
traditional,

:::::::
forward

:::::::::
viewpoint

::
of

:::
the

:::::::::::::
Fokker-Planck

:::::::
equation

::::
and

:::::::::
associated

:::::::
concepts,

:::
in

:::::
which

::::::::
multiple

:::::
noise

::::::::::
realizations

::::
play

:
a
:::::

role.
:::
For

::
a
::::::
precise

:::::::::
definition

::
of

::
a

::::::
random

::::::::
attractor

:::
—

::
as

::::
well

:::
as

:::
the

::::::::::::
commonalities

:::
and

:::::::::
differences

:::::::
between

:::
the

:::::::::::
deterministic

:::
and

:::::::
random

::::
cases

::
of

:::::::::::::
time-dependent

::::::
forcing

:::
—

:::::
please

:::
see

:::::::::::::::::::::
Caraballo and Han (2017)

:
.380
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Figure 7. Schematic diagram of a random attractor A (ω) and of the pullback attraction to it; here ω labels the particular realization of the

random process θ(t)ω that drives the system. We illustrate the evolution in time t of the random process θ(t)ω (light solid black line at

the bottom); the random attractor A (ω) itself (yellow band in the middle), with the snapshots A0(ω) =A(ω; t= 0)) and A(ω; t) (the two

vertical sections, heavy solid); and the flow of an arbitrary compact set B from “pullback times” t=−τ2 and t=−τ1 onto the attractor

(heavy blue arrows). See Ghil et al. (2008, Appendix A) for the requisite properties of the random process θ(t)ω that drives the RDS (21).
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from Ghil et al. (2008)
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:::
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::::::::
Ghil et al.

:
,
::::::
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::::::::
dynamics

:::
and

::::
fluid

:::::::::
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:::::
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::::::::
variability

:::
and

:::::
related

::::::::::
uncertainties,

:::::::::
2111–2126,

::::::
©2008

::::::
Elsevier

::::
B.V.

::
All

:::::
rights

:::::::
reserved.

::::::
(2008), with permission from Elsevier.

Chekroun et al. (2011) studied a specific case of such a random attractor for the paradigmatic, climate-related Lorenz (1963)

convection model. The authors introduced multiplicative noise into each of the ODEs of the original, deterministically chaotic

system, as shown below:

dX = Pr(Y −X)dt+σXdη, (22a)

dY = (rX −Y −XZ)dt+σY dη, (22b)385

dZ = (−bZ +XY )dt+σZdη; (22c)
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here r = 28, Pr = 10, b= 8/3 are the standard parameter values for chaotic behavior in the absence of noise, and σ is a

constant variance of the Wiener process that is not necessarily small
:
;
::::
both

:::
the

:::::
noise

:::::::::
realization

::::
η(t)

::::
and

:
σ
::::

are
:::
the

::::
same

:::
in

::
all

:::::
three

::::::::
equations. The well-known strange attractor of the deterministic case is replaced by the Lorenz model’s random

attractor, dubbed LORA by the authors. Four snapshots At(ω) of LORA are plotted in Fig. 8 and a video of its evolution in390

time A (ω) = {At(ω)}t∈R is available as Supplementary Material in Chekroun et al. (2011)
::::::::::::::::::
Chekroun et al. (2011) at https:

//doi.org/10.1016/j.physd.2011.06.0052011.06.005.

Charó et al. (2021) have further analyzed the striking effects of the noise on the nonlinear dynamics that are visible in Fig. 8

here and in the video of Chekroun et al. (2011)
:::::::::::::::::::
Chekroun et al. (2011), and gathered further insights into the abrupt changes of

the snapshots’ topology at critical points in time. These remarkable changes suggest the possibility of random processes giving395

rise to qualitative jumpsin paleoclimatic variability, such as the MPT
:
,
::
in

:::::::::::
paleoclimatic

:::::::::
variability.

3.3 Application to Dansgaard-Oeschger (D-O) events

Before discussing conceptual glacial cycle models, we take a little detour and introduce a simpler — yet interesting and,

at the same time, highly instructive — application of NDS theory to another important climate phenomenon. During past

glacial periods, Greenland experienced a series of sudden decadal-scale warming events that left a clear trace in ice core400

records (Dansgaard et al., 1993). These so-called D-O events were followed by intervals of steady moderate cooling, before

a short phase of enhanced cooling brought the temperatures back to their pre-event levels (e.g., Rasmussen et al., 2014).

This pattern is very clearly apparent in NGRIP δ18O records (North Greenland Ice Core Project members, 2004) and it can

be mimicked qualitatively
::::::::::
qualitatively

::::::::
simulated

:
by the fast component of a FitzHugh-Nagumo (FHN) model (FitzHugh,

1961; Nagumo et al., 1962), as pointed out by Mitsui and Crucifix (2017)
:::::::::::::::::::::
Mitsui and Crucifix (2017), among others; see also405

Kwasniok (2013); Rial and Yang (2007)
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
Kwasniok (2013); Rial and Yang (2007); Roberts and Saha (2017); Vettoretti et al. (under review)

:
.

:::
We

::::::
discuss

:::
the

:::::::
example

:::
of

:::
the

::::
FHN

::::::
model

::
at

::::
some

::::::
length

::
in

:::::
order

::
to

::::::::
illustrate

::::
how

:::::::
external

::::::
forcing

:::
can

:::
act

:::
on

:
a
::::::::
system’s

::::::
internal

:::::::::
variability

:::
and

:::::::
thereby

::::
give

:::
rise

:::
to

::::
more

::::::::
complex

:::::::::
dynamics.

::::
This

:::::::
model’s

::::::
concise

::::::::::::
mathematical

::::::::::
formulation

:::
and

:::
its

:::::::::
widespread

:::::::::
application

::
in
:::::::::::
paleoclimate

::::::::
modeling

:::
and

:::::
other

:::::
fields

::::
make

::
it

::::::
ideally

:::::
suited

:::
for

:::
this

::::
goal.

:::
We

::::
start

::::
with

:
a
::::::::::
description410

::
of

:::
the

:::::::::::
autonomous

::::::
model,

::::
with

:::
no

::::::::::::::
time-dependent

:::::::
forcing.

::::::::::::
Subsequently,

:::
we

::::::::
introduce

::
a
::::::

simple
:::::::::

sinusoidal
:::::::

forcing
::::
and

::::::::::
numerically

:::::::
compute

:::
the

::::::::::::
corresponding

::::
PBA.

::::
We

:::
then

::::::
extend

:::::
these

:::::::::::
consideration

::::
into

::
the

:::::
realm

:::
of

::::::
random

:::::::::
dynamical

:::::::
systems

::
by

::::::
adding

::::::::
stochastic

:::::::
forcing

:::
and

:::::::
discuss

:::
the

:::::::
resulting

:::::::
random

:::::::
attractor.

:::::::
Finally,

:::
we

::::::
replace

:::
the

::::::::
synthetic

:::::::
forcings

:::
by

:::
one

::::
that

::::::::::
corresponds

::
to

:
a
::::::::::
paleoclimate

::::::
proxy

:::::
record

::
of

::::
past

::::
CO2 ::::::::::::

concentrations
:::::::
retrieved

:::::
from

:::::::
Antarctic

:::
ice

:::::
cores

::::::::::::::::::
(Bereiter et al., 2015)

:::
and

::::
show

::::
that

:::
this

:::::
setup

:::::
brings

:::
the

:::::::
model’s

:::::::::
trajectories

::::
into

::::
good

:::::::::
qualitative

:::::::::
agreement

::::
with

:::
the

::::
D-O

:::::::
patterns

:::::::
observed

::
in

:::::
δ18O415

::::::
records

::::
from

:::::::::
Greenland

:::
ice

::::::
cores.

::
In

:::::
doing

:::
so,

:::
we

::::
pay

:::
less

::::::::
attention

::
to

:::
the

::::::::
physical

:::::::::::
interpretation

::
of

:::
the

:::::::
model’s

:::::::::
variables,

::::
while

::::::::
focusing

::
on

:::
the

:::::::
detailed

::::::::::
explanation

::
of

::::::
model

:::::::
behavior

:::
and

:::
on

:::
the

:::
role

:::
of

:::
the

::::::
forcing

::
in

:::
the

:::::::
resulting

:::::::::
dynamics.

The FitzHugh-Nagumo (FHN) model of fast-slow
::::::::
fast–slow

:
oscillations. The FHN model consists of two coupled ODEs

that govern behavior alternating between slow evolutions and fast transitions. Typically, the time scales of the two variables are

19
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Figure 8. Heat maps of the time-dependent invariant measure νt(ω) supported on four snapshots At(ω) of LORA. The values of the param-

eters r,s and b are the classical ones, while the variance of the noise σ = 0.5. The color bar is on a log-scale and it quantifies the probability

of landing in a particular region of phase space; shown is a projection of the 3-D phase space (X,Y,Z) onto the (X,Z)-plane. Note the

complex, interlaced filament structures between highly populated regions (in yellow) and moderately populated ones (in red). Reproduced

:::::::
Reprinted

:
from Ghil et al. (2008)

:::::
Physica

:::
D:

:::::::
Nonlinear

::::::::::
Phenomena,

::::
240,

:::::::
Ghil et al.

:
,
::::::::
Stochastic

::::::
climate

::::::::
dynamics:

::::::
Random

::::::::
attractors

:::
and

:::::::::::
time-dependent

:::::::
invariant

::::::::
measures,

:::::::::
1685–1700,

:::::
©2011

::::::
Elsevier

::::
B.V.

:::
All

::::
rights

:::::::
reserved.

::::::
(2011), with permission from Elsevier.

separated by introducing the parameters τx and τy , with x(t) being the slow component and y(t) the fast one:420

ẋ=
1

τx
(y− γ), (23a)

ẏ =
1

τy
[α(y− y3)−x]. (23b)

In order to develop an understanding for the way that such a model can simulate the rapid D-O warmings, followed by slow

coolings, we shall discuss
:::
start

:::
by

:::::::::
discussing

:
its autonomous behavior, for time-independent γ, first. Next, we shall give a

physical meaning to the variables in the climate context and introduce time-dependent forcing exerted by a background state425

via γ = γ(t).
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Figure 9.
::::::::
Nullclines

:
of
:::
the

:::::::::
autonomous

::::
FHN

:::::
model

:::::::
governed

::
by

::::
Eqs. (23)

::::
with

::::
large

:::
time

::::
scale

::::::::
separation,

:::
for

::::::::::::
α= 2, τx = 100

:::
and

:::::::
τy = 10;

::
the

::::::::
nullclines

::
of

::
the

::::
fast

::::::::::
y-component

::
are

::
in
::::
blue

:::
and

::
of

:::
the

::::
slow

::::::::::
x-component

::
in

::::::
orange.

::::
(a–c)

:::
One

:::::::::
illustrative

:::::::
trajectory

:::
(red

::::::
dotted)

:::
for

::::::::
γ = 0,0.5,

:::
and

:::
1.0,

::::::::::
respectively.

:::
The

:::::
upper

::::::
branch

:::
and

:::
the

::::
lower

::::::
branch

:::::
(solid

::::
blue)

:::::::::
correspond

::
to

::
the

:::::
roots

::
yr:::

and
:::
y`,::::::::::

respectively,
::
as

:::::
defined

::
in
:::
the

::::
text.

:::
For

::::
fixed

:::::
values

::
of

::
x,

:::
they

::::::::
constitute

:::::
stable

::::
fixed

:::::
points

::
for

:::
Eq.

:
(23b).

:::
The

::::::
middle

:::::
branch

::::::
(dashed

:::::
blue)

:::::::::
corresponds

::
to

::
the

:::::::
unstable

::::
fixed

::::
point

::
for

:::
Eq.

:
(23b)

::
for

:
a
:::::
given

::
x.

:::
The

::::::::
trajectories

:::
for

:::::
panels

:::
(a)

:::
and

::
(b)

:::::
follow

:
a
::::

limit
:::::
cycle,

::::
since

:::
the

::::::::
x-nullcline

::::
does

:::
not

::::::
intersect

::::
with

::::
either

::
of
:::

the
:::::
stable

:::::::
branches

:
of

:::
the

:::::::::
y-nullcline,

::::
given

:::
that

::::::::::
|γ|<

√
1/3,

:::::
while

:::
the

:::::::
trajectory

::
in

::::
panel

:::
(c)

:::::::::
approaches

:
a
:::::
single

::::
stable

::::
fixed

::::
point

:::
for

:::
the

::::::
coupled

::::::
system,

:::::
formed

:::
by

::
the

:::::::::
intersection

::
of

:::
the

::::::::
x-nullcline

::::
with

::
the

::
y

:̀:::::
branch

::
of

::
the

:::::::::
y-nullcline.

:

Consider
::::
First,

:::::::
consider

:
the case of large time scale separation

τx>>�::
τy. (24)

This choice guarantees that the fast y-component adjusts adiabatically to quasi-static changes of the slow x-component. The

time derivative of y(t), as shown in Fig. 10(a), exhibits either three real roots or a single one, depending on the value of x(t),430

which shifts the graph of the cubic polynomial P3(x,y) = α(y−y3)−x globally upwards or downwards. Of the three potential

roots, the outer two are stable fixed points for y(t) at a fixed value of x, while the inner one is unstable. Note that the two stable

fixed points are always located either left or right of the local minimum or maximum of P3(x,y), respectively. Accordingly,

we label them y` and yr. Thus, the
:::
The positions of the local extrema, namely ymin =−

√
1/3 and ymax =

√
1/3, provide an

upper and a lower bound for the left and right stable fixed point, respectively.435

Given the large time scale separation, the y-component will be close to either one of the two stable fixed points for a

given
::::
Now,

:::
let

::
us

::::::::::
investigate

:::
the

:::::::
coupled

::::::::
dynamics

:::
of

:::
the

::::
slow

::::
and

:::
fast

::::::::
variables

::::
x(t)

::::
and

::::
y(t).

:::::::
Assume

:::
we

::::
are

::
in

:
a
:::::

state

:::::
where

:::::::::::
x > 2α/

√
27

::::
such

::::
that

::
y`::

is
:::
the

::::
only

::::
root

::
of

::::::::
P3(x,y).

::::::::
Provided

::::
that

::::::::::
|γ|<

√
1/3,

:::
the

::::
time

:::::::::
derivative

::̇
x

:::
and

:
x ; hence,

y(t) must be outside the interval spanned by the two local extrema: y(t) /∈ (−
√

1/3,
√

1/3). In the overall evolution of the

solution, though, the stable fixed point that momentarily attracts y(t) is destabilized by
::::
itself

:::
will

::::
have

::::::::
opposite

:::::
signs,

::::
with

:::
the440

::::::::::
consequence

::::
that a slow adjustment of x(t),

::::::
process

::
of

::::
x(t)

::::
sets

::
in.

::::
This

::::
will

::::
shift

::
the

::::::::::
polynomial

:::::::
P3(x,y)

:::::::
upwards

::
in

:::::
panel

:::
(a)
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Figure 10. FitzHugh-Nagumo (FHN) model with time scales τf = 2000,
::::::::
parameters τx = 100, τy = 60, and α= 2. (a) The cubic term

::::::::
polynomial

:::::::
P3(x,y):of the fast derivative P3(x,y) as a function of y for x= 0 (solid blue line); dashed

::
the

:::
red

::::
lines

:::::
point

::
to

:::
the

::::
local

::::::
maximal

:::
and

:::::::
minimal

:::::
values

::
of

:::::::
P3(x,y),::::::

namely
:::::::::
±2a/

√
27,

:::::::::
respectively

::
—

::::
these

:::
are

:::
the

:::::::
maximal

:::::
values

::
by

:::::
which

:::
P3 :::

can
::
be

:::::
shifted

:::
up

:
or
:::::

down,
:::::

while
:::::::::
maintaining

::
all

:::
of

::
its

::::
three

:::::
roots;

::
the

:::::
dotted

::::
gray

:
lines indicate the same

:::::
shifted function with x=±2α/

√
27.

:::
The

:::::
purple

:::
lines

::::::
labeled

:::::
ymin :::

and
::::
ymax:::::

mark
:::
the

::::
right

:::
and

:::
left

::::::::
boundaries

:::
for

:::
the

::::
roots

::
y

:̀:::
and

::
yr ,

::::::::::
respectively:

::
y

:̀:::
and

::
yr:::

can
:::::
never

::
be

::::::
located

::
in

::::::
between

:::
the

:::
two

:::::
purple

::::
lines.

:
(b) Trajectories of the nonautonomous model , with γ(t) = sin(t/τf ), ::::::::::::::

γ(t) = 0.8sin(t/τf):and starting at the

times {t0 =−20 kyr, t1 =−16 kyr, t2 =−13 kyr, t3 =−7 kyr}
::::::::
τf = 1 000,

:::::
plotted

:
in the (x,y) -plane, using different colors for t0, t1, t2

::::
phase

:::::
plane;

:::
the

::::::::
trajectories

:::
are

:::::
colored

:::
by

:::
their

::::::
starting

:::::
times

::::::::::::::::::::::::::::::::::::::::::::
{t0 =−20 kyr, t1 =−16 kyr, t2 =−13 kyr, t3 =−7 kyr} and t3::

the
:::::
initial

:::::::
positions

:::
were

:::::
drawn

::::
from

:
a
:::::::
standard

:::::::
Gaussian

::::::
bivariate

:::::::::
distribution. (c) The

:::
slow time-dependent forcing γ = γ(t)

:::::::::::::::
γ(t) = sin(t/1 000). (d,

e) The same trajectories as in (b), but plotted in time , as y = y(t) and x= x(t), respectively. ; in panels (c
:::
f–h) –

::::
Same

::
as

:::::
panels (e

:::
c–e),

:::
but

::
for

:
the

:::
fast

:::::::::::
time-dependent

::::::
forcing

::::::::::::::
γ(t) = sin(t/350).

::::
The gray shading

:
in
:::::
panels

::::::
(c)–(h) indicates intervals during which |γ|>

√
1/3 and

the internal oscillation is
::::
hence

:
suppressed.
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::
of

:::
Fig.

:::
10

:::::
which

::
in
::::
turn

::::::
revives

:::
the

:::::
other

:::
two

:::::
roots

::
of

::::::::
P3(x,y).

:::
The

::::
fast

::::
y(t)

::::::
closely

::::::
follows

:::
y`,::::::

which
:
is
::::::
shifted

:::::::::::
accordingly.

::::
Once

::::::::::::::::
x(t) =−2α/

√
27,

:::
the

:::
root

:::
y` ::::

stops
:::::::

existing
:
and a fast transition to the neighborhood of the opposite stable fixed point

:::
root

:::
yr ensues. This

::::::::
transition switches the sign of ẋ(t) and the slow adjustment of x(t) now happens in the opposite direction.

In the (x,y)-plane, this behavior manifests itself as a stable limit cycle. However, any value |γ|>
√

1/3 prevents ẋ(t) from445

switching sign and therefore interrupts the cyclic destruction and revival of the opposite fixed points for y(t)
:::::::::
respective

:::::::
opposite

:::
root

::
of
::::::::
P3(x,y). Instead, |γ|>

√
1/3 gives rise to a single stable fixed point for the entire system in the (x,y)-plane and, in

this case, both variables relax towards this equilibrium
:
it.

In fact, in the autonomous setting, the system’s qualitative behavior is ultimately controlled by the value of the parameter

γ, which decides between internal oscillations along a limit cycle and relaxation towards a fixed point in the (x,y)-plane. This450

::::
Note

:::
that

:::::::::
previously

:::
we

:::::::
referred

::
to
::::

the
::::
roots

::
y

:̀:::
and

::
yr::::

also
::
as
::::::

stable
::::
fixed

::::::
points

::
of

::
y

:::
for

:
a
:::::
given

:::::
value

::
of

::
x.

:::::
Here,

:::
the

:::::
term

:::::
stable

::::
fixed

:::::
point

:::::
refers

::
to

::
the

:::::
entire

::::::
system

:::::::
defined

::
by

:::
the

:::::::
coupled

:::::
ODEs

:
(23a)

:::
and

:
(23b).

:::::
Both

::::::::::
γ =±

√
1/3

:::
are

::::::
critical

::::::
values

::
of

:
γ
::::
that

::::
give

:::
rise

::
to

:::::::::::
supercritical

::::
Hopf

::::::::::
bifurcations

::
of

:::
the

:::::::
coupled

::::::::
system’s

::::
fixed

::::::
points;

:::::
recall

::::
Fig.

:
4
::
of

:::::
Sect.

:::
2.1.

:

::::
This

:::::::
behavior

::::
can

::
be

:::::
better

::::::::::
understood

:::
by

::::::::::
considering

:::
the

::::::::
nullclines

:::
of (23b)

:::
and

:
(23a)

:
in
::::

the
::::::::::
(x,y)-plane,

:::
as

:::::
shown

:::
in

:::
Fig.

::
9.

::
If

:::
the

::::::::
branches

::
of

:::
the

:::::::::
y-nullcline

:::
that

::::::::::
correspond

::
to

::
y`::::

and
::
yr,::::

and
::::
thus

::
to

:::::
stable

::::
fixed

::::::
points

::
of (23b)

:::
for

:
a
:::::
given

:::::
value455

::
of

::
x,

:::::::
intersect

::::
with

:::
the

:::::::::
x-nullcline

:::::
given

:::
by

:::::
y = γ,

::::
then

::::
this

::::::::::
intersection

:::::::::
constitutes

:
a
:::::
stable

:::::
fixed

::::
point

:::
for

:::
the

:::::
entire

:::::::
system.

:
If
::::
they

:::
do

:::
not,

:::
the

:::::::
system

:::
first

::::::
relaxes

:::::
along

:::
the

::::
fast

::::::::
direction

::::::
toward

:::
the

:::::::::
y-nullcline.

:::::
Only

::::
then

:::
the

:::::::::
adjustment

::
of

:::
the

:::::
slow

:::::::::
component

:::::
starts

::
to

::::
drag

:::
the

::::::
system

:::::
along

:::
the

:::::::::
y-nullcline

:::
in

:::
the

:::::::
direction

::::::
where

:::
the

:::::::
distance

::
to

:::
the

:::::::::
x-nullcline

:::::::::
decreases.

:::
At

::
the

:::::
point

::::::
where

:::
the

:::::::::
y-nullcline

:::::::
reverses,

:::
the

::::
fast

:::::::::
component

::
is
:::::::::::
immediately

:::::::
attracted

:::
by

:::
the

::::
other

::::::
branch

:::
of

:::
the

:::
fast

::::::::
nullcline

:::
and

:::
the

::::
same

:::::::
process

:::::
starts

::
all

::::
over

:::::
again.

:
460

::
So

:::
far

:::
we

:::::
have

::::::::
described

:::
the

:::::::::
formation

::
of

::::
the

::::
limit

:::::
cycle

::
in
::::

the
::::
FHN

::::::
model

:::::
under

::::
the

::::::::::
assumption

::
of

:::::
clear

::::
time

:::::
scale

::::::::
separation

::::
and

:::
the

::::::::::::
independence

::
of

:::
the

::::::::::
x-nullcline

:::::::
{y = γ}

:::::
from

::
x.

::::
See

::::::::::::::::::::
Rocsoreanu et al. (2012)

:::
for

:::
the

:::::::::
emergence

:::
of

:::
the

::::
limit

::::
cycle

:::
in

::
the

:::::
more

::::::
general

:::::
FHN

::::::
model.

:::
The

:
highly nonlinear, two-time behavior

::
of

:::
the

:::::
FHN

:::::
model

:
modifies somewhat the general appearance of

:::
way

:::
that

:
stable

limit cycles via Hopf bifurcation whose normal form ,
::::
arise

::
in

::
it.
::::::

While
:::
we

:::
saw

:::
the

:::::::::::
oscillation’s

:::::
radius

:::::
grow

::::
with

:::
the

::::::
square465

:::
root

::
of

:::
the

:::::::::
bifurcation

:::::::::
parameter

::
in

:::
the

::::
case

::
of

:::
the

::::::
normal

::::
form

:
given by Eqs. (3–5), was discussed in Sec. 2.1

::
in

:::
the

::::
case

::
of

:::
the

::::
FHN

::::::
model,

:::
the

:::::
radius

::
of

:::
the

::::::::::
oscillations

::::::
actually

::::::
grows

:::::::::::
exponentially

::::
over

:
a
:::::
small

:::::
range

::
of

:::::::
γ-values

:::::
right

::::
after

:::
the

:::::::::
bifurcation

::::
point

::::
and

::::
then

::::::::
stabilizes.

::::::
These

:::::::::::
exponentially

:::::::
growing

::::::
stable

::::
limit

::::::
cycles

::::
have

::::
been

:::::::
termed

::::::
“canard

:::::::
cycles”

::::::::::::
(Benoît, 1983)

:
.

::::::::::::::::::::
Roberts and Saha (2017)

::::
have

:::::::
pointed

:::
out

:
a
:::::::
possible

::::
link

:::::::
between

::::::
canard

:::::
cycles

::::
and

::::
D-O

::::::
cycles

:::
and

::::
they

::::
play

:
a
::::
role

::
in

:::::
other

:::::::
excitable

:::::::
climate

::::::
models;

:::
see

::::::::::::::::::::::::::::::::::::::
Pierini and Ghil (2021, and references therein).470

:
A
::::::::
pullback

:::::::::
attractor

::
of

:
a
:::::::::::
periodically

::::::
forced

::::
FHN

:::::::
model. Introducing a sinusoidal time dependence

γ→ γ(t)=∝
:

sin(t/τf) (25)

into the slow equation (23a) makes the system nonautonomous, as discussed in general terms in Sec
:::
Sect. 3.2, and it periodically

switches the self-oscillatory behavior on and off. We consider here the case in which the
::::::::
variations

::
of

:::
the

:
external forcing
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γ(t;τf) varies slowly with respect to all
::::
occur

:::
on

:
a
::::::
slower

::::
time

:::::
scale

::::
than

::
the

::::::
entire internal dynamics, i.e.,475

τf >>τx >>τy. (26)

::::
Note

:::
that

:::
we

::::
give

:::
up

::::
here

::
on

:::
the

:::::::::
restriction

::
of

::::
strict

::::
time

:::::
scale

:::::::::
separation

:::::::
between

::::
x(t)

:::
and

::::
y(t),

::
as
:::::::::
expressed

::
by

::::
Eq. (24)

:
.

The trajectories plotted in Figs. 10(b
:
c)–(e) represent, in fact,

:::
and

::::::
(f)–(h)

::::::::
represent the solutions of such a periodically forced

FHN model starting at different points in the paston an arbitrary time axis.
::::
The

::::
time

:::::
units

:::
are

:::::::
arbitrary

::::
and

:::
the

::::
two

:::
sets

:::
of

:::::::
solutions

:::
are

:::
for

::::
two

:::::::
different

::::::
forcing

:::::
time

:::::
scales

::
τf. These trajectories illustrate the applicability of the pullback perspective480

suggested by Sec
:::
Sect. 3.2 and Fig. 6 to the periodically forced FHN model. In contrast to the previous examples

:::::::::
illustrative

::::::::
examples

::
of

::::
Sect.

:::
3.2, an analytical solution is not available in this case. However, this small sample of numerically computed

trajectories, together with the phenomenological discussion herein, is quite sufficient for an intuitive understanding of the

system’s pullback behavior.

Most strikingly, the trajectory t1 that starts at −16 000 during a nonoscillatory time interval is immediately synchronized485

to the trajectory t0 that started even earlier, at −20 000. The other two trajectories both start during intervals when internal

oscillations are supported and maintain their individual phase throughout the oscillatory interval. It takes a breakdown of

the limit cycles
::
For

::::::
panels

::::::
(c)–(e)

:::
of

::::
Fig.

:::
10,

:::
the

::::::::
forcing’s

:::::
time

:::::
scale

::
is

:::::
much

::::::
slower

::::
then

:::
the

:::::::
internal

:::::
time

::::::
scales.

::::
The

::::::::
amplitude

::
of

:::
the

::::::
forcing

::::
γ(t)

:::
was

::::::
chosen

::::
such

::::
that

:
it
:::::::::
repeatedly

::::::
crosses

:::
the

::::
two

::::::::
thresholds

:::::::
±
√

1/3
:::
and

::::
thus

:::::::
induces

:
a
::::::::
sequence

::
of

:::::
Hopf

::::::::::
bifurcations

:::
by

::::::::
switching

::::::::
between

:::::::
intervals

:::
of

::::::::::::
self-sustained

:::::::::
oscillation and attraction to a common stable fixed490

pointfor these trajectories to synchronize to the “older” trajectories . Here, synchronization means thatthey can visually
:
.

:::::::
Crossing

::::
such

::
a

:::::::::
bifurcation

::::
point

::::
due

::
to

::::
slow

:::::::
changes

::
in

:::
the

::::::
forcing

::
is

:::::::
referred

::
to

::
as

:
a
::::::::::::::::
bifurcation-induced

:::::::
tipping

::
or

::::::::
B-tipping

:::::::::::::::::::::::::::::::::::::::::::::::
(Ashwin et al., 2012; Ghil, 2019; Ghil and Lucarini, 2020).

:

::::::::
Strikingly,

:::
all

::::::::::
trajectories

::::::::
converge

::
to

::::
one

:::::::
another

::::::
during

:::::::::::::
non-oscillatory

::::
time

::::::::
intervals,

:::::
when

:::::
they

:::
are

:::::::::::::
simultaneously

:::::::
attracted

::
by

:::
the

::::::
single

::::::
existing

:::::
fixed

:::::
point.

::::::
During

:::::::::
oscillatory

::::::::
intervals,

:::::
phase

:::::::::
differences

:::::::
between

:::::::::
individual

:::::::::
trajectories

:::::
may,495

::
in

::::::::
principle,

::::::
persist.

::::
Still,

:::::::::::
convergence

::::::
during

:
a
:::::
single

:::::::::::::
non-oscillatory

::::::
interval

::
is
:::
so

:::::
strong

::::
that,

::::
after

:::
it,

::
the

::::::::::
trajectories

:::
can

:
no

longer be distinguished; numerically
:::::::::::
discriminated

:::::::
visually.

:::::::::::
Numerically, however, the distance between trajectories only tends

to zero but never reaches it.
::
At

:::
the

:::
end

::
of

:::::::::::::
non-oscillatory

::::::::
intervals,

:::
the

:::::::::
trajectories

::::::
reenter

:::
the

:::::::::
oscillatory

::::::
regime

::::::
always

:::::
from

::
the

:::::
same

:::::::
location

::
in

:::
the

::::::::::
(x,y)-plane

::
—

::
to

:::::
within

:::::::::
negligible

::::::::
numerical

::::::::::
differences

::
—

::::
and,

:::::
hence,

::::
very

::::::
nearly

:::::
repeat

::::::::::
themselves.

::::::::::
Qualitatively

::::::::
speaking,

:::
the

:::::
PBA

::
A

:::
—

:::
i.e.,

:::
the

::::::
family

::
of

::::::::
invariant

::::::::
snapshots

:::::::::
{A(t)}t∈R::

of
::::
Eq. (14)

::
—

::
is

::
an

:::::::
infinite

::::::::
repetition500

::
of

:::
the

:::::::
common

::::::::
trajectory

::::::::
structure

:::
that

::::
can

::
be

::::::::
observed

::
in

::::
Figs.

:::::::
10(d,e)

:::::::
between

::::::
−5 000

::::
and

::::::
15 000

::::
time

:::::
units.

::
In

:::
the

::::
case

::
at

::::
hand,

:::::
each

:::::::
snapshot

::::
A(t)

:::::::
consists

::
of

::
a
:::::
single

:::::
point.

:

The model trajectories ’ behavior in the figure can be explained, in greater detail, as follows: whenever |γ(t)|>
√

1/3, all

trajectories are attracted by a single point
:::
For

::::::
panels

::::::
(f)–(h)

::
of

::::
Fig.

:::
10,

:::
the

::::
time

:::::
scale

:::::::::
separation

:::::::
between

::::
the

::::::
forcing

::::
and

::
the

:::::::
internal

::::::::
dynamics

::
is
::::::::
reduced,

:::::::
resulting

::
in
::
a
::::::::::
qualitatively

::::::::
different

:::::::
behavior

:::
of

:::
the

:::::::::::::
nonautonomous

:::::::
system.

:::
The

:::::::::
frequency505

::
of

:::::::::
occurrence

::
of

:::::::::
B-tipping

:::::
points

::
is
:::::

much
:::::::

higher,
:::
and

::::::
hence

:::
the

:::::::::
trajectories

:::
do

:::
not

:::::
even

::::::
execute

::
a
:::
full

:::::::::
oscillation

::::::
during

::
a

:::::
single

::::
time

:::::::
interval

:::
that

:::::::
permits

::::::::::
oscillations.

:::
As

::
a
::::::
result,

:::
two

::::::
stable

:::::::
patterns

::
of

:::::::::
trajectories

::::
are

:::::::
formed.

:::::
These

::::
two

:::::::
patterns
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:::
can

::
be

:::::::
brought

::::
into

::::::::
agreement

:::
by

::::::::
switching

:::
the

::::
sign

::
of

::::
one

::::::
pattern

:::
and

:::::::
shifting

::
it

::
in

::::
time

::
by

:::::
τf/2.

::::
This

::::::::
symmetry

:::::::
reflects

:::
the

::::::::
symmetry

::
of

:::
the

:::::
stable

::::::::
nullcline

::
of

:::
the

:::
fast

::::::
system

::::::::::
component

::
as

::::::
shown

::
in

:::
Fig.

::
9.

:

:::::
Again,

:::
the

:::::
PBA

::
of

:::
this

:::::::::::::
nonautonomous

::::::
system

::::
can

::
be

:::::::
thought

::
of

::
as

::
an

::::::
infinite

:::::::::
repetition

::
of

:::
the

:::::::
common

::::::::
trajectory

::::::::
structure510

:::
that

:::
can

:::
be

:::::::
observed

::
in

:::::
Figs.

::::::
10(g,h)

:::::::
between

::::::
−5 000

::::
and

::
15

::::
000

::::
time

::::
units.

:::
In

::::::
contrast

::
to

:::
the

:::::::::::
slow-forcing

::::
case,

::::
each

::::::::
snapshot

::::
A(t)

::::
now

::
is

::::::::
comprised

::
of

::::
two

:::::
points

:
in the (x,y)-plane; hence — given

:
.
::::
This

:::::::
example

::::::::
illustrates

::::
how

:::
the

:::::
action

:::
of

::
an

:::::::
external

::::
force

:::
on

::
an

:::::::::::
autonomous

::::::
system

:::
can

::::
give

:::
rise

:::
to

::::::::::
considerably

::::::
richer

::::::::
dynamics,

::::::
which

:::::::
crucially

::::::::
depends

::
on

::::
both

:
the system’s

intrinsic dynamics being fast with respect to the forcing, cf.
::::::
internal

:::::::::
variability

:::
and

:::
the

::::::
nature

::
of

:::
the

:::::::
forcing.

:
A
::::::::

random
::::::::
attractor

::
of

::
a
:::::::::::
periodically

::::
and

::::::::::::
stochastically

::::::
forced

:::::
FHN

::::::
model.

:::::
Based

::
on

:::
the

:::::
brief

::::::::::
introduction

::
to

::::::
RDSs

::
in515

::::
Sect.

::::
3.2,

::
we

::::
take

::::
our

::::::::::
investigation

:::
of

:::
the

::::::::::
periodically

::::::
forced

::::
FHN

::::::
model

:::
one

::::
step

::::::
further

::::
and

::::::
include

::
a

::::::
random

::::::::::
component

:::
into

:::
the

:::::::
external

:::::::
forcing,

:::::
acting

:::
on

:::
the

::::::
model’s

::::
fast

:::::::::::
y-component:

:

dx
::

=
1

τx
(y− γ(t))dt,

::::::::::::::

(27a)

dy
::

=
1

τy
[α(y− y3)−x]dt+σdη.

::::::::::::::::::::::::

(27b)

::::
Here,

::
η
:::::::
denotes

:
a
:::::::
Wiener

:::::::
process,

::
as

::
in

:
Eq. (21) — during a single nonoscillatory time interval, all trajectories are strongly520

bundled by the fixed point and can no longer be discriminated visually. This bundling guarantees that the distance between

different trajectories becomes arbitrarily small after only afew nonoscillatory intervals. Furthermore, the system’s fixed point

during the nonoscillatory behavior is fully determined by
:::
i.e.,

::
a
:::::::::
continuous

:::::::::
stochastic

:::::::
process

::::::
whose

::::::::::
increments

::
dη

::::
are

:::::::::::
independently

::::
and

:::::::
normally

::::::::::
distributed,

::::
with

:::::
mean

:::
zero

::::
and

:::
unit

:::::::
variance

:::
—

:::
and

:
γ(t) ; therefore, at the end of such an interval,

the system reenters the oscillatory regime always from the same location in the (x,y)-plane and, therewith, the trajectories very525

nearly repeat themselves. Qualitatively speaking, the PBA A
:::::::
remains

:
a
:::::::
periodic

:::::::
forcing

::
of

:::
the

:::::::::::
x-component

:::::::::::
proportional

::
to

:::::::
sin(τft).

::
In

::::
order

::
to

:::::
study

:::
the

:::::::
random

:::::::
attractor

::
of

:::
this

:::::::
system,

::
we

::::::::
compute

:::::::::
trajectories

::::
with

::::::
random

::::::
initial

::::::::
conditions

::::
over

::
a

::::
time

::::
span

::::
long

::::::
enough

::
to

::::::
reveal

:::
the

:::::::::
asymptotic

::::::::
behavior,

::
as

::::::
shown

::
in

::::
Fig.

:::
11.

::::
For

::::
both

:::
the

::::::
slower

:::
and

:::
the

:::::
faster

:::::::::::
deterministic

:::::::
forcing

— or, according to Eq.
:::
i.e.,

:::::::::
τf = 1 000

:::
and

::::::::
τf = 350,

:::
as

::::::
studied

::
in

:::
the

::::::::
previous

:::::::::
paragraphs

:::
—

::::::
several

:::::::
random

::::::::
attractors

:::
are530

:::::::::::
approximated

:::
for

:::::::::
increasing

:::::
noise

:::::::
variance

::::::
values

::
σ

::
in

::::
Eq. (27b).

::::
For

::::
each

:::::::
attractor

:::::::::::::
approximation,

:::
we

:::
use

:::
20

::::::::::
trajectories

::::
with

::
the

:::::
same

:::::
noise

:::::::::
realization.

:::::
Each

::::::
random

:::::::
attractor

:::::
(red)

:
is
::::::
shown

:::::::
together

::::
with

:::
the

::::::::::::
corresponding

::::
PBA

::
of

:::
the

:::::
FHN

::::::
system

::::::
subject

::
to

:::::
purely

:::::::
periodic

:::::::
forcing

::::
(blue

::::
and

::::::
green).

:::
For

:::
the

:::::::::::
long-periodic

::::::
forcing

::::
with

:::::::::
τf = 1 000, the family of invariant snapshots {A(t)}t∈R — is an infinite repetition of the

common trajectory structure that can be observed in Figs. 10(d, e) between 0 and 10 000.
:::::::::
trajectories

::
in
::::
Fig.

:::::
11(a)

::::::::
converge535

::::
fairly

:::::::
rapidly

::
to

:
a
::::::
single

::::
one,

::
as

::
in

:::
the

::::
case

::::
with

:::
no

:::::
noise

::
in

:::::
Figs.

::::::
10(d,e).

:::::::::::
Furthermore,

:::::
there

::
is

::
a

::::
clear

::::::::
similarity

:::
of

::::::
pattern

:::
and

::::::::
proximity

::
in
:::::
phase

::::::::
between

:::
the

::::
PBA

::
of

:::
the

:::::::::::
deterministic

::::::
system

::::
and

:::
the

::::::
random

::::::::
attractor.

::::::::
However,

:::
the

:::::::::
deviations

::
of

:::
the

::::::
random

:::::::
attractor

:::::
from

:::
the

::::
PBA

:::::::
increase

::
in
:::::

both
::::::
pattern

:::
and

:::::
phase

:::
as

:::
the

::::
noise

::::::::
variance

::::::::
increases.

:::::
These

:::::::::
deviations

:::
are

:::::
most

::::::
striking

::::::
during

:::
the

:::::::::
oscillatory

::::::::
intervals,

:::::::
because

:::
the

:::::
noise

::::
can

::::::
induce

:::::
phase

:::::
shifts

::
in

:::
the

::::::::::
oscillations,

::::::
which

::::
then

::::::
persist

:::
for
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Figure 11.
::::::
Random

:::::::
attractor

::
of

:::
the

:::::::::
periodically

:::
and

::::::::::
stochastically

:::::
forced

::::
FHN

:::::
model

::::::::
governed

::
by

::::
Eqs. (27)

:
.
::
(a)

::::::
Results

::
for

::::
slow

:::::::
periodic

:::::
forcing

::::
with

:::::
period

:::::::::
τf = 1 000.

:::
The

:::
top

::::
graph

:::::
shows

:::
the

::::::
periodic

:::::::
forcing,

:::
with

::::::::::::
non-oscillatory

::::::
intervals

::::::
marked

:::
by

:::
gray

:::::::
shading.

:::
The

::::
next

::::
three

:::::
graphs

::::
show

:::
the

:::
fast

:::::::::::
y-component

::
of

::
the

::::::::::
approximate

::::::
random

::::::::
attractors,

::
as

:::
per

:::
Eq.

:
(27b)

:
;
:::
the

::::
noise

:::::::
variance

::
σ

:::::::
increases

::::
from

:::
top

:
to
:::::::

bottom.
::::
Each

::::::
random

::::::
attractor

:::::
(solid

::::
red)

:
is
:::::::::::

approximated
::
by

:::::::::
integrating

::
20

:::::::::
trajectories

:::
with

:::::::
different

:::::
initial

::::::::
conditions

::::
over

::::
time

:::
and

::::
using

:::
the

::::
same

::::::
Wiener

::::::
process

::
as

::::
their

:::::::
common

::::::::
stochastic

::::::
forcing;

:::
the

:::::::::::
corresponding

::::::::::
deterministic

::::
PBA

::
is

:::::
shown

::
in

::::
blue.

::::
The

::::::
random

:::::::
attractors

:::
and

::
the

::::
PBA

:::
are

::::
very

:::::
similar

:::
for

::::
small

::::
noise

::::::::
variances,

:::
but

:::
they

:::::
differ

::::
more

:::
and

::::
more

::
as
:::
the

::::
noise

:::::::
variance

:::::::
increases.

:::
(b)

::::::
Results

::
for

:::::
faster

::::::
periodic

::::::
forcing

:::
with

:::::
period

::::::::
τf = 350.

:::
The

::::::
forcing

:
is
::::
only

:::::
shown

:::
for

::
the

::::
first

::::
8000

:::
time

:::::
units,

:::
with

::::::::::::
non-oscillatory

::::::
intervals

:::::
again

:::::
shaded

::::
gray.

:::
The

:::
left

:::
part

::
of

::::
panel

:::
(b)

:::::
shows

:
5
::::::::::
approximate

:::::
random

::::::::
attractors,

::::::::
computed

:
as
::
in
:::::
panel

::
(a),

:::
on

:
a
:::::::
common

:::
time

::::
axis.

:::
The

::::::
panel’s

:::
right

::::
part

:::::
shows

::::
their

::::::::::
continuations

::
on

::::::::
individual

::::
time

:::
axis

::
in

::::
order

::
to

::::::
display

:::
the

::::::
moment

::::
when

:::
full

:::::::::::
noise-induced

::::::::::::
synchronization

::
of

:::
the

::::::::
trajectories

::::
takes

:::::
place.

::::
Prior

::
to

:::
this

::::
point,

:::
the

::::::
random

::::::
attractor

::
is
::::
split

:::
into

:::
two

:::::::
branches,

:::::
which

::::::
closely

:::::
follow

::
the

::::
PBA

::
of

:::
the

::::::::::
deterministic

:::::
system

::::
(blue

:::
and

::::::
green).

:::
For

::::::
σ = 0.7,

:::
the

::::::::::::
synchronization

::::
takes

::::
place

::::::
already

:::::
during

:::
the

:::
first

:
8
::::
000

:::
time

:::::
units.

::
the

::::::::
duration

::
of

:::
the

:::::::::
oscillatory

:::::::
interval.

::::::
During

:::::::::::::
non-oscillatory

::::::::
intervals,

:::
the

:::::::
random

:::::::
attractor

::
is

::::
less

:::::::::
susceptible

::
to

:::
the

::::::
noise,540

::::::
because

:::
the

::::::::
resulting

:::::::::::
perturbations

:::::
decay

::
in

:::
the

:::::::
presence

:::
of

:
a
:::::
stable

:::::
fixed

::::
point

::
of

:::
the

::::::::::
underlying

:::::::::::
deterministic

::::::
system.

:
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:::
For

:::
the

::::::::::::
shorter-period

:::::::
forcing

::::
with

::::::::
τf = 350,

:::
the

:::::
PBA

::
of
::::

the
:::::::::::
deterministic

::::::
system

:::::::
features

::::
two

::::::
stable

::::::::
branches,

::::::
which

::::
could

:::
in

::::::::
principle

::::::
persist

::
in

::::
the

:::::::
random

:::::::
attractor.

::::
As

:::
for

:::
the

::::
case

:::
of

::::::::::
τf = 1 000,

:
a
:::::

rapid
:::::::::::

convergence
:::

of
:::
the

::::::::::
trajectories

:::
can

:::
be

::::::::
observed

:::
for

:::
all

:::::
noise

::::::::
variances.

:::::::::
However,

::::
two

:::::::
separate

:::::::
bundles

:::
of

:::::::::
trajectories

:::::::
persist,

:::::
each

:::::::::
associated

::::
with

::::
one

::
of

:::
the

::::
two

:::::::
separate

::::::::
branches

::
of

:::
the

:::::::::::
deterministic

:::::
PBA.

:::::
Only

:::::
after

::::
some

:::::
time

::
do

::::
the

:::
two

:::::::
bundles

::::::
merge

::::
and

:::::::::::
subsequently545

:::::
follow

:::::
either

::::
one

:::
of

:::
the

:::
two

::::::::
branches

:::
of

:::
the

::::
PBA

:::
or

:::
the

:::::
other.

:::::
This

:::::::::::
phenomenon

::
is

:::::
called

::::::::::::
noise-induced

::::::::::::::
synchronization

::::::::::::::::::::::::::::::::::
(e.g., Arnold, 1988; Chekroun et al., 2011)

:
.
::::::
Which

:::
of

:::
the

:::
two

::::
PBA

::::::::
branches

:::
the

::::::
random

:::::::
attractor

:::::::
follows

:::::::
depends

::
on

:::
the

:::::
exact

::::
noise

::::::::::
realization.

::::
The

:::::::
random

:::::::
attractor

::::
may

::::
also

::::::
switch

:::::::::
irregularly

:::::
from

:::
one

::::::
branch

:::
of

:::
the

::::
PBA

:::
to

:::
the

:::::
other

::::
(not

:::::::
shown).

::::::
Already

:::
in

:::
the

:::::
simple

:::::
setup

::::::::
explored

::::
here,

::::
one

::::::
notices

:::
that

:::
the

::::::
higher

:::
the

:::::
noise

:::::::
variance,

:::
the

:::::
faster

:::
the

::::::::::::::
synchronization

::
of

:::
the

:::::::::
trajectories.

::::
This

:::::::::
statement

::::
must

::
be

::::::::::
understood

::::::::::::::
probabilistically:

::
it

::::
may

:::::::
certainly

::::::
happen

:::
for

::::
two

:::::
given

::::
noise

::::::::::
realizations

::::
that550

::
the

:::::::
random

:::::::
attractor

::::
with

:::
the

:::::
higher

:::::
noise

::::
level

:::::
takes

:::::
longer

::
to
:::::::::::
synchronize,

::
as

::
is

:::
the

::::
case

::
for

:::::::
σ = 0.7

:::
and

:::::::
σ = 0.8

::
in

:::
Fig.

::::::
11(b).

:::
The

:::::::::::
investigation

::::::
carried

:::
out

::::::
herein

:::::::
assesses

:
a
::::
very

::::::
special

::::
case

::
of

:::
an

::::
FHN

:::::::
model’s

:::::::
random

:::::::
attractor.

::::::::
Random

::::::::
attractors

::
of

::::::::
FHN-type

::::::
models

:::::
have

::::
been

::::::
studied

::::::::::
intensively

:::::::::::::::::::::::::::::::::
(e.g., Wang, 2009; Yamakou et al., 2019).

:::::
Most

::::::
studies

:::
so

:::
far,

:::::::
however,

:::::
have

::::::::::
concentrated

:::
on

:::
the

::::::::
excitable

::::::
regime

::
of

:::
the

:::::::::::
stochastically

::::::
forced

::::
FHN

:::::::
model,

:::
i.e.,

:::
the

:::::::::::
deterministic

:::::::
model’s

:::::::::
parameters

:::::
were555

::::::
chosen

::
so

::
as

::
to

::::::
exhibit

::
a
:::::
single

:::::
stable

:::::
fixed

::::
point

::
in
:::

the
:::::::

absence
:::
of

:::
the

:::::
noise.

:::
The

:::::
noise

::::::::
variance

:::
was

::::
then

::::::
chosen

::::::::::
sufficiently

::::
high

::
to

:::::
ensure

::::
that

::::::
random

::::::::::
fluctuations

::::
can

::::
push

:::
the

::::::
system

:::
out

::
of

::::::::::
equilibrium

:::
and

:::::
allow

::
it

::
to

::::
take

:
a
:::::
round

:::
trip

:::
on

::::
what

::::::
would

::
be

:::
the

:::::::::::
deterministic

:::::::
model’s

:::::
limit

:::::
cycle,

:::::
given

::::::::
different

:::::::::
parameter

::::::
values.

::::
The

:::::::
situation

:::::::
studied

::::
here

::
is

:::::
rather

::::::::
different,

:::
as

:::::
shown

::::::
across

::::
Figs.

:::::
9–11.

:

An FHN model of the NGRIP record. Readers who are familiar with the NGRIP δ18O record (North Greenland Ice Core560

Project members, 2004) might have realized already the
::::::::
qualitative

:
resemblance between the proxy data and the fast compo-

nent’s trajectory of the periodically forced FHN model in Fig. 10(d). In particular, the prominent sawtooth pattern of the data

is satisfactorily captured by the fast-slow
::::::::
fast–slow dynamics of the model.

Figure 12 shows a trajectory of the FHN model for which the sinusoidal forcing used in Fig. 10 was replaced by a rescaled

time series of atmospheric CO2 concentrations retrieved from Antarctic ice cores (Bereiter et al., 2015):565

γ(t)∝ CO2(t). (28)

Is it remarkable how well this simple forcing brings the oscillatory intervals of the FHN model into agreement with the time

intervals of the record that are dominated by D-O cycles, without any systematic tuning of the model parameters. Clearly, the

CO2-forced FHN model fails to reproduce the exact waiting times between D-O events. However, with these waiting times

being at least in part stochastically determined (Ditlevsen et al., 2007), the purely deterministic FHN model is not meant to570

reproduce the exact pattern of D-O events. Vettoretti et al. (under review) have carried out a detailed study on the use of a

CO2-forced FHN model to simulate D-O variability.

In fact, Rousseau et al. (2022, Fig. 6)
::::::::::::::::::::::::
Rousseau et al. (2022, Fig. 6) describe in detail a somewhat more complex, proxy

record-based picture of the interaction between D-O event-rich episodes, Heinrich (1988)
::::::::::::::
(Heinrich, 1988) events, and longer-
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Figure 12. FHN model fit to the NGRIP δ18O data. (a) Fast component yFHN(t) of an FHN model forced with historical CO2 concentrations

(orange) together with the observed δ18O record (blue) from the NGRIP ice core (Seierstad et al., 2014). (b) Rescaled atmospheric CO2

concentrations from Antarctic ice cores in arbitrary units (au) (Bereiter et al., 2015); the horizontal red lines indicate the upper and lower

bounds, ymin =−
√

1/3 and ymax =
√

1/3, of the free-oscillation regime.

term cooling trends. It is quite possible that a simple model like the one in this section but including explicitly continental ice575

sheets could capture such a detailed picture.

In the present framework, the FHN model’s fast variable y(t) may be interpreted as the intensity of the Atlantic Meridional

Overturning Circulation (AMOC), which switches between on and off states during self-oscillatory behavior; see, for in-

stance, Henry et al. (2016), Ghil (1994, Table 5) and Ghil and Lucarini (2020, Table I). The slower x-variable that drives

the transition between the on and off states of the AMOC may then be taken, for instance, as the waxing and waning580

of northern hemisphere ice sheets (e.g., Ghil et al., 1987)
::::::::::::::::::
(e.g., Ghil et al., 1987), linked in turn to varying ice shelf extent

(e.g., Boers et al., 2018)
::::::::::::::::::::
(e.g., Boers et al., 2018)

::
or

::
as

:::
the

:::::::::
weakening

::::
and

:::::::::::
strengthening

::
of

::::::::
Antarctic

:::::::
bottom

::::
water

::::::::::
production

:::::::::::::::::::::::::
(Vettoretti et al., under review).

The interaction between the fast variable and the slow one happens here in the presence of a climate forcing represented by

CO2 concentration. On the much slower time scales of Quaternary glaciations, an interplay between the CO2 concentration585

and mean global temperature might also occur, as we shall see in the next section.

4 AN NDS FOR THE QUATERNARY GLACIATIONS

Apparently, it is Crucifix (2013) who first applied pullback ideas to the problems of Quaternary glaciations, independently of

earlier work on the topic in the climate literature (Ghil et al., 2008; Chekroun et al., 2011; Bódai and Tél, 2012). His work
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The concepts and tools summarized in Sec. 3.2 could shed further light on several problems not quite yet
solved concerning Quaternary glaciations and paleoclimate in general. A short and highly incomplete
list of the interesting problems that might gain by such a treatment is the following:

1. What are the causes of the MPT and what is the part of intrinsic climate variability and that of
the orbital forcing therein? See discussion in Sec. 2.2.

2. What causes the large continuous backgound of the observed spectrum: is it deterministic chaos,
stochastic forcing or both? See discussion of Fig. 4.

3. Particularly complex problems are associated with Heinrich and D-O events and their modulation
over longer time intervals by orbital forcing and other slow-acting changes in atmospheric composi-
tion, geology, ocean circulation, and so on. See, for instance, Rousseau et al. (2021, and references
therein).

4. It is well established by now that a snowball mode occurred several times in Earth’s geologic
history, but we still know fairly little about how the planet got into, and especially out of, such a
mode (e.g., Pierrehumbert,2004).

1
Box 2. Some open questions concerning Quaternary glaciations.

concentrated mainly on the connection between the pacemaking role of the orbital forcing and the observed irregularity of the590

glacial terminations during the late Pleistocene, cf. Broecker and Van Donk (1970) and Ghil and Childress (1987, Fig. 11.2).

Based on the considerable success of NDS and RDS applications to other climate problems — such as ENSO (Ghil et al.,

2008; Ghil and Zaliapin, 2015; Chekroun et al., 2018; Marangio et al., 2019), the wind-driven ocean circulation (Pierini et al.,

2016, 2018) or the evaluation of the ensemble simulations routinely performed in support of the Assessment Reports of the

Intergovernmental Panel on Climate Change (Drótos et al., 2015; Vissio et al., 2020) — it would appear worthwhile to proceed595

further along these lines.

:::
Box

::
2
::::::::::
summarizes

::::
open

::::::::
questions

::::
with

:::::::
respect

::
to

::::::::::
Quarternary

:::::::::
glaciations

::::::
whose

::::::::::
investigation

::::::
should

::
be

:::::
aided

:::
by

::::
NDS

::::
and

::::
RDS

::::::
theory. Of course, each of these problems requires one or more distinct climate models, as well as very careful modeling

of the kinds of time-dependent changes in forcing and parameters that are most enlightening, as well as most relevant and

plausible. A good way would be to start testing ideas with relatively simple models and pursue the investigation systematically600

across a hierarchy of models — through intermediate ones and on to the most detailed ones — in order to further increase

understanding of the climate system and of its predictability on the various paleoclimatic time scales mentioned in the list

above.

Such an approach can usefully complement the more common one of merely pushing onwards to higher and higher model

resolution in order to achieve ever more detailed simulations of the system’s behavior for a limited set of semi-empirical605

parameter values. Ghil (2001) and Held (2005), among others, have emphasized the need to pursue such a model hierar-

chy, as originally proposed by Schneider and Dickinson (1974)
::::::::::::::::::::::::::
Schneider and Dickinson (1974), in order to balance the need
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Figure 13. Glacial-interglacial cycles simulated by the modified Daruka and Ditlevsen model of Eqs. (29, 31): (a) June 21 insolation F (t)

at 65◦N, normalized to have mean zero and unit standard deviation over the last 1 000 kyr. (b) Slowly changing parameters α(t) and β(t)

introduced to give rise to the MPT. (c) Simulated glacial-interglacial cycles δ18Omodel (red) in comparison with the benthic δ18O (blue).

to broaden the number of plausible hypotheses vs the need for confronting them with spatio-temporal details derived from

observations.

In this section, we illustrate how the PBA concept can help shed more light upon the dynamics of ice age models. For this610

purpose, we apply the Daruka and Ditlevsen (2016) model of glacial-interglacial cycleswith slight modifications. We show first

that this model approximates rather well the glacial cycles inferred from
:::
As

::::::
pointed

:::
out

::
in

::::
Sect.

:::
3.1

::::
and

::::::::
elsewhere

::
in

:::
this

::::::
paper,

::::
there

::
is

:
a
:::::
long

::::::
history

::
of

::::::::
modeling

:::
the

::::::
climate

:::
of

:::
the

:::::::::
Quaternary

:::
by

::::::
means

::
of

:::::::::
conceptual

:::::::
models,

:::
and

:::::
many

::::::::::::::
nonautonomous

::::::
models

::::
have

::::
been

::::::::
proposed

::
to

:::::::
simulate

::::::::::::::::
glacial-interglacial

:::::
cycles

::
of

:::
the

:::
last

::::
400

:::
kyr

::
to

:::
2.6

::::
Myr,

:::::
based

::
on

:::
the

::::::
orbital

:::::::
forcing.

::
In

::::::::
Appendix

::
A,

:::
we

:::::::
provide

:
a
::::
long

:::
but

:::
still

:::
not

:::::::::
exhaustive

:::
list

::
of

:::::::::::
glacial-cycle

::::::
models

:::
and

::::::
specify

:::::
some

::
of

::::
their

:::
key

:::::::::::::
characteristics,615

::::::::
including

::
the

::::::
degree

::
of
:::::
their

::::::
success

::
at

:::::::::
simulating

:::
the

:::::
MPT;

:::
see

::::
also

:::
the

:::::::::
discussion

::
in

::::
Sect.

::::
2.2.

::::::
Among

:::::
these

::::::::::
glacial-cycle

:::::::
models,

:::
the

:::::
model

:::
of

:::::::::::::::::::::::::::::::::::::
Daruka and Ditlevsen (2016, DD16 hereafter)

::::::
belongs

:::
to

::
the

:::::
more

:::::::
abstract

::::
ones,

:::
as

:
it
::

is
::::

not
::::::
derived

:::::
from

:::::::
detailed

:::::::
physical

:::::::::::::
considerations.

:::::
Still,

::
its

:::::::
concise

:::::
form,

:::::::::
interesting

::::::::
nonlinear

:::::::::
dynamics,

::::
and

:::::
ability

::
to
::::::::

simulate
::::::
glacial

::::::
cycles,

::
as
:::::

well
::
as

:::
the

:::::
MPT,

:::::
make

::::
the

:::::
DD16

::::::
model

::::
well

:::::
suited

::::
for

:::
our

:::::::::
illustrative

::::::::
purposes.

::::
We

:::
first

:::::::
slightly

::::::
modify

::::
this

:::::
model

:::::
from

::
its

:::::::
original

:::::::::::
formulation.

:::
We

:::
do

::
so

::::::
mainly

::
in

:::::
order

:::
for

:::
the

::::::
model

::
to

:::::
better

:::::::::::
approximate620
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the benthic δ18O proxy reconstruction of Lisiecki and Raymo (2005) and then compute the model’s PBA
::::::::::::::::
glacial–interglacial

:::::
cycles

::::
due

::
to

::::::::::::::::::::::
Lisiecki and Raymo (2005)

:
,
:::::::::
especially

:::
the

::::::
timing

::
of

::::::
glacial

:::::::::::
terminations;

::::::::
compare

:::
our

::::
Fig.

:::
13

::::
with

::::
Fig.

:
1
:::

in

:::::
DD16.

::::::::::
Thereafter,

::
we

::::::::
compute

::
the

:::::
PBAs

::
of

:::
the

::::::::
modified

:::::
DD16

::::::
model,

::::::::
M-DD16

:::::::
hereafter,

:
to investigate the dynamical stability

of its glacial cycles
:::
over

:::
the

::::
past

:::
2.6

::::
Myr.

The
:::
Our model’s variables

:
,
::::::::
following

::::::
DD16, are a global temperature anomaly y that is proportional to minus the global ice625

volume and an effective climatic memory term x that represents the internal degrees of freedom. In the deterministic case, the

governing equations
:
of

:::
the

::::::::
M-DD16

::::::
model are given by

τ ẋ= λy, (29a)

τ ẏ =−α(t) +x−x3−β(t)F (t)x−κy; (29b)

here t is the time in
:
kyr and F (t) is the normalized June 21 insolation at 65◦N, based on the calculations of Laskar et al. (2004),630

as shown in Fig. 13(a). The constant parameter values are chosen as κ= 1, τ = 100, and λ= 10.
::::
Note

:::
that

:::
—

::::
with

:::
this

::::::
choice

::
of

:
λ
::::
and

:::::
unlike

::
in

:::
the

:::::
FHN

:::::
model

::
of

:::::
D–O

:::::::::
oscillations

::
in
:::::
Sect.

:::
3.3

::
—

::
x
::
is

:::
the

:::
fast

:::::::
variable

:::
and

::
y
::
is

:::
the

::::
slow

::::
one.

The equations generalize a first-order ODE system that is equivalent to the Duffing form of the nonlinear-spring equation discussed

in Sec. 2.2. The use of such simple forms of first-order systems in paleoclimate models was initiated by Saltzman et al. (1981)

.We deviate from Daruka and Ditlevsen (2016), though, by introducing
::
In

:::
the

:::::::
original

:::::
DD16

::::::
model,

::::::::
MPT-like

::::::::
behavior

::::
was635

:::::::
produced

:::
by

:
a
:::::
slow

:::::::
sigmoid

:::::::
variation

::
of

:::
the

:::::::::
parameter

:
κ
::
in
::::
Eq. (29b)

:
,

κ(t) = κ1 + 0.5(κ0−κ1)

(
1.0− tanh

(
t− t0
ts

))
.

:::::::::::::::::::::::::::::::::::::::::

(30)

::
In

:::
our

::::::::
M-DD16

::::::
model,

:::
we

::::::::
introduce

:::::::
instead a slow change in the parameters α(t) and β(t)

::::
α(t)

:::
and

::::
β(t)

:
of Eq. (29b), as

follows:

α(t) = 2.1− 1.4tanh((t+ 1100)/500) , (31a)640

β(t) = 2.5 + 1.4tanh((t+ 1100)/500) . (31b)

The functions α(t) and β(t)
::::
α(t)

:::
and

::::
β(t)

:
so defined are plotted in Fig. 13(b) and they induce, as we shall see forthwith,

a
:::::
change

::
in
:

model behavior that
:::
not

::::
only

:
resembles the MPT

:::
but

::::
also

:::::
shows

:::::::
correct

::::::
timings

:::
for

:::::
most

::
of

::::
the

::::::::::
terminations.

Moreover, to simulate δ18Omodel, we add a slow linear trend to the slow variable y to mimic the overall cooling at time scales of

millions of years, thus: δ18Omodel = 4.3−1.4y+0.0003t.
::::::::
Equations (29)

::::::::
generalize

::
a
::::::::
first-order

:::::
ODE

::::::
system

:::
that

::
is

:::::::::
equivalent645

::
to

:::
the

::::::
Duffing

:::::
form

::
of

:::
the

::::::::::::::
nonlinear-spring

::::::::
equation (7)

::::::::
discussed

::
in

:::::
Sect.

:::
2.2.

::::
The

:::
use

::
of
:::::

such
:::::::
classical

:::::::::
first-order

:::::::
systems

::
—

::::
like

::
the

:::::::
Duffing

::::
and

:::
Van

:::
der

::::
Pol

::::
ones

::
—

::
in

:::::::::::
paleoclimate

::::::
models

::::
was

:::::::
initiated

:::
by

::::::::::::::::::
Saltzman et al. (1981);

:::
see

::::
also

:::::
Sect.

:::
2.2

:::::
herein.

:

Figure 13(c) shows a time series of simulated glacial-interglacial
:::::::::::::::
glacial–interglacial

:
changes δ18Omodel (red) in comparison

with the benthic δ18O (blue) of Lisiecki and Raymo (2005). The model’s initial condition is taken to be x=−1 and y = 0 at650

t=−10 000 kyr
:::::::::
t= 10 000

:::
kyr

::::
b2k and, since the insolation forcing in panel (a) is prescribed as a time series with 100-yr
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sampling, we solved Eq. (29) using Heun’s predictor-corrector method (Isaacson and Keller, 2012, Ch. 8) with a step size of

100 yr.
:
A
:::::
large

::::
spin

::
up

::::
time

::
is

::::::
chosen

::
to

::::::::
guarantee

:::
that

::::::::
transient

::::::
effects

:::::
caused

:::
by

:::
the

:::::
initial

:::::::::
conditions

::::
have

:::::
abated

:::
by

:::
the

::::
year

:::
2.6

:::
Ma

::::
b2k,

:::::
which

::
is

:::
the

::::::
starting

:::::
point

:::
for

::
the

:::::
time

::::::
interval

:::::
under

:::::
study.

:
The correlation between the model simulation and the

proxy record is 0.75 for the time interval from −2 600
:::::
2 600 kyr to 0 kyr b2k, and 0.72 over the interval from −1 000

:::::
1 000 kyr655

to 0 kyr b2k. Varying the parameters slowly across the time interval of interest, as shown in Fig. 13(b), leads to a change in

the frequency — from a dominant 41-kyr periodicity prior to the MPT
:
,
::
at

:::::::
roughly

:::
1.2

:::
Ma

::::
kyr

::::
b2k, to a dominant 100-kyr

periodicity after the MPT
:
,
::
at

:::::::
roughly

:::
800

:::
kyr

::::
b2k — and a substantial increase in the amplitude.
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Figure 14. PBA of the modified Daruka and Ditlevsen (2016)
:::::::
M-DD16 model given

:::::::
governed by Eqs. (29), approximated by forty trajecto-

ries starting from random initial conditions in (x,y) ∈ [−2,2]× [−2,2] at t=−10 000 kyr. (a) The behavior
:::
PBA

:
corresponding to Fig. 13,

with the slowly changing parameters α(t) and β(t) given by Eqs. (31); and (b) the behavior
:::
PBA

:
for α(t) and β(t) kept constant at the

post-MPT values of α= 0.7 and β = 3.9.
::
In

::::
panel

:::
(b),

:::
the

::::
PBA

:
is
:::::
shown

::::
over

:
a
::::::
shorter

:::
time

::::::
interval

::
of

:::
the

:::
last

:
1
:::
000

:::
kyr

::
so

:::
that

:::
the

::::::
detailed

::::::
structure

::
is
::::
more

::::::
clearly

:::::
visible.

:::::::
Without

::::::
changes

::
in

::
α

:::
and

:
β
::
in
::::
time,

:::
the

::::::
overall

::::::
structure

::
of
:::
the

::::
PBA

::
is

:::::
similar

:::::
before

:::
and

::::
after

::
1

:::
000

:::
kyr

:::
b2k.

We next approximate the PBA by taking 40 random initial conditions at 10 Myr
::
Ma b2k and integrating the model of

Eqs. (29, 31) up to the present time. The PBA in this case is simply a moving fixed point, as plotted in Fig. 14(a), since the660
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model dynamics is predominantly stable in the long time interval prior to the MPTthat is situated around 1.2–0.8 Myr b2k. It

would appear, therewith, that the orbital forcing simply moves this fixed point around and fully determines Earth’s climate.
::::
This

:::::
agrees

::::
with

:::
the

::::
clear

:::::::::
statement

::
in

:::::
DD16

:::
that

:::::
“First

::::
and

::::::::
foremost,

:::
our

:::::
model

:::::
does

:::
not

::::
have

:::
any

:::::::
internal

::::::
periods

::
of

::::::::::
oscillation.”

:

However, when keeping the parameters α and β fixed at their post-MPT values α= 0.7 and β = 3.9 throughout the simu-

lation interval and repeating the computation of the PBA, a more complex picture arises. In the latter case, Fig. 14(b) shows a665

bunching of trajectories into separate
:::::
fuzzy clusters, subject to the quasi-periodic orbital forcing of Fig. 13(a).

There are two interesting inferences to be drawn. First, post-MPT dynamics is much more irregular and unstable than the

stable, quasi-periodic
::::
more

:::::
stable

:
dynamics prior to the MPT. This result is consistent with Mitsui et al. (2015), who showed

the
:::
The

:
robustness of the 40-kyr glacial cycles and instability of 100-kyr glacial cycles against perturbations in terms of

mode-locking theory and strange nonchaotic attractors
:
is
::
in

::::
line

::::
with

::
the

::::::::::
conclusions

::
of

:::::::
previous

::::::
studies

::::::::::::::::::::::::::::::::
(Mitsui et al., 2015; Quinn et al., 2017)670

. It also appears to be consistent with the Willeit et al. (2019)
::::::::::::::::
Willeit et al. (2019) simulation of the last 3 Myr

::
of

:::::
Earth

::::::
history

that used an Earth System Model of Intermediate Complexity (CLIMBER-2) that included ice sheets and a carbon cycle, along

with atmosphere-ocean variables
::::::::::::::
atmosphere–ocean

:::::::::
dynamics. In their work, trajectories starting from different initial states

tended to converge to a single attracting trajectory in the Early Pleistocene, while several distinct trajectories survived in the

Late Pleistocene after the MPT.675

Second, the separate bundles or “ropes” of trajectories in Fig. 14(b) seem to point to the type of generalized synchronization

discussed in the paleoclimate context by De Saedeleer et al. (2013)
:::::::::::::::::::::
De Saedeleer et al. (2013) and in the context of interannual

and interdecadal climate variability by Pierini and Ghil (2021) and Vannitsem et al. (2021)
:::::::::::::::::::
Vannitsem et al. (2021). Generalized

synchronization in the strict sense of the existence of a map between a time-dependent control and the system’s asymptotic

behavior has only been shown to hold for nonchaotic systems. Work is under way, though, to further generalize this concept to680

chaotic systems as well (e.g., Rulkov et al., 1995; Zhang et al., 2007).

5 Conclusions

In this review-and-research paper, we have covered in Sec
::::
Sect. 1 the contributions of the 1970s to the rebirth of the Mi-

lankovitch (1920) theory of the ice ages and in Sec
::::
Sect. 2 the 1980s advances in modeling the Quaternary climate’s intrinsic

variability. In Sec
:::
Sect. 3, we presented first results on the interaction between

:::::
effects

:::
of

:
the orbital insolation forcing of685

Sec
:::
Sect. 1 and

::
on the intrinsic variability of Sec

::::
Sect. 2, and proceeded to introduce the novel concepts and tools of the the-

ory of nonautonomous and random dynamical systems (NDSs and RDSs) that can help to better model and understand this

interaction
::::
these

:::::
effects. The section concluded by the formulation and study of a FitzHugh-Nagumo (FHN)-type model of re-

current Dansgaard-Oeschger (D-O) events, in which historical CO2 concentrations induced episodes of D-O events alternating

with episodes of their absence, in excellent qualitative agreement with NGRIP δ18O data; see again Fig. 12.690

Finally, in Sec
::::
Sect. 4, we listed a number of open issues on Quaternary and longer paleoclimate time scales, and proposed to

address them by using the tools of Sec
::::
Sect. 3.2. This approach was illustrated by a Duffing-type model of Daruka and Ditlevsen
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(2016), modified to include slow changes in the parameters that mimic such changes in the Earth system over the duration of

the Quaternary period.

When the parameters are gradually changed in time so as to exhibit the mid-Pleistocene transition (MPT), the PBA is simply695

a moving fixed point. However, when the parameters are fixed at their post-MPT values, the PBA so obtained is chaotic

and exhibits clusters of trajectories that we termed ropes. This suggests (a) that the stability of the system is gradually lost

while crossing the MPT; and (b) that Late Pleistocene climate, albeit chaotic, may well be subject to a kind of generalized

synchronization (cf. De Saedeleer et al., 2013; Pierini and Ghil, 2021; Vannitsem et al., 2021) with the orbital forcing that

is illustrated in Fig. 5 of Sec
::::
Sect. 3.1 herein. In the specific situation at hand, separate ropes may be associated with various700

combination tones of the forcing frequencies.

In a broader perspective — and leaving aside various finer points of the MPT conversation outlined in Sec
:::
Sect. 2.2 —

one can see the work that was reviewed and extended in this paper as a confirmation of the fine intuition of Emiliani and

Geiss (1959), six decades ago, as summarized in and further expanded by Ghil and Childress (1987, Sec. 12, pp. 446-447)

:::::::::::::::::::::::::::::::::::::::
Ghil and Childress (1987, Sect. 12, pp. 446-447):705

“Hence the following scenario (compare Emiliani and Geiss, 1959) suggests itself for the successive climatic transitions from

Pliocene to Pleistocene and from Early to Late Pleistocene: As land masses moved towards more northerly positions, small

ice caps formed on mountain chains and at high latitudes. These ice caps, due to their feedback on albedo, made climate more

sensitive to insolation variations than it was in the total absence of ice. The response of the climatic system to such variations

during the Early Pleistocene (2 000 [kyr]–1 000 [kyr] ago) was still relatively weak, of a fraction of a degree centigrade in710

global temperature perhaps, in agreement with the quasi-equilibrium results of Section
::::
Sect. 10.2.

As ice caps passed, about 1 000 [kyr] ago, a certain critical size, the unforced system jumped from its stable equilib-

rium to its stable limit-cycle state (Figures 12.5 and 12.9), increasing dramatically the climate’s total variability, to a few

degrees centigrade in global temperature. Furthermore, resonant response became possible (see also Oerlemans (1984) [in

Berger et al. (1984)
:::::::::::::::
Berger et al. (1984)] and Sergin (1979)

:::::::::::
Sergin (1979)), enhancing abruptly the amplitude of the peak at715

100 kyr
:::
kyr, among others.”

The take-home message is that slow and fast processes, both intrinsic and extrinsic, interact on all paleoclimatic time scales

and that we are mastering the art of modeling such interactions.

Code and data availability. All code used to generate the figures presented in this article is available from the authors upon request. NGRIP

δ18O and the historical CO2 data shown in Fig. 12 are available from https://www.iceandclimate.nbi.ku.dk/data/ (last accessed: 2. Septem-720

ber 2021) and as a supplement to Seierstad et al. (2014), respectively. The benthic δ18O data shown in Fig. 13 have been obtained from

https://lorraine-lisiecki.com/LR04stack.txt (last accessed: 2. September 2021).
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Video supplement. The video supplement to this article illustrates the pullback attractor (PBA) associated with the simple system governed

by Eqs. (16) and (17). It shows a heat map of the phase plane, derived from an increasing number of trajectories with common initial

time ti =−200 and final time tf = 200. The initial radius and phase of each trajectory are randomly sampled from Gaussian distributions725

centered at µρ = 20 and µφ = 0 with standard deviations of σρ = 5 and σφ = 10, respectively. Over the course of the video, 100 trajectories

are continuously added to the heat map and the annular disc

D = {(ρ,φ) : ρ ∈ [µ−αβ,µ+αβ] and φ ∈ [0,2π)} (32)

fills up. The heat map in Fig. 6(b) is a snapshot from this video at time t= 0.2.

Appendix A:
:::::::::
Low-order

::::::::::::::::
dynamical-system

::::::
models

:::
of

::::::
glacial

:::::
cycles730

:::
The

:::::::::
dynamical

::::::::
modeling

:::
of

::::::
glacial

::::::
cycles

:::::
dates

::::
back

::
to
::::

the
::::::
1970s.

::::::::::::
Calder (1974)

:::::::
proposed

::
a
::::::
model

::
of

::::::
global

:::
ice

:::::::
volume

::::::
changes

::::
that

::::
had

:::::::
different

::::::::::
sensitivities

:::
to

:::
the

::::::::
insolation

:::::
when

:::
ice

::::::
sheets

:::::
were

::::::
waxing

::::
and

:::::::
waning,

:::::::::::
respectively.

:::
His

::::::
model

:::
can

::
be

:::::::
written

::
as

::
an

:::::
NDS,

:::::::::
according

::
to

:::::::::::::
Paillard (2001).

::::::::::::
Subsequently,

:::::::::
conceptual

:::::::::
dynamical

::::::
models

:::::
were

::::::
further

:::::::::
developed

::::::::::::::::::::::::::::::::::::
(e.g., Imbrie and Imbrie, 1980; Berger, 1999)

:
.
:::::
Some

::
of

:::
the

:::::
more

::::::
recent

::::::
models

::::::::
simulate

:::
the

:::::
proxy

:::::::
records

::
of

::::::
glacial

::::::
cycles

:::::::::
remarkably

::::
well

::::::::::::::::::::::::::::::::::::::::::::::::::::
(Paillard, 1998; Imbrie et al., 2011; Parrenin and Paillard, 2012).

:
735

::::::
Shortly

::::
after

::::::::::::
Calder (1974)

::::::::
presented

:::
his

:::::
work,

:::::::::::::::
Weertman (1976)

:::::::
proposed

::
a
::::::
simple

:::::::
ice-sheet

::::::
model

:::::
based

::
on

:::
the

::::
flow

::::
law

::
of

:
a
::::::::
perfectly

:::::
plastic

:::::
solid.

:::::
Next,

:::::::::
researchers

::::::::
extended

:::
this

::::::
simple

:::
ice

::::
sheet

::::::
model

::
by

::::::::
coupling

:
it
::::
with

:::
an

::::::::::::
energy-balance

::::::
model

:::::::::::::::::
(Källén et al., 1979)

::
and

::::::
further

::::
with

:::
the

:::::::
isostatic

:::::::
response

::
of

:::
the

:::::::::
underlying

:::::::
bedrock

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Oerlemans, 1980; Ghil and Le Treut, 1981; Le Treut and Ghil, 1983; Pollard, 1983)

:
.
::::::::::::::::
Källén et al. (1979)

:::::
found

:::::::::::
self-sustained

:::::::::
oscillations

::
in
::::
their

::::::
simple

:::::::
coupled

:::
ice

::::::::::
sheet–energy

:::::::
balance

::::::
model.

:::::::::::::::::::::
Le Treut and Ghil (1983)

::::::
showed

::::
that

:::
the

::::::::
dominant

:::::::
100-kyr

:::::::::
periodicity

:::
of

::::::
glacial

:::::
cycles

::
is
:::::::::

generated
:::
—

::
in

::::
their

::::::
simple

::::::::
oscillator

::::::::
coupling

:::
ice

:::::
sheet740

::::::
volume

::::
with

:::
the

::::::::
bedrock’s

:::::::
isostatic

:::::::
rebound,

:::
on

:::
the

:::
one

:::::
hand,

:::
and

::::
with

:::
the

:::::::::
atmosphere

::::
and

::::::
ocean’s

::::::
energy

:::::::
balance,

::
on

:::
the

:::::
other

::
—

:::
via

::::::::
nonlinear

:::::::::
resonance

::::
with

:::
the

::::::::::::
multi-periodic

::::::
orbital

:::::::
forcing.

:::::
More

:::::::
recently,

:::::::::::::::::::
Verbitsky et al. (2018)

::::::::
developed

::
a
::::::
simple

:::::::
physical

:::::
model

:::::::
through

::
a

::::::
scaling

::::::::
argument

:::
that

::::::::
respects

:::
the

:::::::::
underlying

:::::::
physics.

:::::::
Another

::::::
branch

::
of

::::::
simple

:::::::
models

::::::::
explicitly

:::::::
includes

::
the

::::::
carbon

:::::
cycle

::
as

::
an

:::::::
essential

:::::::::
ingredient

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Saltzman and Maasch, 1990; Paillard and Parrenin, 2004; Hogg, 2008; Toggweiler, 2008; Omta et al., 2016; Talento and Ganopolski, 2021)

:
.745

:
A
::::::

deeper
::::::::::::

understanding
:::

of
::::::::
glaciation

::::::
cycles

::::::
cannot

:::
be

:::::::
obtained

:::::::
without

::::::::::::
process-based

::::::
models

::::
that

:::::
focus

:::
on

:::
the

:::::::
detailed

::::::
physics

:::
and

:::::::::::::
biogeochemical

::::::::::
phenomena

:::::::
involved

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Berger et al., 1999; Ganopolski and Calov, 2011; Abe-Ouchi et al., 2013; Ganopolski and Brovkin, 2017; Willeit et al., 2019)

:
.
::::
Still,

::::::
simple

::::::::
dynamical

:::::::
models

:::
like

:::
the

::::
ones

:::::::::
mentioned

::::::
above,

::
as

::::
well

::
as

::::::
models

:::::
based

::
on

:::::
more

:::::::::::
mathematical

:::::::::::::
considerations,

::
are

::::::
useful,

::::
too,

:::
for

::::::::::::
understanding

:::
the

:::::::
climate

:::::::
system’s

::::::::
behavior

:::
and

:::::::
changes

:::::::
therein,

:::::
since

:::::::
complex

:::::::
systems

::::
can

:::::::::
sometimes

::::::
exhibit

::::::
familiar

:::::::::
dynamics,

::::::::
regardless

:::
of

:::
the

:::::
details

:::::::::::::::::::::::::::::::::::
(Nicolis and Nicolis, 2012; Crucifix, 2011)

:
.
::
As

:::::
Henri

::::::::
Poincaré

::::::
pointed

::::
out,750

:::::::::::
“mathematics

::
is

:::
the

::
art

:::
of

:::::
giving

:::
the

:::::
same

::::
name

:::
to

:::::::
different

:::::::
things.”

:::
For

::::::::
example,

:::::::
coupled

::::::::
nonlinear

:::::::::
oscillators

:::::::::
frequently

:::::::
exhibit

:::::::::::::
synchronization

::::
with

:::::::
simple

::::::::
frequency

::::::
ratios,

:::::
either

:::::
with

::::
each

::::
other

:::::::::::::::::::
(Pikovsky et al., 2001)

::
or

::::
with

:::
the

::::::
forcing

::::::::::::::::::::::
(Ghil and Childress, 1987).

:::::
Thus,

::::::::::::
mathematical

::::::
models

:::
that

::::::
ignore

:::::
many

:::::::
physical

:::::
details

::::
may

::::
also

::::
help

::
us

:::::::
elucidate

::::::::
emergent

::::::::
properties

::
in
::::::::::::
paleoclimatic

::::::::
dynamics

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Tziperman et al., 2006; Crucifix, 2011, 2012; De Saedeleer et al., 2013; Mitsui et al., 2015; Ashwin and Ditlevsen, 2015; Daruka and Ditlevsen, 2016)
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:::::
Author(s)

::::
(year)

::::
Succint

:::::::
description

::::::
Dynamical

::::::
properties

:
Is
::::

the
:::::::::::::

Middle-Pleistocene

::::::
Transition

::::::
(MPT)-like

::::::
behavior

::::::
generated?

::::::
Additional

::::::
comments

Low-order dynamical systems models of glacial cycles

::::::::
Calder (1974)

::::
Model

:
of
::
the

::::
global

::
ice

:::::
volume

::
with

::::::
different

::::::::
sensitivities

::
to

::
the

::::::
insolation

:::::
during

:::::
growth

::
and

::::
retreat,

::::::::
respectively.

:::::::
Nonchaotic.

::
No

:::::::::
self-sustained

::::::
oscillation

::
in

::
the

::::::
absence

::
of

::::
forcing

::
Not

:::::::
specifically

::::::
addressed

::
His

::::
model

:::
can

::
be

:::::
written

::
as

:
a
::::::::::
non-autonomous

:::::::
dynamical

::::
system

::::
(NDS)

:::::::::
(Paillard, 2001)

::::::::::
Weertman (1976)

::::::
Simplified

:::
ice

::::
sheet

:::::
model

:::
based

::
on
:::

the
:::

flow
:::

law
::

of
::

a

:::::
perfectly

::::
plastic

:::
solid

:::::::
Nonchaotic.

::
No

:::::::::
self-sustained

::::::
oscillation

::
in

::
the

::::::
absence

::
of

::::
forcing

::
Not

:::::::
specifically

::::::
addressed

Källén et al. (1979)

Ghil and Le Treut (1981)

Le Treut and Ghil (1983)

Ghil (1994)

::
Ice

::::::::::::::::
sheet–bedrock–temperature

::::
coupled

:::::::
oscillator;

::
see

::
the

:::
text

::
for

::::
details

::::
Chaotic

:::
in

::
the

::::::
presence

:::
of

::::
orbital

:::::
forcing

:::::::::
(Ghil, 1994)

.
:::::::

Exhibits
:::::::::::

self-sustained

::::::
oscillations

::::
with

:::
a
:::::

period

:
of
:::::
≈10

::::
kyr;

:::
the

:::::
basic

::::::
mechanism

:::::
for

:::::::
getting

::::::
∼100-kyr

::::
cycle

:
is
:::::::

nonlinear

::::::
resonance

::
at
::

a
::::::::

difference

::
tone

::::::
between

::
the

:::::
19-kyr

:::
and

::::
23-kyr

::::::::
precession

::::::
cycles

::::::::::::::
(Le Treut and Ghil, 1983)

:
;
:::

see

:::
Sect.

::
2.1

::::
herein.

::
Not

::::::
explicitly.

::
It
:::

can
:::::
exhibit,

:::::
however,

::
the

:::
MPT

::
in
::::::
principle,

:::
since

:::::
41-kyr

:::::::
oscillations

:::
as

::
well

:::
as
:::::::

dominant
::::::

100-kyr

::::::
oscillations

:::
can

::
be

:::::::
generated,

::::::
depending

:::
on

:::
the

::::::
model’s

::::::
parameter

::::
values.

:::::::::::
Källén et al. (1979)

:
is
::::::

an

::
ice

::::::::::::::::
sheet–temperature

::::
coupled

::::::::::::::
oscillator.

::::::::::::::
Ghil and Le Treut (1981)

::::::
introduced

:::
the

:::::
bedrock

::::
and

::::::::::::::
Le Treut and Ghil (1983)

:::
added

::
the

::::
orbital

:::::
forcing.

::::::::::::::
Imbrie and Imbrie (1980)

:::::::::
Piecewise-linear

:::::
model

::::
with

::
two

:::::
different

:::
time

::::
scales

::
for

::
ice

:::
sheet

::::
waxing

:::
and

:::::
wanning

:::::::
Nonchaotic.

::
No

:::::::::
self-sustained

::::::
oscillation

::
in

::
the

::::::
absence

::
of

::::
forcing

::
Not

:::::::
specifically

::::::
addressed

::::
400-kyr

::::::::
periodicity

::
is

::::
more

:::::
dominant

:::::
than

::::::::
100-kyr

::::::
periodicity.

Saltzman and Maasch (1988)

Saltzman and Maasch (1990)

Maasch and Saltzman (1990)

:::::
Coupled

::::::
oscillator

::::
based

:::
on

:::::::::
ice–CO2–ocean

:::::::::
temperature

::
(or

:::::::
NADW)

:::::::::
coupling.

:::::::
Nonlinearlity

::
is
::::

only
::

in
:::

the

:::
CO2 :::::::

component.

:::::::
Nonchaotic.

::::
After

:::
the

::::
MPT,

:
it
:::::::

exhibits
::::::::::

self-sustained

::::::
oscillations

::::
with

:
a
:::::

period
::
of

:::
∼100

:::
kyr

::
in
::

the
::::::

absence
::
of

::::
forcing.

:

::
Yes,

::::
the

::::
MPT

::::
arises

::::
via

:
a
::::

Hopf
:::::::

bifurcation
:::

in
:::

the

::::::
underlying

:::::
system;

:::
see

::::
also

:::::::::
Crucifix (2012).

:
It
:::

has
:

a
:::::

strange
::::::::

nonchaotic

:::::
attractor,

:::
as

::::
well

:::
as
:::

a

::::
chaotic

:::::
one,

:::::::::
depending

:
on
::::

the
:::::::

parameter
::::::

setting

:::::::::::::::
(Mitsui and Aihara, 2014).

Paillard (1998)

Parrenin and Paillard (2003)

Parrenin and Paillard (2012)

::::
Hybrid

::::::
dynamical

:::::
system

:::
with

::::
discrete

::::
states

::
that

::::
switch

::::
when

::::::
conditions

::
are

:::::
satisfied

::::::
Nonchaotic

:::
but

::
the

:::::::
dynamics

:
is
:::::::

sensitive
::

to
::::::::

parameter

:::::
changes

:::
near

:::
the

:::::::
switching

::::::
boundaries

:::::::::
(Paillard, 2001)

:
.
::
No

::::::::
self-sustained

:::::::
oscillations

:::
in

::
the

::::
absense

::
of

:::::
forcing.

::
Yes,

::
in

:::::::::
Paillard (1998)

::
The

:::::
authors

:::
call

:::
these

:::::
models

::::::
relaxation

::::::::
oscillators,

::::
in

:::
spite

::
of
::::

their
:::::::::

discrete-state

:::::::
formulation.

::::::::
Berger (1999)

:::::
Delayed

:::::::
differential

::::::
equation

::
for

::
ice

::::
volume

::::::
Robustness

:::
of
:::::::::

trajectories

::::
against

:::::
random

:::::::
perturbations

::
is

::::::
mentioned.

::
It
:::::
exhibits

:::::
damped

::::::
oscillations

::
in
:::

the
:::::
absence

::
of

::::
forcing.

:

::
Not

:::::::
specifically

::::::
addressed.

::::::::::::::::
Paillard and Parrenin (2004)

:::::
Coupled

:::::::
oscillator

::::::
based

:
on
::::::::

Northern
:::::::::

hemisphere

::
ice

::::::::::::
volume–Antarctic

::::
ice

:::::::
extent–CO2:::::

coupling.
:

:::::::
Nonchaotic.

:::
It
::::::::

exhibits

::::::::
self-sustained

::::::::::
oscillations

:
in
::
the

::::::
absence

:
of
:::::

forcing.
:

::
Yes,

:::
the

:::
MPT

::
is

:::::
induced

:
by
::

a

:::
slow

:::
drift

:
in
::

the
:::::

bottom
::::
water

::::::
formation

:::::
efficiency

:::::
around

::
the

:::::
Antarctic

:

::::::::::::
Ashwin et al. (2018)

::::
showed

::
that

:::
this

:::::
model

:::
can

:::::
exhibit

::::
chaotic

::::::
dynamics

::::
when

::
it
::

is

::::
slightly

::::::
modified.

Ashkenazy and Tziperman (2004)

Tziperman et al. (2006) ::
An

::::
ice

:::::
mass

:::::::
model,

:::
which

:::::::::
simplifies

::::::
the

::::
sea-ice

:::::
switch

::::::
model

:::
of

:::::::::::::::::
Gildor and Tziperman (2000)

:
It
:::::::

exhibits
::::::::::

self-sustained

::::::
oscillations

::
in
:::

the
:::::
absence

::
of

::::
forcing.

:::::::
Nonchaotic

::::
under

:::
the

::::
orbital

::::
forcing.

:

::
Yes,

::::::::::::::::
in

:::::::::::::::::::
Ashkenazy and Tziperman (2004)

,
:::::

where
:::

the
:::::::

maximum
:::

ice

::::
volume

::::::
threshold

::
is

::::::
increased

:
in
:::
time

::::::
according

:
to
::
the

:::::
regolith

::::::
hypothesis.

:

:::
Uses

:::::::::::::::
the

::::::::::::::
temperature-precipitation

:::::
feedback

:::::::::
introduced

::::
by

:::::::::::
Källén et al. (1979).

:
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:::::
Author(s)

::::
(year)

::::
Succint

:::::::
description

::::::
Dynamical

::::::
properties

:
Is
::::

the
:::::::::::::

Middle-Pleistocene

::::::
Transition

::::::
(MPT)-like

::::::
behavior

::::::
generated?

::::::
Additional

::::::
comments

Low-order dynamical systems models of glacial cycles

Huybers (2007)

Huybers (2011) ::
The

::::
ice

::::::
mass

::::::
grows

::::::::
monotonically

:::
and

:::::::
collapses

:
to
::::

zero
::::
when

:
it
::::::

exceeds
::

a

:::::
threshold

:::::::
modulated

:::
by

:::
the

:::::
obliquity

:::::::::::
(Huybers, 2007)

::
or

:
by
:

a
::::

hybrid
::::::

measure
::::::
consisting

:
of
:::

the
::::::
obliquity

::
and

::::::
climatic

::::::
precession

:::::::::
(Huybers, 2011)

:
.

:
It
:::::::

exhibits
::::::::::

self-sustained

::::::
oscillations

::
in
:::

the
:::::
absence

::
of

::::
forcing;

:::::::
nonchaotic.

:

::
Yes,

::
in

:::::::::
Huybers (2007)

:::::::::::
Imbrie et al. (2011)

:::::::
Data-based,

:::::::
phase-space

::::
model

::
for

::::::
Pleistocene

::
ice

:::::
volume

:::
with

::::::
thresholds.

::
Due

::
to
:::

the
::::::

presence
::

of
:::

the

::::::
threshold,

::
the

:::
model

::
is

:::::
sensitive

:
to
:::::
changes

::
in

::::::
parameters

::
or
::
in

:
its
:::::
position

::
in

:::
phase

::::
space.

::
Yes,

:::::::
MPT-like

::::::
behavior

:::
is

:::::
produced

::::
solely

::
by

:::::
changes

::
in

::::
orbital

::::::
parameters.

:

Crucifix (2012)

De Saedeleer et al. (2013) ::::
Forced

:::
Van

:::
der

:::
Pol

:::::
(VdP)

:::::
oscillator

::::::
model;

:::::::
closely

::::
related

:
to
::

the
::::

FHN
::::
model

:::
used

:
in
:::
Sect.

::
3.3

::::
herein.

:

::::::
Nonchaotic

::::::::::::
(Crucifix, 2012)

::
but

::::::
sensitive

::
to
:::

the
:::::

noise;

::
see

::::::::
Additional

::::::::
Comment.

:
It
:::::::

exhibits
::::::::::

self-sustained

::::::
oscillations

::
in
:::

the
:::::
absence

::
of

::::
forcing.

:

::
Yes,

::::::::
MPT-like

::::::::
behavior

:
is
:::::::

generated
:::

via
::

a
:::::

Hopf

::::::
bifurcation

:::
with

:::
an

::::::
explosive

:::::
character

::::::::::
(Crucifix, 2012)

::::::::::::
Ashwin et al. (2018)

::::
showed

::
that

::::
this

::::
model

::::
has

::::
only

:
a
::::

small
:::::::

parameter
::::::

region

::::::::
corresponding

:::
to
:::::::

chaotic

::::::
dynamics,

:::
but

:::
may

::::
have

::
a

:::
wider

:::::
chaotic

::::
region

:::
when

:
it
::

is

::::::
generalized

::
to
::
the

::::::::
VdP-Duffing

::::
system.

:

:::::::::::
Mitsui et al. (2015)

::::::::::
One-dimensional

::::::::
phase

:::::
oscillator

::::
model

::::::
Nonchaotic

: ::
Yes,

::::::::
MPT-like

::::::::
frequency

::::
change

::::::::
accompanies

:
a
:::::
smooth

:
or
::::::::

nonsmooth
:::::::::

saddle-node

::::::
bifurcation

::
of

::
tori.

:

:
It
:::

has
:

a
:::::

strange
::::::::

nonchaotic

:::::
attractor

::
or
::

a
:::::::::

quasiperiodic

:::::
attractor

::
in

:
a
:::::

classical
:::::

sense,

::
i.e.,

::
not

::
in

::
the

:::::
pullback

::::
sense.

:::::::::::::::::
Ashwin and Ditlevsen (2015)

::::::::::
Two-dimensional

::::
forced

::::
limit

:::
cycle

:::::
oscillator

:

:::::::
Nonchaotic;

::::
overall

:::::
stability

::
of

:::::
simulated

:::::
glacial

:::
cycles

:::::
against

::::::
dynamical

:::
noise

:
is
::::::

reported.

:
It
:::::
exhibits

::::::
MPT-like

::::::
behavior

::
via

:
a
:::::::
transcritical

::::::
bifurcation

::
of

::
the

:::
slow

::::::
manifold

::
in

::
the

:::
fast

::::::
dynamics.

::::::::::
Omta et al. (2016)

::::
Forced

::::::::::::::
two-dimensional

:::::
oscillator

:::::::::
consisting

::::
of

:::
ocean

::::::
alkalinity

:::
and

::::::
calcifier

::::::
population

::::::
Nonchaotic

:::
or

:::::
chaotic

::::
given

:::::
periodic

:::::
forcing,

::::::::
depending

:
on
:::

the
:::::::
parameters.

::
It

:::::
exhibits

::::::::
self-sustained

:::::::
oscillations

:::
in

::
the

::::
absence

::
of
:::::
forcing.

::
Yes

::::::::::::::::
Daruka and Ditlevsen (2016)

::::
Forced

:::::
Duffing

:::::::::
oscillator–type

::::
model.

::
No

::::::::
self-sustained

::::::::
oscillations

:
in
:::

the
::::::

absence
::

of
::::::

forcing.

::
Can

::
be
:::::

chaotic
:::::::

depending
::
on

::::::
parameter

::::
values;

:::
the

:::::
authors

::
call

:::
this

::
the

:::::
“climatic

::::::
butterfly

::::
effect.”

::
Yes,

:::::::
MPT-like

::::::
behavior

:::
is

::::
induced

:::
by

::
a
::::

slow
:::::
change

:
in
:::

the
::::::

damping
::::::::

coefficient

::::::
parameter

:
κ.
:

::
See

:::
also

:::
Sect.

:
4
::::
herein.

:::::::::::::::::
Huybers and Langmuir (2017)

:::::
Coupled

::::
system

::
of

::
ice

:::::
volume,

:::::::
temperature

:::
and

::::::::
atmospheric

:::
CO2,

::::::::
incorporating

::
a
:::::
delayed

:::
CO2 :::::::

contribution
::::

from
::::
ocean

:::
ridge

::::::
volcanism.

:
It
::
is

::::
reduced

::
to

:
a
::::
forced

::
1-D

::::
delay

:::::::
differential

:::::
equation

:
A
::::::::::

phase-locking
:::::::

property

:
is
::::::

reported.
:::

The
::::::::

underlying

::::
system

:::
has

:::
two

::::
stable

::::
and

::
one

:::::
unstable

:::::::
stationary

::::
states.

:::::
However,

::
it
::

is
:::::

close
::

to
::

a

:::
Hopf

:::::::
bifurcation

:::
point

:::
and

::
is

:::::
excitable

::
by

::
the

:::::
forcing.

::
Yes,

:::
the

:::
MPT

::
is
::::::

modeled
::
as

:
a
::::
switch

:::
from

::::::::::
small-amplitude

::::::
oscillations

::
to
::::::::::

large-amplitude

:::
ones,

::::
which

::
is
::::::

triggered
:::

by

::
the

::::::
amplitude

::::::::
modulation

::
of

:::::
obliquity

::::
cycles.

:
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:::::
Author(s)

::::
(year)

::::
Succint

:::::::
description

::::::
Dynamical

::::::
properties

:
Is
::::

the
:::::::::::::

Middle-Pleistocene

::::::
Transition

::::::
(MPT)-like

::::::
behavior

::::::
generated?

::::::
Additional

::::::
comments

Low-order dynamical systems models of glacial cycles

:::::::::::
Quinn et al. (2017)

:::
Scalar

:::::::::::::::
delay-differential

:::::
equation

:::
for

:::
ice
:::::::

volume,

::::
derived

:::::::
from

:::::::
the

:::::::::::::::::
Saltzman and Maasch (1988)

::::
model,

:::
via

::
the

:::::
linear

::::
chain

:::::::::
approximation.

::::::
Nonchaotic

:::::
before

:::
the

::::
MPT

::
and

:::::::
temporarily

:::::
chaotic

::::
after

::
the

:::
MPT

:::::
around

::
800

:::
kyr

:::
b2k.

:
In
::
the

:::::
absence

::
of

::::::::
astronomical

::::
forcing,

:::
the

:::::
delayed

::::::
feedback

:::
leads

::
to

:::::
bistable

::::::
behavior,

::
in

:::
which

:::::
stable

::::::::::
large-amplitude

::::::
oscillations

:::
and

::
an

:::::::
equilibrium

::::
coexist.

:

::
Yes,

:::::::
MPT-like

::::::
behavior

:::
is

::::
induced

::
by
::::::

summer
::::::
insolation

::::
forcing

::
as
::

a
::::::
transition

::::
from

:::::::::
small-amplitude

:::::::::
∼41-kyr

:::
cycles

::::
to

:::::::::::
large-amplitude

::::::
∼100-kyr

::::
cycles.

::::::::::::
Ashwin et al. (2018)

:::
Study

:::
of

:::::
several

:::::::
low-order

::::::
dynamical

::::::::::::
systems

::::
models,

::::::::::::::
including

::::::::::::::::
Paillard and Parrenin (2004)

,
::::::::::::

Crucifix (2012)
::
and

::::
a

::::::
generalized

::::::::::::
VdP-Duffing

:::::
oscillator.

:

::::
Chaotic

:::::
or

:::::::::
nonchaotic

::::::
depending

:::
on

:::
the

::::::
model

::
and

::
its

::::::
parameter

::::
values.

::
Not

::::::
explicitly

:::::::
discussed.

:::
The

::::
models

:::
can,

::::::
however,

:::::
exhibit

:::::
MPT-like

::::::
behavior

:
in
::::::
principle,

::::
because

::::::
41-kyr

::::::::
oscillations

:
as
:::

well
::

as
::::::

dominant
::::::

100-kyr

::::::
oscillations

::::
are

::::::::
generated

::::::
depending

::
on

:::::
parameter

:::::
values.

::
The

::::::
authors

::::::
stress

::::
the

::::::
possibility

:
of
:::::

chaotic
::::::
dynamics

::::::
occurring.

:::::::::::::
Verbitsky et al. (2018)

:::::
Coupled

::::::
model

:::::::
relying

:
on
::::::::::

ice-sheet
:::::::

basal

:::::::::::
temperature–ocean

:::::::
temperature

:::::
coupling,

:::::::
deduced

::::::
from

:::::
physical

:::
laws

:::
via

::
a
:::::
scaling

:::::
analysis.

:::::::
Nonchaotic.

::
No

:::::::::
self-sustained

::::::
oscillations

::
in
:::

the
:::::
absence

::
of

::::
forcing.

:::
The

:::::
100-kyr

::::
cycles

::
are

:::::
attributed

::
to
:
a
::::::::::
period-doubling

:::::
response

::
to
:::::

41-kyr
::::::
obliquity

::::
cycles.

::
Yes,

:::::::
MPT-like

::::::
behavior

:::
is

::::
induced

:::
by

::
an
:::::::::

enhancement

:
of
:::::

positive
:::::::

feedbacks
:::::
against

:::::
negative

:::::::
feedbacks

::
in
::::

the

::::
model.

::::::::::::::::::
Talento and Ganopolski (2021)

::
Ice

:::::::::
volume–CO2:::::::

coupled

::::::
conceptual

::::
model

::
Not

:::::::
specifically

::::::
addressed.

::
This

:::::
model

:::
was

::::::
developed

::
to

:::::
simulate

::
the

:::
last

::::::
800-kyr

::
of

::::
glacial

:::
cycles

:::
and

::::
Earth’s

::::
future

::::
climate

::
on

::
the

:::
Myr

:::
time

:::
scale.

Low-order dynamical models in which stochastic processes are of the essence

Benzi et al. (1981, 1982)

Nicolis (1981) ::
Two

::::::::
independent

::::::::
formulations

:
of
:::

a
::::::::::::::

stochastic-resonance

::::
model.

::::::
Additive

:::
noise

:::::
favors

::
the

::::::
bimodal

:::::::
response

:::
of

:
a
:::::::::

periodically
::::::::

modified

:::::::
double-well

:::::
potential

::
to

::::
global

::::
annual

::::::
insolation

:::::
variations

:

:::::
Additive

:::::::::::::
stochastic

:::::::
perturbations

:::::
play

::
a
::::

key

::
role

:

::
Not

:::::::
specifically

::::::
addressed.

:::
An

::::::
MPT-llike

::::::
transition

::::
could

::
be

:::::
obtained

::
by
:::::::

subjecting
::::

both

::
the

:::
depth

::
of
:::

the
::::::::
deterministic

::::
double

::::
well

:::
and

:::
the

::::
pure

::::::
periodicity

::
of
::

its
::::::::

modulation

:
to
::

a
::::

more
::

or
:::

les
::::::

gradual

:::::::
modification.

:

::::::::::::::
Benzi et al. (1981, 1982)

::
and

::::::::
Nicolis (1981)

::::::
proposed

::::
the

::::::::::::
stochastic-resonance

:::
idea

:::
for

::::
ice-age

:::::
cyclicity,

:::::::::
independently

:
of
:::
each

::::
other.

::::::::::
Matteucci (1989)

:::::::
Generalized

:::::::::::
stochastic

::::::
resonance

:::
model

:::
with

::::::
obliquity

::
and

:::::::
precessional

:::::
forcing

:::::
Additive

:::::::::::::
stochastic

:::::::
perturbations

:::::
play

::
a
::::

key

:::
role.

::
Not

:::::::
specifically

::::::
addressed.

:::::::::
Pelletier (2003)

::::
Model

:::
based

::
on
::

the
:::::::

coherence

::::::
resonance

::::::::::::
mechanism

::::::::::::::::
(Pikovsky and Kurths, 1997)

::
uses

:
a
::::

single
:::::::
temperature

::::
ODE

::
with

:
a
:::::

discrete
::::
delay.

:::::
Additive

:::::::::::::
stochastic

:::::::
perturbations

:::::
play

::
a
::::

key

:::
role.

::
Yes

::
The

::::
delay

:::::::
feedback

::
in

:::
the

:::::::
temperature

::
is

::::
based

::
on

:::
ice

:::
sheet

:::::
extent

::::::::::
reconstructions

::
and

::::
affects

::
the

:::::
model’s

::::
albedo.

::::::::::
Ditlevsen (2010)

:::::::
Generalized

:::::::::::
stochastic

::::::
resonance

:::
model

:::
with

::::::
obliquity

::
and

:::::::
precessional

:::::
forcing

:::::
Additive

:::::::::::::
stochastic

:::::::
perturbations

:::::
play

::
a
::::

key

:::
role.

::
Yes

::
The

::::
model

:::
has

::
an

:::::::
underlying

::::::
bifurcation

::::::
structure

::::::
following

:::::::::
Paillard (1998) .

Table A1.
:::
List

::
of

:::::
simple

::::::::
conceptual

::::::::::
glacial-cycle

:::::
models

::::
with

::::
only

::::
1-to-3

::::::::
variables.

::::
Note

:::
that,

:::::
while

:::::::
extensive,

:::
this

:::
list

::
is

:::
not

::::::::
exhaustive.
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::
or

:::
test

:::::::
different

::::::
orbital

:::::::::
hypotheses

::::::::::::::
(Huybers, 2011).

:::::
Many

::::::::
low-order

:::::::
models

::
of

:::::
glacial

:::::::::
dynamics

::
are

:::::
listed

::
in

::::
Tab.

:::
A1,

::::::::
although755

:
it
::
is

::
by

:::
no

::::::
means

:::::::::
exhaustive.

Appendix B: PBA for a limit cycle with sinusoidally modulated radius

Here we study the system of two formally decoupled ODEs

dρ

dt
= α(µ+β sin(νt)− ρ),

dφ

dt
= ω with ρ > 0, µ > 0 (B1)

that was introduced in Sec
::::
Sect. 3.2 and analytically derive its invariant sets760

A(t) = {
(
αβ sin(νt+ϑ) +µ,ϕ

)
: ϕ ∈ [0,2π)} ∀t ∈ R, (B2)

as well as the corresponding pullback attractor (PBA). Following Crauel and Kloeden (2015)
::::::::::::::::::::::
Crauel and Kloeden (2015), the

PBA is given by the family

A = {A}t:t∈R (B3)

First, we define ∆ρ(t) = ρ(t)−µ, which gives rise to765

d∆ρ(t)

dt
=−α∆ρ(t) +αβ sin(νt). (B4)

This is an inhomogeneous ODE and can thus be solved by the variation of parameters method (e.g., Boyce and DiPrima, 2005).

The Ansatz

∆ρ(t) = c(t) e−α(t−t0) (B5)

yields770

d∆ρ(t)

dt
=−α∆ρ(t) +

dc(t)
dt

e−α(t−t0). (B6)

A comparison with Eq. (B4) requires

d
dt
c(t) = αβ sin(νt)e+α(t−t0), (B7)

and hence

c(t) =

t∫

t0

αβ sin(νt′)e+α(t
′−t0)dt′+ γ = [αβ sin(νt′)

1

α
e+α(t

′−t0)]tt0 −
t∫

t0

ν

α
αβ cos(νt′)e+α(t

′−t0)dt′+ γ. (B8)775

Repeated partial integration yields

t∫

t0

ν

α
αβ cos(νt′)e+α(t

′−t0)dt′ = [
ν

α
αβ cos(νt′)

1

α
e+α(t

′−t0)]tt0 +

t∫

t0

ν2

α2
αβ sin(νt′)e+α(t

′−t0)dt′. (B9)
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Therefore, we find

(1 +
ν2

α2
)

t∫

t0

αβ sin(νt′)e+α(t
′−t0)dt′ = [αβ sin(νt′)

1

α
e+α(t

′−t0)]tt0 − [
ν

α
αβ cos(νt′)

1

α
e+α(t

′−t0)]tt0 (B10)

and finally780

c(t) =
1

(1 + ν2

α2 )


 [β sin(νt′)e+α(t

′−t0)]tt0︸ ︷︷ ︸
=β[sin(νt)eα(t−t0)−sin(νt0)]

− [
νβ

α
cos(νt′)e+α(t

′−t0)]tt0︸ ︷︷ ︸
= νβ
α [cos(νt)eα(t−t0)−cos(νt0)]

+γ


 . (B11)

Plugging this result into the Ansatz (B5) yields

∆ρ(t, t0) =
1

(1 + ν2

α2 )

(
β[sin(νt)− sin(νt0)e−α(t−t0)]− νβ

α
[cos(νt)− cos(νt0)e−α(t−t0)]

)
+ γe−α(t−t0), (B12)

with the initial conditions

∆ρ(t0, t0) = γ. (B13)785

In the pullback limit, all the terms that carry a factor e−α(t−t0) vanish and thus

lim
t0→−∞

∆ρ(t, t0) =
1

(1 + ν2

α2 )

(
β sin(νt)− νβ

α
cos(νt)

)
= αβ sin(νt+ϑ), (B14)

with ϑ= arctan(−ν/α). For comparison, the modulation of the target radius itself was given by β sin(νt) and hence it is

amplified by the factor of α. Since ρ is restricted to positive values, this solution requires αβ < µ.

Since the evolution in time of the phase φ(t) is trivial, different initial conditions for the phase do not converge. Hence, the790

time-dependent sets that are invariant with respect to the dynamics of the system are

A(t) = {(ρ(t),φ) : φ ∈ [0,2π)}= {(αβ sin(νt+ϑ),φ) : φ ∈ [0,2π)}. (B15)

Defined as the indexed family of all A(t), the system’s PBA is comprised of the family of circles

A = {A(t)}t∈R = {(αβ sin(νt+ϑ),φ) : φ ∈ [0,2π)}t∈R. (B16)
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